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This article considers the problem of predicting the mean effect of a change in the distribution of certain policy-related variables 
on a dependent variable (Y). This is conventionally done using a parametric model. If, however, the conditional expectation 
of Y, given policy and nonpolicy variables X, is unaltered by the policy intervention, and if the support of X after the policy 
intervention lies within the support of X before the intervention, then this analysis can be performed nonparametrically. The 
proposed nonparametric estimator is developed for the model Y, = g(Xj) + A'dj + uj, where g(-) is a continuous unknown 
function of the continuous variables X, dj is an m-vector of dummy variables, A is an m-vector of unknown parameters 
representing fixed cell-specific effects, and uj is an error term with E(uj I xj, dj) = 0. The estimand is B = Eg(Xj7) - Eg(Xj), 
where X and X* (respectively) denote the values of X before and after the policy intervention. A nonparametric estimator B, 
is proposed. The estimator is the sample average of the difference between the kernel regression estimates of E(Y I Xj*, dj) 
and E(Y I Xj, dj). To estimate these conditional expectations, A is first estimated using the residuals from nonparametric 
regressions of Y and d on X. The consistency and asymptotic normality of B, are studied. The estimator, along with two 
estimators of its variance, is examined in a Monte Carlo experiment. In this experiment, the cost of using the nonparametric 
estimator, relative to the efficient parametric estimator, is found to be modest in terms of increased root mean squared error. 
When the dimension of X is large and the sample size is small, however, the nonparametric estimator can exhibit substantial 
bias. 
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1. INTRODUCTION 

A common econometric problem is predicting the av- 
erage effect of a proposed policy on some dependent vari- 
able, where the variable typically is either directly or 
indirectly related to individual welfare. For example, an 
analyst might be interested in estimating the mean change 
in house prices resulting from cleaning up a local hazard- 
ous-waste site, the change in lost work days resulting from 
a reduction in air pollution, or the change in average con- 
sumption resulting from a change in income taxes. More 
generally, we can think of a policy as transforming some 
or all of the elements of a k-dimensional vector of inde- 
pendent variables from an original value, X, to X*. A 
typical policy analysis problem is estimating the mean ben- 
efits of this shift, that is, the mean effect of this change in 
X on the dependent variable of interest, Y. 

The usual econometric approach to this problem is to 
specify a parametric model relating the independent and 
dependent variables-for example, a linear regression 
function-and to estimate the parameters of this model 
using, say, least squares or maximum likelihood. The ef- 
fects, or benefits, of the proposed policy are then predicted 
using the estimated parametric model. Unfortunately, al- 
though economic theory might suggest the appropriate set 
of independent variables, it often provides little guidance 
concerning the precise parametric model to estimate. The 
consequences of this ambiguity can be severe: If the para- 
metric model is misspecified, the corresponding benefits 
estimator is in general inconsistent. 

This article proposes a procedure for estimating the 
mean effect of certain types of policy interventions when 
theory gives little guidance about the functional form re- 
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lating the independent and dependent variables. The es- 
timator is developed for a semiparametric model that 
applies when the data are drawn from discrete observa- 
tional cells. Specifically, it is assumed that the regression 
function can be expressed as an unknown function g(x), 
where x is composed of continuous policy and control 
variables, plus cell-specific effects. This model reflects a 
compromise between a fully nonparametric model, in 
which g(x) itself would differ from one observational cell 
to the next, and a fully parametric model in which g(x) 
(as well as the cell effects) would be specified as a finitely 
parameterized function. The argument for this semipara- 
metric strategy is analogous to the argument for speci- 
fying a parametric model with additive cell effects: 
Including the cell effects makes it possible to estimate 
benefits with cross-sectional data when there might be few 
observations in some cells. The specification of g(x) im- 
poses no parametric assumptions concerning the contin- 
uous part of the regression function. 

When all of the observations are from the same cell, 
the proposed estimator is computed by first estimating the 
conditional expectation of Y1, given Xi, using kernel non- 
parametric regression for each observation i in the sample. 
The conditional expectation of Yi after the policy is im- 
plemented is estimated by evaluating the kernel regression 
estimator at X* for each observation. The proposed es- 
timator is the average difference between the kernel es- 
timates of the conditional expectations at X,* and Xi. When 
there are cell-specific effects, this procedure is modified 
by subtracting estimates of these cell effects, which are 
first computed using a modification of least squares. 

There has been much work on kernel nonparametric 
regression. Introduced by Nadaraya (1964) and Watson 
(1964), the pointwise consistency of kernel regression was 
proven by Devroye and Wagner (1980) and Spiegelman 
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and Sacks (1980). Of particular importance in deriving the 
asymptotic properties of the proposed estimator are De- 
vroye's (1978) and Bierens's (1983) uniform consistency 
results (under different conditions) for kernel regression. 
A variety of other theoretical results, including asymptotic 
normality (at a rate slower than n2ll, where n is the sample 
size), were reviewed by Prakasa Rao (1983) and Bierens 
(1985). Alternative nonparametric regression techniques 
include spline regression (e.g., Wahba 1978), nearest- 
neighbor regression (e.g., Stone 1977), and flexible func- 
tional forms [e.g., the Fourier flexible functional forms of 
Gallant (1981) and Elbadawi, Gallant, and Souza (1983)]. 
Kernel regression is adopted here for computational con- 
venience and because of existing theoretical results appli- 
cable to the benefits-estimation problem. 

