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Abstract 
 

This paper constructs tests for martingale time variation in regression coefficients in 

the regression model yt = xt′βt + ut, where βt is k×1, and Σβ is the covariance matrix of 

Δβt.  Under the null there is no time variation, so Ho: Σβ = 0; under the alternative there is 

time variation in r linear combinations of the coefficients, so Ha: rank(Σβ ) = r, where r 

may be less than k.  The Gaussian point optimal invariant test for this reduced rank 

testing problem is derived, and the test’s asymptotic behavior is studied under local 

alternatives.  The paper also considers the analogous testing problem in the multivariate 

local level model Zt = μt + at, where Zt is a k×1 vector, μt is a level process that is constant 

under the null but is subject to reduced rank martingale variation under the alternative, 

and at  is an I(0) process.  The test is used to investigate possible common trend variation 

in the growth rate of per-capita GDP in France, Germany and Italy.   
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1. Introduction 

 
 

A long-standing problem in econometrics involves testing for stability of 

regression coefficients in the linear regression model.  Using standard notation, the model 

is 

   yt = xt′βt + ut      (1.1) 

where yt is a scalar and xt is a k×1 vector.  Under the null hypothesis the regression 

coefficients are stable, while under the alternative they are time varying.  When k is large, 

standard tests for time variation have low power because they look for time variation in k 

different dimensions.  However, in many empirical applications it is plausible to assume 

that time variation in the coefficients will be restricted to a relatively small number of 

linear combinations of the regression coefficients.  For example, it might be assumed that 

any time variation is concentrated in the linear combinations Rβt where R is an r×k 

matrix. When R is known, the regression model can be transformed to isolate the 

coefficients Rβt, and the problem involves testing whether a subset of the regression 

coefficients are unstable (see Leybourne (1993)). 

In many applications a researcher might not know the value of R, and test power 

will deteriorate if the wrong value is used.   This concern leads us to consider the testing 

problem when R is unknown.  That is, we suppose that r linear combinations of the 

regression coefficients are unstable under the alternative hypothesis, but that these linear 

combinations are unknown.  In our leading case r = 1, so there is only one dimension of 

time variation in the regression coefficients.  We are concerned with three related 

questions.  First, what are the power gains that can be attained using this rank information 
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relative to tests that look for time variation in all of the regression coefficients?  Second, 

what are the power losses associated with using only the rank information relative to tests 

that use the value of  R?  Finally, what are the power losses from using a pre-specified 

but incorrect value of R? 

We carry out the analysis using an otherwise standard framework.  We assume 

that Δβt is an I(0) process with covariance matrix ΣΔβ.  Under the null hypothesis ΣΔβ = 0, 

while under the alternative ΣΔβ ≠ 0 with rank(ΣΔβ ) = r.  As usual, we consider tests that 

are invariant to transformations yt → yt + xt′b.  However, to capture the notion that R is 

unknown, we also restrict attention to tests that are invariant to transformations xt → Axt.  

As in Shively (1988), Stock and Watson (1998), and Elliott and Muller (2002) we 

consider versions of Gaussian point optimal invariant tests. 

As it turns out, a closely related problem involves testing whether a k×1 vector 

process Zt is I(0) against the alternative that is I(1).  We write this model as  

    Zt = μt + at      (1.2) 

where at is I(0) and μt is I(1).  This is a version of what Harvey (1989) calls the “local 

level model,” because μt represents the local level of the process.  If ΣΔμ = 0, then μt is 

constant and Zt is I(0); when ΣΔμ ≠ 0, then Zt is I(1).  In many applications, shifts in μt are 

a function of a small number of factors or common trends, so that the elements of Zt are 

cointegrated,  ΣΔμ has reduced rank, and (1.2) is a reduced rank local level model.  This 

leads us to consider testing the null that ΣΔμ = 0 against the alternative that ΣΔμ ≠ 0, but 

with rank(ΣΔμ) = r. 

 This testing problem is also carried out in an otherwise standard framework.  

Stock (1994) surveys the large literature concerned with testing ΣΔμ = 0 in  (1.2) when k 
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=1; we utilize multivariate versions of the Gaussian point optimal invariant tests derived 

from King (1980) that have been used for the univariate testing problem.  These tests are 

invariant to transformations of the form Zt → Zt + b.  We further restrict the tests so that 

they are invariant to transformations of the form Zt → AZt to capture the notion that the 

I(1) linear combinations of Zt are unknown.  Jansson (2002) considers a multivariate 

problem closely related to ours.  He supposes that r = 1, but that the I(1) linear 

combination of Zt is known.  Our analysis can then be viewed as an extension to the case 

of an unknown linear combination. 

 The paper is organized as follows.  Section 2 considers the reduced rank 

multivariate local level model (1.2), and presents exact results using a benchmark 

Gaussian version of the model, and then extends the results to more general stochastic 

processes using asymptotic approximations.  Section 3 shows the asymptotic equivalence 

of the testing problems for the regression model (1.1) and the multivariate local level 

model (1.2).  This implies that the testing results derived in section 2 carry over to 

regression model. Section 4 presents asymptotic power results and answers to the 

questions posed above about the power gains and losses that result from using rank 

restrictions.  Critical values for the test statistics are also tabulated in this section.  

Section 5 contains an empirical application that tests for common I(1) time variation in 

the growth rates of GDP for several European countries.  Concluding comments are 

offered in the final section. 
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2. The Reduced Rank Multivariate Local Level Model 

 
 

Let Z denote a k×1 vector of time series.  In the multivariate local level model, 

deviations of Zt from the local-level process μt follow a zero-mean stationary process.  

The process μt evolves smoothly; we characterize μt as an I(1) process.  In many 

applications it is natural to think of the k×1 vector μt as evolving in response to a reduced 

number of common factors, so that (1-L)μt = Λ(1-L)ft, where ft is an r×1 vector of I(1) 

variables with r ≤ k, and Λ is a k×r matrix of factor loadings.  As discussed in Stock and 

Watson (1988), the elements of ft can be thought of as common trends leading to low-

frequency variability in Zt,  and when r < k, Zt is a cointegrated processes.  

