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SEMIPARAMETRIC ESTIMATION OF INDEX COEFFICIENTS 

BY JAMES L. POWELL, JAMEs H. STOCK, AND THOMAs M. STOKERi 

This paper gives a solution to the problem of estimating coefficients of index models, 
through the estimation of the density-weighted average derivative of a general regression 
function. We show how a normalized version of the density-weighted average derivatives 
can be estimated by certain linear instrumental variables coefficients. Both of the estima- 
tors are computationally simple, root-N-consistent and asymptotically normal; their statis- 
tical properties do not rely on functional form assumptions on the regression function or 
the distribution of the data. The estimators, based on sample analogues of the product 
moment representation of the average derivative, are constructed using nonparametric 
kernel estimators of the density of the regressors. Asymptotic normality is established using 
extensions of classical U-statistic theorems, and asymptotic bias is reduced through use of a 
higher-order kernel. Consistent estimators of the asymptotic variance-covariance matrices 
of the estimators are given, and a limited Monte Carlo simulation is used to study the 
practical performance of the procedures. 

KEYwoRDs: Index restrictions, semiparametric estimation, density-weighted average 
derivatives, kernel estimation, root-N-consistency, limited dependent variables. 

1. INTRODUCTION 

A PROBLEM OF SUBSTANTIAL PRACTICAL INTEREST concerns the estimation of 
coefficients in index models. In this paper we give a solution to this problem 
through the estimation of the density-weighted average derivative of a general 
regression function. To fix ideas, let y denote a dependent variable and x a 
vector of independent variables, where the true regression function is E(y Ix) = 

g(x), and x is distributed with density f(x). The density-weighted average 
derivative vector is defined as2 

(1.1) S=E f(x) ax 

Our approach is nonparametric: we propose an estimator of 8 whose properties 
can be derived under weak restrictions on the joint distribution of (y, x). In 
particular, no functional form assumptions are applied to g(x) or f(x). 

Weighted average derivatives are of practical interest because they are propor- 
tional to coefficients in index models. Suppose that the model explaining y 
implies that g(x) can be written in the "single index" form 

(1.2) g(x) = G(x'1B) 
for some univariate function G(.). For instance, this form arises in various 

'The authors gratefully acknowledge funding for this research from National Science Foundation 
grants. The authors wish to thank L. Hansen, J. Hausman, J. Heckman, C. Manski, S. Marron, D. 
McFadden, P. Robinson, C. Sims, and the two anonymous referees for helpful comments, and M. 
Kennet for computational assistance. An earlier version of this paper, entitled "Semiparametric 
Estimation of Weighted Average Derivatives," was presented at the 1986 North American Summer 
Meetings of the Econometric Society. 

2Note that we have not required the weighting function to have expectation unity-later we 
introduce this normalization, so that the estimators are properly averaged derivatives. 
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models of limited dependent variables (see Ruud (1986) and Stoker (1986) for 
examples), where the structure of G(.) is determined by an underlying distribu- 
tion of unobserved stochastic terms. For our purposes, two features of such index 
models are relevant. First, since any nonzero rescaling of the coefficients /8 can be 
absorbed into the definition of G(.), of interest are estimators of /3 up to scale. 
Second, the single index form is manifested as a restriction on the derivatives of 
the regression function g(x), as 

d13 g _ G G(x'/3) (dG 
(1.3) Ax dx ( d(x'3) 

so that dg/dx is proportional to /3 for each value of x. Thus any weighted 
average of the derivatives dg/dx will also be proportional to /3. Let W(x) be a 
weighting function; then 

3wE [co(x) dg/dx] =E[co(x) dG/d(x'/3)]/3--yw 

is proportional to /3, provided y,, * 0. Given this flexibility, we are free to set 
to(x) = f(x) (the density of x) and focus on estimating the density-weighted 
average derivative 8 of (1.1), where for the index model (1.2) we have 

(1.4) S=E f(x) ax =E f(x) d(x') B yp 

As seen later, the choice of density-weighting is made because it permits an 
estimator to be proposed whose properties can be analyzed and understood in a 
straightforward fashion. 

While any scaling normalization permits identification of the index coefficients, 
a natural choice would be to impose the condition E[w(x)] = 1 on the weighting 
function w(x). For the density weighted coefficients 8, this yields the rescaled 
coefficients 8* = I/E[f(x)]. For example, if g(x) = a + x'/3, then 8 = E[f(x)]JP, 
but 8* = ,/. Since the components of 8* are comparable to linear model coeffi- 
cients, their values may be more easily interpreted than those of the components 
of 3. 

In this paper we propose an estimator SN of the density-weighted average 
derivative 8, where N is the sample size. We show that 3N is a VNK-consistent, 
asymptotically normal estimator of 8, and give a consistent estimator of its 
asymptotic variance-covariance matrix. We also propose an estimator dN of 3*, 
by a straightforward modification of 3N' and show that dN has analogous 
distributional properties. 

The estimators are based on sample analogues of a product-moment represen- 
tation of density-weighted average derivatives. The representation involves 
derivatives of the density of x, which are estimated nonparametrically using the 
kernel density estimation technique of Parzen (1962) and others (see Prakasa-Rao 
(1983) for a survey). The estimator 8N is based on an appropriate average of the 
estimated density derivatives. The estimator dN is the slope coefficient vector of 
y regressed on x, where the estimated density derivatives are used as instrumen- 
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tal variables. Each of these estimators is computed directly from the observed 
data, requiring no computational techniques for maximization or other types of 
equation solving. 

The verification of the statistical properties of the estimators is of theoretical 
interest, because it involves reconciling the relatively slow convergence properties 
of nonparametric density estimators with the classical properties of sample 
averages. The key to establishing vNK-consistency and asymptotic normality of SN 

is noting that SN can be written as a U-statistic: this structure permits proper 
accounting of the "overlaps" in the density derivative estimators that comprise 
SN' The U-statistic structure also motivates a natural estimator of the asymptotic 
variance of SN' The statistical properties of dN follow in a straightforward 
fashion from those of SN' 

We study the practical performance of the estimators via a limited Monte 
Carlo analysis. The instrumental variables estimator dN performs well in small 
samples, and displays better operating performance than SN for the modelling 
situations studied. 

Sections 2, 3, and 4 give the formal analysis of the estimators and related 
results, with all proofs not developed in the text removed to Appendix 1. 
Specifically, Section 2 presents our assumptions and briefly reviews some proper- 
ties of kernel estimators. Section 3 proposes the estimator SN of density-weighted 
average derivatives, establishes vN-consistency and asymptotic normality, and 
gives the consistent estimator of its asymptotic variance-covariance matrix. 
Section 4 introduces the instrumental variables estimator dN and discusses its 
properties. Following the theoretical discussion, Section 5 presents some Monte 
Carlo evidence on the performance of the estimators, and Section 6 gives some 
concluding remarks. 

2. NOTATION, ASSUMPTIONS, AND TECHNICAL BACKGROUND 

2.1. The Basic Framework and Approach to Estimation 

We consider an empirical problem where y denotes a dependent variable and 
x a k-vector of independent variables. The data consists of N observations 
(Yi, x'), i= 1,..., N, which is assumed to be an i.i.d. random sample from a 
distribution that is absolutely continuous with respect to a a-finite measure v, 
with (Radon-Nikodym) density F(y, x). The marginal density of x is denoted as 
f(x), and the regression function of y given x is denoted as g(x) E(yIx). 

The main structural assumptions can now be stated as follows: 

ASSUMPTION 1: The support Q of f is convex (possibly unbounded) subset of Rk 

with nonempty interior QO. The underlying measure v can be written in product form 
as v = vy X vx, where VX is Lebesgue measure on Rk. 

ASSUMPTION 2: The density function f is continuous in the components of x for all 
x e Rk, so that f(x) = 0 for all x e ad , where a Q denotes the boundary of Q. 
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Furthermore, f is continuously differentiable in the components of x for all x E gO 
and g is continuously differentiable in the components of x for all x Ec D, where 
Q differs from f20 by a set of measure zero. 

ASSUMPTION 3: The components of the random vector dg/dx and random 
matrix [df/dx]l[y, x'] have finite second moments. Also, df/dx and d(gf )/dx 
satisfy the following Lipschitz conditions: For some m(x) 

df(x + v) df(x) 
<M(x)Pik 

d [ f (x + v) * g(x + v) d[f(x).g(x)] 11 

dx a< m(x)I 

with E[(1 + IyI +? x Il1) )m(x)]2 < o. Finally, v(x) = E(y2jx) is continuous in x. 

Assumption 1 restricts x to be a continuously distributed random variable, 
where no component of x is functionally determined by other components of x. 
Continuity of x is useful in this context because of the generality of the 
dependent variables considered (for example, Manski (1988) points out how 
continuity of the regressors is useful for identification of binary response models 
with index restrictions). Assumption 2 is a boundary condition, that allows for 
unbounded x's (where -=Rk and d Q= 0) and gives the smoothness condi- 
tions on f and g. Assumption 3 imposes standard bounded moment and 
dominance conditions. 

