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Introduction 
• The history of macroeconomic forecasting has been an uneasy 

coexistence of “structural” models and “time series” models. 
• This talk focuses on a class of models that can incorporate 

economic theory (as much or as little as desired) into a time 
series structure – dynamic factor models, using a large number of 
series. 

• The data and economic forecasting environment: 
o there are many predictors (“large n”) 
o variables are measured with error (possibly large) 
o the available time series might be short, might have different 

start dates and might have different sampling frequencies 
(mixed monthly-quarterly) 

o there might be breaks in the individual series, e.g. changes in 
definitions, collection methods, etc. 
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In this talk I will: 
• Summarize an exciting modeling framework that has received a 

lot of recent attention: the dynamic factor model (DFM) 
o One main message is that, in the DFM, having many time 

series is a “blessing” of dimensionality, not a “curse” – 
having many series can make up for deficiencies in any one 
series.  (This will be made more precise.) 

• Discuss main theoretical results for DFMs 
• Go through an empirical example for U.S. data with n = 132 

variables 
• Provide a general framework for optimal linear forecasting in a 

stationary environment and compare the DFM forecasts to the 
“optimal” (in a specific sense) forecasts – do forecasts based on a 
small number of factors omit potentially useful information? 
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Outline 
1. Introduction 
2. Background – VARs and their limitations 
3. Dynamic factor models: some theory, VARs v. DFMs, and a 

survey of recent theoretical results 
4. An empirical DFM – US data, 132 series 
5. Econometric theory of forecasting using many predictors 
6. Empirical forecast evaluation of DFMs vs. other many-

predictor methods – US data 
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2.  VARs and their Limitations 
Vector Autoregression (VAR) (Sims, 1980): 
 

x1t = A11(L)x1t–1 + A12(L)x2t–1 + u1t

x2t = A21(L)x1t–1 + A22(L)x2t–1 + u2t

or 
Xt = A(L)Xt–1 + ut

In general, Xt is n×1 and the VAR has n-variables with p lags of 

each variable in each equation 
Drawbacks of VARS 
• pn2 parameters – so n cannot be large (6, 9,…) 
• Can address dimensionality problem using priors, but most 

priors are ad-hoc (statistical, not economic) 
• mediocre forecasting performance: too many parameters, 

sensitive to mis-specification in one of the equations 
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3.  Dynamic Factor Models  
 
Introduced by Geweke (1975, 1977) 
(a) Key DFM ideas: 

• A handful of structural shocks cause the comovements among 
macro variables at all leads/lags. 

• That is, the economy follows a dynamic factor model  

• The “handful” of shocks might be as few as 2!  
Sargent and Sims (1977), Sargent (1989), Quah and Sargent 
(1992), Stock and Watson (1989, 1999, 2002b), Giannone, 
Reichlin, and Sala (2004),… 

• Recent work on DFMs has focused on large n is a blessing: 
Stock and Watson (1999, 2002), Ding and Hwang (2001), Forni, 
Lippi, Hallin, Reichlin (2001), Bai and Ng (2002, 2004, 2006), 
Bai (2003),…  
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(b) The dynamic factor model 
 

Xit = λi(L)ft + uit, i = 1,…,n, 
Γ(L)ft = ηt, 

 
Xit = tth observation on ith observable variable 

ft = unobserved factors, q×1 (q dynamic factors) 

λi(L)ft = “common component” 
λi(L) = lag polynomial (“dynamic factor loadings”) 
uit = idiosyncratic disturbance (possibly serially correlated) 
cov(ft,  uis) = 0 for all i, s 
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(c) The exact DFM:  

Euitujt = 0, i ≠ j (idiosyncratic disturbances uncorrelated) 

 
(d) Spectral factorization: 

SXX(ω) = λ(eiω)Sff (ω)λ(e–iω)′ + Suu(ω), 

 
where Suu(ω) is diagonal under the exact DFM. 
 
(e) Estimation when n is small 

Xit = λi(L)ft + uit, i = 1,…,n, 
Γ(L)ft = ηt, 

This is a linear state space model, so it can be estimated in the time 
domain by Gaussian MLE using the Kalman filter to compute the 
likelihood (Sargent (1989), Stock and Watson (1989)) 
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(f) Forecasting equation for one variable, yt: 
 
• Denote one of the X’s as yt (a variable of special interest) 
• Suppose uyt follows an autoregression; then 

 
yt = λy(L)ft + uyt, 
uyt = γ(L)uyt–1 + εt, εt serially uncorrelated 

Then 
E[yt+1| Xt, yt, ft, Xt–1, yt–1, ft–1,…] = β(L)ft + γ(L)yt

so 
Yt+1 = β(L)ft + γ(L)Yt + εt+1

 
No other X’s are needed if the f’s are known – optimal 
forecasts can be made using only lagged f’s and lagged Y 



(g) The approximate DFM  
 
• Recall that the exact DFM assumes that all the idiosyncratic 

disturbances are uncorrelated: Euitujt = 0, i ≠ j 

• The approximate DFM relaxes this assumption  
Chamberlain-Rothschild (1983), Stock and Watson (1999, 2002a,b), 
Forni, Hallin, Lippi, Reichlin (2000, 2003a,b, 2004) 

• The general idea is to bound the eigenvalues of Suu(ω) – the 
correlations among the u’s cannot be “too large” 
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(h) Estimation of the factors by principal components 
 
When n is large, the factors can be estimated by principal 

components.  The starting point is the static form of the DFM. 

