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Source: P.G. Wright, (1928). The Tariff on Animal and Vegetable Oils, Appendix B.

Figure on left (and idea of simultaneity bias) appeared in P.G. Wright (QJE, 1915)



Supply equation:

O=eP+S

where:
O = output
P = price
S = supply
disturbance
e = supply
elasticity

P.G. Wright, (1928), Appendix B, p. 314.

Suppose this multiplication to be performed for every
pair of pmce-ou’cput deviations and the results added,
then:

eSAP—3A0—3A8, ore=— ZA.O— 2AS,;

“SAP

vBut A was a factor which did not affect supply condi-

tions; hence it is uncorrelated with S;; hence X A B1=0;

2A0
and hence e = SAPD

Slmzlarly if B is a factor, say, yield per acre, WhiCh does

not affect demand conditions we shall have:

_FH O-— Di .
1T=%5 =" p 9P = 0—Dy; 72B.P =
2B.0O—2B.D,; 7 = ZB'OggB‘Dl.
¢B.O

But »2B.Dlx 0 Hence n mé“ﬁwi)“

Success with this method depends on success in discov-
ering factors of the type A and B. Several such factors
of each type should be used if possible. Because of the
slow adjustment of price to marginal cost five-year (or

'four-year or six-year) averages should be used for P, O,
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The Wrights’ letters, December 1925 - March 1926



Supply equation:

O=eP+S

where:
O = output
P = price
S = supply
disturbance
e = supply
elasticity

Letter of March 4, 1926 ctd.
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Modern (nonstructural) micro approach
Find a plausibly exogenous source of variation to identify the effect of interest

(experiment, natural experiment):
Yo = 0Yq; + yWi + U
Instrument z: (i) Relevance: cov(Y,",z) =0, where Y,” =Y, — Proj(Y, W)
(i1) Exogeneity: E(u|W, z) = E(u| W)
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Modern (nonstructural) macro approach
Obtain impulse response function from a structural vector autoregression (SVAR).

AL)Yi=w, Vi lViaVis-~(0X)
n = Hey, & structural shocks
yi=A(L)'He;  (IRFs from SVAR)
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Find a plausibly exogenous source of variation to identify the effect of interest

(experiment, natural experiment):
Yo = 0Yq; + yWi + U
Instrument z: (i) Relevance: cov(Y,",z") # 0, where Y, =Y, —Proj(Y1|W)
(i1) Exogeneity: E(u|W, z) = E(u| W)

Modern (nonstructural) macro approach
Obtain impulse response function from a structural vector autoregression (SVAR).

AL)Yi=w, Vi lViaVis-~(0X)
n = Hey, & structural shocks
yi=A(L)'He;  (IRFs from SVAR)

This lecture
e Pull together IV approach to macro shocks

o Conditions on z for identification of H
o Conditions on z for identification of dynamic causal effects without a SVAR

e Follow-on: tests of SVAR validity, IV odds & ends, time series odds & ends
e [Are there reasons to prefer local projections over SVARS?]
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Setup

Structural MA: Y, =0(L)e,

Structural shock: Define &;; = autonomous, unexpected change in Yy

All disturbances: &, :(%j & €€~ (0,Z,) (o =“everything else”)
Eat

The structural IRF is the dynamic causal effect of an autonomous change in Y on Yo
®h,21 =E (Y2t+h | 2T =1, Eat1€519 it)_ E (Y2t+h | & = O,g.t,gs,s ;'&t)

SVAR MA
Wold representation: Yi= C(L)v;, where vi =Y, —Y

wo ViV~ (02)

MA implied by SVAR: Y, = C(L)He,

SVAR MA =structural MA if:  C(L)H = O(L) & H = C(L)'®(L)
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Interpreting the condition H = C(L)'®(L)
H=C(L)'"®(L)=(1+CL+..)(Og+0O,L+...)=0,+termsinL, L...

(1) Impact effect: H = 0,. Typically called the SVAR identification condition.
e Timing restrictions (Cholesky, etc.), long-run restrictions
e Heteroskedasticity
e Sign restrictions
e Direct measurement of shock of interest
e Method of external instruments
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Interpreting the condition H = C(L)'®(L)

H=C(L)'"®L)=(1+AL+..)(Oy+0O,L+..)=0,+termsinL, L%...