The semiparametric regression model and the proposed 
estimator are presented in Section 2. Asymptotic results 
concerning the behavior of the estimator are stated in 
Section 3. The estimator is shown to be consistent, and 
when centered around its conditional expectation, asymp- 
totically normal. Furthermore, the estimator converges to 
this limiting distribution at n"2, faster than is typically 
exhibited by nonparametric estimators. This result com- 
plements Robinson's (1988) n '2 rate for the estimator of 
the parametric part of this semiparametric regression 
model. In Section 4, the properties of this estimator are 
investigated in a Monte Carlo study. This experiment con- 
firms the theoretical prediction that, when the number of 
observations is small and the number of regressors large, 
the bias of the proposed estimator can be severe. This bias 
and its sources are discussed in Section 4. Conclusions are 
summarized in Section 5. 

2. THE MODEL AND THE PROPOSED ESTIMATOR 
2.1 The Model 

The observations are assumed to be generated by a non- 
linear version of the usual linear model, with m dummy 
variables. No parametric assumptions are made on the 
function relating the continuous independent variables to 
the dependent variable. The data consist of n observations 
from m + 1 observational cells on the dependent variable, 
Yi, the k-dimensional continuous independent variables, 
Xi, and a vector of zeros and ones, di, indicating the cell 
from which the observation is drawn. Omitting one cell 
arbitrarily, the vector of dummy variables di has dimension 
m. With this notation, the model considered is 

Y1 = g(XI) + A'di + ui, i = 1, . . ., n, (1) 

where A is the m-dimensional vector of cell-specific ef- 
fects. It is assumed that (Xi, di, YI) are iid, E(ui I Xi, di) 
= 0, and E(u2 I Xi, di) = o2(X,, di), where there are 
constants U2 and i2 such that 0 < a'2 < a2(X, d) < a2 < 

oX for all (x, d) in the support of (Xi, di). The function 
g(x) is assumed to be continuous in x. 

I consider the problem of estimating the average change 
in the dependent variable Y resulting from a shift in the 
distribution of X. Let X* denote the vector of policy and 
control variables after the intervention, and let H(x) and 
H*(x) denote the marginal distributions of Xi anld Xi*. 

Before the intervention, the mean of Yi is EYi = E[g(Xi) 
+ A 'di + ui] = E[g(Xi) + A 'di]; after the intervention, 
this mean value is E*Yi = E*[g(Xi) + A'di], where E*[.] 
denotes the expectation taken over X*. The estimand is 
the mean effect on Y of the shift, 

B = E[g(Xi) + A'di] - E*[g(Xi) + A'di] 

= E[g(Xi)] - E*[g(Xi)], (2) 

where the second equality obtains by assuming that the 
policy does not alter the observational cell. 

Note that (1) should be interpreted not simply as a con- 
ditional expectation, but as a structural model that is in- 
variant to the proposed policy shift. Were this not so, the 
benefits expression (2) would not be valid, for g(x) would 
differ before and after the policy is implemented. The 
possibility that g(x) and A might change when the policy 
changes, perhaps because of sophisticated reactions of in- 
dividuals to the government policy in question, has re- 
ceived considerable attention in the economics literature 
(this is often referred to as the "Lucas critique"). This 
possibility, however, is ruled out here by assumption. As 
a specific case in which the proposed estimator could be 
applied, consider the problem of predicting the average 
change in housing values that might arise from cleaning 
up a contaminated hazardous-waste disposal site. Let Y 
represent housing price, X represent a vector of housing 
attributes, including (for example) the distance to the 
nearest contaminated waste site, and g(x) be a hedonic 
price equation describing the equilibrium relation between 
housing attributes and prices in a given metropolitan area. 
In this application, X denotes the housing attributes before 
cleaning up a given hazardous-waste site, X* denotes the 
attributes after the cleanup, and B is the average cleanup 
benefit, measured in terms of increased housing prices. 
There has been considerable theoretical work on the use 
of hedonic housing-price surfaces to estimate the benefits 
of policy interventions, such as cleaning up a hazardous- 
waste site; for example, see Harrison and Rubinfeld 
(1978), Polinsky and Shavell (1975, 1976, 1978), and 
Scotchmer (1985). This work suggests that the assumption 
of an unchanged general equilibrium price equation is 
valid if the project is small relative to the total value of 
the houses in the metropolitan area (although the benefits 
need not be small for each house); it is unlikely to be valid 
if the project is large. More broadly, the assumption that 
g(x) and A remain unchanged is conventional (if contro- 
versial) in parametric policy analyses, and it is maintained 
in the nonparametric treatment here as well. 

2.2 The Proposed Estimator 

The proposed estimator sidesteps the problem of spec- 
ifying a functional form for g(x) through the use of kernel 
nonparametric regression. The basic idea of the estimator 
is a simple one: For the ith observation, obtain consistent 
nonparametric estimates of E(Y | Xi) and E(Y | X*). 
Repeat this for each observation, i = 1, . . . , n. The 
difference between the estimated conditional expectations 
at Xi* and Xi provides an estimate of the effect of the 
proposed policy shift on Yi for each i. The estimator of 
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the mean benefits is the average of each of these individ- 
ually estimated benefits. 

When there are no dummy variables, the estimator in- 
volves direct averages of nonparametric estimates of the 
regression function. Let the kernel weight function w(t) 
be a density on Rk (technical conditions are given in Sec. 
3), b, be the kernel bandwidth parameter, and g&(x) de- 
note the kernel estimator of g(x): 

n / n 

gn (x) = > w((Xi - x)Ibbn)Y, > w((Xi - x)/bbn). 
i=l i=l 

(3) 
Under weak conditions on the densities, if bn -+ 0 and 
nbn -? cc, then gn(x) is a consistent estimator of g(x) 
(Spiegelman and Sacks 1980). The proposed estimator is 
simply the sample analog of (2), computed using the kernel 
estimator (3) evaluated at all sample points: 

n 

Bn = n-> I [gn(XJ*) - gn(Xj)], (4) 
j=1 

where gn(Xj*) and gn(Xj) are the kernel estimators of 
g(Xj) and g(Xj), respectively, both constructed using (3). 
[Note that one could alternatively estimate B by Bn 
= n-lyn [g(X) - Yj]. I focus on Bn although the 
theoretical treatment of these two estimators is similar.] 

