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A method is presented for computing maximum likelihood, or Gaussian, esti- 
mators of the structural parameters in a continuous time system of higher- 
order stochastic differential equations. It is argued that it is computationally 
efficient in the standard case of exact observations made at equally spaced inter- 
vals. Furthermore it can be applied in situations where the observations are at 
unequally spaced intervals, some observations are missing and/or the endo- 
genous variables are subject to measurement error. The method is based on 
a state space representation and the use of the Kalman-Bucy filter. It is shown 
how the Kalman-Bucy filter can be modified to deal with flows as well as stocks. 

1. INTRODUCTION 

A good deal of attention has been paid to the estimation of continuous time 
models in econometrics; see, for example, Wymer [14], Robinson [12] and 
the various papers in the book edited by Bergstrom [1]. In a more recent con- 
tribution, Bergstrom [2] presents a method for carrying out maximum likeli- 
hood (ML), or Gaussian, estimation of a closed higher-order system in the 
time domain. This article presents an alternative approach to ML estimation 
of such models which is more general and more attractive computationally. 

The model contains N variables contained in a vector y(t). These variables 
are assumed to be generated by a pth-order stochastic differential equation of 
the form 

DPy(t) = A1DDP y(t) + + AP 1Dy(t) + Apy(t) + ;(t), (1) 
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where A1,..., Ap are N x N matrices, D is the mean square differential 
operator, and C(t) is a multivariate continuous white noise process with mean 
zero and covariance matrix X, i.e., if we let 

4*(r, s) = fr C(t) dt 

then 

E[C*(r, s)] = 0 

E[C*(t1, t2)C*(t1, t2)'] = (t20-l 

and 

E[C*(t1, t9*(t3, t4)'] = 0 for t1 < t2 < t3 < t4. 

The elements in the matrices Al,_.. , An and E all depend on an n x 1 vector 
of unknown parameters Q. 

Further discussion concerning the precise interpretation of (1) can be found 
in Bergstrom [1, pp. 188-120] and Wymer [14]. 

Suppose that the variables in y(t) are observed at T equally spaced points 
in time. If the process is stationary, it can be shown that these discrete ob- 
servations follow a multivariate ARMA (p, p - 1) process if the variables are 
all stocks and a multivariate ARMA (p, p) process if some are flows. However, 
in both cases, the ARMA parameters are complicated functions of the original 
parameters in A1, . . ., AP and this makes it difficult to impose the a priori 
restrictions which economic theory places on these matrices. Bergstrom [2] 
suggests that a better way to parameterize the discrete model is in terms of 
the AR coefficient matrices and the autocovariance matrices of the MA part 
of the model. He then proposes computing an estimator of / by minimizing 

L(+) = log|V| +y'V-1 y (2) 

where V is an NT x NT covariance matrix which depends on yf, and y is the 
NT x 1 vector of observations. If the integral of C(t) is a multivariate normal 
process, the resulting estimators are maximum likelihood. If this assumption 
is not made, the estimators are referred to as Gaussian and, in fact, it is under 
these weaker conditions that Bergstrom [2, Section 7] derives their properties. 

The V matrix depends on t, and since L must be minimized numerically, 
the computational burden involved in constructing and inverting V a large 
number of times may be quite heavy; see Bergstrom [2, p. 134]. This difficulty 
can be avoided by approaching time domain estimation in a completely 
different way. The pth-order system in (1) can be reduced to a first-order 
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system by defining 

- y(t) J (3) 

Dp I y(t) A AI -.. Al 

and writing 

d [x*(t)] = Aoc*(t) + RS(t). (4) 

Estimating a genuine first-order model is, in principle, straightforward, but 
simply writing (1) in the form (3) does not provide an immediate solution 
to the problem at hand since, as Bergstrom [2, p. 120] points out, the deriva- 
tives in oc*(t) are not observable. However, if (4) is recognized as the transition 
equation in a continuous time state space model, as in Kalman and Bucy [9], 
a solution is available. For a stock variable, the state space formulation is 
completed by a measurement equation 

y(t)= Zx*(t), t = 1,... , T, (5) 

where Z is the N x Np matrix 

Z = [IN 0 .01 (6) 

Application of the Kalman-Bucy filter then offers the possibility of construct- 
ing the likelihood function via the prediction error decomposition. This ap- 
proach has been adopted by Jones [8, 9]. However, Jones does not consider 
the problem of estimating unknown initial conditions in a nonstationary 
model, and his analysis does not cover flow variables. Both of these problems 
are of considerable importance in econometrics. 