Suppose λ(L) has degree p and let Ft = [ft′ … ft–p+1′]′:  

 
Dynamic form:  Xit = λi(L)ft + uit

ft = Γ(L)ft–1 + ηt

 
Static form:   Xit = ΛiFt + uit       (1) 

Ft = Φ(L)Ft–1 + Gηt     (2) 
 

where G is r×q; r = dim(Ft) = number of  static factors. 



DFM estimation by principal components analysis, ctd. 
 

Static form:  Xt = ΛFt + uit  (Xt is n×1, Λ is n×r)  (1) 

By analogy to regression, estimate Λ and {Ft} by NLLS, 
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−
Λ

=
1

1
,..., ,

1

min ( ) '( )
T

T

F F t t t t
t

T X F X F− Λ −∑ Λ  

subject to Λ′Λ = Ir (identification).  Concentrate out {Ft}: 

minΛ  1 1
1

[ ( ) ]T
t tt

T X I X− −
=

′ ′− Λ Λ Λ Λ∑   

⇔ maxΛtr{(Λ′Λ)–1/2′ Λ′ ˆ XXΣ Λ(Λ′Λ)–1/2 where ˆ
XXΣ  = X1

1

T
t tt

T X ′−
=∑    

⇔ maxΛ Λ′ Λ s.t. Λ′Λ = Iˆ
XXΣ r,  

⇒  = first r eigenvectors of Λ̂ ˆ
XXΣ  

⇒  = t̂F ˆ
tX′Λ  = first r principal components of Xt. 
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Distribution Theory for PCA as factor estimator 
 
• Connor and Korajczyk (1986) (consistency; exact static FM, T 

fixed, n → ∞)  

• Stock and Watson (2002a) (consistency; approximate DFM, n, 

T →∞, no n/T rate restrictions) 

• Bai (2003) (asymptotic normality of PCA estimator of the 
common component at rate min(n1/2, T1/2); exact DFM,) 

• Bai and Ng (2004) (extend Bai (2003) to approximate DFM) 
• Bai and Ng (2006) (confidence intervals when estimated 

factors in subsequent regressions) 



(i) Extension: weighted principal components.   
 
Infeasible WLS: 

1

1
,..., ,

1

min ( ) ' ( )
T

T

F F t t uu t t
t

X F X F−
Λ

=

− Λ Σ − Λ∑ . 

Solution:  = first q eigenvectors of Λ̂ 1/ 2
uu
−Σ ˆ

XXΣ 1/ 2
uu
−Σ ′ 

Feasible weighted PCA: 
(a) Forni et. al. (2004):   ˆ

uuΣ  = ˆ
XXΣ  – ˆ

ccΣ , 

where  is estimate of covariance matrix of the common 
component in the DFM, estimated by dynamic PCA (Forni et. 
al. (2003b) 

ˆ
ccΣ

(b) Bovin and Ng (2005):  ˆ diag
uuΣ  = diag( ˆ

uuΣ )  
(this accords with exact DFM restrictions) 
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(k) Estimation of the number of factors 
 
• Number of static factors (r): 

o Bai and Ng (2002) (information criterion applied to 
eigenvalues of X′X, approximate DFM) 

o Onatski (2005) – formal test for number of static factors 
based on eigenvalues of X′X for number of nonzero 
eigenvalues (number of principal components to include) 

• Number of dynamic factors (q): 
o Giannoni, D., L. Reichlin and L. Sala (2004) – heuristic 

methods based on inspection of eigenvalues of residuals of 
VAR for Ft (static factors) 

o Amengual and Watson (2006) – extend Bai-Ng to estimate 
the number of dynamic factors (q) by applying information 
criterion to covariance matrix of residuals from VAR for Ft 
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4.  An Empirical DFM with U.S. Data 
 
The data 

• n = 132, postwar monthly US 
o real activity 
o prices 
o interest rates and spreads 
o exchange rates 
o stock returns 
o misc 

• All transformed to “stationarity” by first differencing, logs, etc 
 
Base specification 

VAR(2) for Ft, 6 lags for δ(L) 
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(a) Estimates of the Number of Factors 
No. of static factors (Bai-Ng ICP2):     r = 9 
No. of dynamic factors (Amengual-Watson ICP2): q = 7  
Comments 
• Sargent-Sims (1977) etc. focused on output and prices only – for 

which 2 or 3 are plausible – we have a much richer data set and 
find factors other than output and price factors 

• What are the factors? 
#1: real variables (93% of IP) 
#2 and #3: price inflation (66% of CPI inflation) 
#4:  long-term interest rates (31% of 10-yr T-bond) 
#5:  long-term unemployment (31% of mean duration) 
#6:  stock returns, exchange rates (12% of S&P 500) 
#7:  exchange rates, little else (28% of trade-weighted) 

Some examples….business cycle components: 
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(b) Test of exact DFM restriction: Xj does not predict Xi given Ft–-1

 
This can be tested in a VAR framework: 

Xit = ΛiΦ(L)Ft–1 + δi(L)Xit–1 + δij(L)Xjt–1 + εt   (*) 

H0: δij(z) = 0, j = 1,…, 132, j ≠ i 

• 6 restrictions (6 lags) for each j 

• Total # restrictions = 6×(1322 – 132) = 103,752 (!) 