Using this common trends formulation, we write the multivariate local level 

model as 

Zt = μt + at     (2.1) 

μt = μ0 + Λft.     (2.2) 

     at = θa(L)εt     (2.3) 

     Δft = θf(L)ηt     (2.4) 

et = (εt′ ηt′)′ is a martingale difference sequence and θa(1) and θf(1) are finite.  When r < 

k, we refer to this as the reduced rank multivariate local level model.   

The model is over-parameterized as written in (2.1)-(2.4), and we use the 

following normalizations: 

(N.1)  E(etet′) = Ik+r      
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(N.2)  θa(0) is lower triangular 

(N.3)   (i) Λ = θa(1)P 

(ii) P′P = Ir 

(iii)  θf(1) = diag(γi), γ1 ≥ γ2 ≥ … ≥ γr ≥ 0. 

The normalizations (N.1) and (N.2) imply that (2.3) is written in Wold causal form with 

innovation standard deviations on the diagonal of θa(0).  Because of the factor structure 

in (2.2), Λ and second moments of Δft are not separately identified, and (N.3) provides a 

normalization of the factors that will be convenient for the testing problem considered 

below.  In this normalization the γi’s are the square roots of the eigenvalues of  

θa(1)–1Ωθa(1), where Ω is the spectral density matrix of Δμt at frequency zero;  the 

columns of P are the corresponding orthonormal eigenvectors. 

We consider testing the null hypothesis that μt is constant.  Under the alternative 

μt evolves as a reduced-rank process.  We simplify the testing problem by assuming that 

γi = γ, for all i, so that the null and alternative can be written in terms of the single 

parameter γ as H0: γ = 0 versus H1: γ  > 0.  This simplification is without loss of 

generality when r = 1, the single common trend model that is the leading case used in 

empirical analysis.  When r > 1, the simplication means that the tests described below 

will be optimal when the normalized factors have a common variance. 

We begin by developing tests that are optimal in a Gaussian version of the model.  

We will then show that the size and local power properties of these tests continue to hold 

under more general distributional and serial correlation assumptions when the sample 

size is large.  The Gaussian model is characterized by (2.1)-(2.4), (N.1)-(N.3) and the 

following additional assumptions: 
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(G.1)  et ~ i.i.d. N(0, I) 

(G.2)  θa(L) = θa(0), where θa(0) is non-singular 

(G.3)  θf(L) = θf(0) 

These assumptions imply that {at, Δft}  is a sequence of i.i.d. normal random variables. 

There are three sets of nuisance parameters that complicate the testing problem: 

θa(0), P and μ0.  As we show below, θa(0) is not a major problem because it can be 

consistently estimated under the null and local alternatives, and the resulting sampling 

error has no effect on sampling distribution of the optimal test statistic in large samples.  

Thus, we will assume that this parameter is known when developing the optimal 

Gaussian test.  The parameters P and μ0 are more problematic.  Sampling error in μ0 

affects the properties of the test even in large samples; P is unidentified under the null 

and cannot be consistently estimated under local alternatives.  We eliminate μ0 and P 

from the testing problem by restricting attention to tests that are invariant to 

transformations of the form Zt → AZt + b, where A is an arbitrary orthonormal matrix and 

b is an arbitrary constant. 

Theorem 1 provides an expression for the point optimal invariant test.  The 

theorem uses the following notation:  Z denotes a T×k matrix with t’th row given by Zt′,  

Vγ = γ2FF′ + IT, where F is a lower triangular matrix of 1’s,  l denotes a T×1 vector of 1’s,  

and Ml = I – l(l′l)–1l′. 

 

Theorem 1:  In the Gaussian model, the best invariant test for H0: γ = 0 versus H1: γ  = γ  

rejects the null hypothesis for large values of Bγ , where   
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Bγ = ∫exp{–½trace[S′Dγ S]}dU(S),    (2.5) 

1 1 1 1 1 1(0) { '[ ( ' ) ' ] ' } (0) 'a lD Z V V l l V l l V Z Z M Zγ γ γ γ γθ θ− − − − − −= − − 1
a

− ,  S is a r×k matrix, and 

U(S) is a weighting distribution that puts uniform weight on the unit sphere, that is dU(S) 

is constant on S′S = Ir and zero elsewhere. 

 

The proof of this theorem is straightforward. Notice that any test that is invariant 

to transformations of the form Zt → AZt must have constant power for all values of P 

with P′P = Ir.  Thus, invariant tests have the property that average power on P′P = Ir  

coincides with power for any particular value of P.  This means that an invariant test with 

best average power on P′P = Ir is a best invariant test.  Following the analysis in King 

(1980) it is straightforward to derive optimal tests that are invariant to transformations of 

the form Zt → Zt + b for known values of  P, say P = S.   The likelihood ratio based on 

the maximal invariants is given by exp{–½trace[S′Dγ S]}.  Inspection of (2.5) then 

reveals that a test that rejects for large values of Bγ  will have the greatest average power, 

where the average is constructed using U as the weighting function (Andrews and 

Ploberger (1994)).  Because U is uniform, Bγ is invariant to transformations of the form 

Zt → AZt .  Thus, a test that rejects the null for large values of Bγ is the best invariant test. 

The test statistic Bγ has a relatively simple large-sample distribution under the 

null hypothesis and under local alternatives of the form γ = g/T, where g is a constant.  

These distributions hold under assumptions more general (G.1)-(G.3), and we now 

describe one such generalization.   

(F.1)  (i) et is a stationary and ergodic martingale difference sequence. 
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 (ii) E(etet′ | et–1, et–2, … ) = Ik+r.

 (iii) maxi,j,k,l E(eitejtektelt) < κ for all t. 

(F.2)     θa(L) is 1-summable and θa(1) has full rank. 

(F.3)     (i)  γ = γT =  T–1g, where g will be held fixed as T grows large. 