The attractions of a state space approach in the present context can be 
summarized as follows: 

1. As already noted, the repeated construction and inversion of the NT x NT 
matrix, V is avoided. 

2. The method can be extended very easily to handle situations where the data are 
measured at unequally spaced intervals. 

3. It is not necessary to have observations on all the variables at any particular 
measurement point, i.e., there may be missing observations. 

4. The model can be extended to allow for measurement error. 
5. The estimation of nonstationary models and models with exogenous variables, 

(i.e., open systms) can be carried out by an appropriate treatment of the initial 
conditions. 
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In order to allow for the possibility of unequally spaced observations, the 
points at which observations are made will be indexed by T. Thus the Tth set 
of observations will be regarded as arising at time tT z = 1, . . ., T, while the 
time interval between the Tth and (T - l)th observations will be denoted by 

r= trt- 1 Missing observations can be handled by defining the Z matrix 
in the measurement equation (6) in such a way that the rows corresponding 
to missing observations are deleted. Note that with a flow variable, an alter- 
native situation can arise in which the value of a missing observation is in- 
cluded in a future observation. This is known as temporal aggregation in a 
discrete model. While this problem can be handled in a continuous time 
model, to do so would complicate the exposition and so it will not be 
covered explicitly. 

Measurement error has not usually been incorporated into continuous 
time models in econometrics. However, it can be allowed for by adding a dis- 
turbance term to the measurement equation. Whether it is worth introducing 
this additional source of error into the econometric model in practice is de- 
batable, but it is certainly worth including it in the formulae presented below 
for the sake of generality. 

2. ESTIMATION FROM A SAMPLE OF OBSERVATIONS 
AT DISCRETE POINTS IN TIME 

Suppose that all the variables in the model are stocks, where a stock is used 
in the general sense to denote any variable which can be measured at a parti- 
cular point in time. Examples include the capital stock, the rate of interest 
and the temperature in Rio de Janeiro. In order to allow for the possibility 
of measurement error, the vector of observations at time tr will be denoted 
by y.* This is related to the variables in the stochastic differential equation 
(1) by the measurement equation 

Yr = Zr*TOMO + Xrv t = 11 . .. X T (7) 

where a*(t) is as defined in (3) and the N x 1 vector 4, is a multivariate white 
noise disturbance term with mean zero and covariance matrix H-r which is 
distributed independently of ;(t). If some of the observations are missing, the 
dimensions of yt, Zr, X, and H, must be reduced accordingly. In fact the subs- 
cripts on Z and H have only been attached in order to make this possibility 
explicit. If there are no missing observations both these matrices are time 
invariant with the former defined by (6). 

If A matrix in (3) has distinct characteristic roots it can be diagonalized, 
i.e., 

A = GAG-1, (8) 
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where A is a diagonal matrix containing the roots, 4i, i = 1, .. ., Np, of A, and 
G is an Np x Np matrix, the columns of which are the right characteristic 
vectors of A. Making the linear transformation 

a(t) = Gloc*(t) (9) 

enables (4) to be written in the more manageable form 

d [a(t)] = Ac(t) + 11(t), (10) 

where q(t) is a multivariate continuous white noise process, defined by q(t) = 

G`- 'R(t), which has mean zero and covariance matrix 

Q = G-'RYR'(G-)' (11) 

Writing a "bar" over a matrix indicates the matrix of complex conjugates. 
Suppose that at time t,_ 1 the optimal estimator, a, 1, of oc(t- 1) is available, 

together with P, -1, the covariance matrix of its estimation error. An optimal 
estimator in this context means a minimum mean square estimator (MMSE); 
see Duncan and Horn [4] or Harvey [7, Ch. 4]. It follows from (4) that 

a= x(t,) = e"a, + 
,f eA( -S)1(tr 1 + s)ds, (12) 

where 6 = 6 
T but the subscript has been dropped for notational convenience. 