Our approach to the estimation of 8 of (1.1) is based on a product-moment 
representation of the density-weighted average derivative (alternative approaches 
are discussed in Section 6). This representation is based on the following 
multivariate application of integration by parts: 

(2.1) E f (x) ax fxf(x dx =-2g(x) a f(x)dx=-2E(y a) 

where the boundary terms in the integration by parts formula vanish by Assump- 
tion 2. We formalize the result as Lemma 2.1: 

LEMMA 2.1: Given Assumptions 1-3, 

(2.2) 8=E(f(x) dx) 2E y- ) 

We propose to estimate 8 by the sample analogue of (2.2), where df/dx is 
replaced by a consistent nonparametric estimate. Specifically, let f(x) be an 
estimator of f(x), and let df(x)/dx denote the associated estimator of its 
derivative. Then an estimator of 8 can be formed as the sample product-moment 
of (2.2), namely (-2/N)Y2[yi af(xi)/dx]. Our specific estimator 8N of 8 uses a 
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kernel estimator of the marginal density f(x). We now review kernel density 
estimators and some of their properties. 

2.2. Kernel Estimators: Notation and Pointwise Convergence Properties 

There are a number of methods for estimating an unknown function nonpara- 
metrically; in this paper, we use kernel estimators, which arise from a particular 
method of local averaging.3 A kernel estimator of the density f(x) can be written 
in the form 

A 
1 N e k x X-X 

N i=1 K(h 

where the "kernel" K(.) is a weighting function and the "band (or window) 
width" h = hN is a smoothing parameter that depends on the sample size N. The 
contribution to f(x) of data points that are close to x is determined by K(.), 
where "closeness" is determined by the bandwidth h. The asymptotic properties 
of f(x) refer to the limiting properties obtained as the sample size N increases 
and the bandwidth h declines. We assumed that a kernel K(.) is chosen that 
obeys Assumption 4: 

ASSUMPTION 4: The support OK of K(u) is a convex (possibly unbounded) 
subset of Rk with nonempty interior, with the origin as an interior point. K(u) is a 
bounded differentiable function such that J K(u) du = 1 and J uK(u) du = 0. 
K(u) = 0 for all u EE daQK where d OK denotes the boundary of QK. K(u) is a 
symmetric function; K(u) = K(- u) for all u E i QK. 

We denote the derivative of K as K'(u) dK/du. The symmetry of K implies 
that K' is anti-symmetric: K'(-u) =-K'(u) for all u E QK.4 

Detailed studies of the pointwise properties of kernel density estimators can be 
found in the statistical literature. Derivations of the properties cited below can be 
found in Silverman (1986); see also Fryer (1977), Tapia and Thompson (1978), 
Spiegelman and Sacks (1980), Stone (1984), and Bierens (1983) among many 
others. For our purposes, some of the known pointwise properties on the 
convergence of f (x) to f(x) are of interest for interpreting our results. The bias 
of f(x) is at most 0(h), and thus converges to 0 as N - oo and h -> 0. The 
variance of f(x) is 0(1/Nhk), and therefore converges to 0 if Nhk oo. 
Consequently, if Nhk oo and Nhk?2 _o 0, the mean square error of f (x) is 
0(1/Nh k). These properties imply that the maximal rate of convergence of f(x) 
to f (x) is VKhk, which is strictly slower than rN since h 0. 

3Other methods include nearest neighbor estimation, as studied by Stone (1977) and others. A 
survey of several methods can be found in Prakasa-Rao (1983). For a review of nonparametric 
estimators in the context of econometric problems, see McFadden (1985). 

4While we do not require it, if K(.) is assumed to have bounded support, the Lipschitz condition 
of Assumption 3 can be weakened to hold only for v in a neighborhood of 0. 
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Some intuition for these properties is available from examining (2.3). If h were 
fixed as N --*oo, f(x) would be an ordinary sample average, whose variance was 
0(1/N) for standard reasons. But unless f(x) were linear nearby x, the bias 

E[ f (x)] - f (x) would not vanish. To eliminate the bias, averaging is done over 
effectively smaller areas via h -O 0. This implies that the variance collapses more 
slowly as 0(1/Nh k), where hk reflects the effective area over which averaging is 
performed. To have a more accurate pointwise approximation as N increases, 
f(x) must converge to f(x) at a rate less than rN.5 

The same slow pointwise convergence is displayed by kernel density derivative 
and kernel regression function estimators. The density derivative estimator asso- 
ciated with f (x) is obtained by differentiating (2.3) as 

(2.4) fx 1N (1E \?h) (xhx) 
ax N_= 

By analogous reasoning for the density estimator, the density derivative estima- 
tor a//ax obeys MSE(df/dx) = O(1/Nhk?l) as h -0, Nhk?l oo, and 
Nhk+3 O_ 0. Moreover, kernel estimators of the regression function g(x) can be 
defined, which exhibit the same convergence properties as kernel density estima- 
tors. 

Such slow rates of convergence imply that precise pointwise nonparametric 
characterizations of density functions, regression functions, and derivatives of 
such functions will be feasible only for extremely large data sets. These problems 
are particularly severe for higher dimensional applications (larger k), reflecting a 
particular embodiment of the "curse of dimensionality" cited by Huber (1985), 
McFadden (1985) and others. 

We have raised these issues to place our results in a particular context. In the 
next section, we produce a 1K-consistent and asymptotically normal estimator of 
the weighted average derivative 8, that is based on averages of kernel density 
derivative estimators. Consequently, our results give an example of how the slow 
convergence rates of pointwise estimators can be speeded up when they are 
averaged to estimate a finite parameter vector, thereby avoiding the curse of 
dimensionality. 

3. THE WEIGHTED AVERAGE DERIVATIVE ESTIMATOR 

3.1. The Estimator and Its Interpretation 

We define 8N' the estimator of the weighted average derivative 8= 
E[f (x) dg/dx], as the sample analogue of the product-moment representation 
(2.2): 

(3.1) N N= E ( ) Yi 

5Stone (1980) makes this intuition concrete in his display of optimal pointwise rates of convergence 
for nonparametric estimators. 
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where fi(x) is the kernel density estimator 

A 1 N I1\k x -x. 
(3.2) f/(x) = -I K '. 

N-1 j=i h h 
j*i 

(Note that fi(x) differs from f(x) of (2.4) by omitting xi in the estimation of the 
density f(x), which is the most convenient formulation for our technical develop- 
ment.6) Thus to compute the ith summand of AN, the density is estimated as 
fi(x), the derivative is estimated as dfi(x)/dx, and the summand formed as 

fiA(xi)/ax)Yi- A A 

Provided that af (x)/dx is consistent for af(x)/dx (in some sense), AN will 
be a consistent estimator of 8 by the law of large numbers. In Section 3.2 we 
show that VNF[8N - E(3N)] has a limiting normal distribution. In Section 3.3 we 
indicate how the asymptotic bias is controlled by structuring the kernel K(.), 
and show that VN (8N - 8) has a limiting normal distribution. 

A useful representation of SN is obtained by first inserting (3.2) into (3.1): 

A 2 ~N N 1k?1 x x 

(3.3) 3N -2 ,X,X1 N(NV-1) i=1 ]=1 h ) ( h ) 
j=*i 

and then writing AN in the standard "U-statistic" form as 

N-j N-1 N k+ 1 X -X 

using the fact that K'(u) = - K'( - u). This information permits a direct analy- 
sis of the asymptotic properties of SN' as will be seen. Note that for any value of 
the bandwidth h, calculating AN only involves a computation of order N2. 

Examination of the components of AN yields a natural "slope" interpretation. 
Let the subscript 1 denote a particular component of a k-vector, as in xi= 
(xli,..., x1i,..., xki)'. The Ith component of 8N can be written via (3.4) as 

(3.5) N 2) = j ( (1 )W(IxiY ) 
2 i=1 j=i+1 i j 

6 
By leaving x, out of the averaging in f, the variation of f (xi) around f(x,) becomes 

independent of x,. This conveys the technical advantages of "sample splitting" (c.f. Bickel (1982)) to 
our analysis, without a significant cost in data usage. 

Note in addition that omitting xi has only a minor impact on the value of the estimator. In 
particular, utilizing (2.4) would only alter (3.3) to add zero terms (as Assumption 4 implies K'(O) = 0) 
and change the leading factor from 2/[N(N - 1)] to 2/N2. 

7This represents the main use of the symmetry of K(.). One could dispense with the symmetry of 
K by using a "symmetrized" representation of the kernel, as described in Serfling (1980, p. 172). 
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where w1( u)=- u IdK/d uI is a weighting function. An application of integra- 
tion by parts gives J wl(u) du = J K(u) du = 1. Equation (3.5) shows that SIN is a 
weighted combination of the slopes (yi - yj)/(x11 - x11), i, j = 1,..., N, with low 
weight given to observations with llxi - x 11 large.8 Consequently, the estimator 

8N embodies the intuitive feature of combining the slope (derivative) estimates 

(y1 - yj)/(xi, - xj,) for all i, j, 1. 

