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[1] We test hypotheses about the unknown sink for carbon by analyzing time series for
the unknown carbon sink, carbon emissions, atmospheric concentrations, and surface
temperature between 1860 and 1990. During this period, the time series for the unknown
carbon sink is determined by annual changes in carbon emissions and summer land
surface temperature in the northern hemisphere. The first difference of carbon emissions
indicates that an increase in carbon emissions may generate a short run increase in
oceanic uptake that is not simulated correctly by models. The temperature effect may
have its greatest impact on terrestrial vegetation in the midlatitudes and high latitudes of
Eastern North America and Europe. We also test and reject hypotheses that increases in
the atmospheric concentration of CO,, nitrogen deposition associated with fossil fuel
combustion, or uncertainty about the rate at which forests are cut and/or regrow are

responsible for changes in the unknown carbon sink over time.

INDEX TERMS: 0330

Atmospheric Composition and Structure: Geochemical cycles; 1615 Global Change: Biogeochemical
processes (4805); 1620 Global Change: Climate dynamics (3309); KEYWORDS: carbon cycle, unknown

carbon sink

Citation:

Kaufmann, R. K., and J. H. Stock, Testing hypotheses about mechanisms for the unknown carbon sink: A time series

analysis, Global Biogeochem. Cycles, 17(2), 1072, doi:10.1029/2002GB001962, 2003.

1. Introduction

[2] Summing the estimates for carbon flows to and from
the atmosphere indicates that the atmospheric concentration
of carbon dioxide should be greater than observations. This
discrepancy implies that some unknown mechanism(s) is
removing carbon from the atmosphere and/or a known
mechanism is removing carbon faster than believed: the
so-called unknown carbon sink. Hypotheses for this un-
known sink include uncertainty about oceanic uptake and/or
increased uptake by terrestrial vegetation due to changes in
climate, elevated levels of atmospheric CO,, forest re-
growth, and/or anthropogenic mobilization of nitrogen
[Schimel et al., 2001].

[3] Here we test competing hypotheses for the unknown
carbon sink by analyzing time series for anthropogenic
carbon emissions, atmospheric carbon concentrations, sur-
face temperature, and uptake by the unknown carbon sink
between 1860 and 1990. These time series are not station-
ary, which means that statistical relations estimated using
ordinary least squares (OLS) could be misleading. To avoid
this potential source of confusion, we use two techniques
that are designed to analyze relations among nonstationary
time series. The results indicate that most of the variation in
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the time series for carbon uptake by the unknown carbon
sink is associated with annual changes in carbon emissions
and summer temperature in the Northern Hemisphere.
These results imply that oceans may increase their uptake
of carbon in the short run in response to increased emis-
sions. The effect of temperature implies that summer
warming may increase net primary productivity (NPP)
faster than heterotrophic respiration: net carbon exchange
between the terrestrial biosphere and the atmosphere
increases. Conversely, we find no evidence that elevated
levels of carbon dioxide, uncertainties about forest re-
growth, or nitrogen deposition have a statistically measur-
able effect on estimates for the unknown carbon sink over
the last 130 years.

[4] These results are described in five sections. Section 2
describes the data analyzed. Section 3 describes the differ-
ences between stationary and nonstationary time series, how
these differences can affect statistical relations estimated by
OLS, and techniques that can be used to analyze relations
among nonstationary time series. Section 4 describes the
results of tests designed to evaluate four mechanisms for the
unknown carbon sink: (1) atmospheric concentrations of
CO,, (2) emissions of CO,, (3) air and/or ocean surface
temperature, and (4) uncertainty about forest regrowth and
nitrogen deposition. Section 5 discusses these results rela-
tive to previous investigations. Finally, we conclude with a
description of research that is needed to reconcile differ-
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Figure 1. The time series for the unknown carbon sink (dotted line, left axis) and the time series for the
atmospheric concentration of carbon dioxide (solid line, right axis).

ences between statistical analyses of the observational
record and results generated by simulation models.

2. The Data

[s] To test hypotheses about the mechanisms for the
unknown carbon sink, we analyze the time series for the
unknown carbon sink calculated by Houghton et al. [1998]

ACO; = carbon emissions — oceanic uptake + unknown sink,

(1)

in which ACO, is the change in atmospheric CO,, carbon
emissions is the net annual rate of anthropogenic CO,
emissions and includes estimates for emissions from fossil
fuels and net emissions from land use (deforestation minus
uptake due to forest regrowth), oceanic uptake is the rate at
which carbon is absorbed by oceans as simulated by
models, and unknown sink is the rate by which these flows
do not balance. All flows are measured in petagrams of
carbon per year. Negative values for the unknown sink
indicate that there is less carbon in the atmosphere than
indicated by the first three terms in equation (1) (Figure 1).

[6] We use the time series for the unknown carbon sink
(MISS) as a dependent variable to estimate models that
specify one or more variables (X), which represent mecha-
nisms postulated to drive the unknown carbon sink (Table 1).
To test the hypothesis that elevated levels of atmospheric
CO, increase NPP relative to heterotrophic respiration, we
use statistical techniques to test for a relation between MISS
and the atmospheric concentration of CO,. If elevated levels
of carbon dioxide have increased NPP in a way that affects
the ability of equation (1) to balance the flow of carbon to
and from the atmosphere, there should be a relation between
the time series for the atmospheric concentration of CO, and
the unknown carbon sink. Similarly, we evaluate the effect of
temperature on the net flow of carbon to and from the
atmosphere by testing for a relation between MISS and

various components of surface temperature. Because the
time series for the unknown carbon sink is a book-keeping
phenomenon with no physically meaningful effect on con-
centrations, emissions, or temperature, the models specify
MISS as an endogenous variable that is a function of
exogenous variables in the X vector.

[7] We recognize that the time series for carbon uptake by
the unknown sink and the possible explanatory variables (X)
contain considerable uncertainty. For example, measure-
ments of surface temperature after 1900 are more reliable
than measurements between 1860 and 1900 [Jones, 1994,
Trenberth et al., 1992]. Similarly, the data for atmospheric
CO, estimated from ice cores have less year-to-year varia-
tion than observations from Mauna Loa, which start in 1959
[Craig et al., 1997]. To account for the effects of measure-
ment error, we estimate the statistical models in Table 1 with
data from three sample periods: (1) the entire period for
which all data are available (1860—1990); (2) the more
reliable portion of the temperature data (1900—1990); and
(3) the period for which direct measurements of atmospheric
CO, concentrations are available (1959—-1990). If the re-
gression results are consistent across the three sample
periods, we can conclude that measurement error in the data
has relatively little effect on the results.