The presence of dummy variables complicates the prob- 
lem considerably, since it is now necessary to estimate the 
nuisance parameter A in (1) as well as the mean benefits. 
To motivate the proposed technique, recall the ordinary 
least squares (OLS) estimator of A when g(x) is linear. 
Adopting the usual matrix notation, the linear version of 
(1) is 

Y=Xfl+DA + U. (5) 
The parameters fi and A in (5) can be estimated using OLS 
with both X and D as right-hand variables simultaneously. 
Alternatively, the OLS estimator of A can be written as 
A = (D'MxD) - ID'Mx Y, where Mx = I - X(X'X) - 1X'. 
That is, A can be computed by regressing the residuals of 
a regression of Y on X against the residuals of a regression 
of D on X. 

When g(x) is unknown, there is no clear way to estimate 
g and A simultaneously. Instead, A, g, and B are estimated 
in three steps. The first step is the estimation of A, which 
is motivated by analogy to the OLS estimator: Estimate 
the cell effects using OLS by regressing the residuals from 
a kernel nonparametric regression of Y on X, against the 
residuals from a kernel regression of d on X. Let f1(x) 
and f2(x) (respectively) denote the conditional expecta- 
tions of Y and d, given x, and let fln(x) and f2n(x) denote 
their respective kernel estimators: 

f,(x) E(YIx), (6) 
f2(x) E(d I x), (7) 

n /n 

f1,,(x) = > w((X1 - x)Ib,,)Y/ w((X, - x)Ib,), 
i=l i=l 

(8) 

and 
n n 

f2n(X) - > w((Xi - x)lbn)di w -((Xi-x)lbn) 
i=l i=l 

(9) 

Let qi and (i denote the residuals from these kernel regres- 
sions, 

Vi = Yi fM(XM) (10) 

and 

(i = di- f2n(Xi) (11) 

A is then estimated by the OLS regression of 'i onto Qi: 

( nj)1 ( njqj) (12) 

It is shown in the next section that An is consistent for A. 
The second step involves obtaining a consistent non- 

parametric estimator of g(x), given this consistent esti- 
mator of A. Such an estimator can be obtained by noting 
that (1) and (7) imply that E(Y I x) = g(x) + E(d I x)'A 
= g(x) + f2(x)'A, whereas (6) states that E(Y I x) - 

f1(x). Thus 

g(x) = f,(x) - f2(x)'A. (13) 

Although g(x) cannot be estimated directly, each com- 
ponent on the right side of (13) can. Accordingly, g(x) 
can be estimated by 

gn(x) = fl,(x) - f2n(x)'An. (14) 

The third step in computing the benefits estimator is to 
evaluate gn(x) at each sample value of X and X*. When 
there are cell effects, as long as the policy does not change 
the cell in which the observation is located the estimator 
still has the form (4), with the regression estimator in (14) 
replacing the simpler one in (3). 

Combining the various expressions for B. and gj(x), the 
proposed estimator is 

n 

Bn n y Y(Xj)(Y - dJAn), (15) 
j=1 

where 

yn(X) = An*(x) -An( 

n _/n 

A*() = E w((x - X*)lbn) w((Xj - X*)lb)J 
i=l I nI n)j=1 

and 
n'_1 n 

An(x)= E w((x - Xi)Ibn) / w((Xi - Xi)Ibn) 1 
i=l ~~~~~j=l 

where An is given in (12). Note that both the OLS and the 
nonparametric benefits estimators are linear in the de- 
pendent variable, with weights that depend solely on {Xi,, 
X*', d,}. 
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3. CONSISTENCY AND ASYMPTOTIC NORMALITY 
This section presents asymptotic results for the cell-ef- 

fects estimator An and the benefits estimator Bn. Both An 
and Bn are consistent. In addition, when centered around 
its expectation conditional on {Xi, di} (i = 1, . . ., n), the 
benefits estimator is asymptotically normal. 

The following assumptions are made concerning the dis- 
tributions of X and X* and the conditional expectations 
E(Y I X) and E(d I X). 

Assumption 1. (a) H(x) and H*(X) (respectively) 
have continuous densities h(x) and h*(x). In addition, H 
and H* have a common compact support , and 3 h1 and 
h2 such that 0 < h, ' h(x), h*(x) c h2 < X for all x E 
(b) f1(x) and f2(x) are bounded and continuous in x uni- 
formly over t. (c) 0 < f [h*(x)lh(x) - 112 dH(x) < oo. 

The assumption that X and X* have the same support is 
not innocuous: It restricts the policy experiments that can 
be considered to ones for which there already exists some 
experience in the data. This is a consequence of the in- 
applicability of kernel regression to extrapolation. 

The kernel w(u) is assumed to satisfy the following con- 
dition. 

Assumption 2. w(u) is a symmetric, everywhere-pos- 
itive density on 9Tk with an absolutely integrable charac- 
teristic function. 

Define 
n 

Rn = n-1 E Yn(Xj)dj 
j=1 

R = f E(d I x) dH*(x) - f E(d I x) dH (x), 
n 

Mn = n-1 E >j 
j=1 

M = E[(di - E(di I Xi))(di - E(di I Xi))'], 

and 

y(x) = h*(x)/h(x) - 1. 

The first two results are that the cell-effects estimator 
An and the benefits estimator Bn are consistent. 

Theorem 1. If Assumptions 1 and 2 hold, bn -> 0, and 
nbnk -* oo, then Mn P M and An A A. 

Theorem 2. Under the conditions of Theorem 1, Bn 
A B. 