The optimal estimator of aT at time t, is, therefore, 

i/_ = e'ba_ 1 = T 
ar 

l, (13a) 

where TT corresponds to the transition matrix in the Kalman filter for a dis- 
crete time state space model. The covariance matrix of o( - a,/,1 is 

PT/r1= TPrI Tr + Qr, (13b) 

where the ijth element of Qt is 

(Q)ij = qijW(Ai + )j; 6), (13c) 

the function W(x; 6) being defined as 

(exp (6x) - I 
O 

W(x;)= x (14) 

6 x =0 
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and qij being the ijth element of the matrix Q in (11). Note that both Tl and 
Qr depend on the interval between observations, 36. 

The MMSE of yr at time t,1 is 

r/, - I = Z.Ga/,- 1. (15) 

The corresponding vector of one-step ahead prediction errors, vr = Yr- 
Y ,/r- 1 has mean zero and covariance matrix 

Fr = Zr GPrlr G 'Zr + H. (16) 

Finally the transformed state vector is updated by 

ar =ar1_1 + P/r 1G'Z'F -v' (17a) 

and 

=P -P G'Z'F -'ZGP (17b) 

The equations in (13) and (17) are, respectively, the prediction and updating 
equations in the Kalman-Bucy filter for the continuous time state space 
model, (4) and (7). Note that PT/T 1 and P T are Hermitian. 

Evaluation of the Likelihood Function for Stationary Models 

The process generated by (1) is stationary if the roots of A have negative 
real parts. In this case starting values for the Kalman-Bucy filter are given 
by the unconditional mean and covariance matrix of oc*(t). The unconditional 
mean is a vector of zeros and so the MMSE of a, before Yi is observed as 

alo= 0. Since 

2(t) = {_ eA(t - s),1(s) ds 

the ijth element of the covariance matrix of a, - allo is 

(P1)ijj= -qjj/(Xj + ;j) (18) 

The ML estimators are obtained by minimizing 

T T 

L() log IF,| + E v'F- vT, 19 
t= 1 T= 1 

where the quantities vT and FT are obtained directly from the Kalman-Bucy 
filter. In the special case when the observations are all available, are equally 
spaced and are measured without error, (19) is identical to (2). 
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Evaluation of the Likelihood Function 
with Fixed Initial Conditions 

If we do not wish to evaluate the initial conditions using (18) or if we are 
unable to use (18) because the model is nonstationary, approximate ML 
estimators can be obtained by starting the Kalman-Bucy filter with a2,1 = 

G-a*, where a*= (Yl 0, .. , 0')' and letting P2/1 = 0. This effectively 2 2/1'= Y whr a1 
assumes that the derivatives in cx*(tl) are fixed and equal to zero. An alternative 
approach would be to treat these unknown derivatives as additional param- 
eters to be estimated nonlinearly along with those in V. This approach can 
also be used when some of the observations in y(tl) are missing, and if all the 
unobserved elements in y(tl) are fixed it yields the exact ML estimator of f. 

Neither of the preceding methods is entirely satisfactory. The first because 
it introduces an approximation into the likelihood function and the second 
because it increases the uncertainty associated with the numerical optimiza- 
tion procedure. However, the second procedure can be modified by observing 
that the unknown parameters in oc*(tj) are linear in the observations, and 
hence can be concentrated out of the likelihood function. This makes it 
considerably more attractive. 

An algorithm enabling unknown elements in an initial state vector to be 
concentrated out of the likelihood function was first given by Rosenberg 
[13]. This algorithm can be modified for use in the present problem as 
follows. Let there be M < Np unknown elements in i*(tj) and let these be 
denoted by an M x 1 vector 0. The Kalman-Bucy filter is initialized at time 
t1 with the unknown elements in x*(t1) set equal to zero. Premultiplying by 
G1 yields the appropriate initial state vector estimator, a,, while P1 = 0. 
As the Kalman-Bucy filter proceeds, a set of Np x M matrices Jr, r = 1, .... 
T - 1, are produced by the following auxiliary recursions: 