(1) Impact effect:  H =0,. Typically called the SVAR identification condition.

e Timing restrictions (Cholesky, etc.), long-run restrictions
Heteroskedasticity

Sign restrictions

Direct measurement of shock of interest

Method of external instruments

(2) No lagged terms. Y, = C(L)v; and Y, = ©(L)e;, S0 v = C(L)'O(L)&

“No lags™:

E(vile,60:) =0 <& BN Y, Yionén &) =B Yy, Yo
< span(w) = span(gt)
< Structural MA is invertible so &, = ®;'v,
e Interpretation: “no omitted variables”
e (alled the “invertibility” or “nonfundamentalness” problem
e There are two main solutions to OVB:
o Include OVs (large SBVARs, SDFMs, FAVARs, etc.); or

o IV estimation
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The method of external instruments in SVARS (“SVAR-1V”)

e Under the invertibility assumption, v; = ®¢e;. The challenge is identifying ®,.
e Suppose you have an instrument satisfying:

Condition A () Eg,z, =a#0 (relevance)
(i) Ee,.z, = (exogeneity w.r.t. other current shocks)
&L Q..
Then Ev,z, =0O,E¢z, :@05( . t):(ao (“j:[ o j (1)
EuZ, 0 O &
Adopt the:

Unit effect normalization: ©,,, =1

®
Then, from (1), Evaz _ Doz =0
Ev,z, ®o,11
< IV estimator of @0,21 In: Vo = Og 0 Vy +U, with 1V z

Unit effect vs. unit standard deviation normalization: ®y,, =1 or var(g,) =1?
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The method of external instruments (SVAR-1V), ctd.

1. Estimate VAR: A(L)Y = w
2. Estimate ©,,, by IV: Vo = 0Oy vy, +U, USING 1V Z,
. . 1 . .
3. Estimate structural MA as C(L)[C:) j , Where C(L) = A(L)™
0,01

4. SEs by parametric bootstrap (or another method)

References
Stock (2008), Stock and Watson (2012), Mertens and Ravn (2012), Gertler and
Karadi (2015), Montiel Olea, Stock, and Watson (2017),...
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Example: Gertler-Karadi (2015)

Y: = (AInIP;, AInCPl;, 1Yr Treasury rate;, EBPy)
EBP; = Gilchrist-Zakrajsek (2012) Excess Bond Premium

Z; = “Announcement surprise”
= change in 4-week Fed Funds Futures around FOMC announcement windows

Sample period: 1990m1-2012m6 (monthly)

SVAR-IV
GK specification: 12 lag VAR

LP-1V
Wi = Yea,..., Yea, Zet,..., Ztg
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Gertler-Karadi example, ctd.
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Identification of structural MA without SVAR step

Structural MA: Y: = O(L)g
Focus on variables 1 and 2:

Yy =Op1,8, 1w & j} (2)
Yorin = ®h,21‘91t +{e. 6 j1E j} (3)
Notation:

{s.,5_;} = linear combination of ¢, and lags of ¢
{s...6.;,€_;} = linear combination of ¢,, lags of ¢, and leads of ¢

Again use the:
Unit effect normalization: ©g;=1

Use (2) with the unit effect normalization to substitute &, =Y,, —{s.,5_;} Into (3):
t+] ’gt—j} (4)

Y2t+h - ®h,21Y1t -I-{(S‘_t » &

OLS estimation of (4) suffers from simultaineity and OVB bias.
18



Local Projections-1V

Yarin = O oYy + Ut(fﬁ, where ut(+hr3 ={&.. & jr & j} (3)
Suppose the IV z satisfies:
Condition B () Egyz, =a#0 (relevance)
(i) Ee,,z, =0 (exogeneity, other current shocks)

(iii) Eg,, .z, =0,) =1 (<= shocks are mds wrt past z, ¢)

t+]

(lv) Eg_;z,=0,]>1 (< z;is mds wrt past shocks)

Conditions (i) — (iv) imply that Eu,,,z, =0, so with condition (i),

E (Y2t+h Zt )
E(Y,z)

E (Y2t+hzt) — G)h,llE (Yltzt) — ®h,11 —

e O, ,, can be estimated by IV regression of Y., on Yy, using z; as an instrument

¢ Including control variables might reduce SEs, but isn’t necessary for
Identification under condition A.
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LP-1V with control variables W to relax condition (iv)
Yarin = O o1 Yy + /W, + U, (5)
where W; contains past variables (some past Y’s, z’s). Suppose z satisfies:

Condition C (i) Relevance:  cov(Y,',z') = a= 0, where Y;* =Y, — Proj(Y, W)
(ii) Exogeneity:  E (u,,, |W,,z,) = E(u,, |W,)

Then O, ,, can be estimated in (5) by IV using instrument z and control variables W.