The proofs of these theorems are given in the Appendix. 
The rates of convergence to 0 of the bandwidths in Theo- 

rems 1 and 2 are slower than needed for pointwise con- 
sistency, which requires that nbk -> oo rather than nbnk 
mo. This slower rate is one of Bierens's (1983) conditions 
for the uniform consistency of kernel regression, a result 
used to prove Theorems 1 and 2. 

The consistency of B,, arises from the uniform consis- 
tency of the weights ),,(x) or equivalently the uniform con- 
sistency of the kernel estimators of f1(x) and f2(x). Al- 
though the kernel regression estimator is consistent at each 

point in S, it converges to its pointwise probability limit 
at a rate slower than n"l2. This difficulty also arises with 
the nonparametric benefits estimator: If g(x) is nonlinear, 
then E [Bn I {Xi, dj}] converges to B at a rate slower than 

1/2 n. 
Despite the slow rate of convergence of the conditional 

mean of Bn to B, when centered at E[Bn I {XiI di}] the 
estimator is asymptotically normal and converges to its 
limiting distribution at the rate n"2. 

Theorem 3. Suppose that Assumptions 1 and 2 hold, 
bn 0, nbnk - oo, and that there are constants ( > 0 and 

A such that Eluj12+^ < A < Xo for all j. Then, n"12(Bn - 
E [Bn I {Xi, dl}]) 4 N(O, V), where V = E [a2(X, d)(y(X) 
- R'M- l[d - f2(X)])2]. In addition, Vn = n 1 ( yn(Xj) 
- RAMn-'zni)2u21 A V, where 7rnj = - X7, w((X1 - 

X bniEi=1 w((Xj - Xi)lbn) and unj = Yj -gn (Xj) 
A'dj. If a2(X, d) = U2 for all (x, d), then V = a2[f (h*(x)l 
h(x) - 1)2 dH(x) + R'M-'R]. The proof is given in the 
Appendix. 

4. MONTE CARLO RESULTS 

This section presents the results of Monte Carlo simu- 
lations performed for models with one policy variable, XI, 
and from zero to two control variables. The data were 
generated by a linear version of (1): 

k 

Yii = 1 + E Xrij + Aj + uij, (16) 
r=1 

for j = 1, ... , m. Each observation on Xrij was drawn 
independently from a uniform distribution on the unit in- 
terval. The errors uj were drawn from an NI(O, .25) dis- 
tribution. The simulated shift in the policy variable was 
Xli = X1j for all i and j. Under these assumptions, the 
true value of B is -.1667. When the observations were 
drawn from more than one cell, [n/(m + 1)] observations 
were drawn from the first m cells and the remaining ob- 
servations were drawn from the final cell, where [.] de- 
notes the greatest lesser integer. The estimator was 
computed using a multivariate Gaussian kernel, where the 
sample covariance matrix of X was used as the covariance 
matrix in the kernel. The bandwidths were computed using 
bn = (bln1/2)l/k, where b is a parameter varied across sim- 
ulations. 

This study examines Bn and two variance estimators 
suggested by the expressions for Vn given in Theorem 3. 
The sum of squared residuals from the usual kernel regres- 
sion can understate the regression variance in small sam- 
ples, since Yi and di enter f 1n(X1) and f2,(Xi) with relatively 
large weights. Thus the variances were estimated using the 
residuals Unj from the "drop-j" kernel regressions, 

Unj = Yi - [fIn(j)(XI) + (dj - f2n(j)(Xj))'An, (17) 
where 

fl()x)= >r w((X, - Xj)Ibn)Y i/ w((X1 - Xj)Ibn) 
i?j i?j 

(18) 
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and 

f2n()(Xj) w((Xi - Xj)lbn)di w((Xi- Xj)lbn) 
isj isi 

(19) 

(e.g., see Li 1984; Devroye and Penrod 1984; Marron 
1985; Rice 1984a). Using these residuals, the variance es- 
timators considered are 

n 

VI, = n ECniUni (20) 
i=l 

and 

V2n= n C) (n Uni (21) 

where cni = Yn(Xi) - RnMn- 17ni. The simulations were 
computed using 100 draws for n = 20, 40, and 60, and 50 
draws for n = 100. 

Selected simulation results are presented in Table 1. 
Several features are apparent from these results. Even 
with n = 40, the bias discussed in the preceding section 
can be small when k = 1. As k increases, however, the 

estimator is increasingly biased toward 0. With large k, 
this bias can be substantial, even for large n. The bias of 
the estimator also grows as the number of cells increases, 
although this deterioration does not seem to be as impor- 
tant as that associated with having more control variables. 
The effect of m is most pronounced for small sample sizes; 
for example, for n = 60 and k = 3 the mean of Bn changes 
only slightly as m increases. The two variance estimators 
have similar means, particularly as n increases. In the 
larger samples the averages of the variance estimators gen- 
erally fall within 10% of the simulation variance and typ- 
ically are conservative (as is expected using the drop-j 
regression residuals). 

As an additional comparison, Table 1 presents the ratio 
of the root mean square error (RMSE) of the correctly 
specified OLS estimator of B [which is efficient under (16)] 
to the RMSE of Bn. In all cases this ratio exceeds 50%, 
and in some it exceeds 80%. The comparison is most fa- 
vorable to Bn when its bias is smallest. Thus for this model 
the cost of using the nonparametric estimator appears to 
be modest. 