             (ii) θf(L) = θf,T(L) = γTH(L), where H(L) is fixed as T grows large, H(1) = Ir, and 

H(L) is 1-summable. 

Assumption (F.1) implies that [ ]1/ 2
1

sT
tt

T −
=

e∑ ⇒W(s) a Wiener process and replaces 

the Gaussian assumption (G.1).  Assumption (F.2) allows at to be serially correlated.  

Assumption (F.3i) describes the asymptotic nesting for the local power analysis.  

Assumption (F.3ii) defines the factorization of θf(L) and replaces (G.3) with a limited 

memory assumption. 

Theorem 2 characterizes the asymptotic behavior of the appropriately modified 

test statistics under (F.1)-(F.3).  The theorem uses the following notation: P =[Ir 0r×(k–r)]′,  

W(s) is a k+r dimensional Wiener process partitioned as W(s) = [W1(s)′ W2(s)]′ where 

W1(s) is k×1 and W2(s) is r×1,  X(s) = g 20
( )

s
P W dτ τ∫ + W1(s), Y(s) = X(s) – sX(1),  q(s) = 

( )

0
( )

s g se dYτ τ− −∫ ,  and  J = 
1

0
( )sge dY s−∫  – 

1

0
( )sgg e q s ds−∫ . 

 

Theorem 2:   

In the model (2.1) -(2.4), suppose that  is a consistent estimator of θˆ (1)aθ a(1),  and (F.1)-

(F.3) are satisfied.  Let 1 1 1 1 1 1ˆ ˆˆ (1) { '[ ( ' ) ' ] ' } (1) 'a lD Z V V l l V l l V Z Z M Zγ γ γ γ γθ θ 1
a

− − − − − −= − − −   

and B̂γ = ∫exp{–½trace[S′ D̂γ S]}dU(S). Then /
ˆ

g TD ⇒ gF  and  
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/
ˆ

g TB ⇒  B = ∫exp{–½trace[S′ gF S]}dU(S),  

where gF  = – g [q(1)q(1)′ + g
1

0
( ) ( ) 'q s q s ds∫  + 2(1– 2ge− )–1JJ′] 

 
Proof: See Appendix. 

 
The theorem requires a consistent estimator of θa(1), and these are readily 

obtained.  Under (F.1) - (F.3), 1 ( )( )t t kZ Z Z−
−− − 'T Z∑  = 1 ( )( ) 't t ka a a−

−T a − −∑  + 

Op(T–1), so that consistent estimators of the long-run covariance matrix of a can be 

constructed from standard kernel-based or parametric estimators with Zt used in place of 

at.   

 
 
3. The Linear Regression Model with Reduced Rank Time Varying 

Coefficients 
 

As discussed in the introduction, the regression model with stationary regressors 

and time varying regression coefficients behaves much like the local level model.  In this 

section we show how the testing results for the reduced rank multivariate local level 

model can be applied to the reduced rank time varying coefficient regression model.  We 

write the regression model as    

   yt = xt′βt + ut       (3.1) 

  βt = β0  + Γft      (3.2) 

    Δft = θf(L)ηt       (3.3) 

where  yt is a scalar, xt is k×1, βt is a vector of potentially time varying regression 

coefficients, and ut is the regression error.  From (3.2), the k×1 vector βt evolves as a 

function of the r×1 vector ft, where r ≤ k, so that k–r distinct linear combinations of the 
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regression coefficients are stable.  The factors follow the process (3.3).  The regression 

errors ut may be serially correlated; we discuss this below. 

To see the relation between this model and the multivariate local level of the last 

section, let  tZ  = xt(yt – xt ′β0), μt = Σxx(βt – β0), at = xtut, and wt = (xtxt′ – Σxx) (βt – β0), 

where Σxx = E(xtxt′).   Then tZ = μt + at + wt.  If the regressors are well-behaved, wt will 

be negligible in large samples, so that tZ  ≈  μt + at, and any time variation in βt will be 

reflected as time variation in μt, which can be detected as in the last section.   

To keep the analysis of the regression model parallel to the analysis used in the 

last section time, variation in βt is parameterized as in (N.3), but with (N.3i) replaced by   

(N.3′)    Γ = Σxx
1/ 2
aaΩ P,  

where  is the long-run covariance matrix of a1/ 2
aaΩ t = xtut.  As in the last section we 

consider the null and alternative hypotheses H0: γ = 0 versus H1: γ  = γ , where θf(1) = 

γIr.  Invariance in the regression testing problem involves transformations yt → yt + xt′b 

and xt → Axt, where b is an arbitrary vector of constants and A is an orthonormal matrix.   

As the heuristic suggests, tests in the regression model will be well-behaved in 

large samples when wt = (xtxt′ – Σxx) (βt – β0) is asymptotically negligible, which happens 

when the regressors are sufficiently well-behaved.  We show this result using an 

argument from Stock and Watson (1998), so it is convenient to use their assumption 

about the regressors.  The assumption uses the following notation.  For a stationary vector 

process bt, let  denote the nth joint cummulant of , where r
1... 1( ,..., )

ni i nc r r
1 1

,...,
n ni t i tb b j = tj – 

tn, j = 1, …, n–1, and let C(r1, …, rn–1) = .  The assumption is  
1 1,..., ... 1sup ( ,..., )

n ni i i i nc r r

 (R.1)    (i)   Xt is stationary with eighth-order cummulants that satisfy  
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1 7
1 7,...,

| ( ,... ) |
r r

C r r∞
< ∞∑ . 

(ii)  {Xt} is independent of {ηt}.   

Part (i) of the assumption restricts attention to stationary regressors with eight moments 

and limited temporal dependence.  Importantly, it rules out trending and integrated 

regressors.  From part (ii), the regressors are assumed to be independent of time variation 

in the regression coefficients. 

Optimality results analogous to those presented in Theorem 1 are derived under 

the following Gaussian assumptions: 

(G.4)     (i)    ut = σuεt and et = (εt ηt′)′ is i.i.d N(0, Ir+1). 

