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1) Why Might You Want To Use Hundreds of Series? 
 
One of the major challenges of empirical macro is that there is limited 
information – limited historical experience.  But thousands of economic 
time series are available on line in real time.  Can these be used to expand 
our information for economic monitoring and forecasting? For estimation 
of single and multiple equation models?  
 
This is a radical proposal! 
• not your “principle of parsimony”! 
• VARs with 6 variables and 4 lags have 4×62 = 144 coefficients (plus 

variances) 
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Why use hundreds of series, ctd. 
 
Four problems in which more information would be most welcome: 

1.Economic monitoring (“nowcasting”) and forecasting 
• can we move from small models with forecasts adjusted by 

judgmental use of additional information, to a more scientific 
system that incorporates as much quantitative information as 
possible?  

2.SVARs using more information  
• so innovations span the space of shocks 

3.IV estimation  
• more information might produce stronger instruments 

4.DSGE estimation  
• more information might produce stronger identification 
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Why use hundreds of series, ctd. 
Dynamic Factor Models (Geweke (1977), Sargent and Sims (1977)) have 
proven very useful in this research program 
• The greatest amount of experience to date with DFMs is for 

forecasting.  DFMs are in use for real-time monitoring and forecasting 
(e.g. CFNAI (Federal Reserve Bank of Chicago), Giannone, Reichlin, 
and Small (2008), Aruoba, Diebold, and Scotti (2008) 

• Other promising applications 
o SVARs: Bernanke, Boivin, and Eliasz’s (2005) FAVAR 
o DSGEs: Boivin and Giannoni (2006b) 

 
In a broader sense, the move of empirical macro to use much larger data 
sets is consistent with developments in other scientific areas – mainly 
experimental sciences (especially life sciences/genomics) but also some 
observational sciences (astrophysics).  
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2) Dimensionality: From Curse to Blessing 
 
The curse part: 
• A VAR with 200 variables and 6 lags has 240,000 coefficients, and 

another 20,100 variance parameters. 
• OLS is a bad idea with many regressors: in theory, if regressors are 

proportional to sample size, consistency is lost; in practice, the 
problem is introducing large estimation error.   
 

The blessing part (one view) 
In some models – dynamic factor models in particular – many series 

helps to identify the statistical object of interest – inference can be 
improved when there are many series.  (Geweke’s (1993) discussion of 
Quah and Sargent (1993)).   
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From curse to blessing: dynamic factor models (Geweke (1977), Sargent 
and Sims (1977)) 

Suppose the n variables in Xt are related to q unobserved factors ft, 
which evolve according to a time series process: 
          Xit = λi(L)ft + eit, i = 1,…,n, 

Ψ(L)ft = ηt, 
If the factors were observed they could be very useful for forecasting, but 
they aren’t observed. 

 
The original approach to this problem (Engle and Watson (1981), 

Stock and Watson (1989, 1991), Sargent (1989), Quah and Sargent 
(1993)) was to fit the two equations above by ML using the Kalman filter.  
But the proliferation of parameters and computational limitations of ML in 
high dimensions limited this approach to small n.   



From curse to blessing: dynamic factor models, ctd 
 
An example following Forni and Reichlin (1998).   
Suppose ft is scalar and λi(L) = λi (“no lags in the factor loadings”), so  

Xit = λift + eit    
Then 
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If the errors uit have limited dependence across series, then as n gets large, 
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In this special case, a very easy nonparametric estimate (the cross-
sectional average) is able to recover ft – as long as n is large! 
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From curse to blessing: dynamic factor models, ctd 
 
• All the procedures below are justified using asymptotic theory for 

large n by assuming that n → ∞, usually at some rate relative to T .  
Often n2/T is treated as large in the asymptotics; this makes sense in an 
application with T = 160 and n = 130, say. 

 
• By having large n, procedures (more sophisticated than the simple 

average in the previous example) are available for consistent 
estimation of tuning priors (prior hyperparameters) in forecasting and 
for factors in DFMs. 

 
• Most of the theory, and all of the empirical work, has been developed 

within the past 10-12 years. 
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3) Dynamic Factor Models: Specification and Estimation 
 
(A) Specification: The DFM, the Static Form, and the Approximate DFM 

The idea (conjecture) behind DFMs is that small number of factors 
captures the covariation in macro time series (Geweke (1977), Sargent and 
Sims (1977)). 
The exact DFM      Xit = λi(L)ft + eit, i = 1,…,n, 

Ψ(L)ft = ηt, 
 
where:     ft = q unobserved “dynamic factors” 

λi(L)ft = “common component” 
λi(L) = “dynamic factor loadings” lag polynomial 
eit = idiosyncratic disturbance 
cov(ft, eis) = 0 for all i, s 

Eeitejs = 0, i ≠ j, for all t, s  (exact DFM) 



The exact DFM, ctd. 

DFM in vector notation:  
1n

tX
×
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Identification of the factors:  λ(L) and ft are only identified up to a 
normalization:  λ(L)ft = λ(L)HH–1ft for any square matrix H.  This is 
unimportant if you are only interested in the space spanned by the f’s but it 
will come up in our discussion of FAVAR. 
 