Results: 
• There are more rejections at the 5% level than one would 

expect by random sampling under the null 
• However, these rejections are (almost) entirely associated with 

small marginal R2’s – not economically large. 
• In general, the predictive content of X’s is greatly reduced (or 

eliminated) by including Ft–1 in the forecasting equation (*) 
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5.  Theory of Forecasting with Many Predictors  
 
(a) Optimal forecasting in the i.i.d. Gaussian/strictly exogenous 
model: 

 Yt+1 = δ′Pt + εt+1, t = 1,…, T 

Yt+1 = scalar 
Pt = n orthonormal predictors (principal components) so P′P/T = In

 
Suppose (for now) that Pt is strictly exogenous, εt+1 i.i.d. N(0,σ2) 
Well-known results from classical statistics: 
• If n ≥ 3, OLS is inadmissible 
• OLS is dominated by shrinkage estimators (James-Stein) 
• What is the best shrinkage estimator to use? 
• Bayes estimators are obvious candidates 



The i.i.d. Gaussian/strictly exogenous model, ctd. 
 

Yt+1 = δ′Pt + εt+1, t = 1,…, T 

 
• Pt strictly exogenous, εt+1 i.i.d. N(0,σ2) – deal with this later 
• Asymptotics: let n/T → 0 < c < 1, δi = di/T1/2 
• Squared error forecast loss ⇒ L(δ ) = tr[(δ  – δ)(δ  – δ)′] 

o Motivation: consider forecast risk, 
E(YT+1 – 1|T tY + )2 = E[(δ  – δ)PT + εT+1]2 

    = Etr[(δ  – δ)(δ  – δ)′PT PT′] + σ2

    ≈ Etr[(δ  – δ)(δ  – δ)′] + σ2

• The only part we can work on is Etr[(δ  – δ)(δ  – δ)′] 
• Consider equivariant estimators under permutations of Pt 
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The i.i.d. Gaussian/strictly exogenous model, ctd. 
 
Frequentist risk for permutation equivariant estimators: 

R(δ ,δ) = )2

1

(
n

i i
i

E δ δ
=

−∑    (trace MSE loss) 

= 1 2)     (local to zero) 

1

(
n

i i
i

n
T

n E d d−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

−∑

nc E d d dG d−∫ = )    (permutation equivariance,  2( ) (

Gn = empirical cdf of di’s) 
   = )

nG (d      (Bayes risk of estimator  dR

          w.r.t. Gn) 
 
The frequentist risk for permutation equivariant estimators is the 
Bayes risk wrt the empirical cdf of the d’s, Gn
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(b) Empirical Bayes heuristics 
Frequentist problem: 

 minδ R(δ ,Gn) = 2( ) ( )nc E d d dG d−∫    cdf of di 

Bayes problem: 
minδ R(δ ,G) = )2( ) (c E d d dG d−       subjective prior ∫

Empirical Bayes problem: 
minδ R(δ , ) = )Ĝ 2 ˆ( ) (c E d d dG d−   estimated prior ∫

Empirical Bayes:  under technical conditions, 
• asymptotically admissible, asy. optimal (Robbins (1964)) 
• has certain minimax properties (Zhang, AS (2005))  

ˆ•   can be nonparametric or parametric (e.g. BMA)  G
• asymptotically, EB is minimum risk equivariant (Edelman 

(1988), Knox, Stock, Watson (2001)) 
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(c) Relax the i.i.d. Gaussian and strict exogeneity assumptions 
 
• How to extend this to Pt predetermined, not strictly exogenous? 
• How to extend to multistep forecasting? 
• The Bayes derivation breaks down under these conditions 
• Empirical question:  Is there any gain to using the remaining 

127 factors? 
 
Proposed approach 

1. Provides a common shrinkage representation for Bayes, EB, 
and some other methods – for predetermined data and 
multistep forecasts 

2. Empirical comparison of several methods for forecasting 9 
monthly U.S. macro time series using 131 predictors 



(d) Shrinkage representations for optimal linear forecasts  
Bayes, EB estimators (also, BMA, bagging, pretest) have a 

“shrinkage representation:” Suppose P′P/T = In .  Then 
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i

Y t1
1

ˆˆ ( )
n

t i i itPψ δ+
=

= ∑  + op(1) 

where δ̂  = OLS estimator of δ,  = )n2
es 2

11
ˆ( ) /(T

t tt
Y P Tδ+ ′− −

=∑ , and 

ti = T ˆ /i esδ . 

