
S-1 
 

The Size-Power Tradeoff in HAR Inference: Online Supplement 
 

January 9, 2021 
 

Eben Lazarus 
MIT Sloan 

Daniel J. Lewis 
Federal Reserve Bank of NY 

James H. Stock 
Harvard University

 

CONTENTS 

S1. Monte Carlo Study ........................................................................................................ 1 

S1.1 Estimators and Design ............................................................................................ 1 

S2.2 Monte Carlo Results ................................................................................................ 2 

S2. Supplemental Proofs ..................................................................................................... 6 

S2.1 Additional Proofs of Main Results.......................................................................... 6 

S2.2 Proofs for Remarks and Additional Statements .................................................... 17 

References ......................................................................................................................... 24 
 

S1. MONTE CARLO STUDY 

 

The purpose of this Monte Carlo analysis is twofold. First, we assess the quality of the 

approximations to the size/power tradeoffs in the Gaussian location model. Second, we 

investigate the extent to which the theory derived for the Gaussian multivariate location 

model generalizes to time series regression with stochastic regressors.  

 

S1.1 ESTIMATORS AND DESIGN 

 

For a given kernel or WOS estimator, we use four values of b, chosen so that ν = 8, 

16, 32, and 64. The tests are labeled accordingly, e.g., NW16 is the Newey-West 

(Bartlett) test with ν = 16 equivalent degrees of freedom. For reference, for T = 200, 

NW32 has a truncation parameter of (3/2)T/ν, which rounds up to 10. For the WOS 

estimators, we consider tests with equal weights wj = 1/B, so ν = B. Tests use fixed-b 

critical values unless stated otherwise. We specifically examine the following HAR tests: 
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1. NW: Kernel estimator with Bartlett/Newey-West kernel, k(x) = (1-|x|)1(|x|≤1). 

2. KVB: The Kiefer-Vogelsang-Bunzel (2000) test, i.e., NW with S = T (ν = 3/2). 

3. QS: k(x) = 3[sin(πx)/(πx) – cos(πx)] /(πx)2.  

4. EWP: Equal-weighted WOS estimator using the Fourier basis, {ϕ2j-1(s), ϕ2j(s)} = 

{ }2 cos(2 ), 2 sin(2 )js jsπ π ,  j = 1, …, B/2. 

5. cos: Equal-weighted WOS estimator using the Type II cosine basis, {ϕj(s)} = 

1 / 22 cos j s
T

π
 
 
 

  −    
 ,  j = 1,…, B. 

6. SS-basis: Equal-weighted split-sample WOS estimator (see Section S3.2 below). 

In the location model, the data are generated according to equation (3) in the main 

text, where uit, i = 1,.., m are independent and follow either a Gaussian AR(1) or an 

ARMA(2,1), with all m disturbances having the same parameter values. For the 

regression model, the data are generated following yt = xt′β + ut, where xit, i = 1,…, m and 

ut are independent Gaussian AR(1) processes. Under the null, β = 0. Under the local 

alternative, β = 1/2 1 1/2
XXT δ− −Σ Ω  for m=1, where δ is the local alternative index value and 

1
1 T

tXX t tT x x
=

−Σ ′= ∑  (for the location model, ΣXX = I, as in the text). For m = 2, we set 

1
2

/ 2 1 1/ 2
XXTβ δ− −Σ Ω= , with 2 0][δ δ= ′ . We conduct 100,000 replications for each design. 

 

S2.2 MONTE CARLO RESULTS 

 

This section presents some representative results; additional results are contained in 

the working paper version of this paper (Lazarus, Lewis, and Stock (LLS, 2017)) and in 

Lazarus, Lewis, Stock and Watson (LLSW, 2018). All results are displayed in finite-

sample counterparts of Figure 1. For these figures, the axes are not scaled, so that the 

units are the size distortion and the power loss. The theoretical tradeoffs from Theorem 

4(ii) are shown as lines, and the Monte Carlo results are presented as scatter points.  
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FIGURE S1. Theoretical (lines) and Monte Carlo (symbols) size distortion/power loss for 

QS, Newey-West, and EWP tests. Location model, m = 1, AR(1), ρ = 0.5, and T = 200.  

 

Location model. Figure S1 presents results for QS, EWP, and NW tests in the location 

model with Gaussian AR(1) disturbances in the m = 1 case with AR parameter ρ = 0.5 

and T = 200. The Monte Carlo results for QS and EWP are close to their theoretical 

curves. The small-b approximation is less good for Newey-West: the NW Monte Carlo 

scatter appears to follow a curve that has the same shape as the theoretical curve, but is 

shifted out. KVB is a limiting case of Newey-West with ST = T (so b = 1 and ν = 1.5), 

that is, KVB is NW1.5, so KVB lies on the NW Monte Carlo curve. 

LLS (2017) contains figures with additional results for the location model, which we 

discuss briefly here. For m = 2 with AR(1) errors, ρ = 0.5, and T = 200, the frontier fits 

the simulations slightly better for QS and EWP than in the m = 1 case, but somewhat 

worse for NW. We find in addition that, for m = 1 and 2 and with either AR(1) or 

ARMA(2,1) disturbances, fit (distance from the scatter points to their theoretical tradeoff) 

improves with T, deteriorates as ω(2) increases, is better for q = 2 kernels than q = 1, and 

does not appreciably deteriorate as process parameters are changed holding ω(2) constant. 

The first two results are unsurprising. Our interpretation of the third finding is that the 
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FIGURE S2. Theoretical (lines) and Monte Carlo (symbols) size distortion/power loss for 

QS, Newey-West, and EWP tests. Stochastic regressor, m = 1, AR(1), ρ = 0.5, T = 200. 

Theoretical curves are for the Gaussian location model. 

 

order of approximation of the expansions is o((bT)-q), so the remainder is of a smaller 

order for q = 2 than for q = 1 kernels. The larger values of b used with the NW kernel for 

a given ν may also play a role. Overall, the simulation results accord with the theory. 

Stochastic regressor. Figure S2 shows the QS, EWP, and NW tests on the coefficient 

on a single stochastic regressor, where both the regressor and dependent variable have 

AR(1) disturbances with ρ = 0.5 and T = 200 (intercept included in the regression but not 

tested). In this DGP, zt is AR(1) but non-Gaussian. For reference, the theoretical tradeoff 

curves are shown for the Gaussian location model. It appears that this departure from 

Gaussianity results in poor performance of the Gaussian small-b asymptotic 

approximation and that there are missing terms in the expansion as suggested by the 

calculations in Velasco and Robinson (2001). This said, several key qualitative results in 

the theory continue to apply to the single stochastic regressor. First, for a given estimator, 

the Monte Carlo results map out a size-power tradeoff that has a shape similar to the 

Gaussian theoretical shape, just shifted out. Second, the tradeoffs for the QS and EWP 
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FIGURE S3. Small-b approximation to power loss for EWP test compared to same-sized 

QS test, for different values of B in the EWP test. The figure plots the expression in (30) 

as a function of δ for m = 1, α = 0.05 (see Remark 5). 