Spectral factorization.  Because ft and et are uncorrelated at all leads and 
lags, the spectral density of Xt is the sum of two components, one from the 
factors and one from the e’s: 

SXX(ω) = λ(eiω)Sff (ω)λ(e–iω)′ + See(ω), 

where See(ω) is diagonal under the exact DFM.  This is the counterpart to 
the sum-of-variances expression in the cross-sectional factor model. 
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Forecasting in the exact DFM: 
Consider forecasting Xit+1 using all the data in Xt, and treat ft as observed.  
If uit follows an autoregression and the errors are Gaussian, then  
 

E[Xit+1| Xt, ft, Xt–1, ft–1,…]  
= E[λi(L)ft+1 + eit+1| Xt, ft, Xt–1, ft–1,…]  
= E[λi(L)ft+1| Xt, ft, Xt–1, ft–1,…] + E[eit+1| Xt, ft, Xt–1, ft–1,…] 
= E[λi(L)ft+1| ft,  ft–1,…] + E[eit+1| Xt, ft, Xt–1, ft–1,…] 
= E[λi(L)ft+1| ft,  ft–1,…] + E[eit+1| eit, eit–1, …] 
= α(L)ft + δ(L)Xit          (1) 

• The f’s contain all the relevant information from the other X’s. 
• The dimension reduction is from np parameters, to (q+1)p, where p is 

the number of lags. 
• Under the DFM, the OLS dimension problem is eliminated and the 

forecast using the f’s will be first order efficient. 
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The approximate DFM  
Chamberlain-Rothschild (1983) 
Forni, Hallin, Lippi, Reichlin (2000, 2003a,b, 2004) 
Stock and Watson (1999, 2002a,b) 
 

The approximate DFM relaxes the strong assumption that the 
idiosyncratic terms are uncorrelated across equations at all leads and lags.  
The basic idea is that, instead of Suu(ω) being diagonal, its eigenvalues are 
bounded as n increases (there is no linear combination of ut that has 
increasing variance as n increases).  Technical conditions will be 
displayed below when we go over asymptotics for DFMs.



The Static Form of the DFM (“little f and big F”) 
The DFM           Xt = λ(L)ft + et 
where        Ψ(L)ft = ηt, 
 
Suppose that λ(L) has at most pf lags.  Then the DFM can be written, 

1t

nt

X

X

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#  =  
10 1

0

f

f

p

n np

λ λ

λ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…

# % #
"

f

t

t p

f

f −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

#  + 
1t

nt

e

e

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#  

or               =            
1n

tX
× n r×

Λ                
1r

tF
×

    +   
1n

te
×

 
where the number of static factors, r, could be as much as qpf. 
Ft is the vector of static factors.  The VAR for ft implies that there is a 
VAR for Ft: 

Φ(L)Ft = Gηt  
where G is a matrix of 1’s and zeros and Φ consists of 1’s, 0’s, and Ψ’s.
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(B) Estimation: Principal Components, Generalized PC, and MLE 
 
(i) Estimation by Principal Components 
DFM in static form:    Xt  = ΛFt  + et 

Φ(L)Ft = Gηt  
By analogy to regression, consider estimating Λ and {Ft} by least squares: 

1

1
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F F t t t
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subject to Λ′Λ = Ir (identification).  Given Λ, the (infeasible) OLS 

estimator of Ft is: 
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Principal components, ctd. 
 
minΛ 1 1
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Distribution theory for PC as factor estimator 
 
Results for the exact static factor model: 

Connor and Korajczyk (1986)  

o consistency in the exact static FM with T fixed, n → ∞ 

 
Selected results for the approximate DFM:  Xt = ΛFt + et 

Typical conditions (Stock-Watson (2002), Bai-Ng (2002, 2006),…): 

(a) 
1

1 T

t t
i

F F
T =

′∑   ΣF  (stationary factors) 
p
→

(b) Λ′Λ/n → (or ) ΣΛ   Full rank factor loadings 
p
→

(c) eit are weakly dependent over time and across series 
(approximate DFM) 

(d) F, e are uncorrelated at all leads and lags  
plus n, T → ∞, with a relative rate condition
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Selected results for the approximate DFM, ctd. 
 
Stock and Watson (2002a) 

o consistency in the approximate DFM, n, T →∞, no n/T restrictions 

o justify using  as a regressor without adjustment t̂F

 
Bai and Ng (2006)  

o N2/T → ∞ (Not the principle of parsimony!) 
o asymptotic normality of PCA estimator of the common component 

at rate min(n1/2, T1/2) in approximate DFM 
o improve upon Stock-Watson (2002a) rate for using  as a 

regressor 
t̂F

o Method for constructing confidence bands for predicted value 
(these are for predicted value – not forecast confidence bands) 
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PC estimation in the approximate DFM, ctd. 
 
• Data irregularities probably are best handled parametrically in the SS 

setup using the KF 
• However the PC algorithm can be modified for data irregularities 

including mixed frequency data, see Stock and Watson (2002b, 
Appendix).  



(ii) Generalized principal components 
PC is motivated by considering a least squares problem.  Presumably, if 
there is heteroskedasticity (or cross-correlation), you could do better by 
using WLS (or GLS) – which is what generalized PC does. 
 
DFM in static form:    Xt  = ΛFt  + et 
 
Infeasible WLS:  Let Σee be the variance matrix of et.  The infeasible WLS 
estimator of F and W solves, 
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Solution:    = first r eigenvectors of Λ̂ 1/2
ee
−Σ ˆ

XXΣ 1/2
ee
−Σ ′ 

and     = t̂F ˆ
tX′Λ  = first r generalized principal components of Xt. 
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Generalized principal components, ctd. 