[8] Statistical models do not establish causal relations in a
physical sense, but they do allow us to test competing
hypotheses for the unknown carbon sink at temporal and
spatial scales in ways that field experiments and simulation
models cannot. Field experiments are run at a very small
scale: extrapolating effects measured from single leaves or
eddy flux towers to the flows of the global carbon cycle are
fraught with uncertainties such as how limiting factors
change with scale [e.g., Baldocchi and Hanley, 1995; Ruimy
et al., 1996]. At the global scale, process-based models can
simulate the effect of climate change, changes in land use,
and elevated levels of atmospheric CO, on net carbon
exchange between the terrestrial biosphere and atmosphere
[McGuire et al., 2001]. But these models have not been
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Table 1. Time Series Definitions

Models Time Series in the X Vector

Model 1 CO,

Model 2 In(COy)

Model 3 MISS.. /(1 + ae’®)

Model 4 ACO,

Model 5 ALn(CO,)

Model 6 AMISS.. /(1 4 ae*®)

Model 7 ECO,

Model 8 AECO,

Model 9 AECO, SSTNHEM

Model 10 AECO, SSTSHEM

Model 11 AECO, LNDSHEM

Model 12 AECO, LNDNHEM

Model 13 AECO, NHWTR

Model 14 AECO, NHSPR

Model 15 AECO, NHFALL

Model 16 AECO, NHSUM

Model 17 AEFFCO, AEBIOCO, LNDNHEM

Mnemonic Definition

CO, atmospheric concentrations of carbon dioxide
[Keeling and Whorf, 1994;
Etheridge et al., 1996]

ACO, first difference atmospheric concentrations
of carbon dioxide

ECO, anthropogenic emissions of carbon dioxide
[Houghton and Hackler, 1999;
Marland and Rotty, 1984]

MISS asymptote for MISS in the logistic model
(estimated parameter)

AECO, first difference anthropogenic emissions of
carbon dioxide

AEFFCO, first difference emissions of carbon dioxide
from fossil fuels [Marland and Rotty, 1984]

AEBIOCO, first difference emissions of carbon dioxide
from biotic sources
[Houghton and Hackler, 1999]

LNDNHEM land surface temperature Northern Hemisphere
[Nicholls et al., 1996; Parker et al., 1994]

LNDSHEM land surface temperature Southern Hemisphere
[Nicholls et al., 1996; Parker et al., 1994]

SSTNHEM sea surface temperature Northern Hemisphere
[Nicholls et al., 1996; Parker et al., 1994]

SSTSHEM sea surface temperature Southern Hemisphere
[Nicholls et al., 1996; Parker et al., 1994]

NHWTR Northern Hemisphere temperature winter
[Nicholls et al., 1996; Parker et al., 1994]
(Jan., Feb., March)

NHSPR Northern Hemisphere temperature spring
[Nicholls et al., 1996; Parker et al., 1994]
(April, May, June)

NHSUM Northern Hemisphere temperature summer
[Nicholls et al., 1996; Parker et al., 1994]
(July, Aug., Sept.)

NHFALL Northern Hemisphere temperature fall

[Nicholls et al., 1996; Parker et al., 1994]
(Oct., Nov., Dec.)

validated extensively. Sensitivity analyses indicate that
“large uncertainties still exist for mechanistic modeling of
global vegetation activity” [Knorr and Heimann, 2001].
[o] To avoid these difficulties, we analyze relations
among time series using statistical techniques. Following
this approach, hypotheses about the mechanisms that un-
derlie the unknown carbon sink are consistent with the
historical record if regression results indicate a statistically
significant relation between the time series for the unknown
carbon sink and the variable used to represent a possible
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mechanism. Conversely, the lack of a statistically significant
relation indicates that the hypothesized mechanism is not
consistent with the historical record. The global scale of the
time series allows us to avoid the conceptual and practical
difficulties associated with scaling results from field experi-
ments. Direct testing against the observational record allows
us to avoid the uncertainty in simulation models.

[10] The statistical models used to test the relation be-
tween the unknown carbon sink and possible explanatory
variable(s) can be estimated most simply using OLS. But
results generated by OLS must be interpreted with caution.
OLS tends to overstate the statistical significance of the
relation among nonstationary variables. The nature of this
overstatement and statistical techniques that can cope with it
are described in section 3.

3. Time Series Properties and Statistical
Techniques

3.1. Time Series Properties

[11] The relation between two variables, x and y, can be
specified most simply with a linear model. A linear model is
given by:

Yo = o+ Bx 4 py, (2)

in which y;, is the value of time series y at time ¢, x; is the
value of time series x at time 7, p is a normally distributed

Table 2. ADF Tests"

Variable p=3° p=4
MISS —1.87 —~1.83
AMISS —5.28 —4.84
CO, 1.11 0.62
ACO, —0.51 —0.50
A*CO, —~7.53 —5.73
ECO, 0.62 0.73
AECO, -321 —2.86
A’CO, —8.42 —~7.68
EFCO, 0.29 0.48
AEFFCO, —3.58 —3.31
A’EFFCO, -7.97 —8.26
EBIOCO, —1.13 —~1.14
AEBIOCO, —4.41 —3.65
LNDHEM —3.25 —2.60
ALNDNHEM —9.83 —7.45
LNDSHEM -3.36 -3.07
ALNDSHEM —8.54 —7.49
SSTNHEM -3.30 —2.69
ASSTNHEM —8.47 —17.55
SSTSHEM —3.13 —2.77
ASSTSHEM —8.26 —6.82
WINTER —3.98 —3.43
AWINTER —9.12 -7.79
SPRING —-3.55 —2.91
ASPRING —8.83 —8.44
SUMMER -232 —2.23
ASUMMER —8.31 —7.71
FALL —4.05 —331
AFALL —9.83 —7.21

“Entries are ADF ¢ statistics. Sample: 1866—1990. Values in bold exceed
the 0.05 threshold.

"The column heading “p = 3 indicates the number of lags used to
compute the ADF test. The tests for a unit root in levels include a constant
and a linear time trend; the tests for first differences include a constant only.
The 5% critical value is —3.45.
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random error term with a mean value of zero, and « and 3
are regression coefficients. Values for o and 3 can be
estimated from observational data using OLS. OLS
calculates point estimates for o« and § that minimize the
sum of the error squared.

[12] One way to evaluate the statistical significance of the
relation between x and y is to test whether the OLS estimate
for (3 is statistically different from zero. The null hypothesis
that the regression coefficient (3) equals zero is evaluated
with a test statistic that is calculated by dividing the OLS
estimate for the regression coefficient (3) by its standard
error. This ratio (commonly termed a f-test) is evaluated
against a ¢ distribution. If the ¢ statistic exceeds the value
associated with a critical threshold, usually p < 0.05, this
result indicates that the null hypothesis is rejected and that
the coefficient is not equal to zero. Under these conditions,
variables x and y are said to be related in a statistically
significant manner.

[13] Interpreting the ¢ statistics (and other diagnostic
statistics) generated by OLS is based on several assump-
tions. Among the most important (for this analysis) is the
assumption that the time series (x, y) and/or the regression
error () is stationary. A stationary time series has a constant
mean. That is, the mean value for a subsample of the time
series does not differ from the mean for the entire sample
period. If time series being analyzed are stationary (and
satisfy the other assumptions that underlie the use of OLS),
the ¢ statistic estimated by OLS will falsely reject the null
hypothesis 3 = 0 at p < 0.05 about 5% of the time.

[14] This result can be illustrated using Monte Carlo
techniques in which realizations for two time series, x and
v, are created by drawing randomly 50 times from a normal
distribution that has a mean value of zero and a standard
deviation of 1.0. This process can be repeated 100 times to
create 100 realizations for the time series for x and y (each
realization of x and y has 50 observations). Based on the
way in which x and y are created, there should be no relation
between x and y: we should not be able to reject the null
hypothesis that 3 = 0. This hypothesis can be evaluated for
each of the 100 time series for x and y by estimating
equation (2) using OLS. The OLS estimate for 3 (and its
standard error) is such that there is no statistically mean-
ingful relation between x and y in about 95 of the 100
relations analyzed. This expectation is illustrated by the
results for one realization of x and y (Figure 2a). For this
realization, the ¢ statistic associated with 3 is 0.9 ( p <0.38).

