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Appendix 1 Data

The data are annual values of real per-capita GDP for 113 countries spanning the 118-year

period 1900-2017, taken from the Penn Word Table 9.1 (Feenstra, et al. (2015) and Inklar

and Woltjer (2019)) and Bolt et al. (2018) Maddison Project Database. GDP is measured

at constant 2011 national prices, expressed in U.S. dollars.

From the Penn World Table, we used the real GDP series rgdpna, which measures real

GDP at constant national prices, and is obtained from national accounts data for each

country. We also extracted the population series population from the PWT. From these, we

computed rgdpnapc = rgdpna/population for each year and country.

From the Maddison Project Database we extracted rgpdnapc, which is the same concept

as rgpdna in PWT, but expressed in per-capita terms. We also extracted the population

series pop.

We then linked the series for each country as follows as follows: Letting i denote country,

t denote year, and ti denote the first year that rgdpnapc is available in the PWT. Then

rgdpnapclinkedi,t =

{
rgdpnapcPWT

i,t for t ≥ ti

grpdnapcMaddison
i,t × (rgdpnapcPWT

i,ti
/rgdpnapcMaddison

i,ti
) for t < ti

Population was linked analogously. Results in the paper are based on these linked series.

The file TableA1 List of Countries.xlsx lists the 113 countries used in the analysis,

each country’s 2017-value of per-capita real GDP and population, and start and end dates.

The file TableA2 Excluded Countries. xlsx lists the 69 countries in the PWT that were

excluded because of a short sample (less than 50 years), a small 2017 population (less than

3 million) or both.

The sample ends in 2017 (the last year available in PWT 9.1) and begins in 1900, where

the (arbitrary) start date means that the sample contains at most 118 years of data. While

data are available for some countries in earlier years from the Maddison Project Database,

concerns about temporal stability led us to start the sample in 1900.
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Appendix 2 Computations

Appendix 2.1 Unbalanced Panel

Müller and Watson (2008, 2018) extract low-frequency trends by projecting the original

time series yt onto a finite set of trigonometric low-frequency regressors. In particular,

for time series that have a deterministic trend, their suggestion for the regressors are the

(asymptotic version) of the eigenvectors associated with the largest eigenvalues of a demeaned

and detrended random walk. The variation in a random walk is dominated by low-frequency

components (cf. Phillips (1998)). Thus, high variance linear combinations of a (demeaned

and detrended) random walk extract low frequency variability, and the magnitude of the

variance becomes an indicator for the associated frequency.

To be specific, let V be the T ×T covariance matrix of a random walk with unit variance

and initialized at t = 0, that is, Vij = min(i, j); let R denote the T × 2 matrix with tth

row equal to (1, t− (T + 1)/2). The full sample regressors that extract variation below the

frequency cut-off 2q/T are then given by q + 1 vectors: Two corresponding to the columns

of R, plus the q − 1 eigenvectors of the T × T matrix

MVM with M = IT −R(R′R)−1R′ (1)

corresponding to the q − 1 largest eigenvalues. As discussed in Müller and Watson (2008),

the cut-off formula 2q/T requires counting the the linear trend in the second column of R as

part of the q non-constant vectors that extract variation. For future reference, denote the

q − 1 largest eigenvalue of MVM by κq. Note that the regressors are orthogonal to each

other by construction.

We now generalize this approach further and make it operational in an unbalanced panel.

Let Ji be a diagonal T × T matrix whose tth diagonal element is equal to one if the data

yi,t for country i is observed at time t, and zero otherwise. Let Ri = JiR, a T × 2 matrix

with zeros in all rows where yi,t is unobserved. The regressors for series yi,t are then given

by qi + 1 weights: The two columns of Ri, and the qi − 1 eigenvectors of

MiVMi with Mi = Ji −Ri(R
′
iRi)

−1R′i (2)

with eigenvalues larger or equal than κq. Note that the eigenvectors of MiVMi are equal to

zero by construction in all rows where yi,t is unobserved. Also note that if yi,t is observed
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for a single spell of Ti consecutive periods, then this construction yields the same set of

regressors that would have been obtained from (1) for a fully observed time series of length

Ti with cut-off frequency 2qi/Ti ≈ 2q/T .