3.2. Asymptotic Normality 

In this section we establish that NK[8N - E(8N)] has a hmiting normal 
distribution with mean 0 and variance-covariance matrix 2:, and obtain an 
explicit formula for 2:. As indicated above, the limiting distribution of 8N 

involves a faster rate of convergence than the separate density derivative estima- 
tors. This follows from the fact that each data point is used in the estimation of 
several density derivative values. These overlaps in the local averaging of the 
density derivative estimates are reflected directly in the U-statistic representation 
(3.4), and correspondingly the results of this section follow from a general result 
on the asymptotic behavior of U-statistics. We first prove the general result as 
Lemma 3.1, which extends the classical theorems of Hoeffding (1948) (see 
Serfling (1980) for a recent reference). We then apply this result to the average 
derivative estimator AN. 

Begin by considering a general "second-order" U-statistic of the form 

N N-1 N 

(3.6) ()1N1 A 
i=l j=i+l 

where { zi, i = 1,..., N } is an i.i.d. random sample and PN is a k-dimensional 
symmetric kernel; i.e. pA(Zi, Zj) = PN(ZI, zi). Also define 

(3 .7) rN (zi) =E [ PN (Zi, Zj)lZi] 1, 

(3.8) ON E[rN(zi)] =E[PN(Zi Zj)] 

A2 N 
(3.9) UN ON + - E [rN(Zi) -ON] 

where we assume that ON exists. UN is called the "projection" of the statistic UN 

(Hoeffding (1948)). 
Our first result is Lemma 3.1, which establishes the asymptotic equivalence of 

UN and UN:9 

LEMMA 3.1: If E[IIpN(zil, z ) 2]-o(N), then rV(UN - UN) = op(l). 

8In general, the weight w1 is nonmonotonic in the difference llxi - xjll, where 11- 11 denotes the 
standard Euclidean norm on Rk, namely 1lull2 = E u72. For instance, if k = 1 and K(.) is a standard 
normal density function, the weighting function w(. ) is bimodal, with modes at - 2h and 2h. 

9This lemma is an extension of the results in Serfling (1980, p. 186-188), to the case where 
PN(Zi, Z,) varies with N. 
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Because the projection UN is an average of independent random variables, we 
could establish directly the asymptotic normality of UN, assuming the regularity 
conditions of a central limit theorem. 

Consequently, Lemma 3.1 provides sufficient technical machinery to establish 
the asymptotic normality of the average kernel estimator AN centered about 
E(8N). Let zi (yi, xi)', and rewrite (3.4) as 

( N-1 N 

(3.10) SN E N(Z j 
i=1 j=i+l 

with 

(3.11) P( z)_ -) K'(iX)y-j 

where PN varies with N through h. Moreover, define 

(3.12) v(x) E(y2jx). 

To apply Lemma 3.1, we require conditions on the bandwidth such that 
E[IIpN(zi, z j)112] = o(N). We have 

(3.13) E [IIPN(Zil, Zj)112] 

-f(i)k+ K|(|)K'( Ii(xi) + v (xj) 
- 2g(xi)g(xj)] 

xf (xi)f (xj) dxi dxj 

= (1h ) k IIK(u)12 [v(xi) + v(x1 + hu) - 2g(xi)g(xi + hu)] 

xf(xi)f(xi + hu) dxi du 

- O(h-(k+2)) = o[N(Nhk+2)y] 

where the second equality uses the change-of-variables from (xi, xj) to (xi, u = 

(xj - xi)/h), with Jacobian h-k, and the third equality uses the continuity of v, 
g, and f. Consequently, we have E[IIPN(Zil, Zj)j2] = o(N) if and only if 
Nhk+2 0-* o as h -*0. 

Thus under this condition, the asymptotic distribution of [8N - E(8N)I is the 
same as that of the sample average (2/N)E{ rN(zi) - E[rN(zi)]}. To characterize 
the distribution, define 

(g(xi) df(xi) 
(3.14) r (z1) =f(xi) dx i ax(x) 
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For PN(Zi, zj) of (3.11), we-have 

(3.15) rN(zi) = E [ pN(Zi zj)IzZ] 

f(1)k+1 ?(xi- x 

= J(h)K'(u)(yi-g(xi + hu))f (xi + hu) du 

a(g)f )(xi + hu) af(xi?hu) 
ax K(u) du -yiJ K(u) du 

=r(Zi) + a a )K(u) du 

(d f(x, + hu) df (xi) ) ( d 
ax axU 

-r(Zi) + tN(Zi). 

Now since 

2 N i N 

(3.16) AN {r rN(zi) -E [rN(zi)]} {r(zi) -E [r(zi)]} 
rNi=1 

iN 
? f {tN(Zi) E [tN(Zi)]}, 

the limiting distribution of INK[SN - E(3N)I is the same as that of 
(2/ VN)Yj { r(zi) - [r(zi)]}, provided the last term of (3.16) converges in proba- 
bility to zero. But, by Assumption 3, this last term has second moment that is 
bounded above by 4h2{E[(l + jyl)m(x)]2[J jlull * IK(u)jdu]2I = 0(h2), so it does 
converge to zero in probability. Application of the Lindeberg-Levy Central Limit 
Theorem to (3.16) then yields the result: 

THEOREM 3.1: Given Assumptions 1-4, if h- 0 and Nhk?2-> x, then the 
average derivative estimator AN of (3.1) is such that vN[W N - E(aN)I has a limiting 
multivariate normal distribution with mean 0 and variance-covariance matrix 3, 
where 

(3.17) XA _ 4E [r(zj)r(zj)] ]-488 , 

is the variance-covariance matrix of 2r(zi). 

Note that the condition Nhk?2 -* 0 places an upper bound on the rate that 
the bandwidth h converges to 0. Moreover, note that the asymptotic variance- 
covariance matrix 2, does not depend on the kernel K(.), and thus does not 
depend on the weighting used in the local averaging. This is in contrast to the 
(pointwise) asymptotic variances of the kernel density and density derivative 
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estimators, which do depend on the kernel K(.) (see Silverman (1986) and 
Prakasa-Rao (1983) among others). 

3.3. Asymptotic Bias 

Unlike the asymptotic variance, the asymptotic bias of aN does depend on the 
kernel function K(.). In this section we analyze the asymptotic bias, showing 
how it will vanish at rate VK when a certain type of kernel function is used. 

We begin by introducing conditions under which the bias can be expanded as a 
Taylor series in the bandwidth h as 

(3.18) E(8N)-8 = blh + b2h2 +?... +b P-l + O(hP) 

where P = (k + 4)/2 if k is even and P = (k + 3)/2 if k is odd. By Young's 
version of Taylor's Theorem (c.f. Serfling (1980), among others), this representa- 
tion is possible if the first P derivatives of E(8N) with respect to h exist at h = 0. 
Write E(8N) as 

(3.19) E(8N) =-2f() K'( Xh )g(x)(x)f(x2) dXl dx2 

1 
= 2 - f K'(u)g(x)f(x)f(x + hu) dxdu 

df (x +hu) 
=-2fK(u)g(x)f(x) dx dxdu. 

Expansion of the last integral in (3.19) gives the representation (3.18), with the 
lth coordinate of bp given as 

-2 k dp+'f (x) f()xu 
(3.20) b/p = p! E ul, . .f . uK(u)g(x) d d f (x) dxxdu 

Thus a sufficient condition for the existence of the expansion (3.18) is the 
following assumption: 

ASSUMPTION 5: Let P = (k + 4)/2 if k is even and P = (k + 3)/2 if k is odd. 
All partial derivatives of f(x) of order P + 1 exist. The expectation 
E[ y( d Pf(x)/dxll... dx, )] exists for all p < P + 1. All moments of K(u) of order 
P exist. 

The source of asymptotic bias of 3N lies in the leading P - 1 terms of the 
expansion (3.18). To see this, multiply (3.18) by vN as 

(3.21) VN[E(AN) - 8] = b1VN h + b2Kh2 ... +bp-b 1 hp-1 + O(? V p 

For Theorem 3.1, we require Nhk+2 - oo, so that the xNKh through NKhP-1 
terms explode, and we can choose h such that VNfhP - 0. Therefore, the 
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asymptotic bias will vanish if and only if the coefficients bp, p = 1,..., P- 1, 
vanish. 

Moreover, equation (3.20) indicates how the kernel function can be chosen so 
that the asymptotic bias vanishes; namely choose K(.) whose "moments" of 
order P - 1 or less are zero. In particular, we assume K(.) is of order P, by 
assuming the following: 

ASSUMPTION 6: The kernel function K(.) obeys 

K(u) du=1, fuP...u,PKK(u)du =0 for 11+ ... +?l, < P, and 

Ju ... u'PK(u) du 
= 

0 for 11 + ... + P. 

When P > 2 (or k > 1), the kernel K(.) must take on positive and negative 
values, because its second moments must be zero. Thus bias is controlled by 
using positive and negative weights in the local averaging. 

We summarize the above discussion on asymptotic bias as follows: 

THEOREM 3.2: Given Assumptions 1-6, if h obeys Nh2P -*0 as N -+ oo, then 
rN[ E(S"N) - SI = o(1). 

Thus we have also shown the following theorem: 

THEOREM 3.3: Given Assumptions 1-6, if h obeys Nhk+2 -* oo and Nh2P 0 O as 
N -X oo, then the average derivative estimator AN of (3.1) is such that VN (8N - 8) 
has a limiting multivariate normal distribution with mean 0 and variance covariance 
matrix 28 of (3.17). 