[15] If we relax the assumption of stationarity, the ability
to use the ¢ statistic (and other diagnostic statistics) to
evaluate the relation between variables estimated by OLS
changes dramatically. To demonstrate this change, we repeat
the Monte Carlo simulation using nonstationary time series.
A nonstationary time series is defined by changes in its
mean over time. That is, the mean value for one subsample
is different from the mean value for another subsample. The
simplest example of a nonstationary time series is a random
walk, which is given as follows:

Zi =N+, (3)

in which Z, is the value of the time series Z at time ¢, Z,_; is
the value of Z in the previous period, \ is an autoregressive
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coefficient equal to 1.0, and € is a number drawn randomly
from a normal distribution (normality and randomness are
not required to generate the results that follow).

[16] The data generating process given by equation (3)
creates a time series Z which does not have a constant mean.
Instead, Z may meander away from its mean for extended
periods. These movements may make it appear as though
the time series contains a trend. Such trends are termed
stochastic trends because their movements are generated by
the cumulative effects of stochastic changes.

[17] Movements in nonstationary time series are generat-
ed by the fact that the variable Z has memory. The
autoregressive coefficient of X = 1.0 implies that the time
series” memory extends back ad infinitum. That is, the value
of a nonstationary variable at any point of time depends on
the entirety of its history.

[18] The ability of “memory” to generate a stochastic
trend can be illustrated by using equation (3) to generate
nonstationary time series. To do so, we sum the normally
distributed random variables x and y using equations (4)
and (5)

T
Xi=X1+x=)» x 4)
t=0
T
Y=Y 1+y= Zyn (5)
t=0

in which X and Y are nonstationary variables that contain a
stochastic trend. Two realizations of a nonstationary time
series, which are generated from the random variables in
Figure 2a, are shown in Figure 2b. A nonstationary variable
with a stochastic trend is said to be integrated order 1 (i.e.,
I(1)). An I(1) variable must be differenced one time to make
it stationary /(0). That is, the first difference of X and Y will
generate x and y, which are stationary. Similarly, an /(2)
variable must be differenced two times to make it stationary.

3.2. Spurious Regressions

[19] The presence of stochastic trends in X and Y under-
mines the results generated by OLS. Repeating the Monte
Carlo experiment with 100 realizations of X and Y generates
results remarkably different from those obtained from the
100 realizations of stationary variables x and y. Using OLS
to estimate the relation between X and Y from Figure 2b as
follows:

Y, = a+BX +p, (6)

generates a ¢ value for (3(—0.45) of 5.2, which has a
significance level of p < 0.00001 when evaluated against a
standard ¢ distribution. This rejection of the null hypothesis
is not a fluke. About 80 of the 100 regressions of X and Y
generate a ¢ statistic for 3 that exceeds the 0.05 threshold.
[20] The tendency of standard diagnostic statistics to
overstate the significance of regression results estimated
by OLS from nonstationary variables is described by
Granger and Newbold [1974]. They term such results as
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Figure 2. (a) Realizations for two normally distributed random variables x (solid line) and y (dotted
line). (b) Realizations for two variables with a stochastic trend X (solid line) and Y (dotted line) that are
calculated from the x and y variables in Figure 2a using equations (4) and (5). (c) The residual from an
OLS regression of X and Y as given by equation (6).
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spurious regressions. When evaluated against standard dis-
tributions, the correlation coefficients and ¢ statistics for a
spurious regression are likely to indicate a significant
relation among variables when none may exist.

[21] To avoid misinterpreting spurious regression results,
Engle and Granger [1987] define the notion of cointegra-
tion. A group of nonstationary variables is said to cointe-
grate if there is at least one linear combination of the
variables that is stationary. That is, if X and Y are related
to one another, they will share the same stochastic trend.
If they share the same stochastic trend, there will be at
least one way to combine X and Y such that the residual
from equation (6) is stationary. But if X and Y are not
truly related (or if the regression omits a statistically
meaningful nonstationary variable), the residual will con-
tain a stochastic trend. Returning to our example, the
residual from the regression of X and Y in Figure 2b
seems to contain a stochastic trend (Figure 2c). This
implies that X and Y are not related even though the ¢
statistic suggests that they are related. The presence or
lack of cointegration allows analysts to use stochastic
trends as “fingerprints” to detect relations among nonsta-
tionary variables.

3.3. Statistical Analysis of Cointegrating Relations

[22] The need to establish cointegration adds several
steps to the statistical analysis of nonstationary time series.
In the first step, analysts use the Augmented Dickey
Fuller statistic (ADF) to determine whether the time series
contain a stochastic [Dickey and Fuller, 1979]. Other test
statistics are available, but the ADF performs well relative
to other test statistics [Stock, 1994]. The model for the
ADF test is:

Ay = a4 Bt +yy + Y 8hy i+, (7)
=1

in which y is the variable under investigation, A is the first
difference operator (i.e., y, — y,_1), ¢ is a linear time trend
(which is used to represent a possible deterministic trend), s
is the number of lags for Ay used to correct for possible
serial correlation, ¢ is a random error term, and the
coefficient vy is equivalent to X — 1 in equation (3).

[23] The null hypothesis for the ADF test is that the
series contain a stochastic trend. The ADF test evaluates
the null, v = 0, i.e., \ = 1 by comparing the ¢ statistic for vy
against a nonstandard distribution that was developed
specifically for the ADF test [MacKinnon, 1994]. If the
null hypothesis for the undifferenced series is rejected,
then the original series y is /(0): it is stationary. If the
hypothesis for the differenced series is rejected, then the
original series y is I(1): it is nonstationary. Similarly, a
series y is I(2) if only the second difference of the series
Ay is found to be 1(0).

[24] Results of the ADF test indicate that the time series
for MISS and possible explanatory variables contain a
stochastic trend (Table 2). This result may be surprising.
Traditionally, climate models do not model temperature as a
variable that contains a stochastic trend because the effects
of innovations do not fade over time. As such, the temper-
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ature in the control simulations would be inherently unsta-
ble with no tendency to return to a long-run mean.

[25] This seeming contradiction with the historical record
is reconciled by identifying the source of the stochastic
trend in temperature. The stochastic trend in temperature
simulated by climate models is introduced with processes
that are driven by human activity and processes by which
the atmosphere accumulates CO,. Anthropogenic emissions
of CO, are determined by economic activity. The economic
literature is replete with studies that indicate gross domestic
product and its components contain a stochastic trend;
therefore carbon emissions embody these stochastic trends.
Similarly, the long residence time of CO, implies that the
atmosphere integrates emissions. This can introduce a
stochastic trend in the time series for atmospheric CO,,
the corresponding values for radiative forcing, and ulti-
mately surface temperature [Kaufmann and Stern, 2002].

[26] Because the time series for MISS and its possible
explanatory variables contain a stochastic trend, the pres-
ence or absence of a statistically meaningful relation be-
tween variables is evaluated by whether they cointegrate.
Following a well-established method to determine whether
two (or more) variables cointegrate [Engle and Granger,
1987], OLS is used to estimate equation (6). The residual
() is analyzed for a stochastic trend using the ADF. If the
ADF fails to reject the null hypothesis, the residual contains
a stochastic trend. This result indicates one of two possi-
bilities: (1) the variables in the regression are not related to
each other in a statistically meaningful way; or (2) the
variables share a stochastic trend (and are related) but do not
cointegrate (eliminate the stochastic trend) because the
dependent variable contains one or more stochastic trends
that are not present in the regressors. Regardless of the
cause, a nonstationary residual indicates that the regression
is spurious. Continuing with the analysis of the relation
between X and Y from Figure 2b, the ADF tests fails to
reject the null hypothesis that the residual in Figure 2c
contains a stochastic trend (ADF 2.26, p < 0.65). This result
implies that X and Y do not cointegrate. Without cointegra-
tion, the relation between X and Y indicated by the OLS
estimate of equation (6) is spurious, which is consistent with
how the time series are generated.