• 0 ≤ ψ(x) ≤ 1 – hence “shrinkage” terminology 
• The ψ function is a property of the estimation algorithm 
• The representation holds under general conditions on true DGP 
• Think of this exercise in the same way as “pseudo-ML” – here, 

we are doing “pseudo-BMA” 
• This representation allows us to study the performance of the 

procedure when the modeling assumptions are false 



Example 1: Bayes and Empirical Bayes 
 
Modeling assumptions: 
• Pt strictly exogenous; εt i.i.d. Normal  
• δi, i = 1,…, n are iid with prior distribution G 
Posterior mean can be written in “simple” Bayes form as 

 

ˆ |B
iδ σ 2 = /

/

ˆ( )d ( )
ˆ( )d ( )

∫ x x G xiT

iT
x G x

σ

σ

φ δ

φ δ

−

−∫
= îδ  + 

2

T
σ ˆ( )iδ  
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( )x  = dln(m(x))/dx, where m(x) = 
/

( ) ( )
T

x dG
σ
φ δ− δ∫  is the 

marginal distribution of an element of δ̂ . 



Using the “simple Bayes” formula, given σ2

ˆB
iδ |σ2 = îδ  + 

2

T
σ ˆ( )iδ  

 = (1 + 
2

T
σ ˆ( )

ˆ
i

i

δ
δ

) îδ  

=  ψB( îτ ) îδ ,      

where, by change of variables with îτ  = ˆ /iTδ σ , 

ψB(z) = 1 + ( )z /z   

( )z  = dln ( )
d
m z
z

,  = ( )m z ( ) ( )z dGτφ τ τ−∫     

Gτ is a prior defined over τ = T δ/σ.   
• Note that this representation is a consequence of the modeling 

assumptions (Gτ) – not the true dgp 
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Normal Bayes – integration over posterior 
Next, integrate over the posterior.  Then, 
 

ˆB
iδ  = Eσ[(1 + 

2

T
σ ˆ( )

ˆ
i

i

δ
δ

)|δ̂ , 2σ̂ ] îδ  

 
Empirical Bayes Strategy  

ˆ• Use { iδ } to estimate ( )z  using a parametric or nonparametric 

estimator – call this ˆ ( )z  
• Substitute this into the formula for ψB: 

ˆψB(z) = 1 + )(z /z 

• Then ˆB
iδ  = ψB( îτ ) îδ  
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Example 2:  Pretest Methods   
 
Pretest estimators include a variable (with the OLS coefficient) if 
the OLS coefficient exceeds a constant – another term for this is 
“hard thresholding.” 
• Because the regressors are orthogonal, using “hard threshold” 

on the t-statistic for model selection is equivalent to including 
those regressors that have t-statistics exceeding a certain 
threshold. 

• If n is fixed and coefficients are local to zero, AIC is 
asymptotically equivalent to hard threshold t-statistic pretest 

• For these methods, the ψ function is, 

ψIC(τ) = 1(|τ| ≥ c)   (AIC:  c = 2 )      
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Example 3:  Bagging  
 
Breiman (1996); Inoue and Kilian (2004), Lee and Yang (2004) 
• Start with hard threshold:  

ˆPT
iδ = ψPT(ti) îδ , with  ψIC(τ)=1(τ ≥ c) 

• Bagging: “soften” the threshold by averaging over bootstrap 
replications of hard threshold estimator. 

• Asymptotic form of resulting estimator  (Bühlmann and Yu 
(2002)): 

ˆBagging
iδ ≈   E(x | x2 > σ2c2), where x ~ N( îδ , σ2/T) 

which implies 
ˆBagging
iδ  ≈ ψBagging(ti) 

îδ   

where ψBagging(τ)  = ( ) ( ) 1 ( ) ( )c c c cφ τ φ τ− − − −
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τ τ−Φ − +Φ − −          +
τ



(e) Formal results (validity of the shrinkage representation) 
(1) Normal Bayes: If |piT| ≤ pmax and 

(i)  posterior for σ concentrates around 2σ̂  
(ii) score function is sufficiently smooth  
(iii) moments of t-statistic and 2ˆYσ  exist; then 

2

1|
1

ˆˆ ( )
n

NB NB
T T i i iT

i

E Y t pψ κ δ+
=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑   → 0 

where κ = (1 – n/T)–1/2, ψNB(t) = 1 + ( )t
t

,  = ( )t d ln ( )
d
m t
t

,  

m(t) = ( ) ( )t dGτφ τ τ , and K−∫ 1, K2, K3, M depend on the prior, and 

0 ≤ ψNB(t) ≤ 1, and if g is symmetric, ψNB(t) = ψNB(|t|). 
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(2) Bagging.  For all T, n s.t. for r = T – n > 8, 
2

1|
1

ˆˆ ( )
n

BG BG
T T i i iT

i

E Y t pψ δ+
=

⎡ ⎤−⎢ ⎥⎣ ⎦
∑   → 0, 

where  
ψBG(t)  = 1 – Φ(t + c) + Φ(t – c) + t–1[φ(t – c) – φ(t + c)], 

 

 

These results make no assumption about the DGP – in 
particular it does not require strict exogeneity or Gaussian 
errors – that is, the original model (whereby the estimator is 
derived) can be mis-specified. 
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(f) Leading example: Bayesian model averaging with orthogonal 
regressors  

Clyde, Desimone, and Parmigiani (1996), Clyde(1999a,b), Koop 
and Potter (2003), Wright (2004a,b) 
 
BMA modeling assumption: 

δi|σ ~ 
2(0, / ) with probability 

0                  with probability 1
N g p

p
σ⎧

⎨
−⎩

 

then 

ψBMA(ti) = ( ) ( ( ) )
(1 )[ ( ) ( ( ) ) (1 ) ( )]

i

i i

pb g b g t
g pb g b g t p t

φ
φ φ+ + −

         

 
where b(g) = /(1 )g g+ , ω2 = σ2/gT , and φ is normal pdf. 