Unlike in the demonstration of asymptotic normality, the lack of asymptotic 
bias of AN is directly associated with the pointwise bias properties of its 
nonparametric components. In particular, under our assumptions, the pointwise 
bias of the density derivative estimates, E[ df1(x)/dx] - df(x)/dx, can be 
shown to be 0(h1) (c.f. Silverman (1986), among others). Correspondingly, the 
average bias E(SN) - 8 is 0(hp), so that the asymptotic bias VN[E(SN) - 8] is 
0(VNh P), vanishing as Nh2P -*0. 

Higher order kernels can be constructed in a number of ways; for instance, see 
Gasser, Mueller, and Mammitzsch (1985) or Robinson (1986). For our Monte 
Carlo analysis, we construct such kernels by taking weighted differences of 
density functions with varying spreads. This choice has an alternative interpreta- 
tion in terms of a "generalized jackknife" method of bias control, as outlined in 
Appendix 2. 

A practical concern with the use of higher order kernels may exist when the 
sample size N is small (relative to the dimension k). In particular, the estimates 
of the density function from (3.2) can be quite variable, when they are based on 
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averaging a very small number of observations with positive and negative 
weights. In such cases, it may be practically advantageous to stabilize the density 
estimates somewhat by using a positive kernel: K(.) such that K(u) > 0 for 
u E QK9 J K(u) du = 1, and J UK(u) du = 0. We examine this issue as part of the 
Monte Carlo analysis in Section 5. 

3.4. Measurement of Precision 

In addition to giving the basis for asymptotic normality, the U-statistic 
structure of AN also suggests a natural estimator of the asymptotic variance- 
covariance matrix 2:&" Recall that T is the covariance matrix of 2r(zi), where 
r(zi) of (3.18) is the limit of rN(zi) = E[PN(Zi, Zj)lzil, with PN(Zi, zj) the 
U-statistic component defined in (3.15). A kernel estimator of r(zi) is obtained 
directly as the sample analogue of rN(zi), namely 

-1 N 

(3.22) ?N(z )- N-1 EPN(Zi, Zj) 

j*i 

N_1 N(1)k+1 l(X x) 
j*i 

The asymptotic variance covariance matrix Z1 is estimated using ?N(zi), i= 
1, . . ., N, via 

ErN Jir^N(ZJ) 

(3.23) 1 = 4i N 48N AN. 

The consistency of 2 for T is established as 

THEOREM 3.4: Under the conditions of Theorem 3.3, Z& is a consistent estimator 
of 2^. 

Hypothesis tests on the values of some or all of the components of 8 can be 
performed with standard Wald statistics using AN and 1T. In particular, if 
RS = So is a coefficient restriction of interest, where R is a k, x k matrix of full 
rank k, < k, then the limiting distribution of N(R8N - 8o)'(RaR'1)-(R8N - ) 
is x2 with k, degrees of freedom. For example, for single index models with 
g(x) = G(x',8) and 8 = y/3, the (scale-free) hypothesis that R13 = 0 is equivalent 
to RS = So with So = 0, which can be tested in this manner. This accommodates 
zero restrictions on some or all of the components of ,B, as well as equality 
restrictions. 

l?This procedure was suggested by an anonymous referee, whom the authors gratefully acknowl- 
edge. 
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4. SCALING BY INSTRUMENTAL VARIABLES REGRESSION 

As discussed in the introduction, the scaling normalization implicit in the 
definition of 8 = E[f(x) dg/dx] may not always yield the most easily inter- 
preted estimates, so we now consider the rescaled parameter vector 8* = 

8/E[f(x)]. It is not difficult to propose estimators of 8*: if fN is any consistent 
estimator of E[f(x)], then it is clear that 8* is consistently estimated by 8N/fN. 

In this section we discuss a particular modification of 8N which estimates 8* by 
the slope coefficients of a linear instrumental variables regression of yi on xi.11 

The motivation for the estimator begins by noting that dx'/dx = Ik, where Ik 
is the k x k identity matrix, and applying Lemma 2.1 to IkE[f(x)] as 

(4.1) IkE[f(x)] = -2E( x x'). 

Therefore, IkE[f(x)] is consistently estimated by the density-weighted average 
derivative estimator replacing yi by xi as 

(4.2) fxN N -2 (xi) 

where fi(x) is defined in (3.2). Further note that by combining (2.2) and (4.1), 8* 
can be written as 

(4.3) 8* = El -x' E Y 
d, x / d~ x 

Equation (4.3) motivates the following estimator of 8*. Consider the slope 
coefficients of the linear equation: 

(4.4) yi=Xi[dN+ ui (i= l,..., N) 

estimated using the estimated density derivatives df/(xi)/ax as instrumental 
variables, or 

(4.5) dN = N a( (X1) i ) () 8xN ax )X) % ax ) d Yi) 

The above remarks motivate how dN is a consistent estimator of 8*. We have 
omitted a constant term from the linear equation (4.4) to most easily motivate the 
instrumental variables formula (4.5). However, it should be noted that the value 
of the slope coefficient vector dN is unaffected by the inclusion of a constant, 
since E2i[ daL(xi)/dx] = 0 by construction. 

The limiting distribution of dN can be derived by writing its departure from 8* 
in terms of the large sample residuals from the equation (4.4). In particular, 

11Alternatively, we could rescale by dividing by the sample average of the estimated density 
function f(x,), which would yield an estimator with a different large-sample distribution. We 
consider only the instrumental variables rescaling here, since this approach yields an estimator which 
is unbiased (conditioned on the regressors) when the true model is linear in the index x',8. 
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define u = y - x'S * and ui =yi -x', ix = 1, ...,N, so that by construction we 
have 

(4.6) d -8*= -2N-1 (df(xi))ju) 

By Theorem 3.3, the term in brackets consistently estimates the density-weighted 
average derivative of D(x) E(ulx) = g(x) - x'S*. But this average derivative 
is 0; namely with aD/ax = ag/dx -8*, we have E[f(x) aD/ax] = 0. Thus, dN 
is consistent, as plim dN -8* = E[f(x)]- E[f(x) aD/ax] = 0. Moreover, for 
the same reason, 6xN can be replaced by its probability lmit IkE[f(x)], giving 

(4.7) V[dN-8*] =E[f(x)] 1VN(-2N_2 E (a xi) ) +op(1). 

In this form, it is clear that the limiting distribution of (dN - 8*) follows from 
an immediate application of Theorem 3.3. The asymptotic covariance matrix is 

(4.8) d 4E [rd (zi)rd (zi)'] 

where the component rd(zi) is derived by repeating the derivation (3.14-15) with 
y replaced by u = y - x'& * and then multiplying by E[f(x)]1 as 

(4.9) rd(zi) =E[f(x)] kf(xi) dx *) [yi -g(xi)] Ax 

We summarize this discussion of the asymptotic properties of dN as follows: 

COROLLARY 4.1: Given Assumptions 1-6, if h obeys Nhk+2 o- cc and Nh21 0 
as N -* oo, then the estimator dN of (4.5) is such that VNF(dN - 8*) has a limiting 
multivariate normal distribution with mean 0 and variance covariance matrix 2d of 
(4.8). 

Moreover, the matrix 2d is consistently estimated by using the estimated 
residuals from equation (4.4): let Ui = Yi - xi' dN, i = 1,..., N, denote these 
residuals, and in accordance with (3.22) define 

(4.10) NdN(z1) s N -ifj1 ()k+1K h x )(Ai ji)) 

and 2d by 

ErdN (z)rdN(Zi) 

(4.11) d = 4 i 
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We then have the following corollary: 

COROLLARY 4.2: Under the conditions of Corollary 4.1, Zd is a consistent 
estimator of 2d- 

Inferences on some or all of the values of 8* can be carried out using Wald 
statistics constructed from dN and 2d, as outlined in Section 3.4. 

5. FINITE SAMPLE BEHAVIOR 

In order to evaluate the practical performance of the approach discussed in the 
previous sections, in this section we present the results of a small-scale simulation 
study of the proposed estimators. While it is not possible to completely character- 
ize the sampling behavior of the weighted average derivative or instrumental 
variables estimator under the general conditions imposed in Section 2, the results 
presented below are quite suggestive of the applicability of the large-sample 
theory to finite samples. 

Four models consistent with the "single index" specification (1.2) were used in 
the study; the dependent variable y1 in each case was generated from an 
underlying linear model with two covariates, 

(5.1) yi*=a+lXil +fXi2x+ , i?e,...IN)5 

with true values a =0 and , = I?2 = 1 held constant across designs. In the 
"linear" specifications, it is assumed that y1 = yi*, i.e., the true latent variable is 
observed; in the "binary response" models, only an indicator variable denoting 
positivity of yi* is observed, so that y, = 1(yi* > 0), where "1(A)" denotes the 
indicator function of the event "A". For each of these two model specifications, 
two conditional distributions of the error terms ei were used. In the "homo- 
skedastic" designs, ei was assumed to be independent of {xi } and i.i.d., with a 
standard Gaussian distribution. The "heteroskedastic" designs assumed the error 
distribution was multiplicatively heteroskedastic, that is, ei = vi- vi, where Pi is an 
i.i.d. standard Gaussian sequence and cr2 = exp { xif + k }, where k is a constant 
chosen so that, given the distribution of the regressors, E[q2] is equal to one. For 
each of these model/distribution pairs, it is easy to verify the relationship (1.2); 
in all but the " heteroskedastic binary" case, the corresponding function G(-) is 
nondecreasing in the argument x'/. 