Infeasible Generalized PC:   Λ̂  = first r eigenvectors of 1/2
ee
−Σ ˆ

XXΣ 1/2
ee
−Σ ′ 

 
Feasible Generalized PC requires an estimator of Σee: 
(a) Forni, Hallin, Lippi, and Reichlin (2005):    

ˆ ˆ ˆ
eeΣ  = XXΣ  - ccΣ , 

where  is estimate of covariance matrix of the common component 
in the DFM, estimated by dynamic PCA (discussed below) 

ˆ
ccΣ

 
(b) Bovin and Ng (2003):  ˆ diag

eeΣ  = diag( ˆ
eeΣ )  

(this accords from exact DFM restrictions) 
 
(c) Stock and Watson (2005) – essentially “GLS by Cochrane-Orcutt” 
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(iii) MLE  
Engle-Watson (1981); Stock and Watson (1989), Sargent (1989) 
 
Suppose ft follows a VAR(1).  The DFM with first order dynamics is: 
     
       ft = Ψft–1 + ηt    (VAR(1) assumption) 

Xt  = λ0ft + λ1ft–1 + et 
 
Suppose that eit follow individual AR’s, written in first order form: 

 

te�  = D 1te −�  + Hζt 
 
where ζt is n × 1, H = [In | 0]′, pe is the number of lags in the eit AR’s, and 

 = (et′, et-1′,…, ′)′.  Combining the Ft and  equations yields: te� 1et pe − + te�
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MLE, ctd. 
The DFM in state space form: 
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• Equation (3) is the state transition equation and equation (4) is the 
observer equation in the state space formulation of the DFM.  The 
quasi-likelihood can now be computed using the Kalman filter. 

• Extension to higher order dynamics (higher order VAR for Ψ(L) 
and/or lags of ft entering Xt equation): augment state vector with 
further lags of ft 

Revised December 21, 2009 8/9-25 



Revised December 21, 2009 8/9-26 

MLE, ctd. 
 
• Early implementations used the MLE to estimate models with a single 

dynamic factor (r=1) with only a handful of variables: 
Engle-Watson (1981) 
Sargent (1989): estimate early DSGE  
Stock-Watson (1989): coincident index 
Quah-Sargent (1993): more variables but a special structure 

 
• Historically, computation got too hard as n increased beyond a half-

dozen variables (and the model was kept general), so other 
(nonparametric) methods were developed. 



MLE, ctd. 
 
• However, there have been recent advances that make the MLE more 

practical: 
1) Computation 

a) faster computers 
b) can get very good starting values from PC: estimate factors , 

then estimate parameters treating  as observed data 
t̂F

t̂F

c) new KF speedup: Jungbacker and Koopman (2008) 
2) Theory:  

Doz, Giannone, and Reichlin (2006) 
3) Empirical experience (discussed below):  

Doz, Giannone, and Reichlin (2006) 
Reiss and Watson (2008) 
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MLE, ctd. 
 
The SS formulation of the DFM is particularly well suited to real time 
implementation – issues of irregular data arrival and mixed periodicity. 
• The general setup for linear SS models with irregular data arrival is 

laid out in Harvey (1993). 
• Aruoba, Diebold, and Scotti (2008) implement an irregular data/mixed 

frequency DFM by formulating the latent factor evolution at the daily 
level and the factors are observed either as temporal aggregates or at a 
point in time depending on the variable.  In principle this system can 
provide internally consistent daily updates of economic conditions – 
indeed outlooks on hundreds of variables – along with forecast 
intervals with each new data release.  



Forecasting with estimated factors 
 
Comments: 
1. The basic idea – using factors as predictors.  Suppose the object is to 

forecast Xit using estimated factors.  According to the exact DFM 
theory, the (first order) optimal forecast is obtained from the regression 
in (1).  The dynamic factors aren’t observed, so this leads to the 
regression, 

Xit+1  = α(L)  + δ(L)Xit + ζt+1 t̂F

In some cases you might think some other variables Wt are good 
predictors so you could augment this: 

ˆXit+1  = α(L)  + δ(L)Xit + γ(L)Wt + ζt+1 tF

If the number of regressors is small, this will yield first-order optimal 
forecasts. 
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Forecasting with estimated factors, ctd. 
 
2. Multiple horizon forecasts.  Two choices for h-step ahead forecasting: 

a. Direct forecasts: 
Xit+h  = α(L)  + δ(L)Xit + ht̂F h

tζ +  
b.Iterated forecasts: 

Xitt+1  = α(L)  + δ(L)Xit + ζt+1 t̂F

Φ(L) 1t̂F +  = ωt+1    (VAR for 1t̂F + , where ωt+1 = Gηt+1) 
Alternatively, the iterated forecasts can be implemented in the SS 
setup using the KF. The advantages and disadvantages of iterated v. 
direct are an empirical matter (see Marcellino, Stock, & Watson 
(2006), Pesaran, Pick, and Timmerman (2009)). 

 
3. Forecast evaluation: by simulated out of sample methods.  
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Digression: Dynamic Principal Components  
This is something quite different – a way to extract principal components 
in the frequency domain (Brillinger (1964), discussed in Brillinger (1981)) 
• Dynamic PCA = PCA by frequency; the inverse Fourier Transform 

yields the dynamic principal components 
• Two-sided projections yield common components 
• Distribution theory: 

o Brillinger (1981) (asy. normality, n fixed, T → ∞) 

o Forni, Hallin, Lippi, and Reichlin (2000) (consistency, n, T → ∞) 

o Forni, Hallin, Lippi, and Reichlin (2004) (rates – optimal is n ~ T  
- slower rate because of estimation of the spectral density) 

• DPCA pros and cons: 
o pro: nonparametric – no lag length restrictions needed 

ˆo con: 2-sided ’s, so not usable for second-stage regression F
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Which estimator to use – MLE, PC, or Generalized PC? 
   
(a) Theoretical results ranking MLE, PC, and Generalized PC 
Choi (2007) compares asymptotic variances of PC (derived by Bai (2003)) 
and Generalized PC, using the full covariance matrix of et|(F1,…,FT) 
(GLS, not WLS).  Choi finds asymptotic gains for GPC (smaller variance 
of the asymptotic distribution for infeasible GPC than PC)). 
 