Appendix 2.2 Low-Frequency Trends and their Asymptotic Dis-

tribution

Let the qi + 1 vector Yi be the OLS coefficients of a regression of {yi,t}Tt=1 on the qi + 1

regressors obtained in this manner. The low-frequency panel analysis treats Yi as the only

observation from country i, ignoring all higher frequency sample variation contained in the

original series {yi,t}Tt=1.

The unbalanced panel introduces a complication in preserving the factor structure (1)

for the low frequency trends for yi,t and the common factor ft. We procede by introducing

a common higher dimensional “baseline” low-frequency trend Xi, of which Yi is a partial

observation (even if there is no missing data for country i). Specifically, consider the space

spanned by the q̃+ 1 regressors extracted from (1), with q̃ >> q. For sufficiently large q̃, we

can approximate the qi+1 regressors obtained from (2) arbitrarily well, that is, the regressors

obtained from (2) can be written as a linear combination of the q̃ + 1 baseline regressors.

For computational efficiency, it is not attractive to make q̃ too large; we choose q̃ = q + 15

throughout. We then use ordinary least squares regressions (with T observations) to find the

best linear combination to approximate the qi + 1 regressors as linear combinations of the

q̃+1 baseline regressors (and to make this approximation more accurate, we treat as missing

any isolated observed value, that is a value yi,t where both yi,t−1 and yi,t+1 are missing). The

smallest R2 across all regressors and countries in this construction is larger than 0.973.

With this approximation in place, the relationship between the observed qi + 1 vector Yi

and the latent augmented q̃ + 1 trend Xi is given by

Yi = B′iXi (3)

where Bi is the q̃ + 1× qi + 1 matrix obtained from the OLS regressions just described.

The linear structure of the model of equations (1)-(7) then yields a corresponding linear

structure in the q̃ + 1 dimensional low-frequency trends

Xi = F + Ci, i = 1, . . . , n (4)
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Ci = µcι1 + λc,iGJ(i) + Uc,i, i = 1, . . . , n (5)

Gj = λg,jHK(j) + Ug,j, j = 1, . . . , 25 (6)

Hk = Uh,k, k = 1, . . . , 10 (7)

F = ι1f0 + ι2µm + Sm + A (8)

Y 0 =
n∑
i=1

wiXi − F (9)

where ι1 and ι2 in (5) and (8) are the first and second column of Iq̃+1, respectively, and F ,

Ci, Uc,i, Ug,j, Uh,k, Gj, Hk, Sm and A are the q̃ + 1 low-frequency trends obtained from ft,

ci,t, uc,i,t, ug,j,t, uh,k,t, gj,t, hk,t, mt and ∆at, respectively. Equation (9) here represents the

in-sample prior that ft is close to the population weighted average of OECD countries’ yi,t,

implemented via a dummy observation prior where Y 0 ∼ N (0,∆) with ∆ = 0.012Iq̃+1 in the

prior, and the observed realization is Y 0 = 0. The population weights wi in (9) sum to one

and are set to zero for non-OECD countries.

Now as discussed in Section 4.2, the focus on low-frequency variation offers the advantage

that the large sample distribution of the low-frequency trends Uc,i, UG,j, Uh,k, Sm and A of

the driving innovations of the model are approximately Gaussian, with the large sample

covariance matrix a function of the low-frequency scale and persistence parameters. For

instance, recall from (8) that the ut terms in (2)-(4) are modelled as a weighted sum of

two independent low-frequency (=local-to-unity) stationary AR(1) processes with unit long-

run variance. Under such asymptotics, the low-frequency trend U computed from {ut}Tt=1

satisfies U
a∼ N (0, σ2

uΣU(θu)) with θu = (ρ1, ρ2, ζ), that is, the limiting Gaussian distribution

only depends on low-frequency parameters and not, say, on the short-run dynamics of the

disturbances driving the local-to-unity processes. In other words, under such asymptotics, U

is distributed as if the underlying ut was a sum of two independent Gaussian AR(1) processes

with coefficient ρ1 and ρ2, respectively. Thus, an asymptotically justified approximation to

the the q̃ + 1× q̃ + 1 covariance matrix ΣU(θu) is simply given by

ΣU(θu) = (R̃′R̃)−1R̃′Σ̃u(θ
u)R̃(R̃′R̃)−1

where R̃ is the T × (q̃ + 1) dimensional matrix of baseline regressors, and Σ̃u(θu) is the