  (ii)  {xt} and {ut} are independent. 

  (iii)  θf(L) = θf(0) = T–1gIr

Parts (i) and (iii) imply that ut and Δβt are i.i.d. normal random variables as in the 

Gaussian model of the last section; part (ii) makes the regressors exogenous.  Because the 

results for the regression model are asymptotic, part (iii) includes the same asymptotic 

nesting used in Theorem 2. As in that theorem, the asymptotic size and local power of the 

Gaussian test can be obtained under more general assumptions.  Letting at = xtut and μt = 

Σxxβt, the assumptions summarized (F.1)-(F.3) of the last section will suffice. 

Theorem 3 summarizes the results for the regression model.  

 

Theorem 3 

Consider the regression model (3.1)-(3.3), with regressors satisfying (R.1) and let Zt = 

xt ˆtu , where  is the OLS residual from the regression of yˆtu t onto xt.   
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(a) If (G.4) holds, then the best invariant asymptotic test can be constructed as in 

Theorem 1 with θa(0) =  . 1/ 2
u XXσ Σ

(b) If at = xtut and μt = Σxxβt, satisfy (F.1)-(F.3) then theorem 2 holds for the regression 

model. 

 

The proof of part (a) parallels the proof to Theorem 1 after replacing King’s (1980) result 

on the likelihood ratio for the maximal invariants for known P with an asymptotic 

approximation from Elliott and Müller (2002).  Part (b) follows from a straightforward 

calculation.  Details are provided in the appendix.  

 
4. Local Power Comparisons  

 
 
This section has four purposes.  First, it compares the performance of the point-

optimal invariant tests derived in Sections 2 and 3 to other invariant tests.  Second, it 

verifies that appropriately chosen point-optimal tests work well for a wide range of 

values of γ  under the alternative.  Third, it compares the performance of the point-

optimal invariant tests to a point optimal non-invariant test that uses a pre-specified, but 

potentially incorrect value of Λ.  Finally, it tabulates large sample critical value for an 

easy-to-compute test statistic with performance that is indistinguishable from the optimal 

invariant test.  

In addition to the point-optimal invariant test, we consider two alternative 

invariant tests.  We introduce these tests using the notation introduced for the Gaussian 

model studied in Theorem 1;  in empirical applications they would be computed using the 

modifications described in Theorem 2 and in section 3.  The first statistic is  
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ξsup = supS’S=I 'S− Dγ
S = 

1
(r

ii
eig D )γ=

−∑  where (ieig D )γ−  is the i’th eigenvalue of 

Dγ− ordered from largest to smallest.  This statistic uses the information that r < k, but in 

a way that may not be optimal. The second statistic that we consider is ξtrace = 

trace(− Dγ ).  This is the optimal test when r = k and therefore it does not use the 

information that Λ has reduced rank.  The statistics are invariant because they depend on 

Dγ  only through its eigenvalues. 

Figure 1 shows the asymptotic local power envelope based on BBγ , the optimal test 

from Theorem 1 constructed using the true value of γ  = g/T,  for a test with size 5%.  

Results are shown for r = 1 and k = 1, 5, 10 and 20.  Also shown are the corresponding 

powers of the ξsup and ξtrace  tests constructed using the same values of γ.  When k = 1, the 

three tests coincide, so that only one function appears in panel (a) of the figure.  For other 

values of k, the tests differ, so that three power functions are plotted in the remaining 

panels.  Two results stand out from the figure.  First, the power function for ξsup 

essentially coincides with the power envelope.  This is an important result because ξsup is 

much easier to compute than the point optimal test because it does not require the 

numerical integration of . Second, the optimal tests and ξ(2.5) sup outperform ξtrace, but the 

gains are not large. At power 50%, the Pitman efficiency of ξtrace relative to the optimal 

test is 96% (k = 5), 93% (k = 10), and 92% (k = 20).  Thus the optimal reduced rank test 

has only moderately more power over the corresponding test that does not use the 

information about rank.  We have also computed analogous power functions for r > 1.  

As in the r = 1 case,  ξsup is essentially optimal.  The power gains of the optimal test 
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relative to ξtrace gets smaller as r grows.  For example, when r = 2, the (50% power) 

Pitman efficiency of the trace test is greater than 98% for all values of k ≤ 20. 

Figure 2 shows the asymptotic power envelope as a function of g along with the 

power function of the point optimal, ξsup, and ξtrace  tests constructed using γ = 10/T.  

This value of γ  is chosen because it corresponds with approximately 50% power for k = 

5.  Results are shown for r = 1 and for k = 5, 10 and 20. Apparently there is little loss of 

power using these point optimal tests, at least for the range of values of g considered in 

the figures. 

Asymptotic critical values of for ξsup, and ξtrace  using γ = 10/T are summarized in 

Table 1.  Results are shown for r = 1 and 0 ≤ k ≤ 20.  (Because ξsup is easier to compute 

than Bγ  and shares its power properties, critical values for Bγ  are not reported.) 

The results in figure 1 show that power could be improved substantially if P, the 

matrix determining the factor loading matrix, was known.  The optimal invariant test uses 

the information that P has rank r, but does not use any information about the likely value 

of P under the alternative.  For example, if it was known that P = S , then the optimal test 

would be based on the statistic Sξ = – 'S D Sγ .  When r = 1, the asymptotic power 

envelope would be given by panel (a) of figure 1, regardless of the value of k.  This 

suggests that Sξ  might work well when S  is close to but not necessarily equal to P.  This 

is indeed the case.  Let β(g, k) denote the asymptotic power of the point optimal test as a 

function of g and k.  For r = 1, it is straightforward to show that the power function for 

Sξ  is given by β(g | S ′P|, 1).  This is the power of the point optimal test for k = 1, but 

with g scaled by the factor | S ′P| .  Because S  and P are orthonormal,  | S ′P| ≤ 1.  Figure 
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3 compares the power functions β(g | S ′P|, 1) and β(g, k) for k=5 and k=10, and for  

| S ′P| = 0.5, 0.70, 0.90 and 1.0.  Roughly speaking, when k = 5,  Sξ  dominates the point-

optimal invariant test when | S ′P| > 0.70.  When k = 10, Sξ  dominates the invariant test 

for somewhat smaller values of | S ′P|.  