Given the parameters, the KF estimator of Ft is the optimal estimator of Ft 
if the errors are Gaussian; for nonGaussian errors, the KF estimator is the 
MMSE estimator.  This doesn’t take parameter estimation error into 
account. 



(b) Simulation evidence 
• Choi (2007) compares PC, infeasible GLS-GPC, and feasible GLS-GPC 

in a MC study.  He finds efficiency gains for feasible GPC in some 
cases, however the estimation of Σ hurts performance relative to 
infeasible GLS (Σ known), so feasible GPC improves on PC in some but 
not all cases.  No evidence on full MLE. 

• Doz, Giannone, and Reichlin (2006) MC study of: 
o PC 
o PC, estimation of DFM parameters using PC estimates, then a 

single pass of the Kalman Filter (Giannone, Reichlin, and Sala 
(2004)) 

o ML (PC for starting values, then use EM algorithm to 
convergence) 

Doz, Giannone, and Reichlin (2006) results for  
( )

( )

1ˆ ˆ ˆ ˆ( )tr F F F F F F

tr F F
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′
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(b) Simulation evidence, ctd 
• Boivin-Ng (2005) compare combinations of factor estimation methods 

and forecasting equation specifications, from the perspective of 
forecast MSE. 

o Of interest here is their comparison of PC (S, for static) to GPC (D, 
for dynamic) 

o The design in the following figures was calibrated to a large US 
macro data set 

o They report RMSE ratios, relative to an AR benchmark the 
columns to compare are the “S” (PC) to “D” (GPC) columns: SU is 
PC using unrestricted forecasting equation, DU is GPC using 
unrestricted forecasting equation 

o Their conclusion is that PC generally works best. 
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(c) Empirical evidence 
(i) Comparisons of forecasts – actual data sets (US, EU): 
• Stock & Watson, Handbook of Economic Forecasting (2006a) plus 

extensive empirical work as backup – empirical forecasting 
comparison over many series 

• D’Agostino and Giannone (2006) 
• Marcellino and coauthors (several) 
• Broad summary of findings across papers: 

o PC, WLS-PC, and GLS-PC have very similar performance. 
o GLS-PC can produce modest outliers (sometimes better, 

sometimes worse) 
o mild preference for PC 
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(c) Empirical evidence, ctd 
  
(ii) A bit of filtering evidence 
• Riess and Watson (2007) 

o application in which the factor structure is weak (prices with large 
idiosyncratic terms – lots of idiosyncratic movement + 
measurement error) 

o PC estimate of factors vs. MLE from the KF – take a look! 
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Which estimator to use? 
 
• For forecasting, it doesn’t seem to matter much – PC seems to work as 

well as the others in typical applications 
 
• MLE is appealing theoretically and has the additional advantage of 

temporal smoothing – this seems to be the most promising avenue 
currently. 



Selecting the number of factors 

DFM in static form:    Xt  = Λ
1r

tF
×

  + et 
What is r? 
 
Will discuss: 
1) Informal data analysis 
2) Estimating the number of static factors 

a. Estimation of r 
b.Testing r = r0 v. r > r0 

3) Estimating the number of dynamic factors, q 
 
(1)  Informal data analysis 
• Largest eigenvalues 
• scree plots (plots of ordered eigenvalues of X′X/T 
• fraction of trace R2 explained 
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(2) Estimating the number of static factors 
 
Estimation approach 
Bai-Ng (2002) propose an estimator of r based on an information 

criterion; their main result is   r0 for the approximate DFM  r̂
p
→

 
Digression on information criteria (IC) for lag length selection in an AR 
Consider the AR(p):  yt = a1yt–1 + … + apyt–p + εt 
• Why not just maximize the R2? 
• IC trades off estimator bias (too few lags) vs. estimator variance (too 

many lags), from the perspective of fit of the regression: 

Bayes Information Criterion:  BIC(p) = ( ) lnln SSR p Tp
T T

⎛ ⎞ +⎜ ⎟
⎝ ⎠

 

Akaike Information Criterion:  AIC(p) = ( ) 2ln SSR p p
T T

⎛ ⎞ +⎜ ⎟
⎝ ⎠
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The Bayes Information Criterion (BIC) 

BIC(p) = ( ) lnln SSR p Tp
T T

⎛ ⎞ +⎜ ⎟
⎝ ⎠

 

• First term:  always decreasing in p (larger p, better fit) 
• Second term:  always increasing in p.   

o The variance of the forecast due to estimation error increases with p 
o This term is a “penalty” for using more parameters 
o The penalty gets smaller with the sample size 

• Minimizing BIC(p) trades off bias and variance to determine a “best” 
value of p for your forecast. 

o The result is that ˆ BICp   p   
p
→

o In theory, any penalty g(T) → 0, Tg(T) → ∞ will produce   p0 
p
→p̂

o Method of proof: show (i) Pr[ ˆ BICp  < p] → 0; (ii) Pr[ ˆ BICp  > p] → 0 
(proof in (SW, Introduction to Econometrics, App. 14.5)) 
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The Akaike Information Criterion (AIC) 
 

AIC(p) = ( ) 2ln SSR p p
T T

⎛ ⎞ +⎜ ⎟
⎝ ⎠

 

BIC(p) = ( ) lnln SSR p Tp
T T

⎛ ⎞ +⎜ ⎟
⎝ ⎠

 

 
The penalty term is smaller for AIC than BIC (2 < lnT) 

o AIC estimates more lags (larger p) than the BIC 
o In fact, the AIC estimator of p isn’t consistent – it can overestimate 

p – the penalty isn’t big enough: for AIC, 
Tg(T) = T× (2/T) = 2, but you need Tg(T) → ∞ for consistency. 

o Still, AIC might be desirable if you want to err on the side of long 
lags 
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Example: AR model of U.S. Δinflation, lags 0 – 6: 
 

# Lags BIC AIC R2 

0 1.095 1.076 0.000 
1 1.067 1.030 0.056 
2 0.955 0.900 0.181 
3 0.957 0.884 0.203 
4 0.986 0.895 0.204 
5 1.016 0.906 0.204 
6 1.046 0.918 0.204 

 
• BIC chooses 2 lags, AIC chooses 3 lags. 
• If you used the R2 to enough digits, you would (always) select the 

largest possible number of lags. 



