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OPTIMAL TWO-SIDED INVARIANT SIMILAR TESTS FOR 
INSTRUMENTAL VARIABLES REGRESSION 

BY DONALD W. K. ANDREWS, MARCELO J. MOREIRA, AND 
JAMES H. STOCK1 

This paper considers tests of the parameter on an endogenous variable in an instru- 
mental variables regression model. The focus is on determining tests that have some 
optimal power properties. We start by considering a model with normally distributed 
errors and known error covariance matrix. We consider tests that are similar and satisfy 
a natural rotational invariance condition. We determine a two-sided power envelope 
for invariant similar tests. This allows us to assess and compare the power properties of 
tests such as the conditional likelihood ratio (CLR), the Lagrange multiplier, and the 
Anderson-Rubin tests. We find that the CLR test is quite close to being uniformly most 
powerful invariant among a class of two-sided tests. 

The finite-sample results of the paper are extended to the case of unknown error co- 
variance matrix and possibly nonnormal errors via weak instrument asymptotics. Strong 
instrument asymptotic results also are provided because we seek tests that perform well 
under both weak and strong instruments. 

KEYWORDS: Average power, instrumental variables regression, invariant tests, opti- 
mal tests, power envelope, similar tests, two-sided tests, weak instruments. 

1. INTRODUCTION 

IN INSTRUMENTAL VARIABLES (IVs) regression with a single included endoge- 
nous regressor, instruments are said to be weak when the partial correlation 
between the IVs and the included endogenous regressor is small, given the in- 
cluded exogenous regressors. The effect of weak IVs is to make the standard 
asymptotic approximations to the distributions of estimators and test statis- 
tics poor. Consequently, hypothesis tests with conventional asymptotic justifi- 
cations, such as the Wald test based on the two-stage least squares estimator, 
can exhibit large size distortions. 

A number of papers have proposed methods for testing hypotheses about 
the coefficient, p, on the included endogenous regressors that are valid even 
when IVs are weak. Except for the important early contribution by Anderson 
and Rubin (1949) (AR), most of this literature is recent. It includes the papers 
by Staiger and Stock (1997), Zivot, Startz, and Nelson (1998), Wang and Zivot 
(1998), Dufour and Jasiak (2001), Moreira (2001, 2003), Kleibergen (2002, 

1Andrews, Moreira, and Stock gratefully acknowledge the research support of the National 
Science Foundation via Grant numbers SES-00-01706 and SES-04-17911, SES-04-18268, and 
SBR-02-14131, respectively. The authors thank three referees, a co-editor, Tom Rothenberg, 
Jean-Marie Dufour, Grant Hillier, Anna Mikusheva, and seminar and conference participants at 
Harvard/MIT, Michigan, Michigan State, Queen's, UCLA/USC, UCSD, the Yale Statistics De- 
partment, the 2003 NBER/NSF Conference on Weak Instruments at MIT, the 2004 Far-Eastern 
Econometric Society Meetings in Seoul, and the 2004 Canadian Econometrics Study Group 
Meetings in Toronto for helpful comments. 
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2004), Dufour and Taamouti (2005), Guggenberger and Smith (2005, 2006), 
and Otsu (2006). None of these contributions develops a satisfactory theory of 
optimal inference in the presence of potentially weak IVs. 

The purpose of this paper is to develop a theory of optimal hypothesis testing 
when IVs might be weak, and to use this theory to develop practical valid hy- 
pothesis tests that are nearly optimal whether the IVs are weak or strong. We 
adopt the natural invariance condition that inferences are unchanged if IVs 
are transformed by an orthogonal matrix, e.g., changing the order in which the 
IVs appear. The resulting class of invariant tests includes all tests proposed 
for this problem of which we are aware, except those that entail potentially 
dropping an IV. We focus on the practically important case of a single endoge- 
nous variable. Some results for multiple endogenous variables are provided by 
Andrews, Moreira, and Stock (2004) (hereafter denoted AMSO4). 

We show that there does not exist a uniformly most powerful invariant 
(UMPI) two-sided similar test of Ho: / = /o when the model is overidenti- 
fied, although there is one when the model is just identified. Our numerical 
results for the overidentified case, however, demonstrate that there are tests 
that are very nearly optimal, in the sense that their power functions are nu- 
merically very close to the power envelope uniformly in the parameter space. 
In particular, the conditional likelihood ratio (CLR) test proposed by Moreira 
(2003) is numerically nearly two-sided UMPI among similar tests when the 
model is overidentified and is exactly so when the model is just identified. We 
recommend the use of the CLR test in empirical practice. 

On the other hand, the power of the Lagrange multiplier (LM) test of 
Kleibergen (2002) and Moreira (2001) is never above that of the CLR test, 
and in some cases is far below (when the model is overidentified). Hence, the 
CLR test dominates the LM test in terms of power and we do not recommend 
the LM test for practical use. 

An important use of tests concerning / is the construction of confidence 
intervals (or sets) obtained by inverting the tests. (Specifically, the set of /o 
values for which Ho: 3 = 3o cannot be rejected at level a yields a 100(1 - a)% 
confidence interval for the true /3 value.) The near optimality of the CLR test 
yields a corresponding near optimality of the CLR-based confidence set. The 
latter (nearly) minimizes, among 100(1 - a)% confidence sets, the probability 
of incorrectly including a given /3 value, call it /o, in the confidence interval 
when the true value is an arbitrary value to the left of /o, say p*, averaged 
with the probability of incorrectly including /o when the true value is some 
particular value to the right of 3o, say p/ (which depends on /3*). 

The optimality results are developed for strictly exogenous IVs, linear struc- 
tural and reduced-form equations, and homoskedastic Gaussian errors with 
a known covariance matrix. For this model, we obtain sufficient statistics, 
a maximal invariant (under orthogonal transformations of the IVs), and the 
distribution of the maximal invariant. We determine necessary and sufficient 
conditions for invariant tests to be similar. 
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We construct a two-sided power envelope for invariant similar tests. There 
are different ways to do so depending on how one imposes two-sidedness. 
Here, we impose two-sidedness by comparing tests based on their average 
power for two parameter values-one greater than the null value 80 and the 
other less than 8o. The power envelope is mapped out by a class of two-point 
optimal invariant similar (POIS2) tests. The choice of which parameter values 
to pair with each other is determined such that the resultant POIS2 tests are 
asymptotically efficient (AE) under strong IV asymptotics. In consequence, we 
refer to this power envelope as the AE two-sided power envelope for invariant 
similar tests. 

The foregoing results are developed by treating the reduced-form error co- 
variance matrix as known. In practice, this matrix is unknown and must be 
estimated. Using Staiger and Stock (1997) weak-IV asymptotics, we show that 
the exact distributional results extend, in large samples, to feasible versions of 
these statistics using an estimated covariance matrix and possibly nonnormal 
errors. We show that the finite-sample power envelope derived with known 
covariance matrix is also the asymptotic Gaussian power envelope with un- 
known covariance matrix, under weak-IV asymptotics. In a Monte Carlo study 
reported in AMS04, we find that, for normal errors and unknown covariance 
matrix f2, sample sizes of 100-200 observations are sufficient for (i) the sizes of 
the CLR, LM, and AR tests with estimated covariance matrices to be well con- 
trolled using weak-IV asymptotic critical values and (ii) the weak-IV asymp- 
totic power functions to be good approximations to the finite-sample power 
functions. 

Finally, we obtain asymptotic properties of the tests considered in this pa- 
per when the IVs are strong. These results are essential for determining the 
class of POIS2 tests that are asymptotically efficient under strong IVs, which 
lies behind the construction of the two-sided power envelope. The CLR and 
LM tests are shown to be asymptotically efficient with strong IVs against local 
alternatives, although (as is known) the AR test is not. In AMS04, the CLR, 
LM, AR, and POIS2 tests are shown to be consistent against fixed alternatives 
under strong IVs. 

In addition to similar tests, AMS04 considers optimal nonsimilar tests using 
the least-favorable distribution approach described, e.g., by Lehmann (1986). 
Although the nonsimilar and similar tests differ in theory, AMS04 finds that 
the power envelopes of invariant similar and nonsimilar tests are numerically 
very close. 

Numerous additional numerical results that supplement those given in 
Section 5 are provided in Andrews, Moreira, and Stock (2006b) (denoted 
AMS06b), which also provides detailed tables of conditional critical values for 
the CLR test. Extensions and results related to this paper, including optimal 
one-sided tests and versions of the CLR, LM, and AR test statistics that are 
robust to heteroskedasticity and/or autocorrelation, are provided in AMSO4. 

Other papers that consider optimal testing in the exact Gaussian IV regres- 
sion model are papers by Moreira (2001) and Chamberlain (2003). Moreira 
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(2001) develops a theory of optimal one-sided testing without an invariance 
condition and uses this to develop one-sided power envelopes. However, with- 
out the invariance condition the family of tests is too large to obtain nearly 
optimal tests when the model is overidentified. Chamberlain (2003) considers 
minimax decision procedures and his results for tests show that the imposi- 
tion of the invariance condition considered here does not affect the minimax 
decision problem. 

The remainder of this paper is organized as follows. Section 2 introduces the 
model and determines sufficient statistics for the model. Section 3 introduces 
a natural invariance condition concerning orthogonal rotations of the IV ma- 
trix. It also provides necessary and sufficient conditions for invariant tests to 
be similar. Section 4 introduces POIS2 tests and determines a two-sided power 
envelope for normal errors and known error covariance matrix f2. Section 5 
presents numerical results that show that the CLR test has power essentially 
on the power envelope, whereas the LM and AR tests have power that is some- 
times on, and sometimes well below, the power envelope. Section 6 analyzes 
the asymptotic properties of the POIS2 tests under weak IVs, possibly nonnor- 
mal errors, and unknown f2. These results are used to determine a weak-IV 
asymptotic two-sided power envelope for the case of independent and iden- 
tically distributed (i.i.d.) normal errors and unknown f2. Section 7 establishes 
the asymptotic properties of CLR and POIS2 tests under strong IVs when f is 
unknown and the errors may be nonnormal. An Appendix contains proofs of 
the results. 

2. MODEL AND SUFFICIENT STATISTICS 

In this section, we consider a model with one endogenous variable, multiple 
exogenous variables, multiple IVs, and normal errors with known covariance 
matrix. In later sections, we allow for nonnormal errors with unknown covari- 
ance matrix. 

The model consists of a structural equation and a reduced-form equation, 

(2.1) 
yl 

= y23 + Xy + u, 

y2 = Z7T + X 1 + v2, 

where yl, y2 E ", X E R•nxp, and Z E R nxk are observed variables; u, v2 E I R 
are unobserved errors; and P E R, rT E Rk, and y1, ?1 E •RP are unknown para- 
meters. The exogenous variable matrix X and the IV matrix Z are fixed (i.e., 
nonstochastic), and [X: Z] has full column rank p + k. The n x 2 matrix of 
errors [u: v2] is i.i.d. across rows, with each row having a mean zero bivariate 
normal distribution. 

Our interest is in the null and alternative hypotheses 

(2.2) Ho: 3 = 30 and H1: 1 3#o0. 
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We transform Z so that the transformed IV matrix, Z, is orthogonal to X: 

(2.3) y2 = 
Zr- 

+ X X+ v2, where 

Z = MZ, Mx = I, - Px, Px X(X'X)-X', 

S= 1 + (X'X)-1'X'Zr, and Z'X =0. 

The two reduced-form equations are 

(2.4) yl = Zrp + Xy + vl 

y2 = 
Z"r 

+ X6 + v2, where 

y = Y1 + 6P and v1 = u + v20* 

The reduced-form errors [v1: v2] are i.i.d. across rows, with each row having a 
mean zero bivariate normal distribution with 2 x 2 nonsingular covariance ma- 
trix f. For the purposes of obtaining an exact power envelope, we suppose f2 is 
known. Below we show that the asymptotic power envelope for unknown f and 
weak IVs is the same as the exact envelope with known f2. 

The two equation reduced-form model can be written in matrix notation as 

(2.5) Y = Zrwa' + Xqr + V, where 

Y = [yl :Y21, V [1 :2], 
a = (, 1)', and r = 

[y:?1. 
The distribution of Y e Rnx2 is multivariate normal with mean matrix Z7ra' + 
X r, independence across rows, and covariance matrix f for each row. The 
parameter space for 0 = (p, 7', y', 4')' is taken to be R x IRk x IP x IRP. 