 

5. Empirical Results 

 

Figure 4 plots quarterly values of per capita real GDP growth rates for France, 

Germany and Italy from 1960-2002. (See the Data Appendix for a description of the 

data.)  The figure suggests a common decline in growth rates over the sample period, and 

this is reinforced by the estimated value of μt also plotted in each figure. (These estimates 

are computed using a Kalman smoother from a models that is described below.)  Table 2 

presents mean growth rates over various subsamples and these too suggest a common 

decline in the average growth rates. This informal analysis suggests that the data are 

consistent with the multivariate local level model (2.1) - (2.4) with time varying level 

process μt driven by a single common factor that experienced a persistent decline over 

1960-2002. 

Table 3 presents tests of the null hypothesis of no time variation in μt.  Panel (a) 

shows p-values for the point optimal invariant test B and the corresponding ξsup test for r 

= 1; also shown is the p-value for the ξtrace test statistic.  These statistics were computed 

using a parametric VAR(4) estimator for θa(1) and D̂γ  was computed using  γ = 10/T.  

Panel (b) shows the results for tests constructed using pre-specified values of the factor 
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loadings.  For this purpose the stochastic component of the local level process μt is 

expressed as Λ ft, where the value of Λ  is given in the shown in the first column of the 

table.  The test statistic is then computed as P′ D̂γ P where P = 1ˆ (1)aθ ω− Λ , where ω = 

1 1ˆ ˆ( ' (1) ' (1) )a aθ θ− −Λ 1/ 2Λ  (see the normalization (N.3)).  The statistic P′ D̂γ P can also be 

used to construct a point estimate and confidence interval for the standard deviation of Δft 

using the procedure outlined in Stock and Watson (1998); these are shown in the last two 

columns of panel (b). 

The results in panel (a) show some evidence of time variation.  The p-values for 

the point optimal test B and ξsup are roughly 10% and the p-value for ξtrace is 16%.  The 

first row of panel (b) shows a more significant rejection (p-value = .03) whenΛ  is 

restricted to be a column of 1’s (so that the ft affects each of the countries equally).  The 

final three rows of panel (b) show that there is no significance time variation when 

attention is focused on a single country.  For example, testing for time variation in μFrance 

while maintaining stability in μGermany and μItaly (so that Λ ′ = (1,0,0) ) yields a p-value of 

0.52 as shown in the second row of the table.  

The third column panel (b) shows a point estimate of σΔf  of 0.20% per quarter for 

the specification with equal factor loadings. Over the 43 year span of the data, this 

implies a standard deviation for the change in μ of approximately 2.6%. Using this point 

estimate, the estimated VAR(4) parameters, and Λ  = ι ( a vector of 1’s),  the realization 

of ft can be estimated using a Kalman Smoother, and this can be used to estimate the local 

level process μt for each country.  This estimate is shown as the smooth series plotted in 

figure 4. 
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6. Discussion and Conclusions 
 
 

This paper has investigated the problem of testing for time varying coefficients in 

a regression model when only a few linear combinations of the coefficients are 

potentially time varying.  Optimal tests in this reduced rank time varying coefficient 

model were developed; analogous tests were also constructed for a version of the 

multivariate local level model in which a small number of common factors drive the 

variation in the vector level process.   

Analysis of the optimal tests led to three main conclusions.  First, the power 

performance of the easy-to-compute “sup-test” is essentially identical to the optimal test, 

making this test an attractive alternative to tests currently in use.   Second, while the 

restricted rank information leads to power increases over optimal tests that do not use this 

information, the power gains are not large.  Finally, power gains can be obtained using 

information about which linear coefficients of regression coefficients are unstable in the 

regression model or about the values of the factor loadings in the local level model.  This 

“direction” information can lead to large power gains even when it is only approximately 

correct.  

There are several issues related to the testing problem that have not been 

addressed here.  The analysis used a pre-specified value of r, the number of linear 

combinations of potentially time varying coefficients, and it would be useful to consider 

the problem of estimating r.  Because tests using the true value of r have local power only 

slightly greater than tests using the wrong value of r (compare the “sup” and “trace” tests, 

for example), it seems likely that r cannot be precisely estimated when there is only a 

small amount of time variation.  It would also be useful to develop methods for 
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estimating the unknown parameters in Λ or R when the amount of time variation is small, 

perhaps by generalizing the procedures developed by Stock and Watson (1998) in the 

model with k = 1. 
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Appendix 
 

This appendix contains proofs of theorems that are not included in the text.  We 

start with a set of standard results that will be used in the proofs.  For any sequence {ct} 

define cT(s) = [ ]1/ 2
1

sT
tt

T −
=

c∑ . Let G(L) denote a matrix of 1-summable lag polynomials 

(
0 ii
i G∞

=
< ∞∑ ) and D(L) to denote a matrix of absolutely summable lag polynomials 

(
0 ii

D∞

=
< ∞∑ ).  Let gt = G(L)et and dt = D(L)et.  Then 

    ⇒ W(s)      (AP.1)  [ ]1/ 2
1

sT
tt

T −
=∑ e

L e

follows from F.1. 

   gT(s) = [ ]1/ 2
1

( )sT
tt

T G−
=∑ ⇒ G(1)W(s)   (AP.2) 

follows from Stock (1994, equation 2.9); see also Phillips and Solo (1992, Theorem 3.4). 

        (AP.3) 1

1 0

'
T p

t t i i
t i

T d d D D
∞

−

= =

→∑ ∑ '

follows from Fuller (1976, Lemma 6.5.1) extended to martingale differences in a 

straightforward manner. 

     

A.1 Proof of Theorem 2  

Without loss of generality because of invariance, we assume μ0 = 0 and P = P = 

[Ir 0r×(k–r)]′.   