Given the imposed symmetry in the way the covariates enter the model (with 
equal coefficients), it is important that the covariates not be identically dis- 
tributed. Otherwise, when a scale normalization is imposed, any estimation 
method which is symmetric in the two covariates will tend to be median 
unbiased. For the results reported below, the first covariate xi, was assumed to 
have a x2 distribution, standardized to have zero mean and unit variance; the 
second covariate was independently distributed and standard normal. 

The weighted average derivative estimators and corresponding instrumental 
variables estimators for all designs are calculated using two kernel functions. The 
"4not bias-corrected" kernel is a standard multivariate normal density function, 
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with zero mean and identity covariance matrix. This kernel does not satisfy 
Assumption 6 for these models, so the asymptotic bias will not be o(1/ 1N); still, 
the magnitude of this bias for finite samples is an open question. The "bias-cor- 
rected" kernel is constructed using the "generalized jackknife" approach de- 
scribed in Appendix 2: that is, it is a linear combination of P = 4 multivariate 
normal density functions, with weights and bandwidths chosen to ensure the 
conditions of Assumption 6. In the notation of Appendix 2, (p1, 42' 43) = (2,3,4) 
and X = 0, so that CN - C = (1.5, - 1.0,0.25)'. Fixing these kernel functions, the 
only remaining free parameter in the estimators SN of (3.1) and dN of (4.7) is the 
bandwidth, h. 

Tables I through IV report summary statistics for various estimators under the 
four model/error distribution combinations-homoskedastic linear, homoske- 
dastic binary response, heteroskedastic linear, and heteroskedastic binary re- 
sponse, respectively. The simulations reported here took the sample size N = 50, 
the number of covariates k =2, and the bandwidth parameter h = 1.0. All 
designs were replicated 400 times; summary statistics reported for these replica- 
tions include the sample mean (MEAN), standard deviation (SD), and root- 
mean-squared-error (RMSE), as well as the lower quartile (LQ), median 
(MEDIAN), upper quartile (UQ), and median absolute error (MAE). All simula- 
tions and calculations were performed using the GAUSS programming language 
on microcomputers. 

In order to ensure comparability of the estimated coefficients across estimators 
and designs, all estimated slope coefficients were rescaled to have the sum of their 
absolute values equal to 2, which is the sum of magnitudes of the true coefficients 
/3o. For this normalization, if both estimated coefficients are positive (as is 
typically the case), the deviations of the two coefficient estimates from their true 
values will be of equal magnitude and opposite sign; that is, I1 - I1 = ,B2- /2 

when /3l, 32 > 0. This normalization was preferred to examination of ratios of 
estimated slope coefficients, which have ill-behaved sample moments; it was also 
preferred to normalization of the Eucidian length of the coefficients, which 
induces more asymmetry in the sampling distribution of the coefficient estimators 
about the true values. Except for comparison of magnitudes of sample moments, 
though, the qualitative conclusions below do not depend on the particular 
normalization chosen. 

For all designs, the (rescaled) classical least squares estimator was calculated 
and summarized, to provide a standard for comparison; in Tables II and IV, the 
behavior of the probit maximum likelihood estimator (under the assumption of 
homoskedastic Gaussian errors) is also summarized. While the least squares 
estimator is not consistent for the "binary response" models, it is often justified 
as a computationally-convenient estimator for the homoskedastic binary response 
model when the expectation function G(x'/3) is not frequently close to zero or 
one (see, e.g., Amemiya (1981)). In Tables I and II, then, the semiparametric 
estimators can be compared to properly-specified maximum likelihood estima- 
tors, while in Tables III and IV misspecified maximum likelihood estimators are 
the standard for comparison. 
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TABLE I 

FINITE-SAMPLE BEHAVIOR OF ESTIMATORS FOR HOMOSKEDASTIC LINEAR MODEL 

Weighted Average Derivative, Not Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.11 0.35 0.37 0.90 1.12 1.34 0.24 
1.00 0.86 0.41 0.43 0.65 0.88 1.10 0.24 

Weighted Average Derivative, Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.12 0.38 0.40 0.89 1.11 1.34 0.25 
1.00 0.84 0.45 0.48 0.65 0.87 1.11 0.26 

Instrumental Variables, Not Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.01 0.36 0.36 0.78 0.99 1.21 0.21 
1.00 0.96 0.42 0.43 0.78 1.00 1.21 0.21 

Instrumental Variables, Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.01 0.38 0.38 0.77 0.99 1.24 0.23 
1.00 0.94 0.48 0.48 0.76 1.00 1.22 0.24 

Least Squares: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.01 0.29 0.29 0.83 1.02 1.18 0.17 
1.00 0.98 0.32 0.32 0.81 0.98 1.17 0.18 

TABLE II 

FINITE-SAMPLE BEHAVIOR OF ESTIMATORS FOR HOMOSKEDASTIC BINARY RESPONSE MODEL 

Weighted Average Derivative, Not Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.07 0.44 0.45 0.81 1.08 1.35 0.27 
1.00 0.88 0.50 0.51 0.64 0.92 1.18 0.27 

Weighted Average Derivative, Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.06 0.46 0.47 0.79 1.08 1.36 0.29 
1.00 0.87 0.53 0.55 0.62 0.92 1.20 0.29 

Instrumental Variables, Not Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 0.97 0.44 0.44 0.71 0.97 1.25 0.27 
1.00 0.97 0.52 0.52 0.74 1.02 1.29 0.27 

Instrumental Variables, Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 0.96 0.46 0.46 0.70 0.95 1.26 0.28 
1.00 0.96 0.56 0.56 0.72 1.04 1.29 0.28 

Least Squares: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.00 0.37 0.37 0.77 1.01 1.23 0.23 
1.00 0.99 0.37 0.37 0.76 0.99 1.23 0.23 

Probit Maximum Likelihood: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 0.97 0.37 0.38 0.73 0.96 1.22 0.24 
1.00 1.01 0.38 0.38 0.78 1.04 1.27 0.24 
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TABLE III 

FINITE-SAMPLE BEHAVIOR OF ESTIMATORS FOR HETEROSKEDASTIC LINEAR MODEL 

Weighted Average Derivative, Not Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.08 0.42 0.43 0.88 1.10 1.32 0.23 
1.00 0.83 0.50 0.53 0.66 0.88 1.11 0.23 

Weighted Average Derivative, Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.09 0.42 0.43 0.89 1.09 1.33 0.23 
1.00 0.83 0.48 0.51 0.64 0.89 1.10 0.24 

Instrumental Variables, Not Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 0.98 0.41 0.41 0.78 0.99 1.21 0.22 
1.00 0.92 0.53 0.54 0.78 1.00 1.22 0.22 

Instrumental Variables, Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 0.99 0.41 0.41 0.78 0.98 1.20 0.22 
1.00 0.93 0.51 0.51 0.74 1.01 1.21 0.22 

Least Squares: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 0.85 0.63 0.65 0.60 0.90 1.23 0.31 
1.00 0.67 0.93 0.99 0.35 0.99 1.25 0.33 

TABLE IV 

FINITE-SAMPLE BEHAVIOR OF ESTIMATORS FOR HETEROSKEDASTIC BINARY RESPONSE MODEL 

Weighted Average Derivative, Not Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.16 0.37 0.40 0.93 1.17 1.42 0.28 
1.00 0.81 0.42 0.46 0.57 0.83 1.07 0.28 

Weighted Average Derivative, Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.14 0.40 0.42 0.91 1.14 1.42 0.29 
1.00 0.81 0.45 0.49 0.56 0.84 1.08 0.29 

Instrumental Variables, Not Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.06 0.37 0.38 0.80 1.05 1.31 0.26 
1.00 0.90 0.44 0.45 0.68 0.95 1.19 0.26 

Instrumental Variables, Bias-Corrected: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.04 0.40 0.40 0.78 1.03 1.32 0.26 
1.00 0.90 0.47 0.48 0.67 0.96 1.22 0.26 

Least Squares: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.15 0.39 0.42 0.90 1.11 1.42 0.25 
1.00 0.82 0.43 0.47 0.58 0.87 1.09 0.25 

Probit Maximum Likelihood: 
TRUE MEAN SD RMSE LQ MEDIAN UQ MAE 

1.00 1.17 0.39 0.42 0.92 1.12 1.44 0.24 
1.00 0.81 0.43 0.47 0.55 0.87 1.08 0.24 
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The first two entries of Table I summarize the behavior of the weighted average 
derivative estimators for the base design. As a glance down the "MEAN" column 
indicates, these estimators are not very well-behaved for any of the models in the 
"base design." The estimates are significantly biased away from their true values, 
and this bias causes a noticeable increase in the RMSE over the standard 
deviation of the estimator. Moreover, the bias is not due to asymmetry of the 
sampling distribution of the estimator; the "MEDIAN" column follows the same 
pattern as the sample means. Finally, looking across the tables, there seems to be 
no systematic improvement in either bias or mean-squared error between the 
"bias-corrected" and "not bias-corrected" versions of the estimator. 