 37



 38

(g) Comments on shrinkage representations: 
1. These representations are consequences of the algorithm + 

weak assumptions (moments) on the true DGP 
2. They tell us what the algorithm does mechanically when the 

strong assumptions of the derivation fail 
• “pseudo BMA” – analogous to pseudo-ML 
• weak exogeneity 
• serially correlated errors – direct multistep forecasting 

3. For strictly exogenous X, these results extend Bühlmann and 
Yu (2002) from fixed n to n/T → c > 0 

4. We can ask whether non-Bayes methods (e.g. bagging) are 
admissible in the exogenous X/Gaussian model. 
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Comments, ctd. 
5. Shrinkage representation provides a justification for direct 

estimation of flexible forms of ψ (rather than indirect via EB 
estimation of prior G).  In preliminary work we use the 
logistic function, ψ(t) = [1 + exp(-β0 + β1|t|)]–1  

6. Estimation of ψ function parameters 
• NLLS? No: this leads to OLS including all regressors if 

the ψ function nests ψ(t) = 1.  E.g. for logistic, β1 = 0, β0 

→ –∞; for BMA, p = 1 with no shrinkage. 

• In the empirical work we estimate ψ parameters by 
predictive least squares (PLS) 



6.  Empirical Forecast Evaluation of DFMs  
vs. Other Many-Predictor Methods with US Data 

Data: 
• 131 monthly U.S. macro time series from 1959:1 – 2003:12.   
• 9 of these variables are forecasted.   
 

General Form of forecasting model and data transformations: 
• “Direct” forecasting 
• General form of model used for forecasting at horizon h :  

,
1 1

1

pn

i i t h
h

htY
i i

tt i iX uYα β φ + −
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= =
+= + + +∑ ∑+

h
t hY +

     

o  = transformed value of the variable being forecast 
o Yt−i = autoregressive lags 
o Xt,i denotes the ith predictor variable or Pt,i 

• Transformations: logarithms and differencing, as appropriate 



Series being forecasted and their transformations 
 

Series   h
t hY +  Yt

Personal Income  PI (1200/h)ln(Zt+h/Zt) ∆ln(Zt) 
Ind. Production  IP (1200/h)ln(Zt+h/Zt) ∆ln(Zt) 
Unemployment  UR (Zt+h − Zt) ∆Zt

Employment  EMP (1200/h)ln(Zt+h/Zt) ∆ln(Zt) 
3-Mth Tbill Rate  TBILL (Zt+h − Zt)   ∆Zt

10-Yr TBond Rate TBOND (Zt+h − Zt) ∆Zt

Prod. Price Index  PPI 1200[(1/h) ln(Zt+h/Zt)− ∆ln(Zt)] ∆2ln(Zt)
Cons. Price Index  CPI 1200[(1/h) ln(Zt+h/Zt)− ∆ln(Zt)] ∆2ln(Zt)
PCE Deflator  PCED 1200[(1/h) ln(Zt+h/Zt)− ∆ln(Zt)] ∆2ln(Zt)
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Pseudo-out-of-sample forecasts – some details 
 
• First Estimation Period  1960:1  
• Each in-sample estimated regression is restricted to contain a 

minimum of 120 observations 
• For regressions involving all regressors the minimum number 

of in-sample regression observations is 130/.75 = 174 
• Forecast period is 1974:7.  2003:12 – h. 
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Summary of Forecasting Methods for Empirical Comparison 
 

Method Description 
Combined-
Mean  

Combined ADL Models, AIC Lag Selection, sample 
mean . 

AR AR Model, AIC Lag Selection 
OLS  All X Variables,  pY = 4, all coefficients estimated by 

OLS 
Combined-SSR Combined ADL Models, pY = 4,  α  chosen by PLS 
FAAR-OLS Factor Augmented AR model, OLS estimation of 

Factors (PC), AIC selection of factors and AR lags 
FAAR-GLS Factor Augmented AR model, GLS estimation of 

Factors (PC), AIC selection of factors and AR lags 
FAAR-WLS Factor Augmented AR model, WLS estimation of 

Factors (PC), AIC selection of factors and AR lags 
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Forecasting methods, ctd. 
 