[27] If the residual does not contain a stochastic trend
(i.e., it is stationary), OLS can be used to estimate the
relation between MISS and its explanatory variable. The
OLS estimate for 3 in equation (6) represents the long-run
relation among the nonstationary variables, which is termed
the cointegrating relation, and will be “superconsistent™
[Stock, 1987]. That is, the OLS estimate for 3 converges to
its true value faster than usual. Nonetheless, the OLS
estimate of the cointegrating vector will contain a small
sample bias and the limiting distribution is nonnormal with
a nonzero mean [Stock, 1987].

[28] Because of this bias, we supplement OLS results with
those generated by statistical techniques that are designed to
analyze the relation among nonstationary variables. These
techniques include the dynamic ordinary least squares
(DOLS) estimator developed by Stock and Watson [1993]
and the full information maximum likelihood estimator of
a vector error correction model developed by Johansen
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[1988] and Johansen and Juselius [1990]. DOLS generates
asymptotically efficient estimates of the regression coeffi-
cients for variables that cointegrate using the following
specification:

MISS, = o +BX, + Y 0,AX, s+, (®)

i=—s

in which the elements of 3 represent the long-run relation
among variables. The number of lags and leads (s) for the
first differences of the dependent variables are chosen
using the Akaike Information criterion [Akaike, 1973].
Equation (8) can be estimated using either OLS (DOLS)
or generalized least squares (DGOLS). Monte Carlo
experiments indicate that estimates for 3 have less bias
than the OLS estimate of equation (6), but still have some
bias, especially in small samples. Furthermore, the lags
and leads of the first differences are nuisance parameters.
As such, the DOLS estimator does not represent the short-
run dynamics of the relation between MISS and the
variables in the X vector (This is not necessary for an
asymptotically efficient estimation of the cointegrating
relation).

[29] To estimate both the long- and short-run relation
between MISS and its explanatory variables, we use a full
information maximum likelihood procedure to estimate a
vector error correction model (VECM):

AMISS, = a(8;MISS, | +8,X 1) + Y  NAMISS,

i=1

+ ) OAX (9)
i=0

i=

in which the short-run relation between MISS and the
nonstationary explanatory variables is represented by their
first differences.

[30] Equation (9) specifies the first difference of MISS,
which is stationary, as a function of linear lagged values of
the first difference of the nonstationary variables, which also
are stationary, and stationary combinations of the nonsta-
tionary variables, which represent the long-term relations
among variables. The long-run relation among variables is
given by the elements of 3 (3;, B,), and is termed the
cointegrating vector. The rate at which MISS responds to
disequilibrium in the long-run relation is given by o. For
example, a value of —0.25 would indicate that 25% of
disequilibrium in the long-run relation between MISS and
the variables in X is eliminated each period.

[31] We chose the number of lagged first differences to
include in equation (9) using the Schwartz and Hannon-
Quinn information criteria [Hansen and Juselius, 1995]. We
test for the presence of a cointegrating relation using the
Arace and Aoy Statistics [Johansen, 1988; Johansen and
Juselius, 1990]. To evaluate whether elements of 3 are
equal, we impose restrictions that are evaluated with a
likelihood ratio test, which is distributed as a x* with
degrees of freedom equal to the number of restrictions.

[32] Monte Carlo simulations indicate that no single
efficient estimator, DOLS, or the maximum likelihood
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estimator of the VECM, is best [Stock, 1994]. Rather than
rely on a single estimation technique, we evaluate the
degree to which the results are robust by using both efficient
estimators and OLS to estimate the relation between MISS
and explanatory variables (X) for models in which the
variables cointegrate. If MISS and the variables in the X
vector cointegrate (i.e., are related in a statistically mean-
ingful fashion), the estimates for the long-run relation
should be similar across the three estimation techniques.

[33] Using cointegration to identify relations among var-
iables allows us to avoid pitfalls that are associated with
analyzing time series that contain considerable uncertainty.
This uncertainty may take two forms. If the uncertainty in
the time series is stationary (e.g., white noise), it will not
affect tests for cointegration, and therefore will not affect
our conclusions about the presence of a statistically mean-
ingful relation among variables. Systematic errors in the
data (e.g., stochastic trends) will tend to prevent cointegra-
tion because there will be no way to eliminate the stochas-
tic trends associated with the errors. Under these
conditions, systematic errors will obfuscate statistical esti-
mates of physically meaningful relations rather than create
relations where none exist. Systematic errors will falsely
indicate cointegration only if the same systematic error is
present in the time series for MISS and its explanatory
variables, such as anthropogenic carbon emissions, atmo-
spheric concentrations of CO,, and temperature. Given the
very different methods used to measure and compile these
time series, it is highly unlikely that these series contain the
same systematic error (it is possible that the measure for the
unknown carbon sink and measurement errors in emissions
are correlated: the effect of this possible correlation is
described in section 4.4). Thus it is highly unlikely that
the cointegrating relations described in the next section are
created by stationary and/or nonstationary errors in the
data. Indeed, the emphasis on cointegration, the use of
three estimation techniques, and three sample periods
provide a series of safeguards against bad data and spurious
regression results. If the relation between MISS and the
variables in the X vector is meaningful, the statistical
results will be similar across the three sample periods and
three estimation techniques.

4. Results
4.1. Elevated Levels of Atmospheric CO,

[34] Elevated concentrations of atmospheric CO, may
drive the unknown carbon sink by increasing terrestrial
NPP and/or by increasing oceanic uptake in a way not
simulated by models. We test these hypotheses by examin-
ing the relation between MISS and the atmospheric con-
centration of CO,. Visual inspection indicates that there is
no clear relation between the atmospheric concentration of
CO, and the unknown carbon sink (Figure 1). Notably, the
atmospheric concentration of CO, rises rapidly between
1970 and 1990. During this period, there is little increase (in
absolute terms) in carbon uptake by the unknown carbon
sink.

[35] This visual impression is tested statistically by esti-
mating the relation between MISS and the atmospheric
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Table 3. Tests of Cointegration: Entries are ADF Statistics

p=2° p=3 p=4 Sample Period
Model 1
—1.87 -2.07 -2.05 1866—1990
—1.27 —1.79 —1.66 1900—-1990
-1.76 —2.21 —1.80 1959-1990
Model 2
—1.91 —2.09 -2.05 1866—1990
—1.40 -1.92 —1.78 1900-1990
—1.77 —-2.22 —1.80 19591990
Model 3
0.074 —0.15 —-0.17 1866—1990
0.02 —0.06 —0.16 1900-1990
-1.79 —2.24 —1.81 1959-1990
Model 4
—2.47 —1.86 —1.76 1866—1990
—1.96 —1.26 —1.00 1900-1990
—3.84° —3.58 -3.03 1959-1990
Model 5
—2.62 -2.14 —2.08 1866—1990
—2.16 —1.51 —1.27 19001990
—4.04° —3.84° —-3.28 1959-1990
Model 6
—3.11 —2.45 -2.29 1866—1990
—3.26 —2.48 -2.34 19001990
—2.42 —1.85 -1.75 1959-1990
Model 7
0.20 —0.59 —0.66 1866—1990
0.82 0.18 0.25 1900-1990
—1.76 —-2.13 —1.79 1959-1990
Model 8
-5.10° —4.96° —4.81° 1866—1990
—4.61° —4.59° —4.51°¢ 1900-1990
—2.17 —2.97 —3.02 19591990

“The column heading “p = 2” indicates the number of lags used to
compute the ADF test.