References:
Local projections (LP)
Jorda (2005) for LP terminology
Local projections-1V (LP-1V)
Owyang, Ramey, and Zubairy (2013), Mertens (2016), Barnichon and Brownless (2017),
Jorda, Schularick, and Taylor (2015), Ramey (2016), Ramey-Zubairy (forthcoming);

System estimation of structural MA without SVAR step
Plagborg-Maller (2016)

20



Gertler-Karadi example, ctd.

Cumulative IRFs: LP-1V with +1 SE bands
W=4lagsofY,z
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SVAR-1V and LP-1V: Open questions and reminders

LP-1V:
Condition C (i) Relevance:  cov(Y,;,z) #0

Yorn = Oy Yy + W, +U,, using IV z,

(ii) Exogeneity:  E (u,, |W,,z,) = E(u,, |W,)

Open guestions

1. If condition B(iv) fails, what are suitable control variables?

2. Is LP-1V IV robust to non-invertibility?

3. Can LP-IV and SVAR-IV be used to test for invertibility?

4. HAR inference — anything noteworthy?

5. LP-1V specification: Levels or first differences?

6. What if the instrument is weak?

7.  How to handle news shocks?

Reminders

1. IV estimation of distributed lag, AR-distributed lag specifications yields correct
Impact effect but incorrect dynamics in general

2. SVAR-IV is more efficient than LP-1V, if correctly specified

3. Potentially can improve LP-1V efficiency by imposing smoothness

22



Q1. If condition A(iv) fails, what are suitable control variables?

Yarin = O o1 Yy + W, + us;)
Condition C (i) Relevance:  cov(Y,;,z') = a#0
(ii) Exogeneity:  E (u,, |W,,z,) = E(u,, |W,)

A sufficient condition for C(ii) is that Conditions B(ii) and B(iii) hold and that W, spans
{€&1:85,--}. Then

E(u(h | ) ({ Etihr gt+1’got’gt—1"“}|gt—l""’zt)

E
E({ Evnrr € | Etreonr Z )+E({5,t}|gt_l,. )+E({ £ 4. }|gt_l,...,zt)
E({eis 1 €a) = E (U W)

Remarks
1. This (perhaps) suggests using generic instruments — e.g. factors from a DFM
e But assuming condition C(ii) is satisfied using W; = Yi.4,... is equivalent to
assuming span(e;) = span(v;) — that is, the SVAR s invertible.
o If invertibility fails, then LP-1V using W; = Yi.4,... will be inconsistent.
o And if you can span g, you might as well use SVAR-1V!
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Q1. If condition A(iv) fails, what are suitable control variables? (ctd)

Remarks, ctd.
2. In some cases, it should be possible to construct valid control variables using

application-specific knowledge.

e Announcement-day monetary shocks

e Political disruptions (wars) as oil supply shocks
e Legislation on fiscal policy

Toy example (shock that drags out over two perioids)
Observe z, = & + bg.q, Where 4 satisfies condition B.

Then z; violates condition B(iv):
E(&.2)=E[&(S +0d )| =bE (&8, ) =ba

But if (1 + bL) is invertible, then Condition C(ii) holds with W, = (1+bL)"z.,

Implications:
1. Looking for generic instruments only leads you back to SVAR-IV

2. The instrument mds condition — or something close — is critical to valid inference
24




Q2. Is LP-1V robust to non-invertibility?
Yes, under Conditions B or C.

Under Condition A:

A 7
~C 20  5C,0,,, Where C(L) = A(L)™

h n 1
Z Vi

whereas under condition B or C,

~\SVAR-IV
®h 1

Yzt
ALpolV Z oy 0
O >0,

ez

In general C,0,, #©,, if ©(L) is not invertible.
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Q3. Can LP-1V and SVAR-1V be used to test for invertibility?

Yes, under condition B or C.

Consider a near-invertible local alternative:  C(L)"O(L) =0, +T “?s(L)L

SO
v, =0,¢ +T28(L)e,_, and ©, =C,0,+d, /T .

Then

¥, =T (O57% Y -6 ) =T 5N (d"aV,)

e Test for mis-specification of VAR, in the spirit of a Hausman test

e This test based on W differs from other invertibility tests in the literature, which test
predictability of VAR forecast errors.

e This tests both predictability and multistep v. direct forecast coefficients, and does
not require an invertible SVAR to exists (just a structural MA).

26



Gertler-Karadi example, ctd.

Cumulative IRFs: SVAR-I1V and LP-1V and £1 SE bands (parametric bootstrap)
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Gertler-Karadi example, ctd.
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Q4. HAR inference — anything noteworthy?

e HAR inference is needed for LP-OLS (standard LP method) — standard direct
multiperiod ahead regression problem.

e But HAR isn’t needed for SVAR-IV under condition B (mds property of z,)
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Q5. LP-1V specification: Levels or first differences?