BMA(1/n2,0.5)  BMA using X , pY = 4, g = 1/n2, p = 0.5 
BMA(1,0.5)  BMA using X , pY = 4, g = 1, p = 0.5 – informative prior 
BMA-
PC(1/n2,0.5)  

BMA using PC, pY =4, g = 1/n2, p=1/2 – uninformative 

BMA-PC(1,0.5)  BMA using PC, pY = 4, g = 1, p = ½ – informative 
PEB-PC  BMA using PC, pY = 4, EB estimates of g and p: 

estimate g = .03 (wide spread), p = .03 (rare) for h=6 
SNP simple nonparametric empirical Bayes (kernel 

estimator of the score of m) 
BIC-PC PC using BIC selection, pY = 4 
Bagging-PC Bagging using PC,  c = 1.96 with Newey-West t-

statistics, pY = 4 (will discuss PLS-estimated c also) 

• h = 1, 3, 6, 12 months; 9 series forecasts 
• All results are MSFEs, relative to Combined ADL Mean 



 
Shrinkage Factors for PC Forecasting Models 
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Shrinkage factors for each PC: Unemployment Rate 
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Table A.  MSFEs relative to simple combination: Unemployment Rate 
   h = 1 h = 3 h = 6 h = 12 
AR  1.07 1.13 1.20 1.21 
OLS  1.83 1.53 1.75 2.07 
Combined-SSR  0.90 0.90 1.01 1.05 
FAAR-OLS  0.86 0.85 0.93 0.99 
FAAR-GLS  0.95 0.84 0.84 0.93 
FAAR-WLS  0.86 0.86 0.92 0.92 
BMA(1/n2,0.5)  0.88 0.88 1.19 1.47 
BMA(1,0.5)  0.87 0.84 1.01 1.27 
BMA-PC(1/n2,0.5)  0.87 0.83 0.97 1.05 
BMA-PC(1,0.5)  0.97 0.91 0.95 1.04 
PEB-PC  0.86 0.82 0.93 0.99 
BIC-PC  0.97 0.96 1.15 1.45 
Bagging-PC (c=1.96) 1.16 1.07 1.23 1.54 
cf. Boivin-Ng (2005) – other PC methods, standard PC works well
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Plots of unemployment rate forecasts 
 
Green = unemployment rate 
Blue = AR(AIC) 6-month ahead forecast 
Red = Candidate 6-month ahead forecast  
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Summary for all 9 series (simple combining = 1) 
Average Rel. MSFE (Fraction Rel. MSFE < 1) 

Split Out-of-Sample Period
Method 

Full OOS Period 
First Half   Second Half 

AR  1.10  (0.00) 1.12  (0.00) 1.07  (0.03) 
OLS  2.16  (0.00) 2.44  (0.00) 2.02  (0.00) 
Combined-SSR 1.05  (0.39) 1.01  (0.50) 1.14  (0.22) 
FAAR-OLS  0.96  (0.81) 0.96  (0.67) 1.00  (0.69) 
FAAR-GLS  0.98  (0.61) 0.94  (0.67) 1.14  (0.44) 
FAAR-WLS  0.96  (0.75) 0.95  (0.64) 1.02  (0.67) 
BMA(1/n2,0.5)  1.16  (0.31) 1.13  (0.33) 1.31  (0.17) 
BMA(1,0.5)  1.23  (0.28) 1.17  (0.31) 1.49  (0.17) 
BMA-PC(1/n2,0.5)  1.07  (0.39) 1.01  (0.53) 1.24  (0.22) 
BMA-PC(1,0.5)  1.08  (0.44) 1.07  (0.47) 1.16  (0.31) 
PEB-PC  1.06  (0.42) 1.04  (0.42) 1.15  (0.33) 
BIC-PC  1.34  (0.17) 1.33  (0.25) 1.51  (0.06) 
Bagging-PC 1.54  (0.00) 1.61  (0.11) 1.63  (0.03) 

 



Empirical Bayes estimates of p, g 
 

 Forecast Horizon 
Series 1 3 6 12 
 p̂  ĝ  p̂  ĝ  p̂  ĝ  p̂  ĝ  
PI 0.01 0.06 0.01 0.05 0.08 0.14 0.09 0.15 
IP 0.19 0.15 0.13 0.09 0.10 0.05 0.07 0.04 
UR  0.02 0.04 0.04 0.04 0.03 0.03 0.27 0.04 
EMP  0.01 0.03 0.10 0.08 0.13 0.09 0.12 0.06 
TBILL  0.07 0.11 0.05 0.07 0.08 0.07 0.07 0.08 
TBOND  0.37 1.00 0.41 0.63 0.48 0.42 0.24 0.22 
PPI 0.60 1.36 0.04 0.13 0.01 0.04 0.06 0.10 
CPI 0.46 0.28 0.01 0.03 0.01 0.02 0.04 0.04 
PCED  0.22 0.46 0.02 0.09 0.01 0.04 0.05 0.08 
 

small p: nonzero coefficients are rare 
 small g: wide spread of prior for δ, if it is nonzero 
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 PLS estimation of BMA p, g; of bagging threshold c; and of 
logistic ψ function β0, β1 – all 9 series 

 RMSFE Fraction of forecast variance  
coming from first 4 factors 

Series First 4 BMA Bagging Logistic First 4 BMA Bagging Logistic 
PI 1.042 0.919 0.927 0.905 1.00 0.78 0.87 0.90 
IP 0.769 0.840 0.891 0.841 1.00 0.59 0.93 0.65 

Unemp 0.710 0.784 0.805 0.790 1.00 0.80 0.84 0.82 
EMP 0.880 0.910 0.977 0.914 1.00 0.46 * 0.31 
Tbill 0.871 0.839 0.856 0.840 1.00 0.73 0.89 0.89 