A.1.1 Part (a) 

We begin the proof by considering the limiting behavior of several random 

variables that characterize the test statistic.  Let Xt = θa(1)–1Zt = θa(1)–1Λft + θa(1)–1at,  
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Yt = Xt – T–1
1

T
ii

X
=∑ , qt = 11/ 2 1

0
(1 )t i

t ii
T T g−− − Y −=

−∑ , Qt = g T–1/2qt–1 , St = Yt  Q− t , JT = 

1/ 2 1 1
1
(1 )T i

ii
T T g− −

=
−∑ S−

L

, υt = θa(1)–1Λft , and bt = θa(1)–1at. Then 

   XT(s) = g [ ]1 3/ 2
1 1

(1) ( )sT t
a jt j

T Hθ η− −
= =

Λ∑ ∑ + bT(s) 

            ⇒ X(s)  = g P 2
0

( )
s

W dτ τ∫  + W1(s).   (AP.4) 

follows from (AP.2) and the the normalization in (N.3i) (because H(L) and θa(L) are 1-

summable by (F.2) and (F.3)). Also  

    YT(s) ⇒ Y(s)  = X(s) – sX(1)      (AP.5) 

   q[sT] ⇒ q(s)  = ( )

0
( )

s g se dYτ τ− −∫      (AP.6) 

    QT(s) ⇒ Q(s)  = 
0

( )
s

g q dτ τ∫                  (AP.7) 

ST(s) ⇒ S(s) = Y(s) −  Q(s)                 (AP.8) 

   JT  ⇒ 
1

0
( )ge dSτ τ−∫ = J                      (AP.9) 

   T1/2υ[sT] ⇒ υ(s) = g P W2(s)               (AP.10) 

   
1

'
T

t t
t

bυ
=
∑  ⇒ 

1

2 1
0

( ) ( ) 'gP W s dW s∫               (AP.11) 

follow from (AP.1), (AP.4), the continuous mapping theorem, and the 1-summability of 

H(L) and θa(L).  
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   T–1
1

0
pT

tt
X

=
→∑                (AP.12) 

   T–1
1 1

, ,1
0

' (1) [ '] (1) '
pT

t t bb a a i a i at
i

b b θ θ θ θ
∞

− −
=

=

→Σ =∑ ∑            (AP.13) 

   T–1
1

' 0
pT

t tt
υυ

=
→∑                (AP.14) 

1
1

' 0
pT

t tt
T bυ−

=
→∑                (AP.15) 

where (AP.12) follows from (AP.4), (AP.13) follows from (F.1), (F.2) and (AP.3), 

(AP.14) follows from (AP.10), and (AP.15) follows from(AP.11).  In addition,  

1 1 1 1
1 1 1

1
1

1 1
1 1

1 1
1 1

' ' ( )( )

' (1)

' '

 ' ' (1)

T T T
t t t t t tt t t

T
t t pt

T T
t t t tt t

T T
t t t t pt t

p

bb

T YY T X X T X T X

T X X o

T b b T

T b T b o

υυ

υ υ

− − − −
= = =

−
=

− −
= =

− −
= =

= −

= +

= +

+ + +

→Σ

∑ ∑ ∑ ∑
∑
∑ ∑
∑ ∑

1
'T

t=

           (AP.16) 

follows from (AP.12)-(AP.15);   

12 1
1 1

12

0

' '

( ) ( ) '

T T
t t t tt t

Q Q g T q q

g q s q s d

−−
= =

=

⇒

∑ ∑
∫ s

                   (AP.17) 

follows from the definition of Qt and (AP.6);  

 

1/ 2 1/ 2
1 11 1 1 1

1 1 1 2 2 1
1 11 1

1

0

' ' [ ' ']

(1 ) [ ' (2 ) ' ']

[ (1) (1) ' 2 ( ) ( ) ' ]

T T T T
t t t t t t t tt t t t

T T
T T t t t tt t

bb

Q Y Y Q g T q Y T Y q

gT g q q gT g T q q T YY

g q q g q s q s ds

− −
− −= = = =

− − − − −
− −= =

+ = +

= − + − −

⇒ + −Σ

∑ ∑ ∑ ∑
∑ ∑

∫

    

(AP.18)  

where the first line uses the definition of Qt, the second line follows from squaring both 

sides of qt = (1– g T-1)qt–1 + T-1/2Yt, and the convergence follows from (AP.6) and (AP.16) 
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Let r = 1 – T–1 g + o(T–1),   = tq 11/ 2
0

t i
t ii

T r Y−−
−=∑ , Q = Tt

S−
pT T

t t t tt t
Q Q Q Q

= =

1/2(1–r) , = ,  

 = . Then 

1tq − tS t tY Q−

TJ 1/ 2 1
1

T i
ii

T r−
=∑ 1 1

' ' 0− →∑ ∑ 1 1
' ' 0

pT T
t t t tt t

Q Y Q Y
= =

, − →∑ ∑ , and 

– JTJ T  0 follows from the results above and sup
p
→ 0≤s≤1 r[sT]

 – (1 – T–1 g )[sT}→ 0. 