Because the multivariate normal is a member of the exponential family of 
distributions, low-dimensional sufficient statistics are available. 

LEMMA 1: For the model in (2.5): 
(a) Z'Y and X'Y are sufficient statistics for 0; 
(b) Z'Y and X'Y are independent; 
(c) X'Y has a multivariate normal distribution that does not depend on (3, 

(d) Z'Y has a multivariate normal distribution that does not depend on r = 
[Y: fl; 

(e) Z'Y is a sufficient statistic for (P, 7'T)'. 

For tests concerning 3, there is no loss (in terms of attainable power func- 
tions) in considering tests that are based on the sufficient statistic Z'Y for 
(p, 7T')'. This eliminates the nuisance parameters r = [y: ] from the prob- 
lem. The nuisance parameter 7T remains. As in Moreira (2003), we consider a 
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one-to-one transformation of Z'Y: 

(2.6) S = (Z'Z)-1I2Z'Ybo - 
(bobo )-1/2 

T = (Z'Z)-1/2Z'YQ-lao (ao-lao)-1/2, where 

bo = (1, -go)', ao = (o0, 1)', 

and A-1/2 denotes the symmetric square root of a positive semi-definite ma- 
trix A.2 

The means of S and T depend on the quantities 

(2.7) t, = (Z'Z)1/2%T7 E I•k 

C, = ( 8 - (3o) (b bo)-1/2 E R, 
dp = a''-lao 

- 
(aon-1ao)-1/2 IR, where a = (/, 1)'. 

The distributions of S and T are given in the following lemma. 

LEMMA 2: For the model in (2.5): 
(a) S ~ N(cp I,, Ik); 
(b) T ~ N(dpA,T Ik); 
(c) S and T are independent. 

COMMENTS: (i) Lemma 2 holds under Ho and H1. Under H0, S has mean 
zero. 

(ii) The constant dp that appears in the mean of T can be rewritten as 

(2.8) dp = b'Qbo - (bo' bo)-1/2(det(Q))-1/2, where b = (1, -/)'. 

(iii) The proofs of Lemmas 1 and 2 are standard; see AMS06b for details. 

3. INVARIANT SIMILAR TESTS 

The sufficient statistics S and T are independent multivariate normal 
k-vectors with spherical covariance matrices. The coordinate system used to 
specify the vectors should not affect inference based on them. In consequence, 
it is reasonable to restrict attention to coordinate-free functions of S and T. 
That is, we consider statistics that are invariant to rotations of the coordinate 
system. Rotations of the coordinate system are equivalent to rotations of the 
k IVs. Hence, we consider statistics that are invariant to orthonormal trans- 
formations of the IVs. We note that Hillier (1984) and Chamberlain (2003) 
considered similar invariance conditions. 

2The statistics S and T are denoted S and T, respectively, by Moreira (2003). 
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We consider the following groups of transformations on the data ma- 
trix [S: T] and, correspondingly, on the parameters (/3, 7r): 

(3.1) G = {gF:gF(X) = Fx for x e Rk x2 

for some k x k orthogonal matrix F I, 

G = {g,:F gF(p, I) = (p, (Z'Z)-1/2F(Z'Z)1/2'r) 
for some k x k orthogonal matrix F}. 

The transformations are one-to-one and are such that if [S: T] has a distribu- 
tion with parameters (/, -r), then gF([S: T]) has a distribution with parameters 

g(/3, 7i), by Lehmann (1986, p. 283). (The second element ofgF is determined 
by F~/, = 

gF(OT), which holds when gF(rT) 
= 

(Z'Z)-1/2F(Z'Z)1/2TT.) 
Further- 

more, the problem of testing Ho versus H1 remains invariant under gF E G 
because Ho and H1 are preserved under gF (i.e., gF(/, 7r) is in H, if and only 
if (/3, 7r) is in Hj for j = 0, 1). Invariance under the transformation group G 
ensures that tests of Ho are unaffected by changing the units of Z or by respec- 
ifying binary units as contrasts. 

Note that orthonormal transformations of the k IVs lead to the transfor- 
mations in (3.1). In particular, the transformation Z -+ ZF' corresponds to 
[S: T] -+ F[S: T].3 

An invariant test, 4) (S, T), under the group G is one for which 4 (FS, FT) = 

4(S, T) for all k x k orthogonal matrices F. By definition, a maximal invariant 
is a function of [S: T] that is invariant and takes different values on different 
orbits of G.4 Every invariant test can be written as a function of a maximal 
invariant; see Theorem 6.1 of Lehmann (1986, p. 285). Hence, it suffices to 
restrict attention to the class of tests that depend only on a maximal invariant. 

Let 

(3.2) Q = [S: T]'[S: T] = 
S 

'S 
T'T 

Qs 
Qsr T'S T'T Qsr GQT 

Q-= (S'S, S'T)' = (Qs, QST)'. 

The subscript 1 on Q, reflects the fact that Q, is the first column of Q. For 
convenience, we use Q and (Q1, QT) interchangeably. 

THEOREM 1: The 2 x 2 matrix Q is a maximal invariant for the transforma- 
tions G. 

3This holds because (FZ'ZF')-1/2 = (FBAB'F')-1/2 = FBA-1/2B'F' = F(Z'Z)-1/2F', where 
Z'Z = BAB' for an orthogonal k x k matrix B and a diagonal k x k matrix A. 

4An orbit of G is an equivalence class of k x 2 matrices, where xl j x2 (mod G) if there exists 
an orthogonal matrix F such that x2 = Fxl. 
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COMMENTS: (i) The statistic Q has a noncentral Wishart distribution be- 
cause [S: T] is a multivariate normal matrix that has independent rows and 
common covariance matrix across rows. The distribution of Q depends on -r 
only through the scalar 

(3.3) A = -'Z'Z7T > 0. 

Thus, the utilization of invariance has reduced the k-vector nuisance parame- 
ter -7i to a scalar nuisance parameter A. 

(ii) Examples of invariant tests in the literature include the AR test; the 
standard likelihood ratio (LR) and Wald tests, which use conventional, i.e., 
strong IV asymptotic, critical values; the LM test of Kleibergen (2002) and 
Moreira (2001); and the CLR and conditional Wald tests of Moreira (2003), 
which depend on the standard LR and Wald test statistics coupled with "con- 
ditional" critical values that depend on QT. The LR, LM, and AR test statistics 
depend on Q or (S, T) in the following ways: 

1(3.4) 
LR (- + ( )2 + 4Q 

(3.4) LR = -(Qs QT ? (Qs - QT)2 + 
4Q~T), 

QLM 
, (S'T)2 LM - TT 

QT T'T 

Qs S'S AR = k k 

(The above expression for LR is simpler than, but equivalent to, the expression 
given by Moreira (2003).) The only tests in the IV literature that we are aware 
of that are not invariant to G are tests that involve preliminary decisions to 
include or exclude a specific instrument; cf. Donald and Newey (2001) and 
Wald tests based on the Chamberlain and Imbens (2004) many IV estimator. 

A test based on the maximal invariant Q is similar if its null rejection rate 
does not depend on the parameter 7r that determines the strength of the IVs Z. 
(See Lehmann (1986) for a general discussion of similarity.) The finite-sample 
performance of some invariant tests, such as a t test based on the two-stage 
least squares estimator, varies greatly with 7T. In consequence, such tests of- 
ten exhibit substantial size distortion when conventional (strong-IV) asymp- 
totic critical values are employed. Invariant similar tests do not suffer from 
this problem. Using the argument of Moreira (2001), we characterize the class 
of invariant similar tests. 

Let the [0, 1]-valued statistic 4(Q) denote a (possibly randomized) test that 
depends on the maximal invariant Q. 

THEOREM 2: An invariant test 4 (Q) is similar with significance level a if and 
only if Epo(4(Q)IQT = qT) = a for almost all qT, where EPo(.IQT = 

qr) de- 
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notes conditional expectation given QT = qT when 1 = go (which does not depend 
on 7T). 

COMMENTS: (i) The theorem suggests that a method of determining an in- 
variant test with optimal power properties is to find an optimal invariant test 
conditional on QT = qT for each qT > 0. 

(ii) The LR and Wald statistics are invariant statistics whose distributions 
under the null depend on QT. Hence, the standard LR and Wald tests that use 
conventional (strong-IV asymptotic) critical values are not invariant similar 
tests. To obtain similar tests based on the LR and Wald statistics, one must use 
critical values that depend on QT, as in Moreira (2003). The CLR test rejects 
the null hypothesis when 

(3.5) LR > KLR,a(QT), 

where KLR,a(QT) is defined to satisfy Pp0(LR > KLR,a (QT)IQ = qT) = a and 
the conditional distribution of Q1 given QT is specified in Lemma 3(c) be- 
low. See AMS06b for tables of conditional critical values for the CLR test. 
A GAUSS program for p-values of the CLR test is described by Andrews, 
Moreira, and Stock (2006a) and is available at James Stock's webpage. 

4. TWO-SIDED POWER ENVELOPE 

The CLR, LM, and AR tests are invariant similar tests and, hence, have 
good size properties even under weak IVs. These tests are somewhat ad hoc, 
however, in the sense that they have no known optimal power properties un- 
der weak IVs except in the just-identified case, i.e., when k = 1. In this case, 
the CLR, LM, and AR tests are equivalent tests, and Moreira (2001) shows 
that these tests are uniformly most powerful unbiased for two-sided alterna- 
tives. 

We address the question of optimal invariant similar tests when the IVs may 
be weak. We construct a power envelope for two-sided tests and show numer- 
ically that the CLR test essentially lies on the power envelope and, hence, is 
essentially an optimal two-sided invariant similar test. 

There are several ways to construct a two-sided power envelope, depend- 
ing on how one imposes the two-sidedness condition. Three approaches are to 
(i) consider average power (AP) for /3 values less than and greater than the null 
value Po, (ii) impose a sign invariance condition, and (iii) impose a necessary 
condition for unbiasedness. We develop approach (i) in detail here and briefly 
comment on approaches (ii) and (iii) at the end of this section (the details 
of which can be found in AMSO6b). It turns out that approaches (i) and (ii) 
yield exactly the same power envelope, and approach (iii) yields a power enve- 
lope that is found numerically to be essentially the same as that of approaches 
(i) and (ii); see AMS06b. 
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Approach (i) is based on determining the highest possible average power 
against a point (/, A) = (3*, A*) and some other point, say (P3, A*), for which 
p3• lies on the other side of the null value /3 from /3*. (The power envelope then 
is a function of (/, A) = (/3*, A*).) The naive "symmetric alternative" choice 

(/3P, ?A) = (230 - p*, A*) that yields I/3* - goI = I/3P - /3o is found to be a 
poor choice because the testing problem is not correspondingly "symmetric." 
In fact, the test that maximizes average power against these two points turns 
out to be a one-sided LM test asymptotically under strong-IV asymptotics for 
any choice of (/3*, A*) (see comment (iii) to Theorem 8). This indicates that 
the symmetric alternative choice of (/3, A*) is not a good choice for generating 
two-sided tests. 

How then should (/3, A*) be defined? We are interested in tests that have 
good all-around two-sided power properties. This includes high power when 
the IVs are strong. In consequence, given a point (/3*, A*), we consider the 
point (P/, A*) that has the property that the test that maximizes average power 
against these two points is asymptotically efficient under strong-IV asymptot- 
ics. As shown in Section 7, this point is unique. Furthermore, the power of 
the test that maximizes average power against these two points is the same 
for each of the two points. This choice also has the desirable properties that 
(a) p/ is on the other side of the null value /3 from P/3*, (b) the marginal dis- 
tributions of Qs, QST, and QT under (/3, A*) are the same as under (/3*, A*), 
and (c) the joint distribution of (Qs, QST, QT) under (/3, A*) equals that of 
(Qs, -QST, QT) under (/3*, A*), which corresponds to •; being on the other 
side of the null from /3*. 

Given (P*, A*), the point (P/3, A*) that has these properties solves 

(4.1) (A)'1/2c8 = _(A*)1/2c* ( # 0) and 
(A2)1/2d,3 

= 
(A*)1/2d,*. 

This follows from Lemmas 2 and 3(a) below and A = 
',jL,. 

Note that cp is 
proportional to /3 - /3o and dp is linear in /3. We denote by /AR the point /3 at 
which do = 0.5 Provided /3* /3AR, the solutions to the two equations in (4.1) 
are 

d(j/3* -/3o) (4.2) /3= dp, ( * - oo)- and 2 - 
doo + 2r(p* - po) 

(dp, + 2r(/3* - /o))2 * -d where 

r = e'Q-'ao (aoQ-'ao)-1/2 
and el = (1, 0)'. 