*Value exceeds the 0.05 threshold. Significance level computed from
MacKinnon [1994].

“Values exceed the 0.01 threshold. Significance level computed from
MacKinnon [1994].

concentration of CO,. The relation may be specified using
three functions; linear, logarithmic, and logistic [Moore and
Braswell, 1994]. Analysis of the regression errors for a
linear relation between MISS and CO, (model 1) indicates
that the time series for the atmospheric concentration of
CO, does not cointegrate with the time series for the
unknown carbon sink. The ADF statistic fails to reject the
null hypothesis that the residual from model 1 has a
stochastic trend regardless of the sample period (Table 3).
The lack of cointegration indicates that: (1) the atmospheric
concentration of CO; is not related linearly to the unknown
carbon sink; or (2) there is a relation, but it cannot be
estimated reliably because model 1 omits some other
nonstationary variable(s).

[36] Alternatively, model 1 may not cointegrate because it
is specified incorrectly. The effect of elevated concentra-
tions of carbon dioxide may saturate at higher levels if NPP
becomes limited (in a Liebigian sense) by a factor other than
atmospheric CO, as the concentration of CO, rises. To
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evaluate this possibility, we specify the atmospheric con-
centration of carbon dioxide using a natural log. According
to this specification (model 2), the effect of an increase in
atmospheric CO, diminishes as its concentration increases.
The results of the ADF test indicate that we cannot reject the
null hypothesis and that the residual from model 2 has a
stochastic trend (Table 3). Again, this indicates that there is
no statistically meaningful relation between atmospheric
concentration of carbon dioxide and the unknown carbon
sink or some other nonstationary variable has been omitted
from model 2.

[37] Alternatively, we estimate the relation between CO,
and MISS using a logistic function (model 3). Due to its
nonlinear nature, the asymptote for the logistic equation
(MISS,) is estimated using an iterative grid search
procedure [Kaufinann, 1991]. Regardless of the asymptote
chosen or sample period, none of the ADF tests reject the
null hypothesis that the regression residual contains a
stochastic trend (Table 3). These results indicate that a
logistic function cannot be used to represent a statistically
meaningful relation between CO, and the unknown
carbon sink.

[38] Finally, elevated levels of atmospheric CO, may not
have a long-run effect on net carbon uptake by the
terrestrial biosphere and/or the ocean. Rather, the vegeta-
tion, ocean, and/or soil pools may acclimate to elevated
concentrations of carbon dioxide such that there is only a
short-run effect. To test whether atmospheric CO, has a
short-run effect on unknown carbon sink, we check for
cointegration between the first difference of concentrations
and MISS (model 4). Using the first differences to repre-
sent the short-run effects of atmospheric CO, is based on
the error correction model. As described in the previous
section, the VECM (equation (9)) specifies short-run
effects using first differences of the variables. As indicated
by the results of Table 3, there is no consistent evidence
that the unknown carbon sink cointegrates with the first
differences of atmospheric concentrations of CO, regard-
less of how the atmospheric concentration of CO, is
specified: linear (model 4), logarithmic (model 5), or
logistic (model 6). Together, these results indicate that
there is no statistical evidence to support the hypothesis
that the atmospheric concentration of CO, is related to the
mechanism for the unknown carbon sink at the global scale
in the long or short run.

4.2. Carbon Emissions

[39] Carbon emissions may drive the unknown carbon
sink by changing the rate at which carbon flows from the
atmosphere to the ocean. A simplified response function
indicates that oceanic carbon uptake can be represented by
the atmospheric concentration of CO, and the size of the
pulse (i.e., carbon emissions) to the atmosphere [Joos et al.,
1996]. The effect of emissions on oceanic carbon uptake is
thought to be small. Bruno and Joos [1997] find that
emissions have a relatively minor effect on the rate of
carbon uptake simulated by ocean models. If the effect of
carbon emissions is larger than indicated by models, this
component of ocean uptake would appear as part of the
unknown carbon sink in equation (1).
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Figure 3. (a) The time series for the unknown carbon sink (dotted line, left axis) and the time series for
the anthropogenic emissions of carbon dioxide (solid line, right axis). (b) The time series for the unknown
carbon sink (dotted line, left axis) and the time series for the negative values for the first difference of
anthropogenic CO, emissions (solid line, right axis). Negative values are used to highlight the relation

between variables.

[40] We evaluate the relation between carbon emissions
and the unknown carbon sink using model 7. Visual
inspection of the time series indicates that the unknown
carbon sink is not related to carbon emissions (Figure 3a).
Carbon emissions increase rapidly between 1970 and 1990,
but the absolute rate of uptake by the unknown carbon sink
does not increase significantly during this period. Consistent
with this visual impression, carbon emissions do not coin-
tegrate with the unknown carbon sink regardless of the
sample period used to estimate model 7 (Table 3). This
result indicates that there is no long-run relation between
carbon emissions and the unknown carbon sink or that
model 7 fails to include a statistically important nonstation-
ary explanatory variable.

[41] On the other hand, it appears that there is a short-run
relation between carbon emissions and the unknown carbon
sink. Visual inspection indicates that the first difference of
emissions (AECO,) is similar to carbon uptake by the

unknown carbon sink (Figure 3b). The unknown carbon
sink and negative values (negative values are used to ease
the visual comparison) for the first difference in carbon
emissions increase between 1930 and 1960. Since 1960,
both series are relatively stable.

[42] Consistent with this visual interpretation, the first
difference of carbon emissions (AECO,) cointegrates with
MISS (model 8). The ADF statistic strongly rejects the null
hypothesis that the residual from model 8 has a stochastic
trend for the 1860—1990 and 1900—1990 periods (Table 3).
The results for the 1959—1990 period fail to reject the null
hypothesis that the residual from model 8 contains a
stochastic trend.

[43] The lack of cointegration during the most recent
period probably is related to the failure of the ADF test in
small samples, and not to the changes in the frequency of
emissions data. The 1959-1990 sample has 31 observa-
tions. For such small samples, the ADF test does not
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Table 4. Regression Results”

AECO, Temperature
Period OLS DOLS FIML OLS DOLS FIML
Model 9
1850-1990 —6.75° —11.94 —15.66 —0.30 —-0.30 -0.36
1900-1990 —6.78° —12.02 —15.60 —0.32 —-0.14  —0.07
1959-1990 —8.19° —13.03 —14.20 —0.05 349 -—1.24
Model 10
1850-1990 —6.72° —11.93 —16.02 —0.05 —-0.31 —-0.30
1900-1990 —6.73° —11.90 —15.96 0.01 —-0.28 —0.05
1959-1990 —8.17° —13.31 —14.24 —0.32 —2.83 —1.41
Model 11
1850-1990 —6.70° —12.01 —16.08 0.01 —-0.35 —-0.54
1900-1990 —6.70° —11.86 —15.98 0.12 —-0.19 -0.26
1959-1990 —8.19° —1321 -—14.12 —0.20 —-2.16 —0.01
Model 12
1850-1990 —6.84° —12.05 —15.60 —0.35 —-0.47 -0.70
1900-1990 —6.91° —12.06 —15.54 —0.59 —-0.61 —0.90
1959-1990 —8.27° —13.13 —14.11 —1.23 —-1.14 -2.86
Model 13
1850-1990 —6.79° —12.04 —15.93 —0.14 -0.27 —0.39
1900-1990 —6.83° —11.94 —15.74 —0.15 —0.14 -0.15
1959-1990 —8.30° —13.43 —14.61 —0.48 —0.46 —1.63
Model 14
1850-1990 —6.74° —11.91 —1549 —0.39 -0.51 —-0.70
1900-1990 —6.76° —11.93 —1547 —0.49 —-0.39  —0.47
1959-1990 —7.95° —12.71 —13.13 —1.77 —-291 -7.56
Model 15
1850-1990 —6.77° —12.01 —15.73 —0.21 —0.37 —0.43
1900-1990 —6.80° —12.03 —15.70 —0.28 —-0.36 —0.23
1959-1990 —8.27° —13.00 —14.09 —0.93 —0.01 0.052
Model 16
1850-1990 —6.57° —11.65 —15.10 —094> —0.87 -1.15
1900-1990 —6.55> —11.74 —14.81 —1.12° —0.81 —1.06
1959-1990 —7.65° —13.10 —13.46 —1.93 0.60 —2.30