Three distinct sources of the bias in Bn were investigated 
using response-surface regressions. The first arises from 
Jensen's inequality when estimating gn(x) for x in the in- 

Table 1. Monte Carlo Results Based on Model (13) 

n k m Bn var(Bn) x 10-2 V,ln x 10-2 V21n x 10-2 A, A2 A3 k'Bn - B)IBI RMSE(I?)/RMSE(Bn) 

40 1 0 - .171 .474 .763 .695 - .027 .721 
40 1 -.148 .712 .869 .651 .785 .114 .584 
40 2 - .169 .705 .692 .670 .806 - .782 .013 .601 
40 3 -.149 .707 .873 .832 .798 -.758 1.564 .106 .598 
40 2 0 -.130 .301 .325 .342 - .220 .767 
40 1 -.119 .283 .337 .328 .676 - .286 .707 
40 2 -.126 .324 .376 .363 .679 -.698 .245 .738 
40 3 - .126 .329 .503 .469 .678 - .686 1.360 .244 .749 
40 3 0 -.096 .170 .203 .198 - .425 .632 
40 1 - .100 .198 .214 .223 .554 .401 .644 
40 2 - .098 .247 .288 .300 .561 - .555 .414 .615 
40 3 -.093 .276 .357 .375 .543 -.553 1.080 .443 .578 
60 1 0 -.165 .380 .442 .447 - .012 .639 
60 1 - .161 .365 .403 .423 .833 - .031 .658 
60 2 -.163 .474 .451 .452 .823 -.830 - .024 .581 
60 3 -.168 .395 .598 .467 .815 - .806 1.657 .008 .652 
60 2 0 -.144 .198 .222 .215 - - .134 .801 
60 1 -.129 .176 .231 .220 .734 - .223 .723 
60 2 - .123 .227 .283 .264 .721 - .730 .263 .631 
60 3 - .138 .312 .322 .313 .768 - .731 1.476 .175 .651 
60 3 0 -.112 .110 .134 .139 - .327 .633 
60 1 -.112 .165 .169 .160 .642 - .328 .601 
60 2 -.113 .194 .194 .198 .621 -.626 .322 .595 
60 3 -.113 .217 .252 .248 .612 -.619 1.234 .320 .574 

100 1 0 -.171 .244 .260 .262 .027 .612 
100 1 - .153 .318 .231 .238 .864 - .082 .525 
100 2 - .171 .232 .281 .267 .869 - .847 .028 .630 
100 3 - .171 .189 .266 .280 .861 -.878 1.744 .025 .706 
100 2 0 -.144 .148 .139 .137 .136 .682 
100 1 -.150 .115 .141 .140 .774 .103 .806 
100 2 - .151 .206 .153 .150 .809 - .782 - .096 .637 
100 3 -.143 .125 .162 .165 .788 -.805 1.563 .143 .727 
100 3 0 -.123 .066 .091 .091 .264 .599 
100 1 - .123 .089 .104 .101 .708 - .261 .571 
100 2 -.128 .109 .064 .111 .696 -.686 .232 .570 
100 3 - .129 .164 .147 .134 .690 -.705 1.377 .225 .564 

NOTE: The true values of the cell effects are Al = 1, A2 = -1, and A3 = 2. The bandwidth was computed using b = 1. The results for n = 40 and 60 were produced using 100 replications; 
50 replications were used for n = 100. The parameters describing the simulated model are given in the first three columns. The average of the simulated estimates Bn is given in the fourth 
column, and the fifth column contains the variance estimated from the Monte Carlo sample. The next two columns provide the averages of V1n and V2n, and the next three columns show the 
averages of A1,, A2n, and A3n. The second-to-last column presents the absolute relative bias of the nonparametric estimator. The final column presents the ratio of the RMSE of the OLS estimator 
of B to the RMSE of the nonparametric estimator. 
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terior of the support of X; this occurs when either the 
regression function g(x) or the mapping from X to X* is 
nonlinear. The bias at an interior point is proportional to 
the square of the bandwidth. Integrating (with respect to 
H) over the support of X, the contribution of this source 
of bias to the total bias of the estimator has a Taylor series 
expansion in which the leading term is approximately bl(1 
- p), where p is the (H) measure of the support of X 
within a bandwidth of its boundary. (This leading term 
would be exact if an indicator function with bandwidth bn 
were used as the kernel, and is approximate for the Gaus- 
sian kernel.) 

The second source of bias arises for observations on X 
or X* that are close to the boundary of the support of X; 
in this case, the bias generally occurs when the first de- 
rivative of either the regression function or the policy shift 
is nonzero in the neighborhood of the boundary. This bias 
can be expressed as a Taylor series expansion with terms 
bnp, b2p, and so forth. Unlike the bias for points in the 
interior, in general the coefficients on all terms in this 
expansion are nonzero. The third source of bias arises from 
estimating the cell effects. Absent a theoretical specifi- 
cation for the rate at which this bias decreases, it is 
modeled by m/n. 

Estimated response-surface regressions for the bias are 
presented in Table 2. The data for these response surfaces 
were generated by Monte Carlo simulations of Bn using 
the 144 combinations of the parameter values n = 20, 40, 
60, 100; k = 1, 2, 3; m = 0, 1, 2, 3; and b = 1, 2, 3. 
Terms in kln and lln were included in the regressions, in 
addition to those discussed previously. Since the right- 
hand variables have limits of 0 as n increases to infinity, 
an intercept of 0 in these regressions indicates 0 asymptotic 
bias. In all regressions except that using the m = 1 subset 
of the simulated data, the intercept term is statistically 
indistinguishable from 0 at the 10% level; in the m = 1 
regression the intercept, although significantly different 
from 0 at the 5% level, is numerically small (less than 4% 
of B). Thus the response-surface regressions reflect the 
consistency of Bn. 

The regressions in Table 2 suggest that the primary 
source of finite-sample bias is the contribution of obser- 
vations on the boundary of the support of X. For example, 
for n = 60, m = 2, k = 2, and bn = .25, the two terms 

corresponding to the boundary bias (bnp and b2p) con- 
tribute .040, whereas the other terms contribute .009. The 
results also suggest that the bias is not greatly affected by 
increasing the number of cells, m; even for m = 2 and n 
= 20, the contribution of this term (m/n) to the bias is 
only .003. 