 

estimators are very close to each other. Third, the ranking across estimators is the same as 

suggested by the theory and confirmed in the Monte Carlo analysis of the location model, 

that is, the q = 1 tests are outperformed by the q = 2 tests. We find similar results for 

other designs, kernels, and values of m, and further that the approximation improves for 

higher values of T; again see LLS (2017) and LLSW (2018).  

Overall, we can draw three conclusions. First, the theoretical frontiers provide a good 

description of estimator performance in the Gaussian location model. The fit is better for 

q = 2 kernels than q = 1. Second, Monte Carlo performance is consistent with the theory. 

In particular, the performance of q = 2 kernels is superior to that of q = 1 kernels in this 

design, and the cost of using EWP relative to QS is low. As further illustration of the 

latter theoretical result, Figure S3 plots the theoretical higher-order power loss from using 

EWP relative to QS as a function of δ for various values of B, as discussed in Remark 5. 

Third, the qualitative results for stochastic regressors are consistent with the theory for 
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the location model, however the Monte Carlo points no longer lie on the tradeoff derived 

for the Gaussian location model. We attribute this divergence of the theory and Monte 

Carlo results to the non-Gaussianity of zt in the stochastic regressor case.1 

 

S2. SUPPLEMENTAL PROOFS 

 

S2.1 ADDITIONAL PROOFS OF MAIN RESULTS 

 

We first provide two preliminary results needed for Theorems 1 and 5, and then prove  

Theorem 1. Assume for the remainder of the Supplement that Assumptions 1-4 hold. 

 

Lemma S1. For any weights {wj}, the Fourier basis minimizes 
01

1
( ) ( )| |

j j j j
B w s s dsφ φ
=

′′∫∑  

across all WOS estimators up to an error of order o(1/T). 

 

Proof of Lemma S1: The complex Fourier expansion of any ϕj in a given basis is again 

     2( ) i ls
j jl

l
s a e πφ

∞
−

=−∞

= ∑ ,  (S.1) 

where { }jl la  are the (inverse) Fourier coefficients of ϕj(s). For any orthonormal series,  

1 12 22 2

0 0
, '

1 ( ) i ls i l s
j jl jl jl

l l l
s d a ds as a e eπ πφ

∞
′−

′
=−∞

= == ∑ ∑∫ ∫ ,  (S.2) 

and 
1

,0
(0 ( ) )j j j jl j j l

l
s s ds a aφ φ ′ ′≠ ≠== ∑∫ ,    (S.3) 

where jla  is the complex conjugate of ajl. The minimization problem for real ϕj is then 

 
1 In results available in LLS (2017), we also examined the performance of tests based on 

plug-in higher-order corrected critical values based on equation (20) of the text, using an 

estimated value of ω(q). HAR tests using these plug-in critical values generally worked 

poorly compared to tests using standard fixed-b critical values. 
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{ } { }

{ }

1 12 2 2 2 '

0 0
1 1 , '

2 2

1

min ( ) ( ) min 4

min

jl jl

jl

B B
i ls i l s

j j j j jl jl
a aj j l l

B

j jl
a j l

w s s ds w a a el

w a

e ds

l

π πφ φ π −
′

= =

=

′′ ⇔

⇔

∑ ∑ ∑∫ ∫

∑ ∑   (S.4) 

subject to the constraints (S.2) and (S.3), along with 
1

00 ( ) 0jj s dsa φ= =∫ .  

For now set the summation limits in (S.1) to T±  for some T T> , so (S.4) can be 

written minA tr((AW)*D(AW))⇔  minA tr(W 2A*DA) s.t. A*A = IB, where 

1 1 2 2[ ]T TA A A A A AA− − −… ′= , 1 2[ ]l l l BlA a a a= ′… , A* is the conjugate transpose of 

A, 1 2diag([ )]BwW w w…= , and 2 2 )[1 1d 4iag 4( ]D T T= … . From (S.4), the 

objective is linear in the entries of 2 A A=A  , where   is the Hadamard product and A  

is the elementwise complex conjugate of A. 

It will be convenient to transform this problem to 2 *min tr( )A W A AD


   s.t. *
2TA A I=  , 

where (2 ) (2 )[ 0 ] 0 ][B BB T B B T BW I IW× − × −
′= is padded with zeros relative to W, and 

[ ]A A H=  for some (2 )2T T B× −  matrix H, so A , W , and D are 2 2T T× . The 

objective is again linear in the entries of  2 ( )A A=A  

 , which is doubly stochastic since 

*
2TA A I=   implies *

2TAA I=  . Thus 

( )*
2

2 * 2

s.t. ,
min tr min

T
j jl

A A j lA I
W A AD w l γ

ϒ=
≥ ∑

  

  ,    (S.5) 

where ϒ is a doubly stochastic matrix containing the values { }jlγ . The right side of (S.5) 

is linear in the entries of ϒ, and the set of doubly stochastic matrices {ϒ} is compact and 

convex. Thus the minimum of the right side is obtained at an extreme point of this set. By 

Birkhoff’s Theorem (e.g., Bhatia (1997, p. 37)), the extreme points of {ϒ} are the 

permutation matrices. Any permutation matrix P is unitary, so (S.5) in fact holds with 

equality, and we can select 2arg min t )r(PA PW P D= ′  . 

Note that D and 2W  are psd and diagonal, and D has its diagonal terms (eigenvalues) 

in ascending order. Given weights {wj}, assume first that the weights are ordered 
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descendingly, 1 2 Bw w w≥ ≥…≥ , and therefore that 2W  has its diagonal terms 

(eigenvalues) in descending order. In this case, the minimum of the objective is achieved 

trivially by 2TA P I= = , so that the minimizing A is given by the first B columns of 2TI ; 

equivalently, 2 1, 2 , 1j j j jaa ′− ′ ′ − ′ == , 2' /1, ,j B= … , 0jla =  otherwise. Thus from (S.1), 

2 2
2 1 2{ } { 2 cos(2 ' ), }( ), ( ) 2 sin(2 ' )} { ,i j s i j s

j j j s j ss s e eπ π πφ πφ ′ ′−
′ ′− = = , 2' /1, ,j B= … , so 

we have in fact selected the Fourier basis. This applies for any T used in the finite 

truncation of (S.1), so we can set arbitrary T T so as to apply Jackson’s inequality to 

obtain that the statement holds to o(1/T). 

If the weight values are not in descending order, use that 2W is psd and diagonal to 

write its singular value decomposition as 2 2
descW VW V ′=  , where 2

descW  is the diagonal 

matrix containing the eigenvalues (diagonal terms) of 2W ordered descendingly. Then the 

problem can be rewritten as 2 * )min tr(
V desc V VA W A AD


   subject to *
2V V TA A I=  , where 

VA AV=  , so that V has been absorbed into the argument to be minimized. But this is the 

same problem as in the case above, with 2W  having its values in descending order. Thus 

the minimum achieved for (S.5) is equivalent for any set of weights regardless of their 

ordering. Thus for any set of weights, it is without loss to set them in descending order, in 

which case the Fourier basis again achieves the minimum, completing the proof.       

 

Lemma S2. For any WOS test using the Fourier basis, the value (2) ( )k  is minimized with 

respect to {wj} by the use of QS weights: * 2[1 ( / ) ]j QSw j Bw= − , where 6
( 1)(4 1)

B
B BQSw − += . 