“Bold values exceed the 0.05 threshold. Values in italics exceed the 0.10
threshold.

"Values that exceed the threshold when evaluated against a standard ¢
distribution, but OLS cannot be evaluated reliably against the ¢ distribution
when the variables contain a stochastic trend. Significance level DOLS
estimates are calculated from standard errors that are calculated using the
procedure of Newey and West [1987] with four lags. Significance levels for
the FIML estimates for the elements of 3 are evaluated by restricting its
value to zero. These restrictions are evaluated with a x° test with one
degree of freedom. The cointegrating vector estimated by the FIML
procedure is normalized by the element of 3 associated with MISS (3,).
This cointegrating relation is “solved” for MISS to derive the signs on the
elements of 3 that can be compared to the OLS and DOLS results.

perform reliably [Stock, 1994]. On the other hand, the
frequency of the emission data increases in the 1959-
1990 period relative to the 1860—1990 and 1900—1990
periods. The reduction in temporal resolution of the emis-
sion data during the earlier periods would tend to obfuscate
stochastic trends. This would cause ADF tests to reject
cointegration for model 8 during earlier periods, rather than
falsely indicating cointegration. Finally, estimates for (3
associated with AECO, for the 1959—1990 period are very
similar to the corresponding values for the 1860—1990 and
1900—1990 periods, for which the lack of cointegration is
clearly rejected (results not shown in Table 4 to save space).
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This similarity implies that MISS probably cointegrates
with AECO, and that the lack of cointegration for the
1959-1990 period is a statistical artifact.

[44] Together, these results indicate that there is a statis-
tically meaningful relation between the unknown carbon
sink and the first difference of carbon emissions. No other
variables are needed to eliminate the stochastic trend in the
unknown carbon sink. This implies that models 1-3 fail to
cointegrate because atmospheric concentrations of CO, are
not related to the unknown carbon sink. Consistent with this
hypothesis, the regression coefficients associated with the
atmospheric concentration of CO, (linear, logarithmic, or
logistic) generally are not statistically significant when
added to model 8 (results not shown to save space).

4.3. Temperature

[45] Changes in temperature can drive the unknown
carbon sink by causing models to misstate oceanic uptake
or by altering net carbon exchange between the terrestrial
biosphere and the atmosphere. We test hypotheses about the
effect of temperature on the unknown carbon sink by
estimating models that specify the first difference in carbon
emissions and various components of sea and land surface
temperature. These models retain the first difference in
carbon emissions to ensure cointegration: without AECO,,
there is no cointegration and the regression results would be
spurious.

[46] Global temperature is separated into spatial (by
hemisphere and land/sea) and temporal (by season) compo-
nents to test competing hypotheses regarding the effect of
temperature on the unknown carbon sink. Sea surface
temperature is specified to represent the effect of ocean
temperature on oceanic uptake. If ocean models do not
simulate the effect of ocean temperature on the rate of
carbon uptake accurately, changes in sea surface tempera-
ture will be associated with the models’ errors, and these
errors will be part of the unknown carbon sink. Under these
conditions, sea surface temperature for the Northern and/or
Southern Hemisphere will correlate with the unknown
carbon sink. This hypothesis is tested by estimating models
9 and 10. For both models, the regression coefficient
associated with sea surface temperature in the Northern or
Southern Hemisphere generally is not statistically different
from zero and varies by estimation technique and sample
period (Table 4). These results indicate that the unknown
carbon sink probably is not associated with the inability of
ocean models to simulate the effect of temperature on
carbon uptake.

[47] Land surface temperature may affect net carbon
exchange between the terrestrial biosphere and the atmo-
sphere by altering rates of net primary production and/or
heterotrophic respiration. The net effect of these two pro-
cesses is represented by including land surface temperature
in the Southern or Northern Hemisphere in models 11 and
12. The regression coefficient associated with land surface
temperature in the Southern Hemisphere is not statistically
significant and varies by estimation technique and sample
period (Table 4). These results indicate that land surface
temperature in the Southern Hemisphere does not have a
measurable affect on net carbon exchange between the
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terrestrial biosphere and the atmosphere. The lack of a
relation is consistent with the distribution of land between
hemispheres. Only a small portion of the total landmass is in
the Southern Hemisphere, which implies that any changes
in NPP and/or heterotrophic respiration would have a
relatively small effect on the global concentration of carbon
dioxide. Furthermore, most of the land in the Southern
Hemisphere is located at low latitudes where surface tem-
perature probably is not a limiting factor and therefore
probably has relatively little effect on NPP or heterotrophic
respiration.

[48] The regression coefficient associated with land sur-
face temperature in the Northern Hemisphere (model 12)
generally is statistically significant and is similar across
estimation techniques and sample periods (Table 4). This
result indicates that surface temperature affects net carbon
exchange between the terrestrial biosphere and the atmo-
sphere in a way that is partially responsible for the
unknown carbon sink. The nature of this effect is indicat-
ed by the sign on the regression coefficient that is
associated with Northern Hemisphere land surface tem-
perature. For all models and periods, the regression
coefficient associated with LNDNHEM is negative. The
negative sign indicates that higher temperatures make
MISS increasingly negative, which implies that the un-
known carbon sink increases the amount of CO, it
removes from the atmosphere and/or slows the rate at
which carbon flows to the atmosphere. Because hetero-
trophic respiration generally increases with temperature,
the negative sign implies that higher temperatures increase
NPP relative to heterotrophic respiration such that
increases in net carbon exchange by the terrestrial bio-
sphere remove carbon from the atmosphere. The effect of
land surface temperature in the Northern Hemisphere on
the unknown carbon sink via the terrestrial biosphere is
consistent with the distribution of land between hemi-
spheres: most of the world’s landmass is located in the
Northern Hemisphere and much of this land is located at
midaltitudes and high altitudes where temperature is likely
to be a limiting factor.

[49] The hypothesis that the statistical relation between
the unknown carbon sink and land surface temperature in
the Northern Hemisphere represents the effect of tempera-
ture on net carbon exchange between the terrestrial bio-
sphere and the atmosphere can be evaluated further by
identifying the seasonal components (winter, spring, sum-
mer, or fall) of Northern Hemisphere (monthly data for land
surface temperature in the Northern Hemisphere are not
available) that are related to the unknown carbon sink.
Results estimated using models 13—15 indicate that the
coefficients associated with winter, spring, or fall tempera-
ture generally are not statistically different from zero
(Table 4). Winter, spring, and/or fall temperatures probably
have little relation to MISS if the unknown carbon sink is
driven in part by temperature-induced increases in NPP by
terrestrial vegetation.