In summary, this experiment suggests five conclusions. 
First, the most important source of the bias of the proposed 
estimator appears to be boundary effects. Second, the bias 
of the estimator is not substantially affected by increasing 
the number of cells from which the observations are 
drawn. Third, as expected, the number of explanatory 
variables is an important factor contributing to the bias. 
Fourth, even accounting for this bias, the estimator has 
reasonable performance relative to the efficient estimator 
(OLS) in this design. Fifth, even when n is small, the 
proposed variance estimators perform well (in the sense 
that their bias is small), at least for the models studied. 

These results emphasize the importance of developing 
a n1/2-consistent version of the estimator. One approach 
to the interior bias problem involving jackknifed non- 
parametric regression estimators was developed by Bier- 
ens (1985) and applied by Powell, Stock, and Stoker (in 
press). Alternatively, it might be possible to handle this 
source of bias using higher-order kernels (e.g., Hall and 
Marron 1988). For an extrapolation-based solution to the 
boundary bias problem with k = 1 and m = 0, see Rice 
(1984b). 

5. CONCLUSIONS 
The estimator introduced in this article provides a way 

to avoid one of the ambiguities associated with predicting 
the effects of a proposed policy, specifically the choice of 
a parametric regression function. The proposed estimator 
is consistent and, when centered around its conditional 
expectation, asymptotically normal under general condi- 
tions on the continuous part of the regression function. In 
a Monte Carlo experiment, asymptotic variance expres- 
sions were found to provide an approximate guide to the 
sampling variance, even in samples of only 40 observa- 
tions. The nonparametric estimator incurred only a mod- 
erate increase in RMSE relative to the efficient parametric 
estimator (OLS). Nevertheless, these simulations point to 
two areas warranting further work: bandwidth selection 

Table 2. Estimator Bias: Response-Surface Regressions 

Subset Constant b2(1 - p) bnp b2np mrn k/n 1In No. of observations R2 

All - .002 .084 .289 - .298 .028 .344 - .182 144 .948 
(.002) (.012) (.029) (.029) (.015) (.044) (.098) 

m = 0 -.003 .085 .285 -.303 - .433 -.314 36 .966 
(.003) (.021) (.052) (.051) (.078) (.170) 

m = 1 .006 .070 .224 -.202 - .273 -.147 36 .968 
(.002) (.018) (.043) (.042) (.064) (.141) 

m = 2 -.004 .074 .344 -.356 - .269 .123 36 .958 
(.003) (.024) (.059) (.057) (.087) (.189) 

m = 3 -.005 .108 .300 -.330 - .408 -.235 36 .943 
(.004) (.029) (.071) (.069) (.107) (.232) 

NOTE: Standard errors are in parentheses. The data set consists of the simulations discussed in the text. 
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and the possibility of reducing the size of the bias. The 
response-surface regressions indicate that the primary con- 
tribution to the bias seems to come from observations near 
the boundary rather than in the interior. This suggests that 
small-sample performance might be improved using vari- 
able-size bandwidths or kernels that can take on negative 
values. 

In a separate application (Stock, in press), this estimator 
was applied to data on attributes and sales prices of single- 
family homes in the Boston, Massachusetts, area. The data 
included information about local hazardous-waste sites, 
and the policy experiment simulated was cleaning up one 
of the 11 hazardous-waste sites in the study area, holding 
other house attributes constant. The procedure suggested 
that the aggregate benefits of cleaning up a site, in terms 
of increased house prices, could be substantial compared 
to engineering estimates of the cost. The major method- 
ological conclusion from this investigation was that addi- 
tional theoretical guidance concerning the problems of 
kernel and bandwidth selection for this estimator could 
prove to be of considerable practical value. 

APPENDIX: PROOFS OF THEOREMS 

Theorem 1. The proof uses Bierens's (1983) uniform con- 
sistency result for kernel regression. Let f,(x) = (f1,(x) f2n(x)')' 
and f(X) = (f1(X) f2(X)')'. Under weaker conditions than 
Assumptions 1 and 2, Bierens proved that if nbnk 00, 

sup.Jf.(x) - f(x)l -4 0, (A.1) 
where the supremum is taken over the compact support _ of X 
and the convergence applies to each element of the vectors fn(X) 
and f(x). 

Turning to the proof, from (12), An = (n-lljjj) l(n-'YjXjq). 
Using (10) and (11), one obtains 

n-I Xj(: = n-E (di - f2n(Xj))(di - 
I I 

= Mn* + Jl, + Jln + J2n, (A.2) 
where 

Mn*= n-I (dj - f2(X,))(dj - f2(Xj))', 

Jln = n (di - f2(X,))(f2(X1) - f2n(Xj))' 

and 

J2n = n (f2(X) - f2n(X,))(f2(X1) -f2n(Xj))- 

Similarly, using (10) and (11) and recalling from (12) and (13) 
that Y1 = f1(X1) + (dj - f2(Xj))'A + uj, one obtains 

n-> E )j7j = (Mn* + Jln)A + J3n + J4n + J5n + J6n (A.3) 

where 

J3n = >: (di - f2(Xj))(f1(Xj) - fln(X)) 

J4n = nI (f2(X,) f2n(X1))(f1(X,) -fn(X)), 

n= ,2>E (dj - 

and 
J6n = E: (f2(X1) f2(- ) 

It is now shown that Jin -4 0 (i = 1, ... , 6), and that M* 
-4 M; from (A.2) and (A.3), and the assumption that M is 
positive definite (so that M-1 exists), it follows that Mn -4 M and 
An 4 A. Turning to the Ji, terms, note that element by element 
J,n 2(maxj Idjl) (sup, lf2n(x) - f2(x)I)- Since d1 is a vector of 
zeros and ones, the uniform consistency result (A.1) implies that 
Jln -4 0. Similarly, element by element JJ2nI < (supx 1f2n(x) - 
f2(x)1)2 -4 0, by (A. 1). The argument that J,l -4 0 applies directly 
to J3n and the argument used for J2n applies to J4,. Because (X1, 
dj, u1j) is independent of (Xi, di, ui) (i # j), J, -40 by the weak 
law of large numbers (WLLN). Considering J6n, element by ele- 
ment IJ61I (sup. lf2(x) - f2n(x)J)(n-1 zj |uil). The independence 
of u; [with Eu,2 c (jj2)] and the uniform consistency of f2n(X) 
imply that J6n -4 0. Finally, because EMn* = M and because 
(dj, X,) are bounded and iid, Mn* 4 M. Thus Mn 4 M and 
An -4 A. 