Estimating the number of static factors, ctd. 
The Bai-Ng (2002) information criteria have the same form: 

IC(r) = ( )ln SSR r
T

⎛ ⎞
⎜ ⎟  + penalty(N, T, r) 
⎝ ⎠

Bai-Ng (2002) propose several IC’s with different penalty factors that all 
produce consistent estimators of k.  Here is the one that seems to work 
best in MCs (and is the most widely used in empirical work): 

ICp2(r) = ln(V(r, )) + ˆ rF [ ]ln min( , )N Tr N T
NT
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 

where    V(r, ) = minΛˆ rF ( )
2

1 1

1 ˆ
N T

r r
it i t

i t

X F
NT

λ
= =

′−∑∑  

= 
1

1
,..., ,

1

min ( ) ( )'( )
T

T

F F t t t
t

NT X F X F−
Λ

=

− Λ −Λ∑ t  

ˆ r
tF  are the PC estimates of r factors 

(minor notational note: Bai-Ng (2002) use proxy argument k, not r) 
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Estimating the number of static factors, ctd. 
 

Bai-Ng (2002) ICp2:  ICp2(r) = ln(V(r, )) + ˆ rF [ ]ln min( , )N Tr N T
NT
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 

where       V(r, ) = minΛˆ rF ( )
2

1 1

1 ˆ
N T

r r
it i t

i t

X F
NT

λ
= =

′−∑∑  

Comments: 
ˆ• ln(V(r, )) is a measure of (trace) fit – generalizes ln(SSR/T) in the BIC rF

• If N = T, then [ ]ln min( , )N Tr N T
NT
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 = 2

2 lnTr T
T

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = ln2 Tr
T

 

which is 2 × the usual BIC penalty factor 
• Both N and T are in the penalty factor: you need N, T → ∞. 

• Bai-Ng’s (2002) main result:   r0  r̂

• Logic of proof is same as for BIC 

p
→
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Comments on Bai-Ng factor selection 
 
• Monte Carlo studies show B-N works well when n, T are large  
• But in practice: 

o Different IC can yield substantially different answers 
o Adding series often increases the number of estimated factors 

(adding sectors should increase number of factors; adding series 
within sectors should not) 

• Various possibilities: 
o More persistence in the data than in simulations (highly persistent 

idiosyncratic terms) – Greenaway-McGrevy, Han, and Sul (2008) 
– maybe prefilter? (prefiltering discussed below) 

o Maybe there are many factors of moderate importance (not just a 
few dominant factors) – examine empirically (discussed below) 

• Judgment is required 



(3) Estimating the number of dynamic factors, q 
 
Bai-Ng consider estimating the number of static factors (r) – which is 
directly useful for forecasting using PC. 
 
For the MLE (which specifies a process for the dynamic factors) it is 
desirable to estimate the number of dynamic factors (q).  Recall that the 
static factors are constructed by stacking the dynamic factors: 

Ft = 

f

t

t p

f

f −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

#  

so the static factors must be dynamically singular: the rank of the 
innovation variance matrix in the projection of Ft on Ft–1 must be the rank 
of (the spectrum of) ft (since many of the elements of Ft are perfectly 
predictable from Ft–1) 
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Estimating the number of dynamic factors, ctd: 
 
Three ways to test for this dynamic singularity: 
• Amenguel-Watson (2007)   

Regress Xt on 1t̂F − ; the residuals will have factors of rank of the 
dynamic factors, use Bai-Ng (2002) to estimate that rank 

 
• Bai and Ng (2007) 

Estimate a VAR for  , then estimate the rank of the residual 
covariance matrix  

t̂F

 
• Hallin and Liška (2007) 

Frequency domain (rank of spectrum of Xt will be number of 
dynamic factors) 
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Testing approach (as opposed to IC approach) to determining q 
 
• This is a very difficult problem! 
 
• Consider testing q = 0 v. q > 0.  If q = 0 then the n×n variance matrix 

of Xt has no dominant eigenvalues.  Thus testing q = 0 v. q > 1 entails 
comparing the largest eigenvalue of X′X/T (where each Xi has been 
standardized) to a critical value. 

 
• The exact finite sample theory in the i.i.d. standard normal case is 

based on eigenvalues of Wishart distributions (see Anderson (1984).  
That distribution (i) hinges on normality and (ii) is sensitive to 
misspecification of the variance matrix of X. 
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Testing approach, ctd. 
 
• Work in this area has focused on generalizing/extending this to large 

random matrices 
o Tracy-Widom (1994): distribution of largest eigenvalue of X′X/T, Xit 

i.i.d. N(0,1) 
o Johnstone (2001), El Karoui (2007): Tracy-Widom for largest 

eigenvalue under weaker assumptions 
o Onatski (2007): joint Tracy-Widom for m largest eigenvalues under 

weaker assumptions (distribution of scree plot) 
o Onatski (2008): testing H0: r = r0 v. r > r0 in DFM 
o Harding (2009): selection algorithm based on Tracy-Widom 

 
• This research program is incomplete, but it holds the promise of (some 

day) providing a more refined method for determining k than IC 
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4)  SVARs with Factors: FAVAR 
 