5Surprisingly, the one-sided point-optimal invariant similar test against /AR is the (two-sided) 
AR test, see AMS04a. Some calculations yield PAR = (011 - 01280)M(O12 - 02290), provided 
O12 

- W22,80 , 0, where ow, denotes the (i, j) element of f2. 
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(If p* = pAR, there is no solution to (4.1) with P3 on the other side of 30o 
from 3*.) 

We refer to the power envelope based on maximizing average power against 
(3*, A*) and (138, A*) with (P/3, A*) as in (4.1) as the asymptotically efficient (AE) 
two-sided power envelope for invariant similar tests. 

The average power of a test 4(Q) against the two points (/*, A*) and 

(/3P, A*) is given by 

(4.3) K(; P*, A*) = 2 
[Ep*,,g• 

(Q) + E*, (Q)] = 

E*•,A 

(Q), 
24.) 

2 

E8*,,ao 
* Q, 

where Ep,A denotes expectation with respect to the density fQI,QT(q1, qT; 3, A), 
which is the joint density of (Qi, QT) at (ql, qT) when (3, A) are the true para- 
meters, and E*,3, denotes expectation with respect to the density 

(4.4) f ,,Qr(ql, qT; 13*, A*) 

= [fQlar(, , 1*) + fel,)r(ql, qT; P2, A2)] 

Hence, the average power of 04(Q) against (13*, A*) and 
(f23, 

A*) can be written 
as the power against the single density fi,r ,(ql, qT; 1P*, A*). 

We want to find the test that maximizes average power against the alterna- 
tives (P*, A*) and (P3, A*) among all level a invariant similar tests. By The- 
orem 2, invariant similar tests must be similar conditional on QT = qT for 
almost all qT. In addition, by (4.3), average power against (P*, A*) and 

(3"2, 
A*) 

equals unconditional power against the single density fl,,QT(q1, qT; P*, A*). 
In turn, the latter equals expected conditional power given QT against 

fi? 
, QT(ql, qT; 1P*, A*). Hence, it suffices to determine the test that maximizes 

conditional average power given QT = qT among tests that are invariant and 
are similar, conditional on QT = qT, for each qT. 

Conditional power given QT = qT is 

(4.5) K(14QT = qT; P*, A*) 

f= 
,+ (q1, 

qT)f~,QT(qllqT; 1*, 
A*) dql, where 

ff* (qilqT;0%*,A*)= 
fl,OQTr(q', 

qT; P*, A*) 
q 
f(qT; P*, A*) 

1 
f 

r(qT; 
P*, A*) 

-2 [-feO 
(qT; f*, A*) + 

feor(qT; o3, A2)], 
and fQr (qT; 1, A) is the density of QT at qT when the true parameters 
are (p3, A). 
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Next, we consider the conditional density of Qi given QT = qT under the null 
hypothesis. Because QT is a sufficient statistic for A under H0, this conditional 
density does not depend on A. Hence, we denote the conditional density of Qi 
given QT = qT under the null hypothesis by fQl QT(qllqT; 0o). 

For any invariant test 4 (Q1, QT), conditional on QT = qr, the null hypothe- 
sis is simple because fQllQT(qllqT; 8o) does not depend on A. Given the average 
power criterion function K( ,; p*, A*), the alternative hypothesis of concern is 
also simple. In particular, conditional on QT = qT, the alternative density of in- 
terest is fl IQT (qllqT; P*, A*). In consequence, by the Neyman-Pearson lemma, 
the test of significance level a that maximizes conditional power given QT = qT 
is of the likelihood ratio form and rejects Ho when the LR is sufficiently large. 
In particular, the point-optimal invariant similar two-sided (POIS2) test statis- 
tic is 

f ~e(Q1|qT; P*, A*) 
(4.6) LR*(QI, qT; P*, A*) flIQ(Q 

fQ leQT(QllqT; Po) 

fI,QT (Q1, 
q; /3*, A*) 

f6 (qT; P*, 
A*)feo lr(QlllqT; 0o) 

To provide an explicit expression for LR*(Q1, q; /3*, A*), we now determine 
the densities fel,QT(ql, qT; /, A), frQ(qT; /, A), and flleQT(qllqT; 3o) that arise 
in (4.4)-(4.6). These densities depend on the quantity 

(4.7) jp(q) = 
h'qh- 

= c2qs + 2cdpqsTr + d2qT, where hp = (cp, dp)' 

and ql = (qs, qsr)'. Note that ?g(q) > 0 because q is positive semidefinite al- 
most surely. 

LEMMA 3: (a) The density of (Q1, QT) is 

fQe,QT(ql, qT; /3, A) 

K, 
exp+ 

d ) det(q)(k-3)/2 
- K1 xp - 2 

x exp (A+ q(q))-(k-2)/4I(k-2)/2 •( 

where 

q1 = (qs, qST)' ER+ x R, qT e R+, 

q = 
qs q K = 2(k2)/2pi/2F((k - 1)/2), 

I,(.) denotes the modified Bessel function of the first kind of order v, pi = 

3.1415..., and F(.) is the gamma function. 
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(b) The density of QT is a noncentral chi-squared density with k degrees of 
freedom and noncentrality parameter d A: 

fo ; , ) K2 p - p - ( q-(k-2)/4 

fQ, ( 
qT 

,A)=Klexp( 
-2 )P T exp 

(Ad/3q2 

x I(k-2)/2(AdqT) 

for qT > 0, where K21 = 2. 
(c) Under the null hypothesis, the conditional density of Q1 given QT = qT is 

fQI QT(qlrqT; /o) = K1K2-1 exp(-qs/2) det(q)(k-3)/2 qT(k-2)/2 

(d) Under the null hypothesis, the density of Qs is a central chi-squared density 
with k degrees of freedom: 

fs(s) = K3q(k-2)/2 exp(-qs/2) 

for qs > 0, where K31 = 2k/2F(k/2). 
(e) Under the null hypothesis, the density of S2 = QST/(IISII II T II) at s2 is 

fs2 (s2) = K4(1 - S2)(k-3)/2 

for S2 E [-1, 1], where K41 =pil/2F((k - 1)/2)/ F(k/2). 
(f) Under the null hypothesis, Qs, S2, and T are mutually independent and, 

hence, Qs, S2, and QT also are mutually independent. 

COMMENTS: (i) The joint density fr,,QT (qs, qT; 3, A) given in part (a) of the 
lemma is a noncentral Wishart density.6 The null density of S2 given in part (e) 
of the lemma is the same as that of the sample correlation coefficient from an 
i.i.d. sample of k observations from a bivariate normal distribution with means 
zero and covariance matrix I2 when the means of the random variables are not 
estimated. 

(ii) The modified Bessel function of the first kind that appears in the densi- 
ties in parts (a) and (b) of the lemma is defined by 

(4.8) 

I(2x) 

= (X2/4)J 

(4.8) Ix)j!(v + j + 1) 

6In Johnson and Kotz (1970, 1972), a standard reference for probability densities, the formulae 
for the noncentral Wishart and chi-squared distributions in terms of I(k-2)/2(') contain several 
typographical errors. Hence, the densities in Lemma 3(a) and (b) are based on Anderson (1946, 
Eq. (6)) and are not consistent with those of Johnson and Kotz (1970, Eq. (5), p. 133; 1972, 
Eq. (50), p. 176). Sawa (1969, footnote 6) notes that Anderson's (1946) Equation (6) contains a 
slight error in that the covariance matrix E is missing in one place in the formula. This does not 
affect our use of Anderson's formula, however, because we apply it with 2 = Ik. 
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for x > 0, e.g., see Lebedev (1965, p. 108). For Ixi small, I,(x) - (x/2)"l/ 

F(v + 1); for Ixl large, I,(x) - ex/72pi .x; and for v > 0 (which holds in 
the expression for fQ1,Qr(ql, qT; /, A) whenever k > 2), I,() is monotoni- 
cally increasing on R+; see Lebedev (1965, p. 136). Expressions for I,(x) 
in terms of elementary functions are available whenever v is a half-integer 
(which corresponds to k being an odd integer). For example, I-1/2(X)= 
x-1/2(2/pi)'/2(exp(x) + exp(-x))/2 (which arises when k = 1) and 1/2(X) = 

x-1/2(2/pi)1/2(exp(x) - exp(-x))/2 (which arises when k = 3). 

Equations (4.4)-(4.6) and Lemma 3 combine to give the following result for 
the POIS2 test statistic. 

COROLLARY 1: The optimal average-power test statistic against (/3*, A*) and 

(/3, A*), where (P3, A*) satisfies (4.1), is 

fL*,,T (ql' qr; P*, A*) 
LR*(ql, qT; P*, A*) = qT 

f* (qT; 8*, A*)fQ, 
oQ(ql|Iq,; 

[3) 
fi(q, qT; /3*, A*) + t(ql, qT; P/3, A) 

2q2(qT; /*, A*) + I2(qT; /3T , A*) 

where 

q(q1, qr; /3, A) 

= exp - 2 -(-2/42)/2(A(q)) 

q'2(qT; /3, A) = exp - (Ad2 
)-(k-2)/4l(k-2)/2( 

Ad,3qT), 

and cp, dp, and 1p (q) are defined in (2.7) and (4.7). 

COMMENTS: (i) Computation of the integrands of if(ql, q; /3, A) and 
2/ 2(qT; /, A) in Corollary 1 are easy and extremely fast using GAUSS or Matlab 
functions to compute the modified Bessel function of the first kind. Hence, cal- 
culation of the test statistic LR*(Q1, QT; P*, A*) is very fast. 

(ii) When k = 1, some calculations using the expression for Il/2(X) given 
in comment (ii) to Lemma 3 show that the numerator of the right-hand 
side expression for LR*(qi, qT; P*, A*) in Corollary 1 is increasing in S2 

(see AMSO6b). Hence, when k = 1, the AR test maximizes average power 
against (/3*, A*) and (P/3, A*) for all (/3*, A*) in the class of invariant similar 
tests. That is, the AR test is a uniformly most powerful (UMP) two-sided in- 
variant similar test. When k = 1, LR = LM = kAR, so the same optimality 
property holds for the CLR and LM tests. In addition, Moreira (2001) shows 



TWO-SIDED INVARIANT SIMILAR TESTS 729 

that these tests are UMP unbiased when k = 1. The remainder of this paper 
focuses on the case k > 1. 

The POIS2 test with significance level a rejects Ho if 

(4.9) LR*(QI, QT; P3, A*) > Ka(QT; /3, A*), 

where K,(QT; /*, A*) is defined by 

(4.10) 
Po0 

(LR*(Ql, q,; P*, A*) > Ka(qT; /*, A*)IQT = qT) = r. 

Here, 
Ppo("I 

Q( = qT) denotes conditional probability given QT = qT under 
the null, which can be calculated using the density in Lemma 3(c). Note that 

K,(.; p3, A*) does not depend on n2, Z, X, or the sample size n. 
By Lemma 3(d)-(f), under Ho, (i) Qs, 32 = Qs/(|IISI I T11) and QT are 

independent, (ii) Qs x2, and (iii) S2 has density fs2. The null distribu- 
tion of (Qs, S2) can be simulated by simulating S - N(0, Ik) and taking (Qs, 
S2) = (S'S, S'el/IISII) for el = (1, 0, ..., 0)' E Rk. Hence, the null distribution 
of Q1 = (S'S, S'T) conditional on QT = qT can be simulated easily and quickly 
by simulating S ~ N(O, Ik) and taking Q1 = (S'S, S'el 

- qT). 
The critical value K,(QT; /*, A*) can be approximated by simulating nMc 

i.i.d. random vectors Si -- N(0, Ik) for i = 1, ... , Mc, where nMc is large, com- 

puting Q1(i)-= (S'S5, S'el Q1/2) for i= 1, ..., nMc, and taking ln(K,(QT; /*, 
A*)) to be the 1 - a sample quantile of {ln(LR*(Qi(i), QT; *, A*)):i = 
1,..., nMC. 

The following theorem summarizes the results of this section. The power of 
the POIS2 tests in the theorem maps out the AE two-sided power envelope for 
invariant similar tests as (/3*, A*) is varied. 