In contrast, the instrumental variables estimators dN calculated for the same 
data are quite well behaved in terms of bias, as the next two entries of Table I 
illustrate. The (mean or median) bias of the finite-sample distribution of the 
instrumental variables estimators is not significantly different from zero (at a 5 
percent level), even for the "not bias-corrected" kernel. This suggests that the 
instrumental variables "correction" to the weighted average derivative estimator 
SN is a much more important means of bias-correction than the generalized 
jackknife in practice. Heuristically, the behavior of the instrumental variables 
estimator dN relative to SN is analogous to the behavior of the least squares 
estimator relative to the "product moment" estimator N- Fxiyi: for the hnear 
models studied here, both are consistent up to scale (since E[xix!] = I), but least 
squares is also conditionally (on {xi}) unbiased for the unscaled regression 
coefficients. As for the "generalized jackknife" correction for bias, it yields no 
systematic reduction in bias in the results of Table I through IV, but is 
systematically more variable. 

Comparing instrumental variables and least squares directly, the results of 
Tables I and II indicate a higher precision of the least squares estimators for both 
homoskedastic models, with the behavior of probit maximum likelihood being 
quite similar to least squares (in Table II). For the heteroskedastic linear model 
of Table III, though, the least squares coefficients are very poorly behaved 
relative to the instrumental variables estimators. While the unnormalized least 
squares and instrumental variables coefficients would be unbiased for ,B (condi- 
tionally on the regressors) in this model, the former would also be very dispersed, 
with a substantial proportion of negative values; imposition of the normalization 
in this case yields a sampling distribution of the coefficients with large negative 
biases in both coefficients. The instrumental variables estimators in the design of 
Table IV have a comparable precision (in terms of RMSE or MAE) to either least 
squares or the probit maximum likelihood estimator. However, for the het- 
eroskedastic binary response model, the least squares and probit estimators are 
significantly biased, while the instrumental variables estimator is substantially 
less biased (albeit with a larger dispersion). Since the bias of least squares need 
not decline as the sample size increases, this suggests that, in larger samples, the 
instrumental variables estimator will dominate least squares or probit, provided 
the bandwidth is chosen to shrink with the sample size at the appropriate rate. 
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Several variations on the design of Table I were used to investigate the effects 
of the sample size, bandwidth parameter, and number of covariates on the 
sampling behavior of the estimators; while the results of these simulations are not 
summarized here, they are fairly unsurprising in view of the foregoing theoretical 
and simulation results. Doubling the sample size (with a commensurate reduction 
in the bandwidth parameter) does not lead to a substantial improvement of the 
precision of the semiparametric relative to the parametric estimators. This 
indicates that the variance reduction due to a larger sample size is partially offset 
by the reduction in the bandwidth parameter of the instrumental variables 
estimator, at least for these designs and sample sizes. As the bandwidth parame- 
ter is doubled, the standard deviations of its sampling distributions decline, 
though for the binary response model this is accompanied by an increase in the 
magnitude of the bias. Still, the RMSE and the MAE of the least squares and 
instrumental variables estimators are quite close, and the change in precision of 
the latter is not dramatic. Finally, inclusion of an additional covariate (with true 
coefficient equal to zero) causes a general increase in the sampling variability of 
all the estimators; this effect is more pronounced for the binary response models. 
Also, the magnitude of the bias of the instrumental variables estimators increases, 
since the bandwidth is held fixed as the dimensionality of the estimated joint 
density function of the regressors increases. Again, the changes in the summary 
measures of dispersion are not dramatic. 

While it is difficult to arrive at general conclusions about finite-sample perfor- 
mance on the basis of the small number of models investigated here, the results 
do suggest a number of working hypotheses which may be useful as a guide to 
practical application of the proposed procedures: 

(i) the instrumental variables "rescaling" of the weighted average derivative 
estimator is an important bias-reduction adjustment to the approach, even if a 
further scaling restriction is imposed; 

(ii) the estimators using the "bias-corrected" kernels are not systematically less 
biased than the estimators based upon standard positive kernels, and have higher 
dispersion; and 

(iii) the measures of dispersion of the (not bias-corrected) instrumental vari- 
ables estimator are of comparable magnitude to the least squares estimator, but 
in some cases the latter estimator is substantially biased, while the magnitude of 
the bias of the instrumental variables estimator is small across all designs 
considered. 

6. CONCLUDING REMARKS 

In this paper we have proposed an estimator SN of the density-weighted 
average derivative 8 = E[f(x) dg/dx], as a solution to the problem of estimating 
the coefficients /3 up to scale in single index models with g(x) = G(x'/3). This 
estimator is based on averaging of nonparametric kernel estimates of the deriva- 
tives of the density f(x), and can be computed directly from the data, requiring 
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no computational techniques for maximization or other types of equation solving. 
We have shown that 8N is i/K-consistent and asymptotically normal, and give a 
consistent estimator of its asymptotic variance-covariance matrix. We have also 
proposed a general estimator dN of the correctly-scaled weighted average 8* = 

E[f(x) dg/dxj/E[f(x)J, as the estimated slope coefficients of the linear regres- 
sion of y regressed on x, using estimated density derivatives as instrumental 
variables. The practical performance of these estimators was studied via Monte 
Carlo simulation, where dN was seen to display better performance in small 
samples. 

In broader statistical terms, our results have an interesting role in the general 
theory of estimation, as a bridge between known distributional properties of 
nonparametric estimators. On the one hand, nonparametric pointwise estimates 
of density functions or regression functions are consistent for the true values at 
rates that are necessarily slower than V/N (c.f. Stone (1980) and McFadden (1985) 
among others). On the other hand, central limit theory states that sample average 
statistics (as well as related estimators of finite parameter vectors, such as 
maximum likelihood) are i/-consistent for their limits. Our results give a 
nontrivial situation where averaging of nonparametric pointwise estimates per- 
mits xIK-consistency (and asymptotic normality) to be attained for finite vectors 
(S and 8*), while maintaining no model specific restrictions. The issues of large 
data requirements surrounding nonparametric characterizations of density func- 
tions and regression functions do not apply to the estimation of these weighted 
average derivatives. 

Related to our work are several recent applications of kernel techniques to 
econometric estimation. Robinson (1988) shows how i/K-consistent, asymptoti- 
cally normal estimators can be obtained for coefficients in semilinear models, 
using a higher order kernel for bias control but an alternate proof of normality. 
In similar vein, Powell (1987) derives a i/-consistent estimator for coefficients in 
models of selected samples, presuming that the coefficients of the selection 
equation have been estimated (for instance, by the methods proposed in this 
paper). Stock (1989) proves asymptotic normality for a specific average kernel 
estimator (centered around its mean), and analyzes the asymptotic bias via 
simulation. For single index models, Ichimura (1987) proposes a least-squares 
approach to estimating ,B up to scale that uses kernel estimation in the optimiz- 
ing conditions, and Han (1987) has proposed estimation of index coefficients on 
the basis of maximizing rank correlation. 

Our characterization of the asymptotic distributions of 5N and dN uses an 
extension of the classical U-statistic theory of Hoeffding (1948). The simple 
U-statistic structure of 8N arises because of the choice of the density f(x) as a 
weighting function. Kernel estimation of average derivatives with other weighting 
functions does not give rise to a simple U-statistic-rather complex technical and 
practical problems arise from averaging nonlinear combinations of kernel estima- 
tors. In this vein, Hardle and Stoker (1988) give results on a trimmed kernel 
estimator of the unweighted average derivative E[dg/dxl. The same problems 
arise with statistics using kernel regression function estimators-for instance, 8 
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could be estimated using (1/N )EifAxi)) ag(xi)/dx, where g(x) is a kernel 
estimator of the regression function g(x). The relationship of these approaches 
to our results raises interesting questions for future research. 

Our results pose a large number of practical future research questions as to the 
best way to implement the average derivative estimator. While we have estab- 
lished the proper asymptotic behavior of the kernel bandwidth to establish 
attractive statistical properties for 3N and dN, future research is necessary to 
indicate the best way to set bandwidth size in applications, such as whether for 
average derivative estimators there exist desirable "cross-validation" techniques 
(c.f. Silverman (1986) for a survey of these methods). Similarly, further study is 
required on the impact of the choice of kernel function in small data samples. 
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APPENDIX 1 

OMITTED PROOFS 

PROOF OF LEMMA 2.1: Let xl denote the first component of x, and xo the other components, so 
that x = (xl, x6)'. For a given value of xo, denote the range of xi as w(xo)= {x I (xi, xI)' E Q}. 
Now apply Fubini's Theorem (c.f. Billingsley (1979), among others) to write E(f(x) ag/axl) as 

(A1.1) J x a (f (X)) dX = ag(x) (aX))2 dxl dxo. 

The result follows from the validity of the following equation: 

(A1.2) a (f(x))2 dX1= -2f g(x) a f(x) dx1. 

By inserting (A1.2) into (Al.1), E(f(x) dg/dxl)= -2E(g(x) da/ax1) is established, and by 
iterated expectation, E(g(x) df/dxl) = E(y(df/dxj)). 