T × T covariance matrix of a (ζ,
√

1− ζ2) weighted average of two independent stationary

AR(1) processes with coefficients ρ1 and ρ2 and innovation variance equal to (1 − ρ2
1)−1/2
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and (1− ρ2
2)−1/2, respectively. The same arguments also yield

Sm
a∼ N (0, σ2

mΣm(ρm)) (10)

A
a∼ N (0, σ2

∆aΣa) (11)

where

Σm(ρm) = (R̃′R̃)−1R̃′Σ̃m(ρm)R̃(R̃′R̃)−1

Σa = (R̃′R̃)−1R̃′V R̃(R̃′R̃)−1

with Σ̃m(ρm) the T ×T covariance matrix of the partial sum of a stationary Gaussian mean-

zero AR(1) model with coefficient ρm and innovation variance equal to (1− ρ2
m)−1 (so that

the unconditional variance of the AR(1) process is normalized to be equal to unity), and V

is the random-walk covariance matrix introduced earlier.

Further note that the joint large-sample distribution of the in-sample low-frequency

trends and out-of-sample long-horizon forecasts is again normal, as discussed and exploited

in Müller and Watson (2016). Taking the example of the forecast of uT+bhT c for some sam-

ple size independent h > 0, the joint (q̃ + 2) × (q̃ + 2) approximate covariance matrix of

(R̃′R̃)−1R̃′u1:T and uT+bhT c may be computed via

W̃ e′Σ̃e
u(θ

u)W̃ e with W̃ e′ =

(
(R̃′R̃)−1R̃′ 0 · · · 0

0 0 · · · 1

)
(12)

where W̃ e is (T+bhT c)×(q̃+2) and Σ̃e
u(θ

u) is the (T+bhT c)×(T+bhT c) covariance matrix

of a (ζ,
√

1− ζ2) weighted average of two independent stationary AR(1) processes with coef-

ficients ρ1 and ρ2 and innovation variance equal to (1−ρ2
1)−1/2 and (1−ρ2

2)−1/2, respectively.

The same approximation readily extends to the forecast of fT+bhT c =
∑T+bhT c

t=1 (ms + ∆as).

Appendix 2.3 Gibbs Sampler

The posterior results in the paper are computed from a (thinned) version of 150,000 Gibbs

draws, after discarding 25,000 for burn-in. Given our choice of prior, each step of the Gibbs

sampler is conjugate. Further, the dimension reduction to q̃ + 1 latent vectors, and the

discrete parameter space allows precomputations of nearly all relevant (q̃ + 1) × (q̃ + 1)

matrices. Finally, many of the computations within one Gibbs draw can be parallelized, as
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they involve n, 25 or at least 10 independent components. In combination, this leads to very

fast computations: In the baseline specification, the 175,000 draws take about 4 minutes on

a dual 12 core workstation in a Fortran implementation.

The tight prior variance ∆ of the dummy observation Y 0 in (9) prevents large moves of

F ; in order to accelerate convergence to reasonable starting values, we linearly decrease the

variance of Y 0 from 1000∆ to ∆ during the burn-in phase.

To complete the description of the model, recall that the innovations {Uc,i}ni=1, {Ug,j}25
j=1

and {Uh,k}10
k=1 are independent with distribution

Uc,i ∼ N (0, ω2κ2
c,i(1− λ2

c,i)ΣU(θuc,i)) (13)

Ug,j ∼ N (0, ω2κ2
g,j(1− λ2

g,j)ΣU(θug,j)) (14)

Uh,k ∼ N (0, ω2κ2
h,kΣU(θuh,k)) (15)

where

• {λc,i}ni=1 and {λg,j}25
j=1 are i.i.d. draws from the discrete distribution with 25 support

points {λl}25
l=1 and priors pλc = (pλc,1, . . . , p

λ
c,25) and pλg = (pλg,1, . . . , p

λ
g,25), respectively

• {θuc,i}ni=1, {θug,j}25
j=1 and {θuh,k}10

k=1 are i.i.d. draws from the discrete distribution with

100 support points {θl}100
l=1 and priors puc = (puc,1, . . . , p

u
c,100), pug = (pug,1, . . . , p

u
g,100) and

puh = (puh,1, . . . , p
u
h,100), respectively

• {κc,i}ni=1, {κg,j}25
j=1, and {κh,k}10

k=1 are i.i.d. draws from the discrete distribution with

25 support points {κl}25
l=1 and priors pκc = (pκc,1, . . . , p

κ
c,25), pκg = (pκg,1, . . . , p

κ
g,25) and

pκh = (pκh,1, . . . , p
κ
h,25), respectively.

and the various p are realizations of the corresponding Dirichlet prior.