THEOREM 3: The POIS2 test that rejects Ho when LR*(Q1, QT; P*, A*) > 

Ka(QT; /*, A*) maximizes average power against the alternatives (P*, A*) and 
(/P, A*), where (/3*, A ) satisfies (4.1), over all level a invariant similar tests. 

Approach (ii) to the construction of a two-sided power envelope uses the 
additional invariance condition to that in (3.1) given by 

(4.11) [S: T] -- [-S: T]. 

The corresponding transformation in the parameter space is (/3*, A*)-- 

(P/, A*), where (P/3, A*) satisfies (4.1). This parameter transformation pre- 
serves the null hypothesis and the two-sided alternative (but not a one-sided 
alternative). The sign-invariance condition in (4.11) is a natural condition to 

impose to obtain two-sided tests because the parameter vector (P/3, Aj) is the 
appropriate "other-sided" parameter vector to (/3, A) for the reasons stated 
above. The maximal invariant under this sign invariance condition (plus the in- 
variance conditions in (3.1)) is (S'S, IS'TI, T'T) = (Qs, IQsTI, QT). The CLR, 
LM, and AR test statistics all depend on the data only through this maximal 
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invariant and, hence, satisfy the sign-invariance condition. AMSO6b shows that 
the power envelope for the class of invariant similar tests under the invariance 
conditions of (3.1) and (4.11) equals the AE two-sided power envelope. 

Approach (iii) to the construction of a two-sided power envelope for invari- 
ant similar tests is based on a necessary condition for unbiasedness. AMS06b 
shows that an invariant test 4)(Q) is unbiased with size a only if 

(4.12) EPo(o(Q)IQT = q,) = a and Epo(0(Q)QsrTIQTr - q) = 0 

for almost all 
qr. 

A test that satisfies (4.12) is said to be locally unbiased (LU) 
(although we recognize that the conditions in (4.12) are only first-order con- 
ditions, not sufficient conditions, for a test's power function to have a local 
minimum at the null hypothesis). The first condition in (4.12) implies that all 
unbiased invariant tests are similar. The second condition is the requirement 
that the power function of an unbiased invariant test has zero derivative un- 
der Ho. AMS06b also shows that any similar level a test that depends on the 
observations through (Qs, I QST I, QT) satisfies the LU conditions in (4.12). In 
consequence, the CLR, LM, and AR tests are LU and the class of LU invariant 
similar tests is larger than the class of sign-invariant similar tests and the class 
of unbiased invariant tests. 

The test that maximizes power against (P/, A) among LU invariant tests with 
significance level a rejects Ho if 

_ q(q1, q; /3, A) 
(4.13) LR(Q1, QT; /3, A)-A) 

0 2(qT; 8, A) 
> Kla(QlT; , A) + QSTK2a(QT; /, A), 

where Kla(QT; /, A) and K2a(QT; /3, A) are chosen such that the two condi- 
tions in (4.12) hold (cf. Lehmann (1986, Theorem 3.5)). The power of the tests 
in (4.13) for different (/3, A) maps out the power envelope for LU invariant 
tests. This power envelope is found numerically to be essentially the same as 
the AE two-sided power envelope; see AMS06b. 

5. NUMERICAL RESULTS 

This section reports numerical results for the AE two-sided power envelope 
developed in Section 4 and the CLR, LM, and AR tests for the case of known f2 
and normal errors. The model considered is given in (2.4) or (2.5) with f spec- 
ified by 

.O l= 
022 = 1 and )12 

= p.7 Without loss of generality, no X matrix is 
included. The parameters that characterize the distribution of the tests are A 
(= -I'Z'ZwT), 

the number of IVs k, the correlation between the reduced form 

7There is no loss of generality in taking 011 = 022 = 1 because the distribution of the max- 
imal invariant Q under (p3, , f2) for arbitrary positive definite f2 with elements 

0jik 
equals its 

distribution under (/3, 7r, n), where w0l = J22 = 1, O = ('22/'11)1/2, and r = i221/2. 
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errors p, and the parameter p. Throughout, we focus on tests with significance 
level 5% and on the case where the null value is 3o = 0.8 Numerical results 
have been computed for A/k = 0.5, 1, 2, 4, 8, 16, which span the range from 
weak to strong instruments, p = 0.95, 0.50, and 0.20, and k = 2, 5, 10, 20. To 
conserve space, we report only a subset of these results here. The full set of 
results is available in AMSO6b. 

Conditional critical values for the CLR test were computed by numerical 
integration based on the distributional results in Lemma 3. All results reported 
here are based on 5,000 Monte Carlo simulations. Details of the numerical 
methods are given in AMS06b. 

The results are presented as plots of power envelopes and power functions 
against various alternative values of p and A. (For the AE two-sided power 
envelope, (P, A) = (/3*, A*).) Power is plotted as a function of the rescaled al- 
ternative (/3 - 30)A1/2. These can be thought of as local power plots, where the 
local neighborhood is 1/A1/2 instead of the usual 1/n1/2, because A measures 
the effective sample size. 

Figure 1 plots the power functions of the CLR, LM, and AR tests, along with 
the AE two-sided power envelope. The striking finding is that the power func- 
tion of the CLR test effectively achieves the power envelope for AE invariant 
similar tests. Figure 1 documents other results as well. The power function of 
the AR test is generally below the AE two-sided power envelope, except at its 
point of tangency at /3 = /3AR. Also, as is known from previous simulation work 
(e.g., Moreira (2001) and Stock, Wright, and Yogo (2002)), the power function 
of the LM statistic is not monotonic. This is due to the switch of the sign of dp 
as p moves through the value 

/3AR. 
In sum, the results of Figure 1 (and further results documented in AMSO6b) 

show that the CLR test dominates the LM and AR tests and, in a numerical 
sense, attains the two-sided power envelope of Section 4. 

Figure 2 shows how the power results change with k. Figure 2 gives the 
power envelope of Theorem 3 and the power functions of the CLR, LM, 
and AR tests for k =- 2 (Figures 2(a) and 2(b)) and for k = 10 (Figures 
2(c) and 2(d)). 

Two findings of these results (and related results reported in AMSO6b) are 
noteworthy. First, the power of the CLR test is numerically essentially the same 
as the power envelope, confirming the finding above for k = 5 that the CLR 
test is nearly UMP among invariant similar tests of the AE family. 

Second, note that the scale is the same in Figure 2 as in Figure 1 and, aside 
from the location of the blip, the power envelopes are numerically close in each 
panel in the two figures. This confirms that the appropriate measure of infor- 
mation for optimal invariant testing is A1/2 and this scaling does not depend 

8There is no loss of generality in taking /3o = 0 because the structural equation yl = y23 + 
Xyl + u and hypothesis H:0 /3 = /3o can be transformed into yl = y2/3 + Xyl + u and Ho: P/3 = 0, 
where I = yl - y2/30 and/3 p = /3 - /3,. 
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on k. In particular, this implies that the two-sided power envelope does not 
deteriorate significantly with the addition of an irrelevant instrument. 

6. WEAK-IV ASYMPTOTICS 

In this section, we consider the same model and hypotheses as in Section 2, 
but with unknown error covariance matrix f2, (possibly) nonnormal errors, and 
(possibly) random IVs and/or exogenous variables. We introduce analogues of 
the CLR, LM, AR, and POIS2 tests that utilize an estimator of 2. We use 
weak-IV asymptotics, by Staiger and Stock (1997), to analyze the properties of 
the tests and to derive a weak-IV asymptotic power envelope that is analogous 
to the finite-sample AE two-sided power envelope of Section 4. 

For clarity of the asymptotics results, throughout this section we write S, T, 
Qi, etc. of Sections 2-5, as S,, T,, QI,,,, etc., respectively, where n is the sample 
size. All limits are taken as n --+ o. Let Z = [Z:X]. Let Yi, Zi, X, Z1, Zi, 
and Vi denote the ith rows of Y, Z, X, Z, Z, and V, respectively, written as 
column vectors of dimensions 2, k, p, k + p, k, and 2. 

6.1. Assumptions 
We use the same high level assumptions as Staiger and Stock (1997). The 

parameter wn, which determines the strength of the IVs, is local to zero and 
the alternative parameter p is fixed, not local to the null value 8o. We refer 
to this as weak IV fixed alternative (WIV-FA) asymptotics. Let p.d. abbreviate 
"positive definite." 

ASSUMPTION WIV-FA: (a) For some nonstochastic k-vector C, rr = C/nl/2 
(b) For all n > 1, / is a fixed constant. 
(c) The parameter k is a fixed positive integer that does not depend on n. 

ASSUMPTION 1: For some p.d. (k + p) x (k + p) matrix D, n-ZZ --Z D. 

ASSUMPTION 2: For some p.d. 2 x 2 matrix U2, n-1V'V --*p n. 

ASSUMPTION 3: For some p.d. 2(k + p) x 2(k + p) matrix 0, n-1/2 vec(Z' x 
V) --d N(O, 0), where vec(.) denotes the column by column vectorization oper- 
ator. 

ASSUMPTION 4: There exists P = f2 0 D, where P is defined in Assumption 3. 

The quantities C, D, and f2 are assumed to be unknown. Primitive sufficient 
conditions for Assumptions 1-3 are given in AMS04 for i.i.d., independent and 
non-identically distributed (i.n.i.d.), and stationary sequences with {V: i > 1) 
being a martingale difference. Given Assumptions 1-3, a sufficient condition 
for Assumption 4 is homoskedasticity of the errors 14: E(IiJ'/IZi) 

= 
EJVi' 

= U 
almost surely for all i > 1. 
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6.2. Tests for Unknown f2 and Possibly Nonnormal Errors 

We estimate f2 (E R 2x2; defined in Assumption 2) via 

(6.1) f, 
-= 

(n - k - p)-lV'V, where V = Y - PzY - PxY, 

where k and pare the dimensions of Zi and Xi, respectively. Let Vi denote 
the ith row of V written as a column 2-vector. Under Assumptions 1-3, the 
variance estimator is consistent: n,--p - , see Lemma S.1 of AMSO6b. The 
convergence holds uniformly over all true parameters /3, C, y, and 4 no matter 
what the parameter space is. 

We now introduce tests that are suitable for (possibly) nonnormal, ho- 
moskedastic, uncorrelated errors and unknown covariance matrix. See AMS04 
for tests and results for the case when the errors are not homoskedastic or are 
correlated. 

We define analogues of S,, T,, QI,, and QT,, with 2 replaced by f2,: 

(6.2) S = (Z'Z)-"/2Z'Ybo - (b'bo)-1/2 

T,= 
(Z'Z)-1/2Z'Yf2a'ao 

- 
(ao ao)-1/2 

Ql,n = (Qs,,, QST,n)' = (S'S,, S'n)', and 
,,dn 

,. 
The LR, LM, AR, and POIS2 test statistics for the case of unknown 2 are 
defined as in (3.4) and Corollary 1, but with Qs, QST, and QT replaced by Qs,n, 
QST,n, and QT,n, respectively. Denote these test statistics by LR,, LM,, AR,, 
and LR*(Qi,,, QT,n; /P*, A*), respectively. 

6.3. Weak-IVAsymptotic Distributions of Test Statistics 

Next, we show that S, and T,, converge in distribution to independent 
k-vectors S, and T,, respectively, which are defined as follows. Let Nz be 
a k x 2 normal matrix. Let 

(6.3) vec(Nz) N(vec(Dz Ca'), 2 Dz), 

S, = D-1/2Nzbo - 
(b'obo0)-1/2 

~ 
N(cpDZ2C, Ik), 

T 
-= 

D1/2NZ- 'ao (a 0-lao)1/2 - N(dpD/C, k), where 

Dz = Dll - D12D2D21, 

D= l DD12 D11 E Rkxk, D12 E 

]Rkxp, 

and D22E Rpxp D -D21 D22- 
I 

The matrix Dz is the probability limit of n-1Z'Z. Under Ho, S, has mean zero, 
but T,, does not. Let 

(6.4) Qeo = [S : T0,]'[S, : Tj1, 
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Q1,o =((S , S 
(Too)', sT,oO= T)o Too, OQST,oc= S Too, 

Qs,oo = S'Soo, S2,oo00 
= S To/(lsooll- II Too I), and 

AO = C'DzC. 

By (6.3) and the proof of Lemma 3, we find that the density, conditional den- 
sity, and independence results of Lemma 3 for 

(QI,,, 
QT,n), QT,n, Qs,n, and S2,, 

also hold for (Qi,o, QT,o~), QT,oo, Qs,c, and S2,0 with A, replaced by A,. 
The following results hold under Ho and fixed (i.e., nonlocal) alternatives. 