Challenges & critiques of standard SVAR modeling include: 
• The Rudebush (1998) critique of SVARs with short-run timing 

identification:  Fed uses more information than is in a standard VAR 
• The invertibility problem in SVARs: is Rut = εt, εt = R–1ut plausible? 
• Including more variables in the VAR might improve forecast 

efficiency and provide an internally consistent set of forecasts for a 
large number of variables – but confronts the n2p parameter problem 

 
Bernanke, Boivin, and Eliasz’s (2005) (BBE) idea is to use factors as a 
way to solve this problem: in a DFM, factors summarize all the relevant 
information on the economy.  The result is the BBE Factor Augmented 
VAR (FAVAR). 
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FAVAR, ctd 
There are a number of ways FAVAR can be implemented, the following 
papers use related approaches but differ in the details: 
Bernanke, B.S., and J. Boivin (2003), Bernanke, Boivin, and Eliasz (2005) 
(BBE), Favero and Marcellino (2001), Favero, Marcellino, and Neglia 
(2004); also see Giannone, Reichlin, and Sala (2004) on the invertibility 
issue. 
 
Here we follow the spirit of BBE (2005) although some technical details 
(but not identification ideas) are different – this development follows 
Stock and Watson (2005). 
 
One approach would be simply to put factors into a SVAR, however the 
factors themselves are not identified so making any identification 
assumptions about their innovations is difficult. 
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FAVAR, ctd. 
VAR form of the exact DFM 
DFM with first order dynamics from above: 
        Ft = ΦFt–1 + Gηt  

Xt  = ΛFt  + et 
et = Det–1 + ζt 

 
where D is diagonal. Quasi-difference Xt: 

(I – DL)Xt  = (I – DL)ΛFt + ζt =  ΛFt – DΛFt–1 + ζt 
Substitute in Ft = ΦFt–1 + Gηt: 

(I – DL)Xt  = Λ(ΦFt–1 + Gηt) – DΛFt–1 + ζt 
Rearrange: 

Xt  = (ΛΦ – DΛ)Ft–1 + DXt–1 + ΛGηt + ζt 
 
Putting the Ft and Xt equations together yields, 



VAR form of the DFM, ctd. 
 

t

t

F
X

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
0

D D
Φ⎛ ⎞

⎜ ⎟ΛΦ − Λ⎝ ⎠
1

1

t

t

F
X

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + 
0G

G I
⎛ ⎞
⎜ ⎟Λ⎝ ⎠

t

t

η
ζ
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

 
Writing the reduced form VAR as A(L)Xt = ut, the VAR innovations are 
ut = Xt – Proj(ut|Ft–1, Ft–2,…, Xt–1, Xt–2,…) = ΛGηt + ζt, where we are 
treating the F’s as observed (this is justified by large n asymptotics). 
 
The ζ’s are disturbances to the idiosyncratic process.  What we are 
interested in is the response of Xt to structural shocks, which affect all the 
variables.  The structural shocks εt are related to the innovations in the 
dynamic factors: 

Rηt = εt   (structural model in SVAR) 
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FAVAR 

reduced form:   t

t

F
X

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
0

D D
Φ⎛ ⎞

⎜ ⎟ΛΦ − Λ⎝ ⎠
1

1

t

t

F
X

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + 
0G

G I
⎛ ⎞
⎜ ⎟Λ⎝ ⎠

t

t

η
ζ
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

structure:     
q q
R
× 1

t

q
η
×

 = 
1q

tε
×

 
 
The structural IRF is the distributed lag of Xt on εt.  Now 

 
Xt = ΛFt + et  

and      Ft = ΦFt–1 + Gηt = ΦFt–1 + GR–1εt,  
 
so      Xt = Λ(I – ΦL)–1GR–1εt + et 
 
so the structural IRF is Λ(I – ΦL)–1GR–1. 
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FAVAR, ctd. 
Comments: 
1.Lags.  These formulas are for first order dynamics – with higher order 

dynamics the expression above becomes,  

   t

t

F
X

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
( ) 0

( ) ( ) ( )
L

L D L D L
Φ⎛ ⎞

⎜ ⎟ΛΦ − Λ⎝ ⎠
1

1

t

t

F
X

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + 
0G

G I
⎛ ⎞
⎜ ⎟Λ⎝ ⎠

t

t

η
ζ
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

structure:     
q q
R
× q q

tη
×

 = 
q q

tε
×

 
 
2.Identification.  The identification problem is finding R, where Rηt = εt.  

This is now amenable to applying the SVAR identification toolkit: 
• Timing scheme (CEE (1999), BBE (2005): slow/policy/fast) 
• long run restrictions (Blanchard-Quah (1989); Gali (1999) 
• sign restrictions (Uhlig (2005), Ahmadi and Uhlig (2007)) 
• heteroskedasticity (Rigobon (2003), Rigobon-Sack (2003)) 
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FAVAR, ctd. 
 
3.Structural shocks. The ηt shocks are the shocks to the dynamic factors: 

Ft = ΦFt–1 + Gηt.  These are not the residuals from a VAR estimated 
using Ft:  the number of static factor innovations r ≥ q.  Implementation 
involves estimating the space of dynamic factor shocks, which in turn 
entails (i) estimating the number of dynamic factors q, and (ii) reduced 
rank regressions to estimate ηt. 

 
4.Many impulse responses. The structural IRF is Λ(I – ΦL)–1GR–1, which 

yields IRFs for all the X’s in the system! 



FAVAR, ctd. 
 