 

Proof of Lemma S2: Note first that [ ]6 / ( 1)(4 1)QSw B B B= − +  is set so that 

*
1

1B
jj

w
=

=∑ . From (44), given the use of the Fourier basis, minimizing (2) ( )k  is 

equivalent to minimizing 
1/ 2

2 2

1 1

B B

j j
j j

w j w
= =

   
   
   
∑ ∑ . Write QSB B= . For any alternative set of 
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weights jw , write *
j j jw w= +  . We allow for the sequence altB  for to this set of weights 

to differ from QSB  (both must meet Assumption 4). If alt QSB B> , then set * 0jw =  for 

QSj B> , so that 0j jw = ≥  for altQSB Bj< ≤ . If alt QSB B< , then correspondingly 0jw =  

for alt QSB j B≤< . Write ( )altmax , QSB B B= . Since 
1

1
B

j
j

w
=

=∑ , we have 
1

0
B

j
j=

=∑ . 

We then equate higher-order size for the two estimators and show that QS dominates 

with respect to power. Equating higher-order size requires 2 * 2

1 1

B B

j j
j j

w j w j
= =

=∑ ∑ , so

2

1

0
B

j
j

j
=

=∑ . Further, ( )22 * * 2

1 1 1 1

2
B B B B

j j j j j
j j j j

w w w
= = = =

= + +∑ ∑ ∑ ∑  , and   

alt
2 2 2

*

1 1 1 1

1 1 1
QS

QS

BB B

j j QS j QS j j
j j j j BQS QS QS

B j j jw w
B B B

w
= = = = +

                 = − = − + −                            
∑ ∑ ∑ ∑    .   (S.6) 

The first term in (S.6) is zero given the steps above. For the second term, if alt QSB B> , 

then as above 0j jw = ≥  for altQSB Bj< ≤ , and therefore alt 2
1

0[ )( / 1]
QS

B
QS jj B

j B
= +

− ≥∑   

(with equality if alt QSB B< ). Thus *

1

0
B

j j
j

w
=

≥∑ . It is further trivially the case that 2

1

0
B

j
j=

≥∑ . 

We conclude that ( )22 *

1 1

B B

j j
j j

w w
= =

≥∑ ∑ , with equality if and only if 0j =  for all j. Therefore 

QS attains greater higher-order power for equivalent higher-order size, and thus 

minimizes (2) ( )k , relative to all alternative WOS estimators using the Fourier basis.      

 

Proof of Theorem 1:  

(i) For kernel estimators, under the equivalent of our Assumptions 1, 2, and 4, Sun 

(2014b, p. 675) gives equation (15) directly. For WOS estimators, write 

                        
1 1

1 1ˆ ˆ ˆ( / ) ( / )
T T

OS
j j t j t

t t

E E t T z t T z
T T

φ φ
= =

′  
Ω =     

  
∑ ∑     
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1 1

1 ( / ) ( / ) (1/ )
T T

j j s t
t s

t T s T O T
T

φ φ −
= =

= Γ +∑∑    

                   
min( , )1

max(1, )( 1)

1 (1/ )
T T uT

j j u
t uu T

t t u O T
T T T T

φ φ
+−

==− −

 =  − Γ +   
   

∑∑ ,  (S.7) 

where the O(1/T) term in the second line arises due to the approximation of  with  

under Assumption 1 (see, for example, the proof of Theorem 2 in Sun (2011)). Thus, 

 
min( , )1

( 1) 1 max(1, )

ˆ 11 1T T uT B
WOS

j j j u u
j t u Tu T u

E t t u
T T T T T

w Oφ φ
+−

≥=− − = =

        − − +       
        

Ω −Ω = − Γ Γ∑ ∑ ∑ ∑ .   (S.8) 

For 2q ≤ (shown later to be without loss of generality), by Assumptions 1(b) and 4, 

           ( ) ( )2
2 21 ( / )q

u u u
u T u T u T

u o T o B T
T

−

≥ ≥ ≥

Γ ≤ Γ ≤ Γ = =∑ ∑ ∑ ,  (S.9) 

so we may focus on the first summation in (S.8). Further, 1 1 )( ) (( )q q q qT b T bT o bT− − − −= =  

by Assumption 4, so that )(1/ ) (( ) qO T o bT −= . 

We may then, following the device in Theorem 1(i) of Phillips (2005), write 

min( , )

1 max(1, )

1ˆ
T

T

L T T uB
jWOS

j j u
u L j t u

w t t u
T T T

E
T

φ φ
+

=− = =

   − −  
 

  Ω Ω = − Γ   
    

∑ ∑ ∑
  

       
min( , )

1 max(1, )

1
T

qT T uB
j

j j u
jL T t uu

w t t u B
T T T T T

oφ φ
+

= =< <


   − Γ  
       + − +             


 

∑ ∑∑  ,  (S.10) 

where LT  < T is a positive integer sequence chosen such that  

                               0
q

T
q q
T

L BT
L B Tζ+ + → ,  (S.11) 

where ζ  is as in Assumption 1(b). We have 

     
min( , )

1 max(1, )

1
T

T T uB
j

j j u
j t uL u T

w t t u
T T T T

φ φ
< =<

+

=

   − Γ 
   −  
 





   
∑ ∑∑   

        
min( , )

1 max(1, )

1 1
T

T

L u T

T uB

j j j u
j t u

t t u
T

w
T T T

φ φ
<

+

=<=

   ≤ − Γ   
  

 
− 

 
∑ ∑∑  
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               ( )2 2
T T

q
qq q

u T u
L u T L u T

T
BOL u L o
T

ζζ ζ

< < < <

+− − − −
  = =    ≤ Γ ≤


Γ
  

∑ ∑ , (S.12) 

where the first inequality applies the triangle inequality, the second inequality uses that 
2min( , )

max(1, ) 1
( ) / ) ( 1( / ) ( / ( / )) /| | | |T

t

T T u
j j ju t

tT u Tt T t T Tφ φ φ
=

+

=
− ≤ =∑ ∑  by Cauchy-Schwarz 

(and therefore that min( , )

max(1, )
( ) / ) 2( / ) ( / 1|[ ] |T T u

j jt u
Tt T Tt uφ φ

=

+
−− ≤∑ ), and where the first 

equality in the last line applies Assumption 1(b). (Setting 
1

21 1( / ))(
t j
TT t Tφ
=

− =∑  in finite 

samples for orthonormal ϕj is without loss; see after (S.20) below for further discussion.) 

Equation (S.10) can thus be written, with , ( / )WOS
B Tk u S  defined after (9) in the main text,  

        ,
ˆ 1

T

T

WOS
B

qL
WOS

u
u L

T
uE k o
S

B
T=−

     − − +          
Ω Ω =


Γ

 
∑   

1 11
T

T

S
qL

u
u

WO
B

L

u
T

k o o
S

B
T=−

         = − + +                    
Γ

  
∑     

   ( )( )1 1 1
T

T

S
qL

u
u

WO
B

L

Buk o
S T

o
=−

       = − + +                 
Γ∑ , (S.13) 

where the second line uses (10), along with the fact that , ( )WOS
B Tk x  and , ( )WOS

B Tk x′  are 

uniformly bounded for fixed B (since 5/ 2( ) , ( )j js s BCφ φ′ ≤ for some C < ∞  by 

Assumption 3), to obtain that , (1 / )WWO
T BB

OSSk k o T= +  by Riemann approximation, and the 

third line uses that o(LT / T) = o(1) by (S.11).  