LEMMA 4: UnderAssumptions WIV-FA and 1-4: 
(a) (S,, T)) --d (So, To); 
(b) (S, T) - (Sn, T,) --, 0; 
(c) 

(S,,, 
T) 

-d (Soo, Too). 

COMMENTS: (i) Inspection of the proof of the lemma shows that the re- 
sults of the lemma hold uniformly over compact sets of true 3 and C values, 
and over arbitrary sets of true y and 6 values. In particular, the results hold 
uniformly over vectors C that include the zero vector. Hence, the asymptotic 
results hold uniformly over cases in which the IVs are arbitrarily weak. In con- 
sequence, we expect the asymptotic test procedures developed here to perform 
well in terms of size even for very weak IVs. 

(ii) Lemma 4 and the continuous mapping theorem imply that the as- 
ymptotic distributions of the LR,, LM,, and AR, test statistics are given by 
the distributions of the test statistics in (3.4{with (Qs, QST, QT) replaced by 
(Qs,oo, STr,oo, QT,oo). Under Ho, LM, and AR, have asymptotic X2 and / k 
distributions, respectively. 

Using Lemma 4, we establish the asymptotic distributions of the {LR* (Qi,,, 
QT,n; P*, A*) :n > 1} test statistics and {K,(QT,,; P*, A*): n > 1} critical values. 

THEOREM 4: UnderAssumptions WIV-FA and 1-4: 
(a) (LR*(Qi,n, QT,n; P*, A*), Ka(QT,n; 3*, A*)) --d (LR*(Qi,o, rQT,o; 3*, 

A*), Ka,(QT,o; 8*, A*)); 
(b) P(LR*(Qi,n,n; QT,,3*, A*) > Ka(QT,n; P*, A*)) 

-- 
P(LR*(Qi,j, rQT,Co; 

/3*, A*)> K,(QT,oo; /3*, A*)); 
(c) under H0, P(LR*(QI,o, Qr,o; P/, A*) > K,,(QT,0; /3, A*)) = a. 

COMMENT: Theorem 4(b) is used below to obtain the weak-IV asymptotic 
power envelope for the case of an estimated error covariance matrix. 

6.4. Weak-IVAsymptotic Power Envelope 
In this subsection, we show that the POIS2 test based on LR(Q1,,, QT,n; /*, 

A*) exhibits an asymptotic average-power optimality property when the IVs are 
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weak and the errors are i.i.d. normal with unknown covariance matrix. These 
results yield the AE two-sided asymptotic power envelope. It is the same as the 
finite-sample power envelope of Section 4 when n2 is known. 

For the asymptotic optimality results, we set up a sequence of models (or 
experiments) with the parameters renormalized such that no parameter can be 
estimated asymptotically without error, as is standard in the asymptotic effi- 
ciency literature, e.g., see van der Vaart (1998, Chap. 9). For the parameters 
p3 and C, no renormalization is required given Assumption WIV-FA, because 
neither can be consistently estimated in the weak-IV asymptotic setup. For the 
parameters f and q7, renormalizations are required. We take the true parame- 
ters f2 and r to satisfy 

(6.5) - = +o 
-+ 
n? /1/2 and rq= o + rl1/nl/2, 

where Do and ro are taken to be known, and the unknown parameters to be 
estimated are the perturbation parameters q 1 and n1. The matrices no and n, 
are assumed to be symmetric and positive definite. 

The least squares estimator of q in the model of (2.5) is ~j, = (X'X)-'X'Y. 
For any symmetric e x e matrix A, let vech(A) denote the (~e + 1)/2-column 

vector containing the column by column vectorization of the nonredundant 
elements of A. 

The following basic results hold under Ho and fixed alternatives83 1 3o: 

LEMMA 5: Suppose Assumption WIV-FA holds, the reduced-form errors 

{V,: i > 1} are i.i.d. normal, independent of {Zi: i > 1), with mean zero and p.d. 
variance matrix , and f2 and 

q1 
are as in (6.5). Then: 

(a) (n-1/2Z'Y, n1/2((, - q0), 
2 

n1/2((, - U0)) are sufficient statistics for 
(P3, C, 

1, 
771); 

(b) (n-1/2Z'Y, nl/2(7n - 00), n(n1)/2(n -- -2o))- (Nz, NX, Nn), where 
Nz, Nx, and No are independent k x 2, p x 2, and 2 x 2 normal random 
matrices, respectively, with vec(Nz) - N(vec(DzCa'), 0o 0 Dz), vec(Nx) 
N(vec(rql), 0 o 0 D-1), N n is symmetric, and vech(Na) N(lI, E(" 

- E?) x 

( - E f)'), where = vech (vov') , vo E R2, and vo ~ N(O, no), provided Assump- 
tion 1 also holds. 

Given the result of part (a) of Lemma 5, there is no loss in attainable 
power by considering only tests that depend on the data through (n-1/2Z'Y, 
n'1/2 ,77n - r70), n'1/2(•n 

- U0)). Let 4n(n-1/2Z'Y, n'1/2("n - T/o), n1/2(nn - o0)) 
be such a test. The test 4, is {0, 1}-valued and rejects the null hypothesis when 

, 
= 1. We say that a sequence of tests { 4,: n > 1} is a convergent sequence of 

asymptotically similar tests if, for some function (., ., .), 

(6.6) ),(n-'/2Z'Y, nl/2(In 
- ro),1 n1/2(Qn - 

no)) -+d (Nz, NX, N0), 

Pp,c,no, ,o(4(Nz, Nx, Nn) = 1) = a 
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for /3 = / and all (C, Qo, ro) in the parameter space, where 
Pp,c,,no',,() denotes probability when the true parameters are (P/, C, 20, qr). Examples 

of convergent sequences of asymptotically similar tests include sequences of 
CLR, LM, AR, and POIS2 tests. Standard Wald and LR tests are not asymp- 
totically similar. 

The transformation, call it hn(-), from Nz to [S,: T,] in (6.3) is one-to-one. 
Hence, for some function 4, we have 

(6.7) 4(Nz, Nx, N1a) = (hn'(Sc, T,), Nx, Na) = f(So, To, Nx, Na). 

As in Section 3, we consider the group of transformations given in (3.1) but 
with gF(P8, ir) replaced by -gF(P, C) = (/P, D-1/2FD?/2C) acting on the parame- 
ters (/3, C). The maximal invariant is Q, (defined in (6.4)). 

We say that a sequence of tests 1{n: n > 1) is a convergent sequence of as- 
ymptotically invariant tests if the first condition of (6.6) holds and the distribu- 
tion of 4(S., T,, Nx, Nn) depends on (S,, T,) only through Q,, i.e., 

(6.8) 0(S., T., Nx, Na) - )*(Q., Nx, Nn) 

for some function 0*, where - denotes "has the same distribution as." Ex- 
amples of convergent sequences of asymptotically invariant and asymptotically 
similar tests include the CLR, LM, AR, and POIS2 tests. 

We now establish an upper bound on two-point average asymptotic power. 

THEOREM 5: Suppose Assumptions WIV-FA and 1 hold, the reduced-form 
errors {Vi: i > 1} are i.i.d. normal, independent of {Z, : i > 1}, with mean zero 
and p.d. variance matrix f2, f2 and q are as in (6.5), and (P*, A*) and (/P3, A*) 
satisfy (4.1). For any convergent sequence of asymptotically invariant and asymp- 
totically similar tests {,n: n > 1}, we have 

lim P?*,c,~, (bn(n-1/2Z'Y, n1/2((nj 
- r1o), n1/2 (n - 

0o)) = 1) n --* oo 

= 
PI*,C,3o,, 

o (*(Qoo, Nx, Na) 
= 1) 

< 
P.*,c,no,2o 

(LR*(Q1,, QT,,; P*, A*) > Ka(QT; /3* hT*)), 

where 
P7*(,c,n,Q(') 

= (1/2)[PO*,c,n,,(-) + Pp*,c2,2n,,q()], Pp,c,n,7,(.) denotes prob- 
ability when the true parameters are (/P, C, 92, 'r), C satisfies C'DzC = A*, and 
C2 satisfies C2DzC2 = A. 

Combining Theorem 5 with Theorem 4(b) shows that POIS2 tests attain the 
asymptotic upper bound on average power and, hence, their power maps out 
the asymptotic average-power envelope as (/P*, A*) vary. 
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COROLLARY 2: Under the conditions of Theorem 5, the POIS2 tests of Sec- 
tion 6 are convergent sequences of asymptotically invariant and asymptotically 
similar tests that attain the upper bound on asymptotic average power given in 
Theorem 5. 

COMMENTS: (i) The asymptotic power envelope depends only on (P*, A*). 
It is the same as the finite-sample power envelope for known f of Section 4. 

(ii) In Theorem 5 and Corollary 2, the assumption that the reduced-form 
errors {V: i > 11 are i.i.d. normal, independent of {Z : i > 1}, with mean zero 
and p.d. variance matrix f2, can be replaced by Assumptions 2-4. Thus, the 
asymptotic power envelope and its near attainability by the CLR test still 
hold with nonnormal errors. However, with this replacement, Lemma 5(a) 
no longer holds and it is no longer true that there is no loss in attainable 
power by considering only tests that depend on the data through (n-1/2Z'Y, 
n /2( n - r0), n1/2 (n( - 0 ). 

(iii) Theorem 4(b) holds under (6.5) by the same argument as when f2 and r 
are constants. 

7. STRONG-IV ASYMPTOTICS 

In this section, we analyze the strong-IV-local alternative asymptotic prop- 
erties of the tests considered above for the case of unknown covariance matrix 
and nonnormal errors. The results provided here are essential for the specifi- 
cation above of the AE two-sided power envelope. For strong IV-fixed alter- 
native results, i.e., consistency results, see AMS04. As in Section 6, we denote 
S = S, Q = Q,, etc. 

We make the following assumption: 

ASSUMPTION SIV-LA: (a) For some constant B e R, 1 = 3o + B/nl/2 
(b) For all n > 1, 7T is a fixed nonzero k-vector. 
(c) The parameter k is a fixed positive integer that does not depend on n. 
The strong IV-local alternative (SIV-LA) asymptotic behavior of S,, Sn, T,, 

and T, depends on 

(7.1) SBoo N(as, Ik), 

as = D/2jrgB(b' bo)-1/2, 

arT 
=D 

1/2L 
(anaa o)1/2. 

Using these definitions, we obtain the following results. 

LEMMA 6: Under Assumptions SIV-LA and 1-4, (a) (Sn, T,/n/2) / d (SBo,o 
aT), (b) (Sn, T,/n1/2) - (Sn, T,/n1/2) + Op(l), and (c) (Qs,n, Qsr,/nl1/2, 
QT,ln/n) -- (SBooSBo, a'TSBo, a'TaT) as n -- o. 
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Using Lemma 6, we determine the asymptotic distributions of the AR, LM, 
and LR test statistics under SIV-LA asymptotics. 

THEOREM 6: Under Assumptions SIV-LA and 1-4, (a) AR = AR, + 
o,(1) -d SBSB/olk - X2(a'sas)/ k, (b) L/ M = LMn + Op(1) -d (a'TSB,)2/ 
laTr11'2 x((a+'as)2/llrT 112), and (c) LR, = LR, + o,(l) = LM + o,(1) --d 
&'TSB / I aT 1II. 

COMMENTS: (i) Part (c) of Theorem 6 shows that the LR and LM test statis- 
tics are asymptotically equivalent under SIV-LA asymptotics for any value of k 
(the number of IVs). (When k = 1, the LR, LM, and AR test statistics are the 
same, so the tests are trivially asymptotically equivalent.) 

(ii) The critical values for the LM and AR tests are nonrandom. However, 
the critical value for the CLR test is a function of QrT,n or QT,n. Hence, for 
the CLR and LM tests to be asymptotically equivalent, the CLR critical value, 
call it KLR,a(QT,n), must converge in probability to a constant as n -- o. Un- 
der strong-IV asymptotics, QT,n 00oo. In consequence, asymptotic equiva- 
lence holds if KLR,a(qT) converges to a finite constant as qT diverges to infinity. 
Moreira (2003) shows that 

limq_, 
KLR,a(qT) equals the 1 - a quantile of the 

X2 distribution. Hence, the CLR and LM tests are indeed asymptotically equiv- 
alent under SIV-LA asymptotics. 