5.Overidentification. These systems move from being exactly identified 

SVARs to potentially heavily overidentified.  Consider the BBE 
fast/slow identification idea: the slow identification restriction now 
applies to a huge block of variables, specifically, r

tε  should not load on 
any of the slow moving variables.  Let  be the VAR innovations to the 
slow-moving variables, S

tu  = S
tX  – Proj( S

tX |Ft–1, Ft–2,…, Xt–1, Xt–2,…).  
Under the fast/slow identification scheme, Proj( S

tu | r
t

S
tu

ε ) should be zero.  
These many overidentifying restrictions are testable. 
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5)  Factors as Instruments 
 
Independently developed by Kapetanios and Marcellino (Oct. 2006, 
revised 2008) and Bai and Ng (Oct. 2006, revised 2007b) 
 
Digression on weak instruments: Weak instruments arise if the IV is 
weakly correlated with the included endogenous regressor. 
• Using factors might be a way to use more information 

ˆ• The instruments tF  are linear combinations of the Xt’s, but the key 
insight is that the coefficients of that linear combination are estimated 
separately, not in the first-stage regression (the X’s don’t enter the 
moment conditions explicitly). 

• The mathematics is essentially the same as the math used to show that 

t̂F  can be used in a forecasting regression without a generated 
regressor problem. 
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Factors as instruments, ctd. 
 
Main result: under conditions like those above (the approximate DFM 
conditions), and the “usual” large-n rate condition N2/T → ∞, and a strong 
instrument assumption, 
 

T [ ) – ]  0       (5) ˆ (TSLS
tFβ ˆ ˆ( )TSLS

tFβ
p
→

 
where  is the PC estimator of the factors.  So IV is as efficient if the 
factors are known as if they are not when N is large. 

t̂F

 
Simulation results in Kapetanios and Marcellino (2008) and Bai and Ng 
(2007b) are promising concerning the finite-sample validity of (5) under 
strong instruments. 
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Factors as instruments, ctd. 
Additional comments 
1.The idea of using principal components as instruments is old (Kloek and 

Mennes (1960), Amemiya (1966)) – what is new is proving optimality 
and distribution results using the DFM as the conceptual framework. 

2.Not all the individual X’s need to be valid instruments – the e’s could be 
correlated with the included endogenous regressor, what matters is that 
the F’s are not correlated. 

3.If there isn’t a factor structure, then the PC estimates are going to 
random linear combinations of the X’s.  But if the X’s are all valid 
instruments, the t̂F ’s remain valid instruments even without a factor 
structure (details in Bai and Ng (2007)).  

4.If the instruments (F’s) are weak, then weak instrument considerations 
kick in.  (The original hope is that weak instruments will be less of a 
problem using the F’s.) 
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6)  DSGEs and Factor Models 
 
“Reduced form” DFM with first order dynamics from above: 
        Ft = ΦFt–1 + Gηt  

Xt  = ΛFt  + et 
et = Det–1 + ζt 

Boivin and Giannoni (2006b) replace the reduced form state space model 
with a linearized DSGE: 

tF�  = Φ� F 1t−
�  + G� tη�       (6)  

  Xt = Λ� Ft
�  + et,       (7) 

et = Det–1 + ζt       (8) 
 
where ~ means that (6) is a structural model (DSGE), cf. Sargent (1989), 
Boivin-Giannoni (2006b).   
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DSGEs and factor models, ctd.   = tF� Φ� F 1t−
�  + G� tη�        

    Xt = Λ� Ft
�  + et,        

et = Det–1 + ζt        
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The DSGE implies restrictions on Λ�  that identify : tF

• The elements of  are the state vector of the DSGE, for example, 

�

tF�

tF

• The meanings of the elements  within the DSGE imply restrictions 

on  that identify  

�  = (xt, πt, rt, rrt, Δat, ut, τt ) ′.  

tF�

Λ� tF

• The system, with restrictions on 

�

Λ�  imposed, is in SS form and the KF 
can be used to compute the likelihood.  Estimation is a combination of 
DFM MLE and DSGE MLE with a small number of variables: 

o initial values using PC estimates of the factors 
o modified Jungbacker-Koopman (2008) speedup? 



Boivin-Giannoni (2006b) identification:  Setup:  let λ�  denote a nonzero 
entry (not all the same – just dropping subscripts) 
 

Y

C
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output gap series #1 0 0
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Or 
 

   sensor, sensor

info, info

t
t

t

X
F

X
⎡ ⎤⎡ ⎤ Λ

= ⎢ ⎥⎢ ⎥ Λ⎣ ⎦ ⎣ ⎦

�
�

� ,  where  = tF� (L) t tF εΦ +� � � t 

 
In general the information series can have weights on expectations of 
future Ft (e.g. term spreads) but by the VAR structure of the factors plus 
the DFM assumptions those are projected back on Ft. 
 
Results from Boivin-Giannone (2006b) (they use Bayes methods) 

Case A: 7 variables 
Case B: 14 variables 
Case C: 91 variables 

 

Revised December 21, 2009 8/9-72 



 

Revised December 21, 2009 8/9-73 



 

 

Revised December 21, 2009 8/9-74 



Revised December 21, 2009 8/9-75 

Misc. concluding DFM comments 
 
1.Everything in this lecture has applied to variables with short-run 

dependence.  There is a fair amount of work extending DFMs to handle 
unit roots and cointegration, see Bai and Ng (2004) and Banerjee and 
Marcellino (2008, 2009). 

 
2.We also have ignored TVP and structural breaks in DFMs.  DFMs have 

a certain robustness to TVP and structural breaks, however the only 
published work with any TVP aspect in DFMs is Stock and Watson 
(2002) and Phillips and Sul (1997).  Recent work includes Stock and 
Watson (2009) and Banerjee, Marcellino, and Masten (2007). 
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7) Other High-Dimensional Forecasting Methods 
 
• High-dimensional prediction has received a great deal of attention in 

the past decade in the statistics literature and many new methods have 
been developed.   