Now note that under Assumption 3, in addition to 1( )WOS
Bk x ≤ , we have (0) 1WOS

Bk = , 

( ) ( )WOS WOS
B Bk x k x= − , and ( )WOS

Bk x  is continuous since ( / )u Tφ  is continuous for 

/ [0,1]u T ∈ . And since φ  is twice continuously differentiable, ( )WOS
Bk x  is twice 

continuously differentiable on ][ (,0) 0,B B− ∪ . Thus defining , ( )WOS
Bk x+

′  and , ( )WOS
Bk x+

′′  as 

the first and second right derivatives, respectively, of ( )WOS
Bk x , we have 
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( )2 2
, ,

1( ) 1
2

(0) (0)WOS WOS WOS
B B Bk k x k xx o x+ += + ′ ′′+ + as 0x +→ . Since ( )WOS

Bk x  is even, the first 

and second left derivatives satisfy , ,( ) ( )WOS WOS
B Bk x k x− +

′ ′= −  and , ,( ) ( )WOS WOS
B Bk x k x− +

′′ ′′= , 

respectively, and thus ( )2 2
, ,

1( ) 1
2

(0) (0)WOS WOS WOS
B B Bk k x k xx o x+ += + ′ ′′+ +  as 0x −→ . Thus, 

defining 1, , (0)WOS
B Bg k +

′= −  and 2, , (0) / 2WOS
B Bg k +

′′= − , we can write 

 ( )2 2
1, 2,1 ( )W S

B
O

B Bk x g xx g x o=− + +  (S.14) 

as 0x → , from which it is clear from (11) that ( )
,(0)q

B q Bk g= . Using this with (S.13) and 

the fact that S = T / B, we can follow Priestley (1981, p. 459) and write 

      
( ) ( )1 /

1 (
/

ˆ 1)
T

T

q

Wq qL
qWOS

u

OS

L

B

u

k u SBE u o o
T u S

B
T=−

   −    − = − + +           
Ω Ω Γ

 
∑  

  ( )( )( ) ( )(0) (02 1 (1))
q q

q q
B z

B k o o
T

Bs
T

π
    = − + +          

 

             ( )( ){ }( ) ( )2 1 (1lim (0) () 0)
q q

q q
B zB

B k o o B
TT

sπ
→∞

    = − + +          
 

                            ( )( ) ( )2 li 0 (0m ( ) )
q

zB

q
q q

B
BB k s o

T T
π

→∞

    = − +          
. (S.15) 

Using that 0µ =  for WOS estimators, (15) follows, with ( ) ( )(0) (lim 0)
B

q q
Bk k

→∞
= . 

(ii) Using equation (10), we have for 0x >  that 

   ( )1
1

11 1 1( ) ( ) ( ) (0) )(
j

WOS
B j j

B

j j jB x
k s s Bx x dB w s B xφ φ φ φ

−

=

− − −′ ′ − −= −∫∑ , (S.16) 

so from part (i), 

   ( )( )1 2( ) 1
1, , 0

1
(0) (0) ( ) ( ) (0)q WOS

B B B j j
j

j j

B

k g B wk s s dsφ φ φ−

=
+

′= − +′= = ∫∑ . (S.17) 
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Integrating by parts, 
2 21 1 (1) (0)2 2

20 0
( ) ( ) (1) (0) ( ) ( ) j j

j j j j j js s ds s s ds φ φφ φ φ φ φ φ −′ ′= − − =∫ ∫ . Thus, 

with ( ) ( )(0) (lim 0)
B

q q
Bk k

→∞
=  and Assumption 3 guaranteeing the existence of the limit since 

1( )j Ow B−=  and 2 2 )( ()jj
O Bsφ =∑ , the first part of (16) follows. Similarly, for 0x > , 

   ( )1

12 1

1
( ) (( ) )WOS

B j j jB x

B

j
k sx B w s B x dsφ φ

−

− −

=

−′′ ′′= ∫∑ . (S.18) 

Using that (2)
, (0) / 2(0) WOS

B Bk k +
′′= −  if q = 2, and taking B →∞ , then delivers the second 

part of (16), as the existence of this limit is again guaranteed under Assumption 3. 

For the final statement, if k (1)(0) ≠ 0, then q = 1 follows immediately from (S.14) and 

the definition of q after (11). If k (1)(0) = 0, note from Lemma S1 and (16) that the Fourier 

basis minimizes (2) (0)k  across WOS estimators, so (2) (0) 0k >  for all WOS estimators. 

Thus (11) gives that 2q ≤ , so from (S.14), if k (1)(0) = 0, then q = 2, as stated. This 

extends the classic result that psd kernel estimators have 2q ≤  to the implied mean 

kernels of WOS estimators (and justifies the notational use of some 2q ≤  above (S.9)). 

(iii) For kernel estimators, (17) restates Andrews (1991, Proposition 1(a)). For WOS 

estimators, generalizing Sun (2011, p. 361) to the case of arbitrary WOS weights wj, 

  ( ) ( )2

2

2
1 1 1

1 1ˆvar vec
T T B

mm j j jm
t j

tI O
T T T

w
T

K
τ

τφ φ
= = =

   Ω = Ω⊗Ω +   
  +   

    
∑∑ ∑    

    ( ) ( )2

2

2
1 1 1

1 T T B

mm j j jm
t j

K w btI o
T T Tτ

τφ φ
= = =

 = Ω⊗Ω + 
 

  +   
  

∑∑ ∑ ,        (S.19) 

where the second line follows from Magnus and Neudecker (1979, Theorem 3.1(ix)) and 

the fact that T -1 = o(b) from Assumption 4. Further, by the orthonormality of { }jφ , 

2 2

2
1 1 1 1

22
2 2

1

1 1

1 1

1 1

1

T T B B

j j j j

B

B B

k k
j

j

j
t j j

B

j
j j

B

j
j

k

tw wt t
T T T T T T

t
T

w
T

w

w

τ

τφ φ φ φ

φ

= =

= =

= = = =

=

  


      =      
      

   = =   



  

   

   

∑ ∑∑

∑

∑∑ ∑

∑ ∑ . (S.20) 
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Note that these steps assume the orthonormality of { }jφ  applies for the finite-sample 

inner product for all T, as in the working paper version of this paper (LLS (2017)). If Φ = 

[Φ1 … ΦB], where Φj = [ϕj(1/T)  ϕj(2/T) … ϕj(1)]′, does not satisfy ιT′Φj = 0 and Φ´Φ/T = 

IB, the finite-sample Φ can be constructed as the orthonormalization of the demeaned 

{Φj}. Lemma A of Phillips (2005) then shows that for the unadjusted series, Φ´Φ/T = IB 

+ O(1/T), which implies that the finite-sample orthonormalization adjustment introduces 

an error of at most order O(1/T) = o(b); equivalently, without the adjustment, (S.20) 

would include an error of order o(b). Finally, we have from (14) that 
1 1 2 2

1 1

B B
j jj j

B w wBν − −
= =

= =∑ ∑ . Thus, along with (S.19) and (S.20), we have that 

2
1ˆvar(vec ) ( ( ))mmm

I K o bν −Ω = Ω⊗ ++ Ω , as stated. 