(iii) Theorem 6(a) and (b) are not new results, but part (c) is new. Moreira 
(2003) does not provide the SIV-LA asymptotic distribution of LR,. 

Under SIV-LA asymptotics and i.i.d. normal errors with unknown covari- 
ance matrix f2, the model for (yi, Y2) is a "regular" parametric model in the 
sense of standard likelihood theory. Hence, the usual Wald, LR, and LM tests 
have standard large sample optimality properties. Such optimality properties 
include maximizing average asymptotic power over certain ellipses in the pa- 
rameter space and uniformly maximizing asymptotic power among asymptoti- 
cally unbiased tests; see Wald (1943). We refer to tests with such properties as 
asymptotically efficient tests under SIV-LA asymptotics and i.i.d. normal errors. 

We have the following AE result for the CLR and LM tests under SIV-LA 
asymptotics. 

THEOREM 7: Suppose Assumptions SIV-LA and 1 hold, and the reduced-form 
errors {Vi: i > 1) are i.i.d. normal, independent of {Zi : i > 1}, with mean zero and 
p.d. variance matrix f2 that may be_known or unknown. Then the CLR test based 
on LR, and the LM test based on LM, are asymptotically efficient under strong-IV 
asymptotics. 

COMMENT. The AR test based on AR, is not AE under SIV-LA asymp- 
totics and i.i.d. normal errors unless k = 1. This holds because its asymptotic 
distribution under SIV-LA asymptotics differs from that of LM, when k > 1 
by Theorem 6. 
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Next, we provide results for POIS2 tests. We allow for the case where the 
second point (P3, A*) satisfies (4.1) and for the case where it does not. The 
form of a POIS2 test is that given in Corollary 1 whether or not the second 
point ($P, A*) satisfies (4.1). Our results show that, under i.i.d. normal errors, 
a POIS2 test is asymptotically efficient under SIV-LA asymptotics if and only 
if (P3, A* ) satisfies (4.1). 

THEOREM 8: Under Assumptions SIV-LA and 1-4, (a) LR*(Q1,n, QT,n; /*, 
A*) = LR*(Qi,n, QT,n; /*, A*) + op(1), (b) if (3j, A1) satisfies (4.1), then 

LR*(QI,•,, 
QT,; P/, A*) = exp((-(r*)2)/2) cosh(r*LMl1/2) + Op(1), where r* = 

(A*)1/2c0*, which is a strictly increasing continuous function of LMK, and (c) if 
( " ,1/2 (p3, A*) does not satisfy (4.1), then LR*(Qi,,, QT,,; P*, A*) = r2(QST,,,/) + 

o, (1) for a continuous function q2 
(') 

that is not even. 

COMMENTS: (i) The critical values for the POIS2 tests converge in probabil- 
ity to constants as n --+ o under strong-IV asymptotics. (See the Appendix for 
a proof.) Hence, Theorems 7 and 8(b) and (c) imply that a POIS2 test is AE 
under SIV-LA asymptotics and i.i.d. normal reduced-form errors if and only if 

(38, A* ) satisfies (4.1). 
(ii) Theorem 8(a) shows that, under SIV-LA asymptotics and the ho- 

moskedastic errors assumptions (which do not require normality), a POIS2 
test with estimated error variance matrix U is asymptotically equivalent to the 
corresponding POIS2 test with known 2. Under the same assumptions, Theo- 
rem 8(b) shows that a POIS2 test is asymptotically equivalent to the two-sided 
LM test with known 2 when (4.1) holds. Under the same assumptions, Theo- 
rem 8(c) shows that a POIS2 test is asymptotically equivalent to a test based 
on a continuous function of the two one-sided LM statistics with known 2, viz. 

+QST,nl/,,•,, 

when (4.1) fails to hold. 
(iii) The proof of Theorem 8(c) shows that if the second condition of (4.1) 

fails to hold, then 
rq2(.) 

is a monotone function and, hence, the POIS2 
test is asymptotically equivalent to one of the one-sided LM tests based 
on +Qsr,n/Q1. The proof shows that if the second condition of (4.1) holds 
and the first condition fails, then the POIS2 test is asymptotically equivalent to 
a function of both one-sided LM statistics ?QsT,ln/Q1V that is not invariant to 
permutations of the two one-sided statistics. Thus, if either condition of (4.1) 
fails, the POIS2 test is not asymptotically equivalent to the two-sided LM test 
and, hence, is not asymptotically efficient. 
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APPENDIX A: PROOFS 

A.1. Proofs of Results Stated in Sections 2-4 

PROOF OF LEMMA 1: The proof is standard using normality of Y and zero 
covariance between Z'Y and X'Y; see AMSO6b for details. Q.E.D. 

PROOF OF LEMMA 2: The proof is straightforward; see AMSO6b for de- 
tails. Q.E.D. 

PROOF OF THEOREM 1: Let M(S, T) = [S: T]'[S: T] = Q. The M(S, T) is a 
maximal invariant if it is invariant and it takes different values on different or- 
bits of G. Obviously, M(S, T) is invariant. The latter condition holds if given 
any k-vectors ~l,A2,, 1, and "-2 such that M(A11, A2) = M( 1, '2), there ex- 
ists an orthogonal k x k matrix F such that 'I = F/L1 and /2 = 

F/A2; 
e.g., see 

Lehmann (1986, Eq. (7), p. 285). 
First, suppose Al, and A2 are linearly independent (which implies that 

k > 2). Then there exist linearly independent k-vectors 
/3, ...*, -uk such that 

{Il, ..., Ak} span R~k. Applying the Gram-Schmidt procedure to {/1l, ... 1,kj}, 
we now construct an orthogonal matrix F such that F/AL and 

F/A2 
de- 

pend on (Al, A2) only through 
t'ltb1, A'l 

2, and 
A'L2z2. 

For a full column 
rank k x e matrix A, let MA = Ik - A(A'A)-1A'. We take fi = 

-/l/IIl/lII, 
f2 = MCl A2/IIM, II, ... , fk = M[l: ... Alk-1 k/l M[I:.....: 

k-•iIkll. 
Define F = 

[fl ... : fk]'. We have 

(A.1) FAI = (f 
1, ..., fk~t1)' = (II A111, 0, ..., 0)', 

F =2 = (I AL211 2 uII, /LMM 1l2/IIM1l 2|I, 0O, ..., 0)'. 
Because 

'M, ,2 
A 

.L.L2 
2 - (2 2 A 22/I1, AII)2, we find that FtI1 and 

F/u2 
depend 

on (AL1, At2) only through 
'1A 

1, p'L 2, and 
ALz22. Define F analogously to F but with 

{1, 
..., k) in place of {1/l,... 

~}.k Then Fi1 and Fj2 depend on ('1, 2) only through "'1g1, 
"'1A2, 

and 
/Z22. Now, suppose (ALi, A2) and (I1, A2) are such that 

M(u•L, /2) 
= M(A1, A2). 

That is, L4L1 - uE,1, 'L1/L2 1 /'L1l2, and //-L2 2= 2/2. Then the orthogonal ma- 

trices F and F are such that FL1 = (I 
•lII, 

0,..., 0)' = (11 1,0, 0, .., 0)' = Fj1 
and A' = F-'FAL1 = F/1, where F = F-1F is an orthogonal matrix. Similarly, 
FAL2 = F'2 and '2 = F-1F A2 = FA2. This completes the proof for the case 
where /l and /2 are linearly independent. 



TWO-SIDED INVARIANT SIMILAR TESTS 743 

Next, suppose l and 
.L2 

are linearly dependent (as necessarily occurs when 
k = 1). Then we can ignore A.2 and proceed as above using just A, and some 
additional linearly independent vectors {1/-, ..., ,L* } for which 

{•ti, 
/ 

", 
..., /* } 

span Rk. The matrix F constructed in this way is such that if M(LI, A2) = 

M(~I, /2), then - = F=/t1. In addition, because 2 = 
K/11 and j2 = K'1 for 

some K, we obtain j2 = 
F/A2. 

This completes the proof. Q.E.D. 

PROOF OF THEOREM 2: Sufficiency follows immediately from the law of it- 
erated expectations. Necessity uses the fact that S is ancillary under Ho and 
the family of distributions of T under Ho is a k-parameter exponential family 
indexed by ar with parameter space that contains a k-dimensional rectangle. In 
consequence, T is a complete sufficient statistic for 7r under Ho by Theorem 4.1 
of Lehmann (1986, p. 142). The statistic QT is complete under Ho because a 
function of a complete statistic is complete by the definition of completeness. 
(This is an added step to Moreira's (2001) argument.) In consequence, any 
function of QT whose expectation does not depend on ir is equal to a con- 
stant with QT probability 1. In particular, for an invariant similar test 4 (Q), 
Eo(4 (Q)I QT) is a function of QT whose expectation equals a for all 7r. Hence, 
by completeness of QT, Eo(((Q)IQT = 

qr) 
must equal a for almost all qr. 

Note that Eo( (Q)IQT) does not depend on 7r by Lemma 3(c). Q.E.D. 

PROOF OF LEMMA 3: First, we prove part (a). The k x 2 matrix [S: T] is 
multivariate normal with mean matrix M = 

-L,h', 
where hp = (cp, dp)', all 

variances equal to 1, and all correlations equal to 0. Hence, Q = [S: T]'[S: T] 
has a noncentral Wishart distribution with mean matrix of rank 1 and identity 
covariance matrix. By (6) of Anderson (1946), the density of Q at q is 

(A.2) K, exp( tr(M'M)) q(k-3)/2 exp tr(q) 2 2 

x (tr(M'Mq))-('k-2)/4I(k-2)/2 (Vtr(M'Mq)). 

We have M'M = Ahph', where 
A- 

= 'E,,, tr(M'M) = A(c2 + d2), tr(M'Mq) = 
Ah' qhp, and h'=qhj = ~p(q). Hence, part (a) holds. 

Part (b) holds because QT has a noncentral chi-squared distribution with 
noncentrality parameter d2A by Lemma 2(b) and (3.3). The stated form of the 
density is given by Anderson (1946, Eq. (6)). Part (c) holds by taking the ratio 
of the densities given in parts (a) and (b) evaluated at 3 = 3o and using the fact 
that co0 = 0 and 

p0,(q) 
= d2oqT. Part (d) holds because the null distribution 

of Qs is a central chi-squared distribution by Lemma 2(a) and 
coo 

= 0. 
For part (e), the null density of S2 is derived as follows: (i) 82 = S'T/( ISII - 

IIT I) has the same distribution as A = S'a/IISII for any a E Rk with a'a = 1 
because S ~ N(O, Ik) under the null, and S and T are independent using 
Lemma 2(a) and (c); (ii) for a = (1, 0, ..., 0)', (k - 1)1/2A/(1 - A2)1/2 = 
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(k - 1)1/2S,/(Ek2 S2)1/2 , tk-1 by definition of the tk-1 distribution; (iii) trans- 
formation of (k - 1)1/2A/(1 - A2)1/2 to A gives the density in part (d); e.g., see 
Muirhead (1982, proof of Theorem 1.5.7(i), pp. 38-39; Eq. (5), p. 147). 

Next, we prove part (f). Under the null, S - N(O, Ik), T ~ 
N(dp01o, Ik), 

and S and T are independent by Lemma 2. Hence, Qs = S'S and T are in- 
dependent. The distribution of S'a/IISII for a E R k with a'a = 1 does not de- 
pend on a by spherical symmetry of S. Thus, the conditional distribution of 
S2 = S'T/(IISII -. IT1) given T = t does not depend on t and S2 is independent 
of T. Independence of Qs = S'S and S'a/l IISII is a well-known result that holds 
by spherical symmetry of S. Q.E.D. 

A.2. Proofs of Results Stated in Section 6 

PROOF OF LEMMA 4: To establish part (a), we have 

(A.3) n-'Z'Z = n-'Z'Z - n-'Z'PxZ -- Dl - 

D12D2-D21= 

Dz 

using Assumption 1. Let N* be a (k + p) x 2 random matrix with vec(N*) - 
N(O, 2 0 D). Using Assumptions 1 and 3, we obtain 

(A.4) n-1/2Z'Vbo 

Sn-1/2(2 - PxZ)'Vbo = n-1/2(2 - 

XD2JD21)'Vbo 
+ o,(1) 

= [Ik : -D12D2n-1/2Z Vbo + 
op(l) --d 

[k 
: -D12D]N*bo 22 i 221"V 

= [Ik :-D12D2](b' Ik+p) vec(N*). 