Tbond 1.018 0.978 0.996 0.978 1.00 * * * 
PPI 1.053 0.999 1.000 0.999 1.00 * * * 
CPI 0.969 0.947 0.978 0.942 1.00 0.17 * 0.55 

PCED 1.174 0.985 0.995 0.985 1.00 * * * 

 
• Estimated bagging is comparable to PEB-BMA  
• Forecasts are heavily driven by first four factors 



Est’d ψ  functions (PLS) – unemployment rate 
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Est’d ψ  functions (PLS) – 3-month T-bill 
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Summary of Main Findings 
 

1.The DFM seems to fit US data well, with a moderate number of 
factors (we estimate 7) 

 
2.BMA and other methods can be used in time series applications, 

including multiperiod forecasts, in the context of “pseudo-BMA” 
– their behavior is the same whether or not the modeling 
assumptions (i.i.d. Gaussianity + strict exogeneity) hold 

 
3.Empirical comparisons with other methods including empirical 

Bayes BMA indicate that DFM forecasts with a small number of 
factors are difficult to beat – there does not seem to be linearly 
exploitable information beyond the first few factors 
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Correlation of forecasts: Averages across series and horizon 
 

  Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
  1   Combined-Mean  1.00     .      .      .      .      .      .      .      .      .      .      .      .      .  
  2   AR  0.94  1.00     .      .      .      .      .      .      .      .      .      .      .      .  
  3   OLS  0.43  0.36  1.00     .      .      .      .      .      .      .      .      .      .      .  
  4   Combined-SSR  0.75  0.65  0.47  1.00     .      .      .      .      .      .      .      .      .      .  
  5   FAAR-OLS  0.77  0.65  0.50  0.77 1.00     .      .      .      .      .      .      .      .      .  
  6   FAAR-GLS  0.73  0.61  0.53  0.73  0.86  1.00     .      .      .      .      .      .      .      .  
  7   FAAR-WLS  0.77  0.65  0.50  0.78  0.98  0.86  1.00     .      .      .      .      .      .      .  
  8   BMA(1/n2,0.5)  0.65  0.56  0.59  0.79  0.77  0.73  0.77  1.00     .      .      .      .      .      .  
  9   BMA(1,0.5)  0.60  0.50  0.80  0.71  0.73  0.73  0.73  0.86  1.00     .      .      .      .      .  
 10   BMA-PC(1/n2,0.5)  0.68  0.57  0.63  0.78  0.82  0.77  0.82  0.82  0.83  1.00     .      .      .      .  
 11   BMA-PC(1,0.5)  0.71  0.65  0.87  0.74  0.72  0.71  0.72  0.79  0.88  0.87  1.00     .      .      .  
 12   PEB-PC  0.67  0.57  0.66  0.77  0.80  0.75  0.80  0.80  0.82  0.94  0.87  1.00     .      .  
 13   BIC-PC  0.57  0.48  0.70  0.66  0.70  0.66  0.69  0.74  0.80  0.88  0.85  0.84  1.00     .  
 14   Bagging-PC 0.52  0.44  0.96  0.59  0.62  0.63  0.62  0.70  0.87  0.78  0.94  0.78  0.84  1.00  
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More Results (see the paper)… 
a. h  = 1 

   PI IP UR EMP TBILL TBOND PPI CPI PCED 
Combined-
Mean Root-
MSFE  

6.51 7.54 0.17 2.16 0.55 0.34 5.48 2.52 1.93 

MSFE Relative to Combined-Mean 
AR  1.04 1.09 1.07 1.07 1.03 1.02 1.04 1.06 1.03 
OLS  1.87 1.94 1.83 2.41 1.73 1.43 2.70 2.33 2.04 
Combined-
SSR  

0.88 0.91 0.90 0.93 1.03 0.93 1.06 1.07 1.02 

FAAR-OLS  0.96 0.91 0.86 0.92 0.86 0.92 1.00 0.97 0.98 
FAA-GLS  1.00 1.05 0.95 1.23 0.93 0.96 1.04 1.01 1.05 
FAAR-WLS  0.96 0.90 0.86 0.95 0.86 0.93 1.01 0.95 0.98 
BMA(1/n2,0.5)  0.92 0.89 0.88 1.02 1.08 0.94 1.07 1.10 1.02 
BMA(1,0.5)  0.94 0.83 0.87 1.10 1.05 0.99 1.21 1.21 1.22 
BMA-
PC(1/n2,0.5)  

0.95 0.90 0.87 0.91 0.89 0.90 1.08 1.13 1.02 

BMA-
PC(1,0.5)  

0.99 0.92 0.97 0.96 0.99 0.95 1.14 1.15 1.09 

PEB-PC  0.97 0.99 0.86 0.99 0.91 0.96 1.29 1.18 1.11 
BIC-PC  1.05 0.96 0.97 1.02 1.07 1.02 1.28 1.26 1.22 
Bagging-PC  1.22 1.15 1.16 1.44 1.28 1.14 1.60 1.54 1.42 
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b. h  = 3 
   PI IP UR EMP TBILL TBOND PPI CPI PCED 
Combined-
Mean Root-
MSFE  