With these preliminary results in hand, we now prove the theorem.  Let /
I
g TD  

denote the infeasible version of /
ˆ

g TD constructed using θa(1) in place of . Using the 

Moore-Penrose this can be written as : 

ˆ (1)aθ

  /
I
g TD = X′Ml[Ml /g TV Me]+ Ml X – X′ Ml X.              (AP.19) 

From Elliott and Müller (2002, lemma 5)     

[Ml /g TV  Ml]+ = rG – rGl(l′Gl)–1l′G,                            (AP.20) 

where G = G1/2′G1/2 with  

1/ 2

2 3

1 0 0 0
(1 ) 1 0 0
(1 ) (1 ) 1 0

(1 ) (1 ) (1 ) 1T T

r
G r r r

r r r r r− −

⎡ ⎤
⎢ ⎥− −⎢ ⎥

= − − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − − −⎣ ⎦

 

and  

r = (1– g T–1) + o(T–1)                (AP.21) 

Let  R = (1 r r2 . . . rT–1)′, Y denote a T×k matrix with rows given by Yt′, and S, Q, 

 and Q  be defined analogously.  Then a straightforward calculation shows that Y=MS lX,  

= GS 1/2Y, R = G1/2l and R′R = (1 – r2T)/(1 – r2) for r ≠ 1.  Thus 

/
I
g TD = X′Ml[Ml /g TV Ml]+MlX – X′MlX 

        = X′Ml[rG – rGl(l′Gl)–1l′G]MlX – X′MlX 
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                    = r ′ – S S
2

2

(1 )
1 T

r r
r
−
−

( )– Y′Y ' 'S RR S

                    = (r – 1)Y′Y  r(Y′Q + Q ′Y) + rQ ′Q  – −
2

2

(1 )
1 T

r r
r
−
−

( )            (AP.22) ' 'S RR S

Now,   

  (r – 1)Y′Y = – g 1
1

'T
t tt

T Y−
=

Y∑  + op(1) 

          –
p
→ g Σbb                    (AP.23) 

from (AP.16),  

  r(Y′Q + Q ′Y) ⇒ 
1

0
[ (1) (1) ' 2 ( ) ( ) ' ]bbg q q g q s q s ds+ −Σ∫             (AP.24) 

from (AP.18),  

  rQ ′Q  ⇒
12

0
( ) ( ) 'g q s q s d∫ s                 (AP.25) 

from (AP.17), and  

 
2

2

(1 )
1 T

r r
r
−
−

( ) = ' 'S RR S
2

2

(1 )
1 T

r rT
r
−
−

'T TJ J ⇒ 2

2 '
1 g

g JJ
e−−

.              (AP.26) 

Substituting (AP.23), (AP.24), (AP.25), and (AP.26) into (AP.22) yields the result in the 

theorem. 

To complete the proof, note that D̂γ = -1ˆ (1)aθ θ (1)a
IDγ ( -1ˆ (1)aθ θa(1))′  

p
→ IDγ  by 

Slutksy’s theorem.  

 

A.2 Proof of Theorem 3 

Without loss of generality we set β0 = 0, and we use notation that parallels the 

proof of theorem 2.  Part (a) follows from the same logic as Theorem 1 if  
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exp{–½trace[S′Dγ S]} can be shown to be asymptotically equivalent to the best  invariant 

test with S = P known, where invariance is with respect to transformations of the form yt 

 y→ t + xt′b.  Inspection of Theorem 2 of Elliot and Müller (2002) shows that this result 

follows if  

   
[ ]

1/ 2

1

sup ( ' ) 0
sT p

s t t xx t
t

T x x β−

=

− Σ →∑                (AP.27)  

and 

[ ]
1

1

sup ( ' ) ' 0
sT p

s t t xx t t
t

T x x β β−

=

− Σ →∑ .               (AP.28) 

From (G.4), the elements of T1/2βt and βtβt′ have bounded fourth moments, so that 

(AP.27) and (AP.28) follow from (R.1) and Lemma 2 of Stock and Watson (1998). 

Part (b) follows from an argument like that used to prove theorem 2. Write Zt = 

xt ˆtu  = at + μt + , where  = (xˆ tw ˆ tw txt′ – Σxx)βt – xtxt′ β̂ .  Inspection of that proof of the 

theorem reveals that part (b) of theorem 3 will hold if YT(s) behaves as in (AP.5) and 

behaves as in 1
t tT Y− ∑ Y (AP.16).  Given the assumption on μt and at, these follow from 

sups ( )  0.  To show this write  ˆ ˆ( ) (1)T Tw s sw−
p
→

[ ]
1/ 2 1/ 2

1 1
[ ]

1

1

ˆ ˆ( ) (1) ( ' ) ( ' )

ˆ( ' )( )

sT T

T T t t xx t t t xx
t t

sT

t t xx
t

w s sw T x x sT x x

T x x S T

tβ β

β

− −

= =

−

=

− = − Σ − − Σ

− −

∑ ∑

∑
      

(AP.29) 

where Sxx = T–1 
1

T
t tt

x x
=∑ .  The first two terms are uniformly negligible by (AP.27). For 

the last term, from Lemma 2 of Stock and Watson (1998),  
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[ ]
1

1

sup ( ' ) 0
sT p

s t t xx
t

T x x−

=

− Σ →∑ .                (AP.30) 

Also,  

ˆT β =                           (AP.31) 1 1/ 2 (1)xx t pS T a o− − +∑

so that ˆT β  is Op(1). Thus  sups ( ˆ ˆ( ) (1)T Tw s sw− )  0 as required.  
p
→
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Data Appendix 
 

Real GDP series were used for the sample period 1960:1–2002:4.  In the cases of 

France and Italy, series from two sources were spliced.  The table below gives the data 

sources and sample periods for each data series used.  Abbreviations used in the source 

column are (DS) DataStream, and (E) for the OECD Analytic Data Base series from 

Dalsgaard, Elmeskov, and Park (2002), provided to us by Jorgen Elmeskov via Brian 

Doyle and Jon Faust.  Three outlying data points associated with a general strike in 

France and German reunification were eliminated from dataset. The dates are 1968:2-

1968.3 for France and 1991.1 for Germany. 

 
Country Series Name Source Sample period 
France frona017g 

frgdp…d 
OECD (DS) 
I.N.S.E.E. (DS) 

1960:1 1977:4 
1978:1 2002:4 

Germany bdgdp…d DEUTSCHE BUNDESBANK (DS)  1960:1 2002:4 
Italy  

itgdp…d 
OECD (E) 
ISTITUTO NAZIONALE DI STATISTICA (DS) 

1960:1 1969:4 
1970:1 2002:4 

 

 

 
 

 27



References 
 
Andrews, W.W.K. and W. Ploberger (1994), “Optimal Tests When a Nuisance Parameter 

is Present Only Under the Alternative,” Econometrica, 62, 1383-1414. 
 