Hence, we have 

(A.5) S, = (n-1Z'Z)-/2 (n-1/2Z'Vbo + n-'Z'ZCa'bo) 
x (b'odbo)-1/2 -d H, where 

H = D1/2([Ik : -D12D -](bo 
0 Ik+p)Vec(N*) + DzCa'bo) 

x (b' bo)-1/2 

and the first equality holds by Assumption WIV-FA and Z'X = 0. Using As- 
sumption 4, the random vector H has a normal distribution with 

(A.6) EH = D/2Ca'bo . (b'2bo)-1/2 = 
cPD'-2C, 

var(H) - Dz/2[Ik: -D12D-1](bo 0Ik+p))(f2 D)(bo Ik+p) 

x [Ik : -D12D1]'D-l/2- (bobo)-1 22 ?z 0 - 

= D-/2[Ik : -D12D]D[Ik : -D12D ]'D1/2 = Ik Z ~22 ? --'0222 z - 
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which completes the proof for S,. 
Analogously to (A.4), we have 

(A.7) n-1/2Z'V -'lao -d [Ik :-D12D-1 ((a0-1) k+p)ec(N*). 

Using this, we obtain 

(A.8) T, = (n-'Z'Z)-1/2(n-'1/2Z'V-'ao + n-'Z'ZCa'-l'ao) 
x 

(ao2-ao)-1/2--d J for 

J = D /2([Ik : -D12D-1]((af n-') 0 Ik+p) vec(N*) + DzCa'n-iao) 

x (a'no-'ao)-1/2 

Analogously to (A.6), J has a normal distribution with EJ = dpDZ/2C and 
var(J) = Ik, which completes the proof for T.n 

The asymptotic normal distributions of S, and T, are independent because 
the covariance of the random components of H and J is zero: 

(A.9) E(b'o 0 Ik+p) Vec(N*) vec(N*)'((f2'ao) 0 Ik+p) 

= E(b'o Ik+p)(n 0 D) ((-'ao) 0 Ik+p) = (boao) 0 D 0. 

This completes the proof of part (a). 
Part (b) holds by the definitions of S, T,, S,, and T, because (i) (Z'Z)-'/2 x 

Z'Y = Op(1) by the same sort of argument as in (A.3) and (A.4), (ii) 
•• 

--, - 

(see AMSO6b), and (iii) n2 is p.d. by Assumption 2. 
Part (c) follows immediately from parts (a) and (b). Q.E.D. 

PROOF OF THEOREM 4: The functions iq(., .; 3, A) and q2('; /, A) are con- 
tinuous and do not depend on n; see their definitions in Corollary 1. The same 
is true of the critical value function K, (-; 3, A) because the conditional distrib- 
ution of Qi,n given QT,n is absolutely continuous with a density that is a smooth 
function of qT and does not depend on n; see Lemma 3(c) and the definition 
of K,(-; /3, A) in (4.10). In consequence, the result of part (a) of the theorem 
follows from Lemma 4, (6.4), and the continuous mapping theorem. 

Part (b) follows immediately from part (a). 
Part (c) holds for the following reasons. The conditional distribution of Qi," 

given QT,, = qT is the same as that of Qj,, given QT,n = qT because the for- 
mer distribution does not depend on A, and the latter does not depend on A; 
see Lemma 3(c). Hence, by definition of K,,(.; 3, A), for all constants qT,,, 
P(LR*(Q ,,,, qT,o; /, A) > Ka(qT,,; , 1A)IQ1, = qrT,) = a. This result and it- 
erated expectations establishes part (c). Q.E.D. 

PROOF OF LEMMA 5: Part (a) holds because (i) given that 2no and rqo are 
known, and Qj and rll are unknown, (Z'Y, X'Y, Y'Y) are seen to be sufficient 
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statistics for (/3, C, 
n1,, 

1) by inspection of the normal density of Y conditional 
on [Z:X] and (ii) (n-1/2Z'Y, n1/(/21( - 

ro0), 
n1/2(12A - o>0)) is an equivalent set 

of sufficient statistics to (Z'Y, X'Y, Y'Y). 
Part (b) holds because: (i) vec(n-1/2Z'V) ~ N(O, n 0 (n-'Z'Z)) conditional 

on n-'Z'Z and n-1Z'Z --+ DZ (by (A.4) using Assumption 1) imply that 
vec(n-1/2Z'V) -d N(O, QODz); (ii) vec(n-1/2Z'Z7a') = vec(n-'Z'ZCa') --p 
DzCa' by Assumption 1; (iii) n1/2(Qnj - 70) = (n-1X'X)-ln-1/2X'V + m1 ~ 

N(j1,n 0 (n-'X'X)-1) conditional on n-1X'X and (n-1X'X)-1 D-1 
(using Assumption 1) imply that vec(nl/'2(?j - 

r)0)) 
- Nd N(I1, n 0 D21); 

(iv) nl/2(n-n - ) - 
n1/2(n- V'V - 1/V'Pz - n-12V'PV n1/2V'Px V; (v) n1/2 x 

(n-'V'V - no) = n-1/2(V'V - EV'V) + 
1 
; (vi) vech(n-1/2(V'V - EV'V)) -'d 

N(0, E(S - E')(" - Er)') by a triangular array CLT for rowwise i.i.d. random 
vectors; (vii) n-112V'PzV = n-1/2 n-1/2V'Z(n-'Z'Z)- n-1/2Z'V - p, 0 using (i); 
(viii) n-1/2V'PxV -+p 0 by an analogous argument to (vii); (ix) the three ran- 
dom matrices on the left-hand side of part (b) are asymptotically independent 
because they are independent in finite samples conditional on n-'Z'Z and 

n-iX'X, and the randomness in n-'Z'Z and n-'X'X is asymptotically negligi- 
ble. Q.E.D. 

PROOF OF THEOREM 5: The equality in the theorem holds by the defini- 
tion of a convergent sequence of asymptotically invariant tests. The inequality 
holds because (i) given the random quantities (Q&, Nx, Nn), OQ is a sufficient 
statistic for p and C because it is independent of Nx and Nn, and the latter 
have distributions that do not depend on 3 or C; (ii) result (i) implies that the 
average power of the similar test 4*(Q,, Nx, Nn) is less than or equal to that 
of some similar test (Q.) that depends on (Q,, Nx, Na) only through Q.; 
(iii) Theorem 3 with Q replaced by Q, implies that the average power of the 
similar test 4(Q,) is less than or equal to the upper bound given in Theo- 
rem 5. Q.E.D. 

A.3. Proofs of Results Stated in Section 7 

PROOF OF LEMMA 6: To prove part (a), we use (2.6), (6.3), and Assump- 
tions SIV-LA, 1, 3, and 4 to obtain 

(A.10) Sn 
= c 

?• -, 
+ 

(Z'Z)-1/2Z'Vbo? 
(b'obo)-1/2 -d SBoo, 

Tn1n/a2 
= 

dp•,l/n1/2 
+ 2('Z/n)-1/2(Z'V/n)2-1ao 

- 
(aon-lao)-1/2 

= 
do(Z'Z/n)'/2rr + op(l) = aT + Op(l). 

Part (b) holds because ?n---+p~; see AMS06b. Part (c) holds by part (a), 
part (b), and the continuous mapping theorem. Q.E.D. 
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PROOF OF THEOREM 6: Theorem 6(a) and (b) follow immediately from 
Lemma 6. 

The first equality of part (c) follows from Lemma 6. The second equality of 
part (c) of the theorem is established as follows. By Lemma 6, we have 

QT QT/n a/ a',a + oP(1) _, (A.11) QTn-1 
= o + ) 1 (1). 

(QT - Qs)2 T(QT/n- Qs/n)2 (aTaT + Op(1))2 

By a mean-value expansion, 1 ? x = 1+ (1/2)x(1 + o(1)) as x -- 0. This and 
some algebra give 

(A.12) LR =(Qs - Q + (Q - s)2+4QT) 

S-Qs - QT 
+ Q - Q 1+ 

(QQs)2LM 

1( 2QT(1 + op(1)) )) 
I 

-S Qs - QT + IQT -- Qs 1 + 
(QT 

)LM 2( (QT - 
Qs)2 

QT (1+ Op(1)) T LM, 
QT - Qs 

where the fourth equality uses I QT - Qs I = QT - Qs with probability that goes 
to 1 by the calculation in the denominator of (A.11). As in (A.11), by Lemma 6, 
we have QT/(QT - Qs) = 1 + o,(l). This and (A.12) combine to give the sec- 
ond equality of part (c). Q.E.D. 

PROOF OF THEOREM 7: We suppose that f2 is known and determine the 
standard LM statistic for this case, which is asymptotically efficient by standard 
results. In particular, we show that the standard LM statistic is 

LMn 
= 

Qsr/QT. By Theorem 6, the LR statistic is asymptotically equivalent to LM, under the 
null hypothesis and local alternatives under strong-IV asymptotics, and the 
asymptotic behavior of these statistics does not depend on knowledge of f2. 
Hence, the tests based on these statistics are asymptotically efficient whether 
or not f2 is known. 

The standard LM statistic is a quadratic form in the derivative with respect 
to /3 of the log-likelihood function of the sufficient statistics (S, T) evaluated 
at the null restricted maximum likelihood estimator of rr, which we denote 
by 0o. Under the null hypothesis, S -- N(0, Ik) is ancillary, '0 depends on 
T N(dO~u7, k ) alone, and 'o is easily seen to be 0 = 

d-•(Z'Z)-1/2T. 
The 

log-likelihood of (S, T) is proportional to 

1 1 
(A.13) -(S - 

cp• 
,)'(S - 

c13,A) - -(T - dp,)'(T - d13/,). 2 2 
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The derivative of this expression with respect to P evaluated at (P, Tr)= 
(/3o, *o) is 

(A.14) dp c 'S - 1 d 
2(c2), 

(d- 
o g- 

d 1d + d 
I'• 

T - (d )E 
4,)=( dp 2 dp / wtP , =(1AoWo) 

d d d 

,dp co6?oS d+ 
dpdo•?o 

T - do dpol-t- ?o 

d 
d co - 

d-T'S, d8 c o 

using the facts that cp, = 0, 
• 

- = d-' T, and /_' T = dPo80o'pit-. The asymptotic 
variance of T'S/n1/2 under Ho is 

plim,_• 
T'T/n = a'aT. Hence, the standard 

LM statistic is (T'S)2/T'T = LMn, which completes the proof. Q.E.D. 

PROOF OF THEOREM 8: Part (a) of the theorem holds by Lemma 6(a) and 
the continuity of qi(qj, qT; /, A) and qi2(qT; 3, A) in (ql, qr). 

To prove Theorem 8(b) and (c), we establish some preliminary results. 
Let 13p and A, be any fixed constants for which 

dp• 
, O0 (i.e., /3i :# /AR)- 

Define hp, = (cp,, d,61)'. Then (i) QT/n --+p a'aT > 0 by Lemma 6(a) and 

Assumption SIV-LA(b); (ii) QsTIQT = Op(1) by (i) and Lemma 6(a); 
(iii) Qs/QT = op(1) and Qs/I1/2 = o(1) by (i) and Lemma 6(a); and 
(iv) 

h'Qh1/(d1 1QT) 
-p 1 by (ii) and (iii). Next, we apply the mean-value the- 

orem (x + a)1/2 - x1/2 = (1/2)(x*)-1/2a, where x* lies between x and a, with 
x = d~1QT and a = 2c,1dp QsT + c1Qs. This gives 

(A.15) vh -lQhl 
- d2•,QT 1 

- 
m-1/2 (2c, d QsT + C21Qs) 2 01 

Cl dplQsT d21 

QT 
1/2 

1 cQS d2Q 1/2 
(d Q,)1/2 m 2 

(dl 
Q)1/2 

(d 
2 

QT)1/2 m2 ~' 2 (d 2 

1 T) 1/2 m2 
2 

cp1 sgn(d,1 )QsrT + Op(1), 

where m lies between h'&Qh and d2 QT, and the third equality holds us- 
ing (ii)-(iv) and the definition of m. 
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By Lebedev (1965, Eq. (5.11.10), p. 123), we have I,(x) = exp(x) x 
(2pi x)-1/2(1 + O(x-1)) as x -+ -c for any v E R. Hence, using (i), we obtain 

(A.16) I,( QT)exp(- 
•d•1QT)(2pi 

dQT)X1/2 
= 1 + 

Op(-1/2 

and likewise with h' Qh in place of 
dl 

QT. 
Now, suppose (P3S, A*) does not necessarily satisfy (4.1). It is convenient to 

make a change of variables from (P, A) to (7, 6), where 

(A.17) 7 = A1/2C and 6 = A1/2d8. 