[s50] On the other hand, if the unknown carbon sink is
driven by changes by temperature-induced increases in
NPP relative to heterotrophic respiration, the effect of
temperature should be largest during the summer, when
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NPP is greatest. Consistent with this hypothesis, the
regression coefficient associated with summer temperature
generally is statistically significant for the 1860—1990
and 1900—-1990 sample period, regardless of the specifi-
cation or estimation technique (Table 4). On the other
hand, the temperature effects are not statistically signifi-
cant during the 1959-1990 period. For the two longer
periods, the estimate for the regression coefficient asso-
ciated with summer temperature ranges between —0.81
and —1.15. This range of values indicates that a 1°C
increase in Northern Hemisphere summer surface temper-
ature increases net carbon exchange between the terres-
trial biosphere and the atmosphere by about 1 Pg C
annually in the long run.

4.4. Forest Dynamics and Nitrogen Deposition

[51] Forest dynamics and/or nitrogen deposition may drive
the unknown carbon sink. If scientists systematically under-
state reforestation and/or overstate deforestation, they may
systematically overstate biotic carbon emissions and thereby
create the unknown carbon sink term in equation (1).
Alternatively, the unknown carbon sink may be related to
nitrogen deposition. Burning fossil fuels generates nitrogen
oxides, and their deposition may alleviate limits imposed by
nitrogen, which is the limiting nutrient in many terrestrial
ecosystems. According to this hypothesis, increased rates of
fossil fuel combustion increase NPP, which increases the rate
at which terrestrial vegetation removes carbon from the
atmosphere.

[52] We evaluate these hypotheses by disaggregating the
AECO, term from model 8 and testing whether the first
difference in emissions from fossil fuels (AEFFCO,) and
the terrestrial biota (AEBIOCO,) contribute equally to the
unknown carbon sink. This test assumes that the unknown
sink does not discriminate between carbon emitted by fossil
fuel and biotic sources. Based on this assumption, the sink
will take up the carbon emitted by fossil fuels and changes
in land use in proportion to the first differences of their
respective emissions. On the other hand, nitrogen deposi-
tion is associated with carbon emissions from fossil fuels
while measurement errors for deforestation and/or forest
regrowth are associated with biotic carbon emissions. If
these mechanisms are an important component of the
unknown carbon sink, these emission-specific mechanisms
will disrupt the proportional relation between the unknown
carbon sink and the first difference of fossil fuel and biotic
carbon emissions.

[53] We can differentiate between the effects of the first
difference of biotic and fossil fuel carbon emissions on the
unknown carbon sink because these two time series are
different (Figure 4). The first difference in carbon emissions
from fossil fuels generally increases while there is no
overall movement in the first difference of carbon emissions
from biotic sources. These differences allow statistical
techniques to separate the effects of changes in fossil fuel
and biotic carbon emissions if their effects on the unknown
carbon sink are different.

[54] We test the null hypothesis that the first difference in
carbon emissions from fossil fuels and the terrestrial biota
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Figure 4. Time series for the first difference of carbon emissions from fossil fuels (solid line) and the
first difference of carbon emissions from biotic sources (dotted line).

contribute equally to the unknown carbon sink by using
DOLS to estimate the follow equation (model 17):

MISS = B, AEFFCO, + 3,AEBIOCO, + 3;LNDHEM + ;.
(10)

The null hypothesis 3; = 3, is evaluated with a #-test
(standard errors estimated using the method of Newey and
West [1987]) that is described by Stock and Watson [2002].
We cannot reject the null hypothesis 3; = 3, for the 1866—
1990 (¢t = —0.20, p > 0.84), 1900—1990 (r = —0.35, p >
0.73), or 1959-1990 (¢ = 0.48, p > 0.64) periods. The
failure to reject the restriction 3; = 3, indicates that a unit of
carbon emitted from biotic and fossil fuel sources
contributes equally to the unknown carbon sink.

[55] Equal contributions from the first difference of fossil
fuel and biotic emissions imply that anthropogenic mobili-
zation of nitrogen is not largely responsible for the un-
known carbon sink. If nitrogen deposition were largely
responsible for the unknown carbon sink, the sink would be
correlated with changes in fossil fuel carbon emissions,
which have large amounts of nitrogen oxides as by-prod-
ucts, and would be uncorrelated with changes in biotic
carbon emissions, which generate relatively small amounts
of nitrogen oxides. Under these conditions, we would reject
81 = B2

[s6] The inability to reject 3; = 3, also indicates that the
unknown carbon sink is not generated largely by measure-
ment errors for biotic carbon emissions. If measurement
errors in deforestation and/or forest regrowth were largely
responsible for the unknown carbon sink, these measure-
ment errors would be present in both the observed values
for biotic carbon emissions and the unknown carbon sink,
which would create a strong correlation between these
variables. On the other hand, there would be no correlation
between the unknown carbon sink and the first difference in
fossil fuel carbon emissions because it is highly unlikely
that fossil fuel carbon emissions contain the measurement
error for biotic carbon emissions.

[57] It is also unlikely that nitrogen deposition and mea-
surement errors for biotic carbon emissions are jointly
responsible for the unknown carbon sink. If both nitrogen
deposition and measurement errors for biotic carbon emis-
sions were responsible, we would fail to reject 3; =3, “only
if”” nitrogen deposition and the measurement error for biotic
carbon emissions shared the same stochastic trend. This is
highly unlikely given the difference between these two
processes.

[s8] The failure to reject 3; = (3, also indicates that there is
a physical process (as opposed to measurement error) that
prevents scientists from balancing carbon flows to and from
the atmosphere. The failure to reject 3; = (3, implies that 3,
is nonzero. A nonzero value for (3; indicates that the
unknown carbon sink probably is not “created” entirely
by measurement errors for deforestation and/or forest re-
growth. If the unknown carbon sink is created entirely by
measurement error for biotic carbon emissions, it is highly
unlikely that there would be any correlation between the
first difference in fossil fuel carbon emissions and the
measurement error for biotic carbon emissions, which
would be equivalent to the unknown carbon sink. The
failure to reject 3; = (3, also indicates that cointegration
between MISS and AECO, in model (8) is not caused solely
by measurement error: 3; = 3, only if the measured value
for the unknown carbon sink and the first difference of
carbon emissions from fossil fuels and terrestrial biota
contain the same measurement error. This is highly unlikely
because the estimates for carbon emissions from fossil fuels
and the terrestrial biota are compiled from very different
sources of data.

5. Discussion

[s9] Our statistical analysis of the observational record
for the last 130 years provides little evidence to support
the hypothesis that increases in the atmospheric concen-
tration of carbon dioxide is even partially responsible for
the inability to balance the flows of carbon to and from the
atmosphere at the global scale. The lack of cointegration in
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models 1-3 is consistent with an analysis by Bruno and
Joos [1997]. They find that the temporal trend in their
estimate for a CO, fertilization effect is substantially
different from the trend in their estimate for the unknown
carbon sink. Based on this difference, they conclude that
the unknown carbon sink cannot be explained by CO,
fertilization.