Elliott, Graham and Ulrich K. Müller (2002), “Optimally Testing General Breaking 

Processes in Linear Time Series Models,” manuscript (revised April 2003). 
 
Dalsgaard, T., J. Elmeskov, and C-Y Park (2002), “Ongoing Changes in the Business 

Cycle – Evidence and Causes,” OECD Economics Department Working Paper no. 
315. 

 
Fuller, W.A. (1976) Introduction to Statistical Time Series, New York: Wiley. 
 
Harvey, A.C. (1989),  Forecasting, structural time series models and the Kalman Filter, 

Cambridge: Cambridge University Press. 
 
Jansson, M. (2002), “Point Optimal Tests of the Null Hyptothesis of Cointegration,” 

manuscript, Department of Economics, UC Berkeley. 
 
King, M.L. (1980), “Robust Tests for Spherical Symmetry and Their Application to Least 

Squares Regression,” The Annals of Statistics, Vol. 8, No. 6, 1265-1271. 
 
Leybourne, S. J. “Estimation and Testing of Time-varying Coefficient Regression 

Models in the Presence of Linear Restrictions,” Journal of Forecasting, Vol. 12, 49-
62. 

 
Phillips, P.C.B. and V. Solo (1992), “Asymptotics for Linear Processes,” Annals of 

Statistics, Vol. 20, No. 2, pp. 971–1001. 
 
Shively, T.S. (1988), “An Exact Test of a Stochastic Coefficient in a Time Series 

Regresison Model,” Journal of Time Series Analysis, 9, 81-88. 
 
Stock, J.H. (1994) , “Unit Roots, Structural Breaks, and Trends,” in R.F. Engle and D. 

McFadden (eds), Handbook of Econometrics, Volumne IV, Amsterdam: Elsevier. 
 
Stock, J.H. and M.W. Watson (1988), “Testing for Common Trends,” Journal of the 

American Statistical Association, December, 83, pp. 1097-1107. 
 
Stock, J.H. and  M.W. Watson (1998), “Asymptotically Median Unbiased Estimation of 

Coefficient Variance in a Time Varying Parameter Model,” Journal of the American 
Statistical Association, Vol. 93, No. 441, pp 349-358. 

 

 28



Table 1 
Asymptotic Critical Values for the Sup and Trace Tests 

 
ξsup  ξtrace 

k 10% 5% 1%  10% 5% 1% 
1 7.12 8.32 10.85  7.12 8.32 10.85 
2 9.27 10.60 13.59  12.79 14.28 17.55 
3 11.03 12.54 15.74  18.13 19.91 23.50 
4 12.50 13.99 17.52  23.31 25.26 29.48 
5 13.99 15.58 19.11  28.30 30.41 34.68 
6 15.36 17.08 20.76  33.40 35.70 40.46 
7 16.70 18.47 22.45  38.40 40.81 45.67 
8 18.06 19.90 23.80  43.45 45.94 51.59 
9 19.33 21.32 25.47  48.30 51.00 56.49 

10 20.57 22.51 26.97  53.23 56.07 61.73 
11 21.79 23.81 28.23  57.93 60.82 66.81 
12 23.01 25.22 29.60  62.94 65.91 71.79 
13 24.18 26.33 31.10  67.73 70.95 77.02 
14 25.43 27.62 32.32  72.47 75.78 82.52 
15 26.56 28.79 33.43  77.33 80.49 87.00 
16 27.69 30.02 35.09  82.25 85.64 92.28 
17 28.87 31.28 36.31  87.15 90.58 97.75 
18 29.91 32.21 37.37  91.78 95.22 102.40 
19 31.04 33.61 38.70  96.41 100.25 107.61 
20 32.24 34.73 40.21  101.37 105.07 112.53 

 
Notes:  ξsup is the largest eigenvalue of Dγ− and ξtrace is the trace of Dγ− , where γ =10/T and 

Dγ  is defined in the text.  The asymptotic critical values were estimated computed using 30,000 

draws from the Gaussian model with T = 500.     
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Table 2 
Average Per Capita Real GDP Growth Rates (PAAR) 

 
Sample Period France Germany Italy 

1960-1969 4.07 3.83 4.55 
1970-1979 2.97 2.59 3.61 
1980-1989 1.78 1.57 2.17 
1990-2002 1.34 1.31 1.32 

 
 
 
 
 

Table 3 
Tests for Time Varying Mean Growth Rates 

 
a. Invariant Tests 

Test P-value 
B 0.12 
ξsup 0.11 
ξtrace 0.16 

  
 

b. NonInvariant Tests Based on a Prespecified Factor Loading Matrix (Λ) 
Λ  P-value  Median Unbiased  

Estimate of σΔf

90 % Confidence Interval  
for σΔf

1, 1, 1 0.03 0.20 0.04 - 0.55 
1, 0, 0 0.52 0.00 0.00 – 0.18 
0, 1, 0 0.90 0.00 0.00 – 0.08 
0, 0, 1 0.17 0.09 0.00 – 0.30 

 
 
Notes: All of the tests are based on D̂γ as described in theorem 2, using a VAR(4) 
estimator of θa(L) and γ = 10/T.   In panel (a)  B denotes the asymptotically point optimal 
invariant test, ξsup is the largest eigenvalue of D̂γ− and ξtrace is the trace of D̂γ− .  The tests in 

panel (b) were computed for the fixed values of the factor loadings Λ , summarized in the 
first column of the table.  ˆ mub

fσΔ is the median unbiased estimator. Estimates of σΔf  and 
90% confidence interval were computed by inverting the percentiles of the test statistic as 
described in Stock and Watson (1998). 
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Figure 1 
Power of Invariant Tests 
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Figure 2 
Power of Point-Optimal Invariant Tests 

 
‘
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Figure 3 
Power of Noninvariant Tests 
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Figure 4 
Real GDP Per Capita Growth Rates (thick line) and Estimated Trend (thin line) 
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