Let h= (7, 6)'. Then Ao(Q) = h'Qh and 
AdZQT- 

= 62QT. Let F2p(r, 8) be 
the two-point distribution on (7, 8) that puts equal weight on (r*, 8*)= 
((A*)1/2c*I, 

(A*)l/2d,*) 
and (7r, 65) = ((A*)1/2CP*, (A*)1/2do*). Let Smax denote 

the value of 8 that maximizes 161 over 6 in the support of F2p(T, 8); that is, 
max = max{JS* , I6I1}. Let v = (k - 2)/2. 
Using this notation and the definition of LR* in Corollary 1, we have LR* 

equals 

f e2f 2)/2 (hQh-v/2I( h'Qh) dF2,(r, 8) 
(A.18) 

f e-a2/2( 2QT)-"/2I,( /2QT) 
dF2P(7, a) 

f e-(r22)/2 (h'Qh)-(v+1/2)/2e N/h'Qh dF2p(T, 6) 
S 

e-/2((1 + , (1)) f 
e-82/2(2QT)-(v+1/2)/2e 

Q 

dF2z(T, 
8) 

(2 ,Q 
-(v+11/2)/2 ( 

82 QT ) -( -2) -(+1/2)/2 

x e(V 
max)OQTehh- -2QT dF2(r, 6) 

x e- 2/2(2)-(v+1/2)/2e( /1- 
Nax) 

QTdF2P(r, 6) 

x (1 + o(1)) 

f e +(2+82)/2(2-(v+1/2)/2e(/- 8ax) sgn(8)QsTQT1/2 dF2P(r, 8) 

f e8-2/2(52)-(v+1/2)/2e( /•' ax)) 
QT 

dF2p(7, 6) 

x (1 + op(1)), 

where the first equality holds by (A.16), the second equality holds by algebra, 
and the third equality holds by (iv) and (A.15). 
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If (f3*, A•) satisfies (4.1), then 7* = - * 8* = 5 ,and max = 18*1 = 8 . In 
this case, the terms in the numerator and denominator of the right-hand side 
of (A.18) that involve (A/-2 /Sa- 8)/T equal zero, and the right-hand side 
of (A.18) without (1 + o,(1)) equals 

1 e-((7-*)2+(*)2)/2((*)2) -(v+1/2)/2 (e7* sgn(5*)QSTQT1/2 + -* sgn(5*)QSTQTr/2) 

e-(5*) 2/2((8* )2)-(v+1/2)/2 

= e-(*)2/2 cosh(7* QsTQ1/2), 

using (exp(x) + exp(-x))/2 = cosh(x). The function cosh(.) is even. Hence, 

cosh(,r*QsrTQ-1/2) 
= cosh(-*LM1/2). The latter is strictly increasing in LM, be- 

cause cosh(.) is continuous and strictly increasing on R+. This completes the 
proof of Theorem 8(b). 

We now establish Theorem 8(c). Suppose (J3, A*) does not satisfy the second 
condition of (4.1). Then either 

6max 
> I58I or 

6max 
> 15*l. Suppose Smax > 1I8l. 

Then exp(( v/()2 - 
max) 

-QT) = o,(1) using (i), 8max = 15*1 > 0, and the 
right-hand side of (A.18) without (1 + o,(1)) equals 

e-((r*)2+(*)2)/2 ( (*)2)-(v+1/2)/2e7* sgn(*)QsTQT1/2 
+ Op() 

e-(*")2/2((8*)2)-(v+1/2)/2 

+ Op(1) 

= e-(7*)2/2 7* 
sgn(5*)QsTQ- 

l/2 + Op(1), 

which is a strictly monotone, continuous function of QsTQ Tr2 and, hence, is not 
an even function of 

QsTQT1/2. 
The same argument applies when 

8max 
> 15*1. 

Note that the case where p* = PAR or = PAR is subsumed in the case just 
considered, because in such cases there is no solution to the second equation 
in (4.1) and, hence, we must have Smax > 1"1 or max > 2IlI. 

Next, suppose (P38, A*) satisfies the second condition of (4.1), but not the 
first condition. Then 7* : 

-72 
5* = 8, 5max = 18*1 = 8I*1 > 0, and the right- 

hand side of (A.18) without (1 + o,(1)) equals 

(A.21) (e 2 1/2 2 * sgn(*)QQ1/2 

which is a continuous function of QsTQ-1/2 that is not even because 7* 
-•'2 This completes the proof of Theorem 8(c). Q.E.D. 

PROOF OF COMMENT (i) TO THEOREM 8: We write the LR*(Qi, QT; 3*, A*) 
statistic as a function of Qs, S2, and QT, say LR*(Qs, S2, QT; 3*, A*). The 
statistics (Qs, S2, QT) are independent under the null. Hence, we can condi- 
tion on QT without affecting the distribution of (Qs, S22). Consider a sequence 



TWO-SIDED INVARIANT SIMILAR TESTS 751 

of constants {qT,m: m > 11 for which qT,m/m -- a' aTr > 0. Then, by the argu- 
ment of (A.15)-(A.19) with (Qs, S2) held fixed, when (/3, A*) satisfies (4.1) we 

21("* 

2 

7"* have limm,,, LR*(Qs, S2, qT,m; *,A*) = exp(- (r*)2)cosh(I7*I(QSS2)1/2). 
Because QsS 22 X2, this implies that the conditional critical value function 
of LR*, viz., Ka(qT; f*, A*), converges as qT -- o0 to a strictly increasing 
continuous function of the 1 - a quantile of X2. In turn, this implies that 
Ka(QT; 3*, A*) converges in probability to the same constant as n - oo be- 
cause QT/n -,p a'aTT > 0. Q.E.D. 

REFERENCES 

ANDERSON, T. W. (1946): "The Non-Central Wishart Distribution and Certain Problems of Mul- 
tivariate Statistics," The Annals of Mathematical Statistics, 17, 409-431. 

ANDERSON, T. W., AND H. RUBIN (1949): "Estimators of the Parameters of a Single Equation in 
a Complete Set of Stochastic Equations," The Annals of Mathematical Statistics, 21, 570-582. 

ANDREWS, D. W. K., M. J. MOREIRA, AND J. H. STOCK (2004): "Optimal Invariant Similar Tests 
for Instrumental Variables Regression with Weak Instruments," Discussion Paper 1476, Cowles 
Foundation, Yale University. Available at http://cowles.econ.yale.edu. 

, (2006a): "Performance of Conditional Wald Tests in IV Regressions with Weak Instru- 
ments," Journal of Econometrics, forthcoming. 

(2006b): "Supplement to 'Optimal Two-Sided Invariant Similar Tests for In- 
strumental Variables Regression'," Econometrica Supplementary Material, 74, http://www. 
econometricsociety.org/ecta/supmat/5333data.pdf. Also available at James Stock's website. 

CHAMBERLAIN, G. (2003): "Instrumental Variables, Invariance, and Minimax," Unpublished 
Manuscript, Department of Economics, Harvard University. 

CHAMBERLAIN, G., AND G. IMBENS (2004): "Random Effects Estimators with Many Instrumen- 
tal Variables," Econometrica, 72, 295-306. 

DONALD, S. G., AND W. K. NEWEY (2001): "Choosing the Number of Instruments," Economet- 
rica, 69, 1161-1191. 

DUFOUR, J.-M., AND J. JASIAK (2001): "Finite Sample Limited Information Inference Methods 
for Structural Equations and Models with Generated Regressors," International Economic Re- 
view, 42, 815-843. 

DUFOUR, J.-M., AND M. TAAMOUTI (2005): "Projection-Based Statistical Inference in Linear 
Structural Models with Possibly Weak Instruments," Econometrica, 73, 1351-1366. 

GUGGENBERGER, P., AND R. J. SMITH (2005): "Generalized Empirical Likelihood Tests in Time 
Series Models with Potential Identification Failure," Working Paper, Department of Eco- 
nomics, UCLA. 

(2006): "Generalized Empirical Likelihood Estimators and Tests under Partial, Weak and 
Strong Identification," Econometric Theory, 21, 667-709. 

HILLIER, G. H. (1984): "Hypothesis Testing in a Structural Equation: Part I, Reduced Form 
Equivalence and Invariant Test Procedures," Unpublished Manuscript, Department of Econo- 
metrics and Operations Research, Monash University. 

JOHNSON, N. L., AND S. KOTZ (1970): Distributions in Statistics: Continuous Univariate Distribu- 
tions, Vol. 2. New York: Wiley. 

- (1972): Distributions in Statistics: Continuous Multivariate Distributions. New York: Wiley. 
KLEIBERGEN, E (2002): "Pivotal Statistics for Testing Structural Parameters in Instrumental Vari- 

ables Regression," Econometrica, 70, 1781-1803. 
(2004): "Testing Subsets of Structural Parameters in the Instrumental Variables Regres- 

sion Model," Review of Economics and Statistics, 86, 418-423. 



752 D. W. K. ANDREWS, M. J. MOREIRA, AND J. H. STOCK 

LEBEDEV, N. N. (1965): Special Functions and TheirApplications. Englewood Cliffs, NJ: Prentice- 
Hall. 

LEHMANN, E. L. (1986): Testing Statistical Hypotheses (Second Ed.). New York: Wiley. 
MOREIRA, M. J. (2001): "Tests with Correct Size when Instruments Can Be Arbitrarily Weak," 

Working Paper Series 37, Center for Labor Economics, Department of Economics, University 
of California, Berkeley. 

(2003): "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, 71, 
1027-1048. 

MUIRHEAD, R. J. (1982): Aspects of Multivariate Statistical Theory. New York: Wiley. 
OTSU, T. (2006): "Generalized Empirical Likelihood under Weak Identification," Econometric 

Theory, 21, forthcoming. 
SAWA, T. (1969): "The Exact Sampling Distribution of Ordinary Least Squares and Two-Stage 

Least Squares Estimator," Journal of the American Statistical Association, 64, 923-937. 
STAIGER, D., AND J. H. STOCK (1997): "Instrumental Variables Regression with Weak Instru- 

ments," Econometrica, 65, 557-586. 
STOCK, J. H., J. H. WRIGHT, AND M. YOGO (2002): 'A Survey of Weak Instruments and Weak 

Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, 
20, 518-529. 

VAN DER VAART, A. W. (1998): Asymptotic Statistics. Cambridge, U.K.: Cambridge University 
Press. 

WALD, A. (1943): "Tests of Statistical Hypotheses Concerning Several Parameters when the Num- 
ber of Observations Is Large," Transactions of the American Mathematical Society, 54, 426-482. 

WANG, J., AND E. ZIVOT (1998): "Inference on Structural Parameters in Instrumental Variables 
Regression with Weak Instruments," Econometrica, 66, 1389-1404. 

ZIVOT, E., R. STARTZ, AND C. R. NELSON (1998): "Valid Confidence Intervals and Inference in 
the Presence of Weak Instruments," International Economic Review, 39, 1119-1144. 


	Article Contents
	p.715
	p.716
	p.717
	p.718
	p.719
	p.720
	p.721
	p.722
	p.723
	p.724
	p.725
	p.726
	p.727
	p.728
	p.729
	p.730
	p.731
	p.732
	p.733
	p.734
	p.735
	p.736
	p.737
	p.738
	p.739
	p.740
	p.741
	p.742
	p.743
	p.744
	p.745
	p.746
	p.747
	p.748
	p.749
	p.750
	p.751
	p.752

	Issue Table of Contents
	Econometrica, Vol. 74, No. 3 (May, 2006), pp. 585-862
	Front Matter
	The Limits of Ex Post Implementation [pp.585-610]
	Bounds on Parameters in Panel Dynamic Discrete Choice Models [pp.611-629]
	Identification and Estimation of Regression Models with Misclassification [pp.631-665]
	Assortative Matching with Explicit Search Costs [pp.667-680]
	Optimal Inference in Regression Models with Nearly Integrated Regressors [pp.681-714]
	Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression [pp.715-752]
	Notes and Comments
	Speculation in Standard Auctions with Resale [pp.753-769]
	Event Exchangeability: Probabilistic Sophistication without Continuity or Monotonicity [pp.771-786]
	Local Partitioned Regression [pp.787-817]

	Announcements [pp.819-824]
	Back Matter [pp.825-862]