Theorem 2. A direct proof obtains using Theorem 1 and the 
uniform consistency of fln(x) and f2n(x). The proof given here, 
however, is developed for the expression (15), and establishes 
some results that are useful in proving Theorem 3. Let Bn- 
n-1 , yX(Xj)(Yj - djA) so that Bn = - j Yn(Xj)dj(An 
- A) = B* - R,(An - A). It is shown that (a) Rn 4 R < o 
and (b) B* 4 B. Given (a) and (b), it follows from Theorem 1 
that Bn 4 B. 

(a) Using the definitions of R,, yn(x), A*(x), and i"(x), 

Rn= n-I E *(Xj)dj - n-I E A(Xj)dj 
j i 

= n-I w((Xi* 
- 

Xj)lbn)dj w((X* -Xj)lbn) 

- n-E W((Xi - Xj)lbn)dj / w((X, X-)lbn) 

= n-I f2n(Xi*) - E f2n(Xi) 

Now, 

n- f2-(Xi*) - f2x) dH* (X) 

=n-l E[f2.(X*) - f2(X*)] 

+ n- 2(X*) - f2(x) dH* (x)]. (A.4) 

The first term on the right side of (A.4) vanishes by the uniform 
consistency of f2n(x), and since f2(x) is bounded the second set 
of terms in (A.4) is op(l) using the WLLN. Thus n- -i 
f2n(X*) 4 E*[f2(x)I = f E(d f x) dH* (x). The same argument 
applies to n-1 Ei f2n(Xi), so Rn 4 f E(d I x)[h*(x) - h(x)] dx 
= R. 

(b) Before showing that B* 4 B, it is first shown that supx 
yn(x)- y(x) -4 0. From its definition, 

n*(x) w((X* - x)lbn) w((Xi* - Xj)Ib,) 

- (nb1)- w((X*- x)lbn)lh(X*) 

+ (nbk)- > w((A7* - x)/b,)(h,(Xi*)- - hX*-) 

(A.S) 
where h,(x) = (nbk)- Ei w((Xi - x)Ib,) is the kernel density 
estimator of h(x). Using w(u) 2 0, the second term in the final 
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expression in (A.5) vanishes asymptotically: 

nk) - I ,w((X,* -)/ )(hX*)- _h(X* )- (nb~) > -x)Ib,)(hn(Xi*l 

' (nbI)' > w((X* -x)/bn)supXlhn(x)l - h(x)1 

(supx h*(x)l)(supxlhn(X) - h(x)l)Iinfxlh(x)hn(x)I, 
where h*(x) = (nbk)-l >i w((X* - x)lb,). Since hn(X) 4 h(x) 
uniformly, and by Assumption 1(a), 0 < h1 ' h(x) ' h2 K 00, 

the bound in the final inequality converges in probability to 0. 
Turning to the first term of the final expression in (A.5), since 
h(x) is continuous, (nbk)'l Li w((X,* - x)Ibn)/h(X7) 4h*(x)I 
h(x) uniformly in x. Thus A *(x) 4 A*(x) h*(x)/h(x) uniformly 
in x. Applying the same argument to An(x), An(x) 41 uniformly 
in x, from which it follows that supXIly"(x) - Y(x)l 40. 

Turning to B*, use (1) to write 

n= n-I yj(Xj)(Yj - dj'A) 

= n 1 y(Xj)g(X1) + n- 1 nX)j 
= I 

Since y(x) and g(x) are bounded on E [the latter follows from 
Assump. 1(b)], the uniform consistency of y,(x) and the WLLN 
imply that 

n - Yn(Xj)g(Xj) = n y(Xj)g(Xj) + op(l) 
I J 

fg(x)[h*(x) - h(x)] dx = B. 

In addition, 

E [(n 1 > (yn(Xj) - y(Xj))ui) {Xi, di}] 

' n- (supxlYn(Xj) j)12(2)2P2 40, 

and n-I Ej (yA(X) - y(Xj))uj 0. Thus n'I Ej Yn(Xj)uj = n-I 
Ej y(X,)u, + op(l) 4 0 by the boundedness of y(x) and the 
WLLN. Thus B* 4 B, implying that B, 4 B. 

Theorem 3. The proof has two steps. First, it is shown that 

np12 [(B. - E(Bn {XI, di})) - n cjuj] 4 0, (A.6) 

where cj c(Xj, dj) = y(Xj) - R'M-'7x, where 7r, = dj - f2(Xj). 
It follows from (A.6) that the centered benefits estimator and 
n-112 Y c,u1 have the same limiting distribution. Second, it is 
shown that the independent random variables Z, = cjUj satisfy 
the conditions of Lyapunov's central limit theorem, with the 
variance V stated in Theorem 3. 