(iv)-(v) For kernel estimators, given Assumptions 1 and 2, equation (18) follows from 

Sun (2014b) equation (16), along with ( ) ( )m mmc b O bα αχ= + , as shown below after 

equation (S.29) in proving the expansions for WOS estimators. Equation (19) follows 

from the proof of Sun (2014b) Theorem 5 for the case of the Gaussian location model. 

For WOS estimators, first note that Assumption 1 directly implies that a multivariate 

martingale functional central limit theorem holds for the partial sums of zt (see, e.g., 

Helland (1982)): for [0,1]λ∈ , we have that 1/ 2 1/ 2

1

)(
T

m
t

d
tT z W

λ

λ
  

−

=

Ω→∑ , where ⋅    is the 

greatest lesser integer function and mW  is an m-dimensional standard Brownian motion 

on the unit interval. (This verifies an assumption by Sun (2013, 2014b), whose results we 

apply.) We thus have (extending the result after (14)) that 1/2 1/2

1

ˆ
B

d
j j

j
w

=

′ 
Ω Ω Ξ Ω 

 
→ ∑ , 

where Ξj are i.i.d. standard m-dimensional Wishart with one degree of freedom. 

Therefore, as in Sun (2014b, eq. (8)-(9)), we have in this case that 
1

, ,
1

B

T j j m B
d

j

mF w mFη η
−

∞
=

 


 Ξ ≡


→ ′∑ ,    (S.21) 

where ~ (0, )mN Iη  and η  is independent of jΞ  for all j. Write  
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11 12

1 21 22

B

j j
j

w
ς ς
ς ς=

 
=  


Ξ


∑ ,      (S.22) 

where ( 1) ( 1)
11 22, m mς ς − × −∈ ∈  , and so on. Then using Sun (2014b, equation (10)), we 

have equivalently that 2 1
, , 11 12 22 21~ )/ (m BmF η ς ς ς ς−

∞ − . We then proceed to take a Taylor 

expansion of 1
11 12 22 21( ))(mG z ς ς ς ς−× −  around ( )mG z  for arbitrary argument z. Note first 

that it can be shown quickly (as in Lemma 3 of Sun (2014b)) that  

 11 1
1( ) B

jj
wE ς

=
= =∑ ,   

               ( )1 2
11 12 22 21 1

) 1 ( 1) (1 (1)) 1 ( 1) ( )( B
jj

E m w o m o b
B
ψς ς ς ς−

=
− = − − + = − − +∑ ,     

         1 2
11 12 22 21( 1 2(2 )) ( )E o b

B
m ψς ς ς ς−  = + −− +  ,  (S.23) 

where again B = b-1. Thus a Taylor expansion gives that 

( )1
, , 11 12 22 21

2

) )

1( ) )
2

( (

( ) ( 1) ( ) 2 (

m B m

m m m

P

G

mF

z z m

z E G z

G z z o bG
B B

z

ς ς ς ς

ψ ψ

−
∞

= ′ − +

=


 

 − 

′ ′− +
 

    2( ) ( ) )( ) ( 1) (m m mz G GG z z z z m o b
B
ψ  = − − + ′′ ′+ .  (S.24) 

Using this and denoting by ,m Bcα
  the 1 α−  quantile of the distribution , ,m BmF∞ , we have 

2 )1 )( ( )( )( ( )( )) ) ( ( ) ( ) (( 1)m m m m m m m mc b G c b c b mG c b c bG o b
B

α α α α αψα ′′ ′=  − + − − +     . (S.25) 

Moving to *
TF , following Sun (2011, Lemma 3) and Sun (2014b, Lemma 1), first 

define the GLS estimator of β  as 1 1 1ˆ [( ) ( )] ( )GLS T m T m T mI V I I V yβ ι ι ι− − −′ ′= ⊗ ⊗ ⊗ , where 

Tι  is a 1T ×  vector of ones, 1 2var([ ] )TV u u u′ ′… ′= ′ , and 21 ][ Ty y yy ′ ′ ′… ′= , and 

define 1/ 2
,

ˆvar[T )](T GLS GLSβ βΩ = − . The independence of the GLS estimator from Ω̂  

(which is in general not satisfied for the OLS estimator β̂  given autocorrelation in ut) 

allows for a more convenient expansion of the test statistic. Applying Sun (2011, Lemma 

3), Sun (2014b, Lemma 1), this expansion proceeds from the following representation: 
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 ( )* 1 (1 / )
1T m TP mF z T

B m
G BE z O−  = Θ +   

≤
 − + 

,  (S.26) 

where 11/2 1/2ˆ
T T Te e−Θ  Ω ′


′ Ω


= Ω , 1/ 2 1/ 2

, 0 , 0
ˆ ˆ( )/ ( )T T GLS GLS T GLS GLSe T Tβ β β β− −−= Ω Ω −‖ ‖ and 

where ‖‖ is the Frobenius norm. Then applying Sun (2011, Theorem 4), Sun (2013, 

Theorem 4.1), Sun (2014b, Theorem 2), we can expand ( )1 1 ( ) q
pL Q o bT b− −= + + + +Θ , 

where 1/ 2 1/ 2 )([ ] ([ ]) ˆvecT TL e e− −′ ′= Ω Ω Ω −Ω⊗ , 1 2
ˆ ˆvec( ) ( )vec( ) / 2Q J J= −′Ω −Ω Ω −Ω , 

1/ 2 1/ 2 1/ 2 1/ 2
1 ] [ ( ) ][2 T T T TJ e ee e− − − −′ ′Ω Ω⊗Ω= Ω , 2

1/ 2 1/ 2 1
2 ( )T T mm mmm

J e Ke I K− − −′= Ω Ω⊗Ω +  

(see Sun (2014b, p. 675)). From part (i) of the theorem, we have that 

( )( )ˆ ( / ) ( /0) ( )qq WOS q q
jj

E kB j o B TT ∞

=−∞
− +Ω Γ− =Ω ∑ , and therefore, again following 

the steps in Sun (2011, Theorem 4), Sun (2013, Theorem 4.1), Sun (2014b, Theorem 2), 

 ( )( ) ( )(0)[ ] ( / ) ( )q WOS q q qE L B T k o bT bω −= − + + ,  (S.27) 

 ( )2 2[ (] ) qE L o bT b
B
ψ −= ++  and ( )([ ] ( )1) qE Q o bT bm

B
ψ −= − − ++ .  (S.28) 

Then expanding (S.26) as in those theorems, 

( ) ( )* 2 2( ) [
2

] ( ) [1 1] ( )
1

q
T m m pP TmF z G z G z z EB EG o b b O

T
E L Q

B m
z z L −  ′′≤ + + +  

  ′= + + +
− + 



  

        ( ) ( ) 2( ) )( ) (0)( ) ( 1)( ( )q WOS q q
m m m pz G k bT m G

B B
G z z G z z z zψ ψω − ′= ′ ′− − +− ′    

          ( )( ) ( ) qo b o bT −+ + .  (S.29)  

Set ( )mcz bα=   in this equation, and note that (i) ( ) ( )m mc b O bα αχ= +  as in Sun (2014b, p. 