The state of the sampler thus consists of {Xi}ni=1 ∈ Rn(q̃+1), (F, Sm) ∈ R2(q̃+1), {Gj}25
j=1 ∈

R25(q̃+1), {Hk}10
k=1 ∈ R10(q̃+1), µc ∈ R, {λc,i}ni=1 ∈ Rn, {λg,j}25

j=1 ∈ R25, {θuc,i}ni=1 ∈ R3n,

{θug,j}25
j=1 ∈ R75, {θuh,k}10

k=1 ∈ R30, ω2 ∈ R, {κc,i}ni=1 ∈ Rn, {κg,j}25
j=1 ∈ R25, {κh,k}10

k=1 ∈ R10,

{J(i)}ni=1 ∈ Nn, {K(j)}25
i=1 ∈ N25, (f0, µm) ∈ R2, σ2

∆a ∈ R, σm ∈ R, ρm ∈ R, pλc ∈ S25,

pλg ∈ S25, pθc ∈ S100, pθg ∈ S100, pθh ∈ S100, pκc ∈ S25 , pκg ∈ S25, pκh ∈ S25, where Sm is the

simplex of dimension m. In each step of the Gibbs sampler described in detail below, one

of these states is drawn conditional on the current value of all other states. We checked the
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correctness of the sampler (and code) using the Geweke (2004) test as described in Müller and

Watson (2019), who also provide additional details on the conjugate distributions exploited

in the Gibbs steps below. The long-run forecasts are easily generated conditional on the full

state of the sampler from the conditional normal distribution with parameters implied by

(12) and the analogous expression for the forecast of ft.

One draw of the Gibbs sampler consists of the following 28 steps.

1. {Xi}ni=1

From (4), (5) and (9), drawing {Xi}ni=1 amounts to drawing from the conditional

distribution of {Ci}ni=1 given observations {B′iCi}ni=1 and Y 0 =
∑n

i=1wiCi, where Ci =

Xi − F . Let µC = (µcι
′
1 + λc,1G

′
J(1), . . . , µcι

′
1 + λc,nG

′
J(n))

′ ∈ Rn(q̃+1) be the conditional

mean of C = (C ′1, . . . , C
′
n)′, Σ the block diagonal conditional covariance matrix of Uc

with ith block equal to ω2κ2
c,i(1−λ2

c,i)ΣU(θuc,i), B the n(q̃+1)×
∑n

i=1(qi+1) matrix such

that Y = (Y ′1 , . . . , Y
′
n) = B′X with X = (X ′1, . . . , X

′
n)′, and w = (w1, . . . , wn)′⊗ Iq̃+1 ∈

Rn(q̃+1)×(q̃+1). The conditional joint distribution of C, Y0 and B′C is then given by
C

Y 0

B′C

 ∼ N



µC

w′µC

B′µC

 ,


Σ · ·
w′Σ w′Σw + ∆ ·
B′Σ B′Σw B′ΣB




so that with m = µC + ΣB(B′ΣB)−1B′(C − µC) and V = Σ− ΣB(B′ΣB)−1B′Σ,(
C

Y 0

)
|B′C ∼ N

((
m

w′m

)
,

(
V ·
w′V w′V w + ∆

))
.

Thus,

C|(B′C, Y 0) ∼ N (m+V w(w′V w+∆)−1(Y 0−w′m), V −V ′w(w′V w+∆)−1w′V ). (16)

In order to avoid manipulating the large matrices in this expression directly, we gen-

erate a draw from this distribution as follows: Draw Z0 ∼ N (µC ,Σ), and note that

Z1 = Z0 − ΣB(B′ΣB)−1B′(Z0 − C) ∼ N (m,V ).