[60] The conclusion that CO, fertilization is relatively
small is also consistent with other analyses of observa-
tional data at large scales. A statistical analysis of satellite
measures for surface greenness indicates that the Normal-
ized Difference Vegetation Index (NDVI) of forested areas
in North America and Eurasia increased between 1981
and 1999 [Zhou et al., 2001] and that this increase in
surface greenness is associated with an increase in bio-
mass that is consistent with estimates for the size of the
unknown carbon sink [Myneni et al., 2001]. There is no
evidence, however, that the increase in satellite measures
of surface greenness is associated with elevated levels of
CO,. Increases in surface greenness are correlated with
atmospheric concentrations of CO, [4hlbeck, 2002]. But
more sophisticated analysis indicates that this correlation
is spurious. Adding a time trend to the regression equation
for the relation between NDVI and atmospheric CO,
eliminates the statistical significance of atmospheric CO,
[Kaufmann et al., 2002]. Together, these results cast doubt
on results generated by process-based vegetation models
and small-scale field experiments which imply a large
CO, fertilization effect.

[61] This lack of support for a significant CO, effect is
surprising because its effects are believed to be significant
at the global scale. A comparison of four process-based
terrestrial biosphere models indicates that elevated levels of
carbon dioxide during the 1980s increased carbon uptake
by terrestrial vegetation between 0.9 and 3.1 Pg C yr '
[McGuire et al., 2001]. These rates are about the same size
as values for the unknown carbon sink during the 1980s.
Because their sizes are similar, statistical techniques should
be able to detect a relation between the time series for the
atmospheric concentration of CO, and the unknown carbon
sink if elevated levels of atmospheric CO, increase net
carbon exchange between the terrestrial biosphere and the
atmosphere. That is, the effect of elevated atmospheric
CO, concentrations on NPP is not so small as to be
undetectable.

[62] The statistical results reported here also contradict
another result generated by the four process-based terres-
trial biosphere models: that climate has a small absolute
effect on net carbon exchange between the terrestrial
biosphere and the atmosphere. The importance of the
spatial (Northern Hemisphere land) and temporal (sum-
mer) components of surface temperature suggests that
temperature-induced changes in net carbon exchange be-
tween the terrestrial biosphere and the atmosphere are a
component of the unknown carbon sink. This suggestion
is consistent with analysis of satellite imagery. Satellite
measures of NDVI indicate an elongation in the growing
season and an increase in the peak values of NDVI in
midlatitudes and high latitudes in the Northern Hemi-
sphere [Myneni et al., 1997]. These increases are associ-
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ated with changes in temperature at the continental scale
[Zhou et al., 2001].

[63] The results of the statistical models may help
clarify uncertainty regarding the effect of higher temper-
ature on net carbon exchange between the terrestrial
biosphere and the atmosphere. Higher temperatures and
longer growing seasons may increase NPP, which would
increase the rate at which carbon flows from the atmo-
sphere to the terrestrial biosphere. Conversely, higher
temperatures may increase heterotrophic respiration, which
would increase the rate at which carbon flows from the
terrestrial biosphere to the atmosphere. The size of the
temperature effect (i.e., the O;¢) associated with these two
flows is uncertain. Consistent with this uncertainty, the
effect of temperature on net carbon exchange between the
terrestrial biosphere and the atmosphere varies among the
four process-based terrestrial biosphere models analyzed
by McGuire et al. [2001]. The Terrestrial Ecosystems
Model (TEM) indicates that climate variations reduced
carbon stored in the terrestrial vegetation by an average of
0.2 Pg C yr ' during the 1980s. Conversely, the high
resolution biosphere model (HRBM), the integrated bio-
sphere simulator (IBIS), and the Lund-Potsdam-Jena dy-
namic global vegetation model (LPJ) indicate that
variations in climate increased carbon storages by an
average of 0.0—0.9 Pg. C yr~' during the 1980s.

[64] The negative sign that is associated with Northern
Hemisphere land temperature (model 12) and Northern
Hemisphere summer temperature (model 16) indicates that
higher temperatures increase NPP relative to heterotrophic
respiration. Consistent with this balance, changes in tem-
perature and precipitation are the greatest single explana-
tory variables for interannual variations in seasonal values
of NDVI [Zhou et al., 2003]. Temperature seems to have a
smaller effect on soil respiration. Giardina and Ryan
[2000] find that soil decomposition rates are relatively
unaffected by temperature. Similarly, Luo et al. [2001]
observed that soils in temperate grasslands acclimate to
higher temperatures. As such, our results are inconsistent
with claims that the Q)9 of heterotrophic respiration is
greater than the Q;g of NPP [Valentini et al., 2000;
Vukicevic et al., 2001].

[65s] The results of model § imply that the ocean model
used by Houghton et al. [1998] to calculate the unknown
carbon sink may not simulate accurately the short-run
dynamics of the relation between carbon emissions and
oceanic uptake. The negative regression coefficient associ-
ated with AECO, (Table 4) indicates that an increase in
carbon emissions generates a short-run increase in oceanic
uptake. To assess the size of this effect, we use the VECM
estimated for the 1860—1990 period (model 8) to calculate
the change in ocean carbon uptake that is implied by
changes in carbon emissions. The results indicate that
increases in carbon emissions increased oceanic uptake by
an average of 1.8 Pg C yr~' in the 1980s. It is difficult to
assess this affect relative to the uncertainty in different
ocean models. For example, the scenario used by Prentice
et al. [2001] to show the rate of ocean uptake by several
models [Figure 3.8 (a) of Prentice et al., 2001] represents
the effect of changes in atmospheric concentrations only:
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the effect of changes in emissions are ignored. Our results
suggest that it may be worthwhile to simulate the models
using scenarios that represent interannual variability in
carbon emissions.

6. Conclusion

[66] Statistical analysis of global data for the atmospher-
ic concentration of CO,, anthropogenic emissions, and
surface temperature allows us to test competing explan-
ations for the inability to balance the atmospheric storage
of carbon dioxide in ways that field experiments and
simulation models cannot. Although these approaches
suggest physiological/ecological mechanisms by which
increased concentrations of CO, and anthropogenic mobi-
lization of nitrogen can increase the rate at which carbon
flows from the atmosphere, there is little statistical evi-
dence to indicate that these responses have had a globally
measurable effect over the last 130 years. Nor is there
much evidence that scientists have systematically erred in
estimating areas where terrestrial ecosystems are cut and/
or regrow. Instead, the statistical results indicate that
annual increases in carbon emissions and higher temper-
ature may increase the rate at which carbon is removed
from the atmosphere by the ocean and/or the terrestrial
biosphere.

[67] Inconsistencies between model simulations and this
statistical analysis regarding the effect of elevated levels
of carbon dioxide and temperature may tempt some to
dismiss the statistical analysis of the historical record as
flawed due to uncertainties in the data. We respond that
uncertainties in the data probably are not responsible for
the results described above. The emphasis on cointegra-
tion allows the statistical techniques to avoid spurious
regression results. Furthermore, errors in measurement are
far more likely to hide statistically meaningful relations
than to create false relations. To create false relations, the
same errors must be present in the time series for the
unknown carbon sink, emissions of carbon dioxide, and
temperature (but only in the Northern Hemisphere and
during the summer). A common source of error seems
highly unlikely given the differences in the methodologies
that are used to compile these time series. This suggests
that the process-based models should be validated against
the observational record using statistically rigorous tech-
niques. Preliminary evidence indicates that these models
are biased and fail to include the effects of temperature
accurately (R. K. Kaufmann, A statistical validation of
four process-based models for the terrestrial biosphere,
submitted to Global Biogeochemical Cycles, 2002.).
Based on these preliminary results, it is too soon to
dismiss either the results generated by simulation models
or statistical analyses of the observational record.
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