665), and (ii) * *(1 ( ))( / ( 1))T T Tm FB BF m mF O bm= = +− + , so that 

( ) ( ) ( ) ( )m m mmc b c b O b O bα α αχ= + = + , where ( )mc bα  is the fixed-b critical value as in the 

text (i.e., the 1 α−  quantile of the limiting distribution for *
TF  with B fixed). Combining 

this with (S.25) then gives the null expansion (18) for WOS tests. 
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The expansion under the local alternative uses the calculations above (extended to 

incorporate the local alternative) to apply the results of Sun (2011, Theorem 5(b)) and 

Sun (2014b, Theorem 5). Those calculations (omitted here, since they follow the same 

steps as in those papers and above, but are available upon request) yield the expansion 
*Pr ( )T mF c bδ

α≤    = 2 2
( ) ( )

, ,
( ) ( ) (0)( / )qq q

m m mm m
G G k B Tα α α

δ δ
χ χ χ ω′−   

          ( )2
2

2,

1 ( ) ( ) ( )
2

q
m mm

G o b o bT
B

α α
δ

δ χ χ ψ −
+
′+ + + .  (S.30) 

Rearranging gives (19). 

(vi) Parts (ii)-(v) apply directly. For part (i), see Proposition S4 below.        

 

S2.2 PROOFS FOR REMARKS AND ADDITIONAL STATEMENTS 

 

Proposition S1 (Section 2.2). The Ibragimov-Müller (2010) LRV estimator, which is the 

sample variance of subsample estimators of β on B+1 equal-sized subsamples, can be 

expressed as an equal-weighted WOS estimator.  

 

Proof of Proposition S1: For convenience, suppose T/(B+1) is an integer and m = 1, 

though the derivation below applies straightforwardly to the more general cases. The 

Ibragimov-Müller (2010) split-sample (SS) test statistic is then 

 tSS = ( ) 2
ˆ0

ˆ1B S
β

β β+ − , where 2
ˆS
β

 = ( )1 2
( )

1

1 ˆ ˆ
B

i

iB
β β

+

=

−∑ , (S.31) 

 where  is the estimator of β computed using the ith subsample and  = .  

Note that 0 0
ˆ zβ β− = , and define 2

ˆ
ˆ [ / ( 1)]SS T B S

β
Ω = + . Let β



 be the B+1 vector with 

ith element ( )ˆ i
iβ β=


, so that 2
ˆS
β

 = ( )1 1
1 1 1 1 1( )B B B B BB Iβ ι ι ι ι β− −
+ + + + +

′′ ′−
 

, where IB+1 is the 

(B+1)× (B+1) identity matrix and 1Bι +  is the (B+1)-vector of 1’s. Define 

 ΦSS  = ( )1 /( 1)( 1) B
B T BB I Mιι+ ++ ⊗ , (S.32) 

( )ˆ iβ β̂
1

( )

1

1 ˆ
1

B
i

iB
β

+

=+ ∑
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where BMι  is the (B+1)×B matrix of eigenvectors of 1
1 1 1 1 1( )B B B B BI ι ι ι ι−
+ + + + +

′ ′−  associated 

with its B unit eigenvalues. Then 

2
ˆ

ˆ [ / ( 1)]SS T B S
β

Ω = +  = ( )1 1
1 1 1 1 1[ / ( 1)] ( )B B B B BT B B Iβ ι ι ι ι β− −
+ + + + +

′′ ′+ −
 

 

    = ( )( )( )1 2 1
1 /( 1) 1 1 1 1 1 1 /( 1)[ / ( 1)] [ / ( 1)] ( )B T B B B B B B B T BT B B T B y I I I yι ι ι ι ι ι− − −
+ + + + + + + + +

′′ ′ ′+ + ⊗ − ⊗  

    = ( )( )( )1 1
1 /( 1) 1 1 1 1 1 1 /( 1)ˆ ˆ( ) ( 1) ( )B T B B B B B B B T BBT B z I I I zι ι ι ι ι ι− −
+ + + + + + + + +

′′ ′ ′+ ⊗ − ⊗   

  = ( ) ( )1
1 /( 1) 1 /( 1)ˆ ˆ( ) ( 1) B B

B T B B T BBT B z I M M I zι ιι ι−
+ + + +

′′ ′+ ⊗ ⊗  = ˆ ˆ /SS SSz z BT′′Φ Φ ,  (S.33) 

where the first equality uses the definition of ˆ SSΩ , the second applies (S.31), the third 

uses β


 = 1
1 /( 1)[ / ( 1)] B T BT B I yι−
+ +′ + ⊗  , the fourth uses ˆẑ y β= −  and the properties of 

1
1 1 1 1 1( )B B B B BI ι ι ι ι−
+ + + + +

′ ′− , the fifth uses the idempotence of 1
1 1 1 1 1( )B B B B BI ι ι ι ι−
+ + + + +

′ ′−  and the 

definition of BMι , and the final equality uses the definition of ΦSS in (S.32).  

Note that ΦSS is T×B, that SS
Tι ′Φ  = 0, and ΦSS′ΦSS/T = IB as required for series 

estimators (for which Φ = [Φ1 … ΦB], where Φj = [ϕj(1/T)  ϕj(2/T) … ϕj(1)]′). Thus ˆ SSΩ  

is an equal-weighted WOS estimator as defined in (8) with basis matrix ΦSS.   

 

Proposition S2 (Section 3.3). The Fourier, Type II cosine, and Legendre polynomial 

bases satisfy ( ) 2 1/ 2
[0,1] ,sup ( )n n

s j ns C jφφ +
∈ ≤  for all j and n = 0, 1, 2, where ( ) ( )n

j sφ  is the nth 

derivative of ϕj and the constant Cn,ϕ does not depend on j, as required for Assumption 3. 

 

Proof of Proposition S2:  The Fourier and cosine basis functions satisfy |ϕj(x)| ≤ 1 for 

all j. For the Fourier basis, we have 2 1 2 2 sin(2 )( )j j js sφ π π−′ = − , 

2 2 2 cos(2 )( )j js j sφ π π′ = ,  2 2
2 1 4 2 cos(2 )( )j s j jsφ π π−′′ = − , 

2 2
2 4 2 sin(2 )( )j s j jsφ π π′′ = − , and thus | ( ) | 2/ 2k s jφ π′ ≤ , 2 2| 4( ) | / 2k s jφ π′′ ≤ , with k 
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= 2j – 1, 2j, for all j, so that the condition is satisfied. Similarly, for the cosine basis, 

| ( ) / 2|j s jφ π′ ≤ , 2 2| ( ) | / 2j s jφ π′′ ≤ , so that the condition is satisfied. 