The draw of Z0 and the computation of Z1 can be implemented independently for each

q̃ + 1 block, and each q̃ + 1× q̃ + 1 block of B(B′ΣB)−1B′ can be precomputed (up to

scale). Then draw ε ∼ N (Y 0,∆) independent of Z0, and note that

Z1−V w(w′V w+∆)−1w′(Z1−ε) ∼ N (m+V w(w′V w+∆)−1(Y 0−w′m), V−V ′w(w′V w+∆)−1w′V )

7



which is a draw from the target (16), and the evaluation of V w and w′V w simply

consists of computing weighted sums of precomputed q̃ + 1× q̃ + 1 blocks.

2. (F, Sm)

Let µF = ι1f0 + ι2µm, ΣF = σ2
mΣm(ρm) + σ2

∆aΣa and e = (1, . . . , 1)′ ⊗ Iq̃+1 ∈
Rn(q̃+1)×(q̃+1). Then from the independent Gaussian kernels (4) and (9), we obtain

that the conditional posterior distribution of F is

F − µF ∼ N (mF , VF )

where VF = (Σ−1
F + e′Σ−1e+ ∆−1)−1 and mF = VF (e′Σ−1(X−µC − eµF ) + ∆−1(w′X−

Y 0 − µF )). Furthermore, from (8), conditional on a draw of F from this conditional

distribution, the conditional distribution of Sm satisfies

Sm|F ∼ N (ΣSΣ−1
F (F − µF ),ΣS − ΣSΣ−1

F ΣS)

where ΣS = σ2
mΣm(ρm).

3. {Gj}25
j=1

Let Σg,j = ω2κ2
g,j(1 − λ2

g,j)ΣU(θug,j) and Σc,i = ω2κ2
c,i(1 − λ2

c,i)ΣU(θuc,i). From (5) and

(6), we have that the conditional distribution of {Gj}25
j=1 is independent and satisfies

Gj ∼ N (mGj
, VGj

)

where VGj
= (Σ−1

g,j +
∑n

i=1 1[J(i) = j]λ2
c,iΣ

−1
c,i )
−1 and mGj

= VGj
(λg,jΣ

−1
g,jHK(j) +∑n

i=1 1[J(i) = j]λc,iΣ
−1
c,i (Ci − µcι1)) with Ci = Xi − F .

4. {Hk}10
k=1

Let Σh,k = ω2κ2
h,kΣU(θuh,k) and Σg,j = ω2κ2

g,j(1 − λ2
g,j)ΣU(θug,j). From (6) and (7), we

have that the conditional distribution of {Hk}25
j=1 is independent and satisfies

Hk ∼ N (mHk
, VHk

)

where VHk
= (Σ−1

h,k +
∑25

j=1 1[K(j) = k]λ2
g,jΣ

−1
g,j)
−1 and mHk

= VHk
(
∑25

j=1 1[K(j) =

k]λg,jΣ
−1
g,jGj).
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5. µc

Under a flat prior for µc, the conditional posterior distribution is

µc ∼ N

(∑n
i=1 ι

′
1Σ−1

c,i (Ci − λc,iGJ(i))∑n
i=1 ι

′
1Σ−1

c,i ι1
,

1∑n
i=1 ι

′
1Σ−1

c,i ι1

)

where Σc,i = ω2κ2
c,i(1− λ2

c,i)ΣU(θuc,i), and Ci = Xi − F .

6. {λc,i}ni=1

From (5) and (13), the conditional posterior weight of λc,i on λl, l = 1, . . . , 25 is

proportional to

pλc,l exp[−1
2
(Ci−µcι1−λlGJ(i))

′(ω2κ2
c,i(1−(λl)2)ΣU(θuc,i))

−1(Ci−µcι1−λlGJ(i))](1−(λl)2)−(q̃+1)/2

with Ci = Xi − F .

7. {λg,j}25
j=1

From (6) and (14), the conditional posterior weight of λg,j on λl, l = 1, . . . , 25 is

proportional to

pλg,l exp[−1
2
(Gj−λlHK(j))

′(ω2κ2
g,j(1−(λl)2)ΣU(θug,j))

−1(Gj−λlHK(j))](1−(λl)2)−(q̃+1)/2.