Consider estimation of cumulative causal effect:

In levels: Yorn = O 20y + W, + ut(+hr)1

In first differences:  AY,,., +...+ AY, = Oy .Yy + W, + U

Suppose Y and Y, are persistent (e.g. local to unit root) and Condition B holds:

e |f there is no W,,, then for both the levels and first differences specifications:
o Nonstandard distributions at all horizons
o Not resolved by including linear time trend

o If W;includes Yi,,...:

o Levels and cumulated differences specifications of Y, are equivalent

o For hs.t. h/T - A >0, distribution of LP-1V is mixture of normals, with mean
zero (heavy tailed)
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Q6. What if the instrument is weak?
Y2t+h = ®h,21Y1t + 7/\Nt + Ut(fﬁ
We have a rich set of tools to handle weak instruments.

e Weak IV biases towards OLS — which here is bias towards Cholesky with shock 1
ordered first!
o This true in both SVAR-IV and LP-IV (Montiel-Olea, Stock, and Watson)

¢ Single horizon weak-instrument robust inference
o Single instrument: Anderson-Rubin (efficient if homoskedastic)
o Multiple instruments: CLR (nearly efficient if homoskedastic)

The literature is aware of the weak IV possibility
Stock and Watson (2012), Gertler-Karadi (2015); Ramey (2016)

Gertler-Karadi example

e First stage F = 15.9 (SVAR-IV) and F = 23.7 (LP-1V)
e Anderson-Rubin confidence intervals...
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Gertler-Karadi example, ctd.

LP-1V 68% bands: +1 SE and Anderson-Rubin Confidence Interval
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Q7. How to handle news shocks?

Essentially this just requires a change to the unit effect normalization.

Example
&1t IS @ productivity shock (invention)

Z; 1S news about that invention
&1t affects observed TFP with a lag
&1t affects consumption today via present value of future output

Y1t = AInTFP; = O 106111 + lags and other shocks
Y, =AlnConsumption; = O 1,1 + O1 106111 + lags and other shocks

The unit effect normalization fails (impact effect on TFP growth is 0), and z is an
irrelevant (weak) instrument for 7y;.

A 1-lag unit effect normalization succeeds: O;1,=1

e A unit shock to ; increases TFP next period by 1 unit.
o All parts of conditions B and C still hold.

e The scaling for the IV regression IS Enyi+1Z

e The MA need not be invertible (news shock literature)
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Reminders

1. IV estimation of distributed lag, AR-distributed lag specifications generally yields
correct impact effect but incorrect dynamics.

Distributed lag: Yy =0, (L)Y, +{e... 6.}
ADL.: Yo, =0, (L)Y, + p(L)Y,, +H{e 5t—j}
e Even under condition B, z.; is correlated with &, SO Euzj # 0.

2. SVAR-IV is more efficient than LP-1V, if correctly specified

Reference: Kim and Kilian (2011) for simulations; standard IV and VAR results for
first-order asymptotics (e,g, Lutkepohl (2005))

3. Potentially can improve LP-1V efficiency by imposing smoothness

References: Barnichon and Brownless (2017), Plagborg-Mgller (2016)
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Gertler-Karadi example, ctd.

Cumulative IRFs: SVAR-IV and LP-1V and £1 SE bands (parametric bootstrap)
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Microeconometric IV methods carry over to macro
- arguably yielding more credible inference on (dynamic) causal effects;

The “dynamic” part requires some additional restrictions (e.g. z; mds);

Well-known lessons about I\VVs from microeconometrics also carry over; and

These lessons aren’t new. ..

36



The first 1V regression (March 15, 1926)
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P.G. Wright’s flaxseed price and output data

e Prices are Minneapolis fall prices; annual data, 1904-1923, % deviation from trend
e z = building permits on East coast

Estimated supply Price and building permits, deviated from trend
elasticity = -0.76 5 °
First stage F = 1.25

<

]
e
o .
]
O o
.. ' ]
N . ® : 0. [ .
I5 6 |5
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PG Wright to Sewall Wright, March 15, 1925
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The IV regression he never computed...

Wright 1925 data: demand estimation using rainfall in upper Midwest

z = rainfall in
Minnesota,
Wisconsin, North
Dakota

IV estimate of
demand elasticity =

-0.52 (SE = 0.15)

First stage F = 12.8

Price and rainfall, deviated from trend

rainfall_dev
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