For the Legendre case, first denote the Legendre polynomial of degree j by Pj(x), 

[ 1,1]x∈ − . The Legendre basis functions are then defined as ( ) ( ) 2 1j js P x jφ = + , for 

( 1) / 2s x= + , so that the basis functions are shifted to [0,1]s∈  and normalized such that 
1

0
( ) ( ) 1{ }j ks s ds j kφ φ = =∫  (e.g., Abramowitz and Stegun (AS, 1965, p. 774)), as required 

by definition. Thus 3| ( ) | /j s jφ ≤ , satisfying the requirement for the 0th derivative, as 

1| ( ) |jP x ≤  (Abramowitz and Stegun (1965, eq. 22.14.7)) and 2 1 / 3j j+ ≤ . 

For the first and second derivatives, note first that the Legendre polynomial Pj(x) is 

equivalent to the Jacobi polynomial ( , ) ( )jP xα β  with α = β = 0 (Abramowitz and Stegun 

(1965, eq. 22.5.24)). Thus applying a well-known property of Jacobi polynomial 

derivatives (e.g., Shen, Tang, and Wang (2011, eq. (3.101))), we have that 

 ( , ) ( , )

0, 0

( ) ( ) (( )1 )
2 ( 1)

n n
n n

j j j nn n n

d d j nP Px x
d dx

xP
x j

α β

α β
−

= =

+ +
=

Γ +
=
Γ , (S.34) 

j n≥ , where ( )Γ ⋅  is the gamma function. (Boundedness for the case j = 1, n = 2 is 

immediate, as 1 ( )P x′′ = 0.) And ( , ) ( , )
[ 1,1]max ( x) ( )ma 1n n n n

j n jx nP x P∈ − − −= ±  (Shen, Tang, and 

Wang (2011, eq. (3.125))), so ( )jP x′  and ( )j xP′′  are maximized at a boundary point 

1x = ± . From Shen, Tang, and Wang (2011, eq. (3.177a)-(3.177b)), at these points,  

 ( ) ( ) ( ) ( ) ( )( )11 1( 1) 1 1 1
2

1 , 1 1 2
8

( )j j
j jP Pj j j j j j−′ ′′ ±+ == ± −± ± + + . (S.35) 

The uniform boundedness of 2| ( ) | /jP x j′  and 4| ( ) | /jP x j′′  follows immediately. Then 

using that ( ) ( ) 2 1j js P x jφ = +  as above, we have that 2 1/ 2| ( ) | /j s jφ +′  and 4 1/ 2( ) || /j s jφ +′′  

are uniformly bounded as well, as stated.  □ 

 

Proposition S3 (Remark 3). Statements (a)-(e) in Remark 3 hold. 
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Proof of Proposition S3: 

(a) For kernel estimators, Priestley (1981, eq. (6.2.123)) extends a result of Parzen 

(1957) to show that given a process with known mean, equation (15) holds without the 

terms in b if 1 0q qb T − → . Thus  

 ( ) ( ) ( )( )( ) ( )ˆ ˆbias (0) (0) (0) (0) (0)q qq q
z z z zs Es s bT sk o bT− −−= − = + , (S.36) 

and this equation holds as well for WOS estimators (including with unknown mean) by 

(13) and (15). For variance, (17) holds in both cases, so that 

 ( ) ( )21ˆvar (0) 2 (0) ( )z zs v s o b−= + . (S.37) 

So up to higher-order terms, ( ) ( ) ( ) ( )22 2( ) ( )(0 (ˆ ( ) 0) 2 (0)0) q q q
z zzM TSE bs s b sk ψ−= + , which 

is shown by Priestley (1981, eq. (7.5.9)) to satisfy ( ) ( )2 / (2 1)( )min (ˆ (0) )
qq

z

q

b M s kSE
+

∝  . 

(b) Using the two equations from (a), the objective function evaluates to 

 ( ) ( ) ( )( )2( ) ( )(0) (0) 2(1 )) (0) (q qq q
z za k oa bs T obT s bbψ− − +− ++ . (S.38) 

The minimizing value of b is invariant, up to a multiplicative constant, to transformations 

of the objective function of the form  

 ( ) ( ) ( )( )2( ) ( )
1 2 ( ))(0 (0) (0)q qq q

z za T k o b bb s a b s T oψ− −+ ++ , (S.39) 

for 1 2, 0a a > . Sun and Yang (2020, p. 11) show that (i) objective function (e) can be 

expressed in this form, and (ii) its minimum is achieved for ( )1/ ( 1)( ) / ( 1)(0) /
qq q qb k Tψ
+ − +∝  

(see also LLSW (2018, rejoinder eq. (1)), so that the minimized objective function is, to 

higher order and up to an additive constant, proportional to ( ) / ( 1)( ) ( )
q qq k

+
 . 

(c) By the proof of Corollary 1, both objectives can be expressed in the form (S.39), so 

part (b) applies. 

(d) See LLSW (2018, eq. (24)-(25)). 

(e) See part (b).       

 

Proposition S4 (Remark 5). For EWP and QS tests with equivalent higher-order size, 
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equation (30) in the text holds, with EWPν  = B. 

 

Proof of Proposition S4: Fix a sequence EWP1/B b= . To obtain equivalent higher-

order size using the QS test, Theorem 1(iv) gives that we must set 

 
QS(2) 2

1 1
QS EWPEWP(2) 2

(0) /10 3
(0) / 6 5

k bb B B
k

π
π

− −== = ,   (S.40) 

where the (2) (0)k  values for the two tests are as in the proof of Theorem 5. Further, 

2 6( )
5

k x dx
∞

−∞

=∫  for QS, so that given equivalent higher-order size, we have 

1 1 1 1
EWP QS

6 3
5 5

BBν ν− − − −− −= . Plugging this into Theorem 3 yields the desired result.     

 

Proposition S5 (Remark 6).  

(i) The Bartlett kernel and SS estimator both have q = 1, and the Bartlett kernel’s 

size-power tradeoff curve is strictly below the SS tradeoff curve.  

(ii) The EWP estimator is asymptotically equivalent to the equal-weighted WOS 

estimator using type II cosine basis functions, and both have q = 2. 

 

Proof of Proposition S5: 

(i) We first consider the SS estimator. Note that the SS basis functions (S.32) do not 

satisfy the differentiability requirement of Assumption 3. Thus for the SS estimator we 

calculate SSˆEΩ  directly; in doing so, we show that the SS implied mean kernel is similar 

to the Bartlett kernel for a subsample of T/(B+1) observations (where it is assumed for 

notational simplicity that this ratio is integer-valued, as the non-integer case follows 

immediately setting the subsample size to [T/(B+1)]). 