3.40 5.56 0.32 1.76 1.26 0.75 3.92 1.97 1.43 

MSFE Relative to Combined-Mean 
AR  1.07 1.14 1.13 1.11 1.03 1.02 1.07 1.14 1.08 
OLS  2.00 1.57 1.53 1.36 1.33 1.26 2.71 2.72 2.35 
Combined-
SSR  

1.04 1.00 0.90 0.93 0.87 0.92 1.22 1.24 1.07 

FAAR-OLS  0.98 0.85 0.85 0.91 0.91 0.96 0.98 0.91 0.95 
FAA-GLS  0.99 0.96 0.84 1.05 0.88 0.94 1.01 0.92 0.98 
FAAR-WLS  0.99 0.84 0.86 0.92 0.89 0.93 1.01 0.92 0.97 
BMA(1/n2,0.5)  0.96 0.96 0.88 0.98 0.88 0.95 1.30 1.31 1.09 
BMA(1,0.5)  0.97 0.82 0.84 0.92 0.94 1.02 1.56 1.41 1.23 
BMA-
PC(1/n2,0.5)  

1.01 0.86 0.83 0.92 0.81 0.87 1.30 1.26 1.13 

BMA-
PC(1,0.5)  

0.99 0.83 0.91 0.82 0.84 0.88 1.38 1.39 1.18 

PEB-PC  0.96 0.83 0.82 0.89 0.82 0.91 1.42 1.30 1.19 
BIC-PC  1.23 1.01 0.96 1.10 0.99 0.98 1.56 1.48 1.40 
Bagging-PC  1.40 1.04 1.07 1.00 1.04 1.03 1.92 1.89 1.57 
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c. h  = 6 
   PI IP UR EMP TBILL TBOND PPI CPI PCED 
Combined-
Mean Root-
MSFE  

2.39 4.15 0.50 1.64 1.66 1.06 3.08 1.71 1.19 

MSFE Relative to Combined-Mean 
AR  1.08 1.18 1.20 1.06 1.06 1.02 1.07 1.17 1.10 
OLS  2.58 2.64 1.75 2.07 1.35 1.47 3.07 2.32 2.69 
Combined-
SSR  

1.16 1.12 1.01 0.90 0.90 0.98 1.24 1.24 1.14 

FAAR-OLS  1.10 1.21 0.93 1.04 0.86 0.99 0.99 0.85 0.97 
FAA-GLS  0.97 1.00 0.84 1.09 0.88 0.96 1.01 0.86 0.97 
FAAR-WLS  1.13 1.20 0.92 1.04 0.80 0.99 0.99 0.84 0.97 
BMA(1/n2,0.5)  1.22 1.46 1.19 1.38 0.86 1.08 1.35 1.24 1.19 
BMA(1,0.5)  1.19 1.39 1.01 1.35 0.87 1.13 1.69 1.41 1.43 
BMA-
PC(1/n2,0.5)  

1.12 1.09 0.97 1.12 0.79 0.99 1.41 1.20 1.17 

BMA-
PC(1,0.5)  

1.07 0.99 0.95 1.03 0.86 0.98 1.47 1.27 1.26 

PEB-PC  1.04 1.06 0.93 1.04 0.80 1.03 1.35 1.15 1.16 
BIC-PC  1.46 1.30 1.15 1.57 0.98 1.15 1.93 1.38 1.68 
Bagging-PC  1.71 1.71 1.23 1.64 1.07 1.25 2.19 1.71 1.94 
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d. h = 12 
   PI IP UR EMP TBILL TBOND PPI CPI PCED 
Combined-
Mean Root-
MSFE  

1.86 3.40 0.84 1.66 2.12 1.57 2.73 1.59 1.12 

MSFE Relative to Combined-Mean 
AR  1.05 1.25 1.21 1.15 1.12 1.02 1.14 1.28 1.19 
OLS  2.28 2.83 2.07 2.30 2.15 1.75 3.16 2.62 3.44 
Combined-
SSR  

1.14 1.16 1.05 1.07 1.11 0.97 1.28 1.17 1.11 

FAAR-OLS  1.10 1.34 0.99 0.99 0.90 1.02 0.97 0.76 0.96 
FAA-GLS  1.03 1.04 0.93 1.08 0.97 1.03 1.03 0.84 0.98 
FAAR-WLS  1.14 1.38 0.92 1.01 0.93 1.01 0.95 0.74 0.99 
BMA(1/n2,0.5)  1.41 1.80 1.47 1.61 1.21 1.33 1.41 1.29 1.17 
BMA(1,0.5)  1.41 1.64 1.27 1.55 1.50 1.33 1.86 1.51 1.67 
BMA-
PC(1/n2,0.5)  

1.19 1.22 1.05 1.21 1.22 1.15 1.47 1.23 1.40 

BMA-
PC(1,0.5)  

1.04 1.12 1.04 1.15 1.25 1.05 1.50 1.28 1.36 

PEB-PC  1.11 1.14 0.99 1.12 1.02 1.12 1.43 1.09 1.28 
BIC-PC  1.57 1.88 1.45 1.58 1.61 1.52 1.93 1.60 2.02 
Bagging-PC  1.76 2.14 1.54 1.83 1.85 1.57 2.28 1.80 2.42 
 

 