To establish (A1.2), note first that the convexity of Q implies that w(xo) is either a finite interval 
[a, b] (where a, b depend on xo), or an infinite interval of the form [a, oo),(- oo, b] or (- oo, oo). 
Supposing first that c(xo) = [a, b], integrate the left-hand side of (A1.2) by parts (c.f. Billingsley 
(1979)) as 

ba g(X) (f (x))2 dXl =a-2 f df f (x) dxl 
(A1.3) ~.gx a a x f()x 

+ g(b, xo)(f (b, xo))2 - g(a, xo)(f(a, xo))2. 

The latter two terms represent gf 2 evaluated at boundary points, which vanish by Assumption 2, so 
that (A1.2) is established for w(xo) = [a, b]. 

For the unbounded case w(xo) = [a, oo), note first that the existence of E(f(x)y), 
E(f(x) dg/dxl), and E(g(x) df/dxl) respectively imply the existence of E(f(x)g(x)lxo), 
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E(f(x) dg/dxl I xo), and E(g(x) af/ax, I xo) (c.f. Kolmogorov (1950)). Now consider the limit of 
(A1.3) over intervals [a, b], where b -- 00, rewritten as 

lim g(b,xo)(f(b,xo))2=g(a,xo)(f(a,Xo))2+ lim Jbg(x) f(x)2dxl 
b- oo b--oo L0 ax, 

+ 2 lim bg(x) dx, f (x) dxl 

= g(a, xo)(f(a, Xo))2 +fo(xo)E( x f(x)Ixo) 

/ af~~~ax 

+ 2fo(xo)E( g(x) dx LIxo 

so that C lim g(b, x0)f(b, x0)' exists, where fo(xo) is the marginal density of xo. Now suppose 
that C> 0. Then there exists scalars E and B such that 0 < E < C and for all ba B, 
Ig(b, x0)f(b, XO)2 - Cl < E. Therefore g(xl, x0)f(x,, xO)2 > (C- E)[ B, ), where IfB, ) is the indi- 
cator function of [B, oo). But this implies that 

fo(xo)E(g(x)f(x)Ixo) = Jg(Xl, Xo)f(xl, Xo)2 dxl > (C-E)fhBso,) dx1 = oo, 

which contradicts the existence of E(g( X)f(x) I xo). Consequently, C > 0 is ruled out. C < 0 
similarly contradicts the existence of E(g(x)f(x) I xo). 

Since C lim g(b, x0)f(b, xo)' = 0, and g(a, xo)f(a, x0)' =0 by Assumption 2, equation (A1.2) 
is valid for w(xo) = [a, oo). Analogous arguments establish the validity of (A1.2) for w(xo) = (- oo, a] 
and w(xo) = (-oo, oo). Q.E.D. 

PROOF OF LEmmA 3.1: We prove the equivalence by showing that NE[LIUN - UN 2] = o(l), where 
IIUN- 1l12 = (U,,- L4)'(UN.-b). Define 

qN(Zi,Z1) =P ZN(Z,IZj) -rN(Z,) -rN(Zj) +oj, 
so that 

1N-1 N 

UN -UN 
= , F qN(Zi IZj). 2 

=1 j=i+l 

The expectation of the squared length of the vector UN - UN is 
- 2N-1 N N-1 N 

E[||JUN -NI '1] 
= N 

), Y, E E , E[qN (zi zj) qN (zI, zm,)]. 
i=l j=i+l 1=1 m=l+1 

Because Zi, i = 1. N, are independent vectors, all terms with (i, j) * (1, m) have zero expectations 
(if i * I and j * m this is obvious, and writing out the expectation for i = 1, j * m gives a quick 
verification). Therefore, 

2N-1 N 

E[ IJUN,-UN1]=( 2 ) , E E[IlqN (zi, Zj)112] - 
i=l j=i+l 

The number of terms in this double summand is O(N2). The nonzero expectations are each 
0(EIIqN(z,, z,)II') = O(EIIpN(z, zij)112) = o(N), the latter equality by assumption. Consequently, 

NE[ IIUN- UNI1 = N N) O(N2)o(N) 

as required. Q.E.D. 
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PROOF OF THEoREM 3.4: Because SN is consistent for 8, we focus on the leading term 
N-'E2N(zi)PN(z,)', and establish that it is consistent for E[r(z)r(z)']. Letting PNl(Zi, z) and 
rN,(z,) denote the Ith components of pN(Zi, zj) and rN(zi) defined in (3.11) and (3.15), we first note 
that 

k 

Ell'N (z,)-rN (Z,)| 112 E[Var(QN1(Zi)lzi)] 

l=l 

k 

=N-i E[Var(pN (p Z zjz)Izi)] N 
11=1 

N-1 E[IIPN (Zil Zj) 112] = O(llNhk+2), 

so that E[IlIPN(z) - rN(zl)112] = o(l) under the condition imposed on the bandwidth h. Furthermore, 
the argument following (3.16) above implies that tN(zi), defined in equation (3.15), has 

[lt(Zi)112] - [lxz) z) 1121 = 0(h 2) = o(l), 

since h -O 0. So 

E[11-N (z,) -r(zi) 1121 = o (l) 

which implies 

E[IIPN(zi)N (zi)' - r(zi)r(z,)'I1] =o 

where, for a matrix A, IAIlA [trace(A'A)]1/2. Markov's inequality and the SLLN thus yield 

1 PI 1n 
- 

ErN (Z)rN (z)' = r(z,)r(z,)' + op(l) N rN ~~N rz (z)+ () 
t=1 ~~~~~=1 

= E[r(zi)r(z,)'] + o (l), 

as desired. 

PROOF OF COROLLARY 4.2: Since dN and 8XN are consistent for 8* and Ik E[ f (x)] and do not vary 
with i, it is straightforward to modify the proof of Theorem 3.4 above to apply here, replacing "yi - yj 
with "(xi - x,)"' where necessary. 

APPENDIX 2 

BIAS CONTROL VIA JACKKNIFING 

In this appendix, we outline a different method of bias control than that used in the exposition, 
-namely a generalized jackknife. Following the description of this approach, we point out how certain 
higher dimensional kernels can be constructed using the jackknife formulae. 

Standard jackknifing procedures, as introduced by Quenouille (1949), are based on the fact that 
the bias in many estimators depends on sample size, and that the bias can be estimated by taking 
differences in estimators computed from samples of varying sizes (see Efron (1982) for a recent 
exposition). As in Schucany and Sommers (1977) and Bierens (1987), here we utilize the bandwidth h 
in the role of sample size. In particular, one can remove asymptotic bias of 8N by subtracting from it 
a weighted sum of P - 1 kernel estimators with differing bandwidths. Suppose that K(.) is a standard 
positive kernel, and for p= 1. P -- 1, let 8 denote the estimator 

pN 

(A2.1 
- 2 df( (f.( 

SPN 
= - E ~~~~~yi 



1428 JAMES L. POWELL, JAMES H. STOCK, AND THOMAS M. STOKER 

where fpi(x) is the kernel density estimator with bandwidth hp: 
1 N (1\kl \ 

(A2.2) fp,(x)= -K E K 

j$i 

A "jackknifed" estimator 8N is defined as 

8N ECPN 8PN 

(A2.3) pN 1- CpN 

p 

where CpN, p = 1. P - 1, are a set of weights that vary with N. 
The estimator 8N will display no asymptotic bias if the bandwidths h and the weights CpN, 

p = 1. P - 1 are chosen so that the leading terms of the bias expansion ofEp CpN SPN match those 
of 8N. To achieve this, set hp = p h1-, where 0 O q < 1/(k + 1) and where 4p, p = 1,. . ., P- 1 are 
distinct positive constants. Let CN = (C1 N. CP - 1, N)' be defined as 

(A2.4) CN=+1 . ; + 
^(P-l)n al~~P-1 .. p_1 

The properties of the "jackknifed" estimator 8N are summarized as follows: 

THEOREM Al: Given Assumptions 1-5, if h obeys Nhkk+2 00) and Nh2[P-n(P-1)j O as N-- oo, 
and if q > 0, then the "jackknifed " estimator 8N of (A2.3) is such that VN(8N - 8) has a limiting 
multivariate normal distribution with mean 0 and variance covariance matrix X.& of (3.17). 

PROOF: Nhk?2 -* 00 implies that Nhk+2 = N4k +2h(l -71)(k+2) 0-* 0, so Theorem 3.1 implies that 

FN1SpN-E(8pN)] has a lmiting normal distribution for each p = 1,...,P-1. If &N = 

(8N ,N 1,N. N)- the Cramer-Wold device imphes that V[8N - E(&N)] has a lmiting normal 
distribution with mean 0 and variance-covariance matrix 2g. Consequently, since 0 < q < 1/(k + 1) 
< ll(P - 1), we have CN -O0 as h -O 0, and V[N - E(8N)] has a limiting normal distribution with 
mean 0 and variance covariance matrix 28 = limN ,o[(I, ck)' ? Ik I'X& [(1, ck)' ?Ik ], where Ik is the 
k x k identity matrix. 