First, given 
1

1 1

i

T

i t t
t T ti

y y
T

y y
T∈ =

≡ −− ∑ ∑  (where, abusing notation, Ti denotes both the 

number of observations in subsample i, Ti = T/(B+1), and the subsample that t indexes), 
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we have 
1 1

1 1 1( 1)1{ } 1 1{ }
1

( ) ( )
T T

i i t i t
t t

y By y B t T t T y
T T B= =

=
+

= + ∈ − ∈ −
+

− ∑ ∑ . Thus 

squaring and summing over subsamples, we have 

     
21 1

2

1 1 1 1

1 1 1 1 11{ } 1{ }
1 1

( ) ( )( )
B B T T

i i i t s
i i t s

By y t T s T y y
B B T B B

+ +

= = = =

+ = ∈ − ∈ −  + +
−


∑ ∑ ∑∑ . (S.41) 

Taking the expectation of this value and rearranging, 
1 1

2

1 ( 1)

1 1 1 1( ) 1 1 | | 1
/ 1 / 1 1 1

[( | |) { } ( | |)]
B T

i u
i u T

E B u T uy y u
B B T B T B B B T

+ −

= =− −

+
= − ≤ − − Γ

+ +
−

+ +∑ ∑  

        
1

( 1)

1 1 1 1 11 | |
/ ( 1) 1

[( | |) { } | |]
T

u
u T

B B B u T uu
T B B T B B B B T

−
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Converting 
1

2

1

1 ( )
B

i
i

E y y
B

+

=

−∑ to SSˆEΩ  requires multiplying by T/(B+1) given the form of 

the statistic in (S.31) compared to the usual t-statistic. Thus in this case defining S such 

that T = S(B+1) given that there are B+1 subsamples and setting ν  = u/S, we can write 

the SS implied mean kernel (i.e., the expression in brackets in (S.42)) as  

SS
B

1 1 1 1( ) | | 1 | | 1 | |
( 1)

( ) { }k B B
B B B B B

ν ν ν ν+ +
= − ≤ − +

+
    .     (S.43) 

Thus using the definition of the generalized first derivative in (11), we have 

SS(1)
B

1 1 2(0) 1
( 1) 1

k B B
B B B B
+ +

= − = →
+ +

 as B → . Because SS(1) (0) 0k ≠ , q = 1 for the SS 

estimator. Further, comparing SSˆEΩ  with Ω  using (S.42), we obtain that Theorem 1(i) 

applies for the SS estimator as well, and the tradeoff in Theorem 4(ii) applies. The value 
(1) SS( )k  is equal to SS(1) (0) 1k =  given 1ψ =  for equal-weighted WOS estimators. 

For the Bartlett/Newey-West test, Priestley (1981) Table 7.1 gives k(1)(0) = 1 and q = 

1, while Table 6.1 gives that 2 ( )dk x x
∞

−∞
∫  = 2/3, so that (1) NW (1) 2( ) (0) ( )k dkk x x

∞

−∞

= ∫  = 2/3, 

from which we conclude that the Bartlett tradeoff dominates the SS tradeoff. 

∞
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(ii) For the Fourier basis functions used in the EWP estimator, we have, as in 

Proposition S2, 2 2
2 1 4 2 cos(2 )j j jsφ π π−′′ = − , 2 2

2 4 2 sin(2 )j j jsφ π π′′ = − , which give that

1 1 2 2
2 1 2 1 2 20 0

( ) ( ) ( ) ( ) 4j j j js s ds s s ds jφ φ φ φ π− −′′ ′′= = −∫ ∫ . Then applying Theorem 1(ii), 

    
2 2/2

EWP(2) 2 2
2 2

1

1 1 1 ( 1)( 2)(0) 2 4
2 6 6

( )
B

B
B

j
k B Bj

B B B
π ππ →∞

=

+ +
= − − = →∑ .  (S.44) 

Similarly, for cosine basis functions, using their limiting implied mean kernel form, 

2 2( ) 2 cos( )j s j jsφ π π′′ = −  and 
1 2 2

2, 1 2, 10
( ) ( )j js s ds jφ φ π− −′′ = −∫ . Summing over j, 

2 2
cos(2) 2 2

2 2
1

1 1 1 ( 1)( 1/ 2)
2 6 6

( )
B

B
B

j

B Bj
B

k
B B

π ππ →∞

=

+ +
= − = →−∑ .  (S.45) 

Results (S.44) and (S.45) and Theorem 1(ii) give that q = 2 for both estimators; these 

results, along with 1ψ =  for equal-weighted WOS estimators, then imply given Theorem 

4(ii) that the estimators are asymptotically equivalent.   

 

Proposition S6 (Section 4.3). Assume that the remainder terms in equation (18) in the text 

are ( )( )( ) qo b o bT −+  uniformly in ( ) ( )q qω ω≤ . Then: 

(i) The maximum weighted average power (WAP) test solving equation (31) in the text 

features bWAP as stated in equation (32), with 

   ( ) ( ) ( )

| |

( ) ( ) ( )q q q d
ρ ρ

ω ω ρ ω ρ ρ
≤

 = − Π ∫  and  
2,

2
22,

( (

1
1)

1 )
2

)

, ,
( ( )

m mm

m mm

G d

m q
G

q

d
d

α α
δ

δ

α α
δ

δ

δ

δδ

δχ χ

χ
α

δχ
+

′ Π

′ Π

+ ∫
 =
 ∫ 

 .  (S.46) 

(ii) The power loss of the test using bWAP in (32) depends on k only through ( ) ( )q k . 

(iii) The test asymptotically delivering the highest WAP uses the QS kernel, and more 

generally, q = 1 kernels are asymptotically dominated by q = 2 kernels. 

 

Proof of Proposition S6: 

(i) Let , ( )m Tc bα  be the size-adjusted critical value (20) based on the boundary value of  
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( )qω : , ( )m Tc bα  = ( ) ( )1 (0)( ) ( )q q q
mk bT c bαω − +  . From (18), the null rejection rate of the test 

using this size-adjusted critical value, evaluated at the true value of ω(q), is 

 ( ) ( )* ( ) ( ) ( )
0 ,Pr ( ) ( ) (0)( ) ( ) ( )q q q q q

T m T m m mF c b G k bT o b o bTα α αα χ χ ω ω − −′ > = + − + +  , (S.47) 

from which it follows that, for a given sequence b and under the assumed condition,  

( )( ) ( )
*

0 ,sup Pr ( ) ( ) ( )q q
q

T m TF c b o b o bTα
ω ω

α −
≤

 > ≤ + +  .   (S.48) 

The expression for ( )( ) ( ),q
P ω ρ δ∆  in (31) then follows directly from (33) in the proof of 

Theorem 2 (omitting higher-order remainder terms). Solving (31) yields (32), with ( )qω  

and , ,m qd α
  as stated.  

(ii)-(iii) Substituting bWAP in (32) into the expression for ( )( ) ( ),q
P ω ρ δ∆ , we obtain 

that the power loss of the the test using the WAP-maximizing sequence is 

( ) ( ) ( )
11/ 1/(1 ) 1/(1 ) ( ) ( ) 11

. . (0)
q q

q qq q q q q qqWA
m

P
P qq q a k Tα ωψ

−
+− + + ++∆  = +   

 ,   (S.49) 

where  = 2 2

1/(1 ) /(1 )1 2
2, 2,

( ) ( ) ( ) ( )m m

q q q

mm mm
G d G dα

δ δδ δ
α α αχ δ δχχ δ χ

+ +

+
   ′ ′Π Π   ∫∫ . Note 

that ( )1/( ) ( )( ) (0)
qq qk k ψ= . The remaining stated results then follow.   
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