8. {θuc,i}ni=1

From (13), the conditional posterior weight of θuc,i on θl, l = 1, . . . , 100 is proportional

to

pθc,l| det ΣU(θl)|−1/2 exp

[
−1

2

U ′c,iΣU(θl)−1Uc,i

ω2κ2
c,i(1− λ2

c,i)

]
with Uc,i = Xi − F − µcι1 − λc,iGJ(i).

9. {θug,j}25
j=1

From (14), the conditional posterior weight of θug,j on θl, l = 1, . . . , 100 is proportional

to

pθg,l| det ΣU(θl)|−1/2 exp

[
−1

2

U ′g,jΣU(θl)−1Ug,j

ω2κ2
g,j(1− λ2

g,j)

]
with Ug,j = Gj − λg,jHK(j).
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10. {θuh,k}10
k=1

From (7) and (15), the conditional posterior weight of θuh,k on θl, l = 1, . . . , 100 is

proportional to

pθh,l| det ΣU(θl)|−1/2 exp

[
−1

2

H ′kΣU(θl)−1Hk

ω2κ2
h,k

]
.

11. ω2

Under the conjugate inverse gamma prior with unit median, (1/2.198)/ω2 ∼ χ2
1. From

(13)-(15), the conditional posterior distribution for ω2 then is again inverse-gamma

and satisfies
1/2.198 + S2

c + S2
g + S2

h

ω2
∼ χ2

1+(n+10+25)(q̃+1)

where S2
c =

∑n
i=1 U

′
c,i(κ

2
c,i(1 − λ2

c,i)ΣU(θuc,i))
−1Uc,i, S2

g =
∑25

j=1 U
′
g,j(κ

2
g,j(1 −

λ2
g,j)ΣU(θug,j))

−1Ug,j and S2
h =

∑10
k=1 U

′
h,k(κ

2
h,kΣU(θuh,k))

−1Uh,k with Uc,i = Xi − F −
µcι1 − λc,iGJ(i), Ug,j = Gj − λg,jHK(j) and Uh,k = Hk.

12. {κc,i}ni=1

From (5) and (13), the conditional posterior weight of κc,i on κl, l = 1, . . . , 25 is

proportional to

pκc,l exp

[
−1

2

U ′c,iΣU(θuc,i)
−1Uc,i

ω2(κl)2(1− λ2
c,i)

]
(κl)−(q̃+1)

with Uc,i = Xi − F − µcι1 − λc,iGJ(i).

13. {κg,j}25
j=1

From (6) and (14), the conditional posterior weight of κg,j on κl, l = 1, . . . , 25 is

proportional to

pκg,l exp

[
−1

2

U ′g,jΣU(θug,j)
−1Ug,j

ω2(κl)2(1− λ2
g,j)

]
(κl)−(q̃+1)

with Ug,j = Gj − λg,jHK(j).

14. {κh,k}10
k=1

From (7) and (15), the conditional posterior weight of κh,k on κl, l = 1, . . . , 25 is

proportional to

pκh,l exp

[
−1

2

H ′kΣU(θuh,k)
−1Hk

ω2(κl)2

]
(κl)−(q̃+1).
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15. {J(i)}ni=1

From (5), the conditional posterior weight of J(i) on j = 1, . . . , 25 is proportional to

exp[−1
2
(Ci − µcι1 − λc,iGj)

′(ω2κ2
c,i(1− λ2

c,i)ΣU(θuc,i))
−1(Ci − µcι1 − λc,iGj)].

16. {K(j)}25
i=1

From (6), the conditional posterior weight of K(j) on k = 1, . . . , 10 is proportional to

exp[−1
2
(Gj − λg,jHk)

′(ω2κ2
g,j(1− λ2

g,j)ΣU(θug,j))
−1(Gj − λg,jHk)].

17. (f0, µm)

Let ι1:2 be the first two columns of Iq̃+1, so that ι1f0 + ι2µm = ι1:2(f0, µm)′. Then from

(8), the conditional posterior of (f0, µm) under the improper flat prior is

(f0, µm)′ ∼ N (mf , Vf )

where Vf = (ι′1:2Σ−1
F ι1:2)−1 and mf = Vf ι

′
1:2Σ−1

F F , with ΣF = σ2
mΣm(ρm) + σ2

∆aΣa.

18. σ2
∆a

Under the conjugate inverse gamma prior with median 0.032, (0.032/2.198)/σ2
∆a ∼ χ2

1.