The result follows from limViN[E(8N) - 8] = O. This is verified directly: First evaluate (3.18) for 
each 8pN as 

E( 8N) )-8 b) - 
. = +' . ~~~+ 0(hp('-n)) 

E(kP-1,N) - 8 bp-jh(P-1)(1-n 

so that 

E(81N) -8 blh 
cN = (hn, ..., h(P-1)n)(*-l)+'Y....... + 0(hp('-'Q) 

E(8) 8 )bp+h(P-1)(1- 

= blh + b2h2 ? ... +bp-lhp-l + 0(hp(?-n)) 

where - exists because the constants 4p', p = 1. P, are distinct. Consequently, we have that 
JIV[E(3N) - 8] = v([E(SN - E CpNE(ApN))/(A1 - CN)l - 8) = O(Nh PO -'). Since < 

1/(k + 1), 2P(1 - -) > k + 2, as required. Thus since h is such that Nh2Pt1"v 0, imV[E(8N) - 

81 = 0. Q.E.D. 
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The generalized jackknife technique differs theoretically from the use of a higher order kernel in 
that the configuration of local weights can be varied as the sample size increases. When -q = 0 is set in 
the above formulae, the local weights do not vary and the "jackknifed" estimator just utilizes a higher 
order kernel as in the text. In particular, in this case the weights CpN no longer vary with N, so 
CpN = Cp, p = 1. P - 1. The estimator 8N can then be written as 

(A2.5) 8N = N (dX)Yi 

with the density estimator f (x) defined as 

f (x) - N1k ___ () 

(A2.6) f(x) = 
=_ N - K (- ) 

p j$i 

using the kernel K(u) = [K(u) - Ep cpp-kK(u/4i)]/[1 - Cp]. It is easy to verify that K(.) is 
a higher order kernel (obeying Assumption 6). Consequently, beginning from a standard positive 
kernel (K here), equation (A2.6) can be used to construct a higher order kernel, as we have done in 
Section 5. 

REFERFNCES 

AMEMIYA, T. (1981): "Qualitative Response Models: A Survey," Journal of Economic Literature, 19, 
1483-1536. 

BICKEL, P. (1982): "On Adaptive Estimation," Annals of Statistics, 10, 647-671. 
BIERENS, H. J. (1983): "Uniform Consistency of Kernel Estimators of a Regression Function Under 

Generalized Conditions," Journal of the American Statistical Association, 78, 699-707. 
(1987): "Kernel Estimators of Regression Functions," in Advances in Econometrics-Fifth 

World Congress, Vol. I, ed. by T. F. Bewley. Cambridge: Cambridge University Press. 
BILLINGSLEY, P. (1979): Probability and Measure. New York: John Wiley and Sons. 
EFRON, B. (1982): The Jackknife, the Bootstrap and Other Resampling Plans, CBMS Regional 

Conference Series in Applied Mathematics, 38, Society for Industrial and Applied Mathematics, 
Philadelphia. 

FRYER, M. J. (1977): "A Review of Some Nonparametric Methods of Density Estimation," Journal of 
the Institute of Mathematical Applications, 20, 335-354. 

GASSER, T., H. G. MUELLER, AND V. MAMMITZSCH (1985): "Kernels for Nonparametric Curve 
Estimation," Journal of the Royal Statistical Society, Ser. B, 47, 238-252. 

HAN, A. K. (1987): "Non-parametric Analysis of a Generalized Regression Model: The Maximum 
Rank Correlation Estimator," Journal of Econometrics, 35, 303-316. 

HARDLE, W., AND T. M. STOKER (1988): "Investigating Smooth Multiple Regression by the Method 
of Average Derivatives," MIT, Sloan School of Management, Working Paper No. 2004-88. 

HOEFFDING, W. (1948): "A Class of Statistics with Asymptotically Normal Distribution," Annals of 
Mathematical Statistics, 19, 293-325. 

HUBER, P. J. (1985): "Projection Pursuit," Annals of Statistics, 13, 435-475. 
IcHMuRA, H. (1987): "Estimation of Single Index Models," doctoral dissertation, Massachusetts 

Institute of Technology. 
KOLGOMOROV, A. N. (1950): Foundations of the Theory of Probability (German edition, 1933). New 

York: Chelsea. 
MANSKI, C. F. (1988): "Identification of Binary Response Models," Journal of the American 

Statistical Association, 83, 729-738. 
McFADDEN, D. (1985): "Specification of Econometric Models," Presidential Address to the Fifth 

World Congress of the Econometric Society, Cambridge, Massachusetts. 
PARZEN, E. (1962): "On Estimation of a Probability Density Function and Mode," Annals of 

Mathematical Statistics, 33, 1065-1076. 
PRAKASA RAO, B. L. S. (1983): Nonparametric Functional Estimation. New York: Academic Press. 
POWELL, J. L. (1987): "Semiparametric Estimation of Bivariate Latent Variable Models," Department 

of Economics, University of Wisconsin, Social Systems Research Institute Working Paper No. 
8704. 



1430 JAMES L. POWELL, JAMES H. STOCK, AND THOMAS M. STOKER 

QUENOUILLE, M. (1949): "Approximate Tests of Correlation in Time Series," Journal of the Royal 
Statistical Society, Ser. B, 11, 18-84. 

ROBINSON, P. M. (1988): "Root-N-Consistent Semiparametric Regression," Econometrica, 56, 
931-954. 

RUUD, P. A. (1986): "Consistent Estimation of Limited Dependent Variables Models Despite 
Misspecification of Distribution," Journal of Econometrics, 32, 157-187. 

SCHUCANY, W. R., AND J. P. SoMMERs (1977): "Improvement of Kernel Type Density Estimators," 
Journal of the American Statistical Associations, 72, 420-423. 

SILVERMAN, B. W. (1978): "Weak and Strong Uniform Consistency of the Kernel Estimate of a 
Density Function and Its Derivatives," Annals of Statistics, 6, 177-184 (Addendum, 1980, Annals 
of Statistics, 8, 1175-1176). 

(1986): Density Estimation for Statistics and Data Analysis. London: Chapman and Hall. 
SERFLING, R. J. (1980): Approximation Theorems of Mathematical Statistics. New York: John Wiley 

and Sons. 
SPIEGELMAN, C., AND J. SACKS (1980): "Consistent Window Estimation in Nonparametric Regres- 

sion," Annals of Statistics, 8, 240-246. 
STOCK, J. H. (1989): "Nonparametric Policy Analysis," forthcoming, Journal of the American 

Statistical Association. 
STOKER, T. M. (1986): "Consistent Estimation of Scaled Coefficients," Econometrica, 54, 1461-1481. 
STONE, C. J. (1977): "Consistent Nonparametric Regression," Annals of Statistics, 5, 595-620. 

(1980): "Optimal Rates of Convergence for Nonparametric Estimators," Annals of Statistics, 
8, 1348-1360. 

(1984): "An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates," 
Annals of Statistics, 12, 1285-1298. 

TAPIA, R. A., AND J. R. THOMPSON (1978): Nonparametric Probability Density Estimation. Baltimore: 
John Hopkins University Press. 


	Article Contents
	p. 1403
	p. 1404
	p. 1405
	p. 1406
	p. 1407
	p. 1408
	p. 1409
	p. 1410
	p. 1411
	p. 1412
	p. 1413
	p. 1414
	p. 1415
	p. 1416
	p. 1417
	p. 1418
	p. 1419
	p. 1420
	p. 1421
	p. 1422
	p. 1423
	p. 1424
	p. 1425
	p. 1426
	p. 1427
	p. 1428
	p. 1429
	p. 1430

	Issue Table of Contents
	Econometrica, Vol. 57, No. 6 (Nov., 1989), pp. iii-v+1243-1501
	Volume Information [pp.  iii - v]
	Front Matter
	Supply Function Equilibria in Oligopoly under Uncertainty [pp.  1243 - 1277]
	The Consumption-Based Capital Asset Pricing Model [pp.  1279 - 1297]
	Proper Posteriors from Improper Priors for an Unidentified Errors-in-Variables Model [pp.  1299 - 1316]
	Bayesian Inference in Econometric Models Using Monte Carlo Integration [pp.  1317 - 1339]
	t Test in a Structural Equation [pp.  1341 - 1360]
	The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis [pp.  1361 - 1401]
	Semiparametric Estimation of Index Coefficients [pp.  1403 - 1430]
	Notes and Comments
	Observable Implications of Models with Multiple Equilibria [pp.  1431 - 1437]
	A Note on the Quadratic Expenditure Model [pp.  1439 - 1443]
	Consistent Plans, Consequentialism, and Expected Utility [pp.  1445 - 1449]
	Extracting the Surplus in the Common-Value Auction [pp.  1451 - 1459]

	Nomination of Fellows, 1990 [p.  1461]
	1990 World Congress of the Econometric Society: Announcement and Call For Papers [pp.  1461 - 1466]
	North American Winter Meetings of the Econometric Society: Announcement and Call For Papers [pp.  1466 - 1468]
	Accepted Manuscripts [pp.  1468 - 1469]
	News Notes [pp.  1471 - 1472]
	Program of the 1989 Far Eastern Meeting of the Econometric Society [pp.  1473 - 1481]
	Program of the 1989 North American Summer Meeting of the Econometric Society [pp.  1483 - 1491]
	Program of the 1989 Australasian Meeting of Econometric Society [pp.  1493 - 1499]
	Erratum
	A Theory of Dynamic Oligopoly, II [p.  1501]

	Submission of Manuscripts to Econometrica
	Back Matter