To proceed with the first step, define 

cn(Xj, dj) = yn(Xj) -RMn- 17j 

and 

Wjj = w((X, - X1)lbj)/ w((Xi - Xj)lbn) 

where ir,nj is defined in the theorem. With this notation, Yj = 

- fln(Xj) = Yj - Xi WjYi. Thus, from (12), 

A. = Mn-In I j Yj WijYi 

=M~n1 n 4 jX)Y nn1EUji 

Using (15) and the definitions of Rn and cn(X1, d1), one obtains 
B,, = >- E ,,(X))(Y1 - dj'An) 

= n - 1 ~Yn(X,) (Yj - djM,n- n - I E7tniYi) 

= n-I E c.(XA, dj)Y1. 
i 

Note that cn(X;, dj) is a function solely of {(Xi, di)}, and use (1) 
to obtain 

n'l/[Bn - E(Bn I {Xi, dj})] 

= n- 1/2 2 cn(X, dj)u; 

= n-"' [Cn(Xi, di) 
- 

C(Xi, dj)]u, 

+n -1/2 c C(X,, dj) uj. 

Turning to the first term in (A.6), if cn(x, d) - c(x, d) 4 0 
uniformly in (x, d), then with probability 1, 

E [(n-1/2 (c(Xj, dj) - c(Xj, dj))uj) {xi, di} 

S (Sup,dCn(x,, d) - c(x, d))2 2 - 0. (A.7) 

It follows from (A.7) and Chebyschev's inequality (modified for 
conditional expectations) that n- 12 1 (cn(Xj, dj) - c(Xj, dj))uj 
- 0, if it can be shown that cn(x, d) - c(x, d) -4 0 uniformly 
in (x, d). Now, 

cn(Xj, dj) - c(Xj dj) 

= [y(Xj) - y(Xj)] - RnM-1[7rj - (dj -f2(X))] 

+ (R'M-1 - R'Mn-1)(dj - f2(Xj)). (A.8) 
The first term in (A.8) converges in probability to 0 uniformly 
in x. The third term also converges in probability to 0 uniformly 
in (x, d), because dj and f2(x) are bounded, Rn Rn, and Mn 
-> M, and M- I exists by assumption. Turning to the second term 
in (A.8), since Rn - R and M-'-4 M-1, it suffices to show that 
7rni - (dj - f2(Xj)) 4 0 uniformly in (Xj, dj). Now, 

-nj (dj - f2(Xi)) 

= - Wjk~k - (dj - f2(Xj)) 
k 

= (dj f2n(Xj)) - > Wjk(dk - f 2n(Xk)) - (dj -f2(Xj)), 
k 

so 

SuP(X ,dj)I7rlj - (di - f2(Xj))| C Supxlf2(x) - f2n(x)l 

+ Sup(xj,dj) | Wjk(dk - f2,l(Xk)) . (A.9) 
k 

The first term in (A.9) vanishes by uniform consistency. Now, 

E Wjkdk- f2n(Xj) = E W((Xj - Xk)Ibn)dk hn(X,) ii 
k k L w((Xj - Xk)lbn) Lhn(Xk) 

k 

< Jf2n(Xj)ISup(X X')lhn(x)Ihn(x') - h(x)Ih(x')l 

+ | Wkjdk[h(Xj)lh(Xk) - 11 
k 

with probability 1. The first term converges to 0 in probability 
because of the uniform consistency of h,(x), because f2(x) is 
bounded, and because h(x) is bounded above and below. Since 
h(x) is continuous, the second term also vanishes in probability 
uniformly in (X1, d1), by the uniform consistency of kernel regres- 
sion. Thus zk W1kdk - f2n(X,) 0 uniformly in (X1, d,). A parallel 
argument shows that zk Wjkf2n(Xk) - f2n(X1) 0 uniformly in 
(X>, d1). From these two results, it follow that zk W,k(dk - 
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f2fl(Xk)) -4 0 uniformly in (Xi, d1). Thus from (A.9) 1n,j - (dj - 
f2(Xj)) 4 0 uniformly in (Xj, dj), so the second term in (A.8) 
converges to 0 uniformly in (X>, dj). It now follows from (A.8) 
that Sup(X,d)ICf(x, d) - c(x, d)l -4 0, so n112[B. - E(Bnj{X,, di})] 
= n-1/2 X, c(Xj, d1)u1 + op(l). 
The second step entails checking Lyapunov's conditions for 

the central limit theorem (e.g., White 1984) for the independent 
random variables Zj = cjuj: (a) var(Zj) > 0 and (b) 3 6 and A 
such that EIZiJ 2+ < A < oX for all j. Condition (a) is satisfied, 
because 

V = var(Zj) 

= E(a2(Xj, d1)[y(Xj) - R'M-1(dj - f2(Xi))]2) 

-a 2E{E[(y(Xj) - R'M-(dj - f2(Xj)))2IXj]} 
= [Ey()2 + R'M-1E(dj - f2(Xj))(dj - f2(Xj))'M-'R] 

=a2[Ey(X )2 + RM-'R], (A.10) 

where the final two equalities have been obtained using E(dj - 
f2(X,) I Xj) = 0 and the definition of M. Since M is positive 
definite by assumption, 2 > 0, and Ey(X)2 > 0 by Assumption 
1, it follows that var(Z,) ? a2 Ey(X,)2 > 0 for all j. Condition 
(b) follows from Assumption l(a), the boundedness of c(x, d), 
and the assumption that u, has 2 + 3 moments that are uniformly 
bounded in j. Using the equalities in (A. 10), if U2(X, d) = a2 

for all (x, d), then 

V = a2[Ey(X )2 + R'M-'R] 

= a2 [ (h*(x)lh(x) - 1)2dH(x) + R'M-1R]. 

Finally, because c"(x, d) - c(x, d) 40 uniformly in (x, d) and 
EuJI2+6 s_ A < X7, Vn= - c,(X dj)2u2, -4 V. 

[Received December 1985. Revised November 1988.] 
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