From (11) the posterior conditional distribution then satisfies

(0.032/2.198) + A′Σ−1
a A

σ2
∆a

∼ χ2
1+q̃+1

with A = F − ι1f0 + ι2µm − Sm.

19. σm

From (10), the conditional posterior weight of σm on σl, l = 1, . . . , 25 is proportional

to

pσml exp[−1
2
(σl)−2S ′mΣm(ρm)−1Sm](σl)−(q̃+1)

where pσml are the triangular prior weights.

20. ρm

From (10), the conditional posterior weight of ρm on ρl, l = 1, . . . , 25 is proportional

to

exp[−1
2
S ′m(σ2

mΣm(ρl))−1Sm]| det Σm(ρl)|−1/2.
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21. pλc

From the conjugate nature of the Dirichlet-multinomial prior, the conditional posterior

for {pλc,l}25
l=1 satisfies

{pλc,l}25
l=1 ∼ {Wl/

25∑
i=1

Wi}25
l=1

where Wl are independent χ2 random variables with
∑n

i=1 1[λc,i = λl] + 20/25 degrees

of freedom.

22. pλg

From the conjugate nature of the Dirichlet-multinomial prior, the conditional posterior

for {pλg,l}
25
l=1 satisfies

{pλg,l}
25
l=1 ∼ {Wl/

25∑
i=1

Wi}25
l=1

where Wl are independent χ2 random variables with
∑25

j=1 1[λg,j = λl] + 20/25 degrees

of freedom.

23. pθc

From the conjugate nature of the Dirichlet-multinomial prior, the conditional posterior

for {pθc,l}100
l=1 satisfies

{pθc,l}100
l=1 ∼ {Wl/

100∑
i=1

Wi}100
l=1

where Wl are independent χ2 random variables with
∑n

i=1 1[θuc,i = θl] + 20/100 degrees

of freedom.

24. pθg

From the conjugate nature of the Dirichlet-multinomial prior, the conditional posterior

for {pθg,l}100
l=1 satisfies

{pθg,l}100
l=1 ∼ {Wl/

100∑
i=1

Wi}100
l=1

where Wl are independent χ2 random variables with
∑25

j=1 1[θug,j = θl]+20/100 degrees

of freedom.
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25. pθh

From the conjugate nature of the Dirichlet-multinomial prior, the conditional posterior

for {pθh,l}100
l=1 satisfies

{pθh,l}100
l=1 ∼ {Wl/

100∑
i=1

Wi}100
l=1

where Wl are independent χ2 random variables with
∑10

k=1 1[θuh,k = θl]+20/100 degrees

of freedom.

26. pκc

From the conjugate nature of the Dirichlet-multinomial prior, the conditional posterior

for {pκc,l}25
l=1 satisfies

{pκc,l}25
l=1 ∼ {Wl/

25∑
i=1

Wi}25
l=1

where Wl are independent χ2 random variables with
∑n

i=1 1[κc,i = κl] + 20/25 degrees

of freedom.

27. pκg

From the conjugate nature of the Dirichlet-multinomial prior, the conditional posterior

for {pκg,l}25
l=1 satisfies

{pκg,l}25
l=1 ∼ {Wl/

25∑
i=1

Wi}25
l=1

where Wl are independent χ2 random variables with
∑25

j=1 1[κg,j = κl] + 20/25 degrees

of freedom.

28. pκh

From the conjugate nature of the Dirichlet-multinomial prior, the conditional posterior

for {pκh,l}25
l=1 satisfies

{pκh,l}25
l=1 ∼ {Wl/

25∑
i=1

Wi}25
l=1

where Wl are independent χ2 random variables with
∑10

k=1 1[κh,k = κl] +20/25 degrees

of freedom.
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Appendix 3 Additional Results

• Country-specific results for the posterior summarized in Table 4 are given in the file

Table4 Results by Country.xlsx.

• A summary of the 50- and 100-year ahead predictive distributions by country are given

in the file Predictive Distributions by Country.xlsx..

• Figure 10: countries are listed in order in the file Figure 10 Countries.xlsx.

• Figure 11: by country are collected in the file Figure11 by Country.zip

• Figure 14: by country are collected in the file Figure14 by Country.zip.
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