 
• Hybrid DFMs.  e.g. incorporating cointegrating relations into DFMs 

(DFMs meet ECMs), see Banderjee, Marcellino and Masten (2009) 
 
• Other approaches.  Stock and Watson (2004) provide a partial survey.  

Here are some of the methods and some references: 
1.Bayesian VARs (strong priors over many parameters) De Mol, 

Giannone, and Reichlin (2008), Carriero, Kapetanios, and 
Marcellino (2009)  
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Non-DFM high-dimensional methods, ctd. 
 

2.Bayesian model averaging (BMA). Leamer (1978); Min and 
Zellner (1990); Fernandez, Ley, and Steele (2001a,b), Koop and 
Potter (2004); Clyde, Desimone, and Parmigiani (1996), Clyde 
(1999).  Surveys: Hoeting, Madiga, Raftery, and Volinsky 
(1999), Geweke and Whiteman (2004) 

 
3. Empirical Bayes: Robbins (1964), Efron and Morris (1973), 

Edelman (1988), Zhang (2003, 2005); Maritz and Lwin (1989), 
Carlin and Louis (1996), and Lehmann and Casella (1998, 
Section 4.6) 

 
4.Bagging: Breiman (1996), Bühlmann and Yu (2002); Inoue and 

Kilian (2008) 
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Non-DFM high-dimensional methods, ctd. 
 

5.LASSO & boosting:  Econometric applications: Bai and Ng 
(2007), De Mol, Giannone, and Reichlin (2006), Bai and Ng 
(2007) 

 
6.Hard thresholding/false discovery rate methods: information 

criteria through… for high level connections see Efron (2003) 
 
7.Forecast combination: Bates and Granger (1969),… 
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Outline 
 
1) Why Might You Want To Use Hundreds of Series? 
2) Dimensionality: From Curse to Blessing 
3) Dynamic Factor Models: Specification and Estimation 
4) SVARs with Factors: FAVAR 
5) Factors as Instruments  
6) DSGEs and Factor Models  
7) Other High-Dimensional Forecasting Methods 
8) Empirical Performance of High-Dimensional Methods  
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8) Empirical Performance of High-Dimensional Methods 
 
(a) Data selection and preparation issues 
(b) Comparisons among factor estimation methods 
(c) Comparisons among many-predictor forecasting methods 
(d) Empirical evidence on in-sample fit of DFM model 
(e) Many-predictor methods vs. the world 
  
Disclaimer:  There now is a large literature and considerable practitioner 
experience with empirical DFMs, and a smaller but also substantial 
literature examining other many-predictor methods.  This discussion is 
informed by this body of empirical knowledge but does not pretend to be a 
comprehensive survey.  See the survey and meta-analysis by Eichmeier 
and Ziegler (2008) for a bibliography.
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(a) Data selection and preparation issues 
 
Bear in mind that… 
• The factors you get out depend on the data you put in. 
 
• More variables do not always mean more information, for example 

putting in CND, CD, CS and total consumption doesn’t make sense 
(aggregation identity). 

 
• Judgment should be exercised about the balance between various 

categories of data; if most of the data are production and output, your 
dominant factor will be an output factor 
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(b) Comparisons among factor estimation methods 
 
Discussed above.  Empirical evidence suggests estimation method is not a 
first order issue although there is limited evidence on MLE (2-step or full) 
to date. 



(c) Contemporaneous fit (fraction R2 explained) 
Watson (2004) comment on Giannone, Reichlin and Sala (2004) 
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(c) Contemporaneous fit (fraction R2 explained) (ctd) 
 
Stock and Watson (2005) 
• Test exact DFM restrictions, find large fraction of rejections in U.S. 

quarterly data 
• But the rejections are all very small in a R2 sense.  
• The approximate DFM seems to be a good description of the data 
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(d) Comparisons among many-predictor forecasting methods 
Papers include Inoue and Kilian (2008), Koop and Potter (2004), Bańbura, 
Gianonne, and Reichlin (2008), Stock and Watson (2006a, 2006b, 2009), 
Pesaran, Pick, and Timmerman (2009). 
• DFMs often outperform the many-predictor statistical methods. 
• Stock and Watson (2009) conclusions:   

o DFMs provide better forecasts than other many-predictor methods 
for real series, some interest rates.   

o Other methods e.g. BMA can provide better forecasts by using 
many principle components for some series – real wages, regional 
housing construction, etc (no clear unifying pattern) 

o Some series are just hard to forecast and many predictors don’t 
seem to help! Price inflation, stock returns, exchange rates. 
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(e) Many-predictor methods vs. all other forecasting methods 
Factor forecast performance depends on the application 
Real variables 

US, EU – generally find substantial improvements (especially US) 
over other models.  Improvement over competitors is greater as 
horizon increases.  Improvement is possibly enhanced using some 
cointegration (observed EC terms, in addition to factors). 

Inflation 
U.S. survey by Stock and Watson (2008).  Performance depends 
strongly on the sample.  Pre-85, factor models worked extremely well.  
85-06, very hard to beat random walk forecast (episodic).  Current 
recession is a real-time test of the factor forecasts. 

Selected references: 
Eichmeier and Ziegler (2008) (metastudy), Stock and Watson (2009) 
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Summary 
 
1.The quest for exploiting large data sets has made considerable advances 
2.Large n is a blessing – turning the principle of parsimony on its head 

(N2/T → ∞ results) 
3.State of knowledge of DFM estimation and factor extraction is pretty 

advanced: it doesn’t seem to make a lot of difference what method you 
use if n is large, but this said the MLE (two-step seems to be enough) 
has some nice properties theoretically and in initial applications.  

4.Applications to forecasting are well advanced and implemented in real 
time.  Applications to SVARs (FAVAR), IV estimation, and DSGE 
estimation are promising. 

 
 
 