J.1 = Tr+ - KTZZG)JV1, z = 2,..., T- 1, (20) 

where Tr is defined in (13a), K, is the Kalman gain, which in this case is 
given by K, = PZI_1GZrF[', and J1 consists of the M columns of T2G' 
corresponding to unknown elements in i*(t1). (When all the elements in y(t1) 
are observed, this means the last N(p - 1) columns.) When all the observations 
have been processed, the ML estimators of 0, conditional on /, is 

yT _1T 

= L~2 Jr- 1Z'F ZZrJr, 1 EJr-1ZjF[ 'ia (21) 
_r =2 T = 2 

where V2,... , VT, are the vectors of one-step ahead prediction errors produced 
by the Kalman-Bucy filter. Therefore, the elements of 0 can be concentrated 
out of the likelihood function, leaving the following function to be minimized 
with respect to V: 

T T T 

L=Elog IFt, + ET- 2 E J_r- 1VT. (22) 
r =2 T=2 r-2 
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Further details on the derivation of this algorithm are found in Appendix A. 

Miscellaneous Comments 

1. When the observations are equally spaced and none are missing, d, can be set 
equal to unity for all T, and the Kalman-Bucy filter will converge to a steady 
state under fairly mild conditions; cf. Chan et al. [3]. The P, matrix is time 
invariant in the steady state, and so once close to a steady state, a considerable 
reduction in computing time can be achieved by recognizing this fact and drop- 
ping (13b) and (17b); a similar device was used in [5] for computing exact ML 
estimators in univariate ARMA models. 

2. Once the parameters /, have been estimated, (13a) can be used to make predic- 
tion for any lead time. Mean square errors, conditional on /i, can be computed 
from (13b). 

3. Stationarity can be imposed on the model by a suitable parameterization; cf. 
Jones [8, pp. 656-7]. 

4. A nonzero mean can be introduced into the model by adding an N x 1 vector 
,B to the right-hand side of (1). The mean is then ,u = -Ap- 1/3, and this can be 
estimated efficiently from the sample mean of the observations. The parameters 
in t are then estimated as before with the observations in deviation from the 
mean form. If the actual ML estimator of p (or /B) is required, it can be obtained 
by using an appropriate modification of Rosenberg's algorithm to concentrate 
the likelihood function. 

5. If there is no measurement error on y, all the formulae remain valid with 
H, = 0. 

3. ESTIMATION FROM A SAMPLE OF 
INTEGRAL OBSERVATIONS 

Flow variables can only be measured with respect to a particular interval 
of time. Examples include national income, sales and rainfall. If all the vari- 
ables in y(t) are flows and are measured without error at time t;, the vector 
of observations is 

YT = Ay (t-1 + s) ds. (23) 

More generally, the measurement equation appropriate to the transformed 
first-order system, (4), is 

Y' = gZrGo#- 1 + S) ds + X T = 1 . . . , T, (24) 

where dT is a multivariate white noise disturbance term with mean zero and 
covariance matrix H, and the subscripts on Z, and H, indicate the possi- 
bility of missing observations. As before, 5 can vary with T, but the subscript 
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has been omitted for notational convenience. Note that it is possible to con- 
ceive of a variation of (24) in which measurement error accumulates con- 
tinuously, that is, 

Y= {Y(tr-1 + s) + 4(t,1 + s)} ds. 

This can be written in the form (24), but with d, having a covariance matrix 
6THT. In what follows it will be assumed that the measurement error is as 
originally given in (24), but clearly the second model can be handled almost 
as easily. Of course if 6, is constant there is effectively no difference between 
the two formulations. 

In view of (24) it is necessary to consider predictions of the state vector 
at all points between t, -and t,. If a(t + s/t) denotes the MMSE of c(t + s) 
at time t, then 

a(t,_1 + s/t,-.) = eAs a, - (25) 

(Note that in the special case when s = 6, this can be written as a,l, 1) Given 
ar-l, the MMSE of y, is 

Yr/T-1 = j T Z,Ga(tT1 + s/tT 1) ds 

= ZGLJ' eAs ds] a_ 

= ZTGWTa-1, (26) 

where W, is a diagonal matrix with ith diagonal element W(XRi;6). The co- 
variance matrix of the prediction error, VT = Yr - T 1s 

Fr = Z,GpfGPff G'Zr + Hr, (27) 

The difference between (27) and (16) is that P,,r1 is replaced by a new matrix 
Pff-1 such that 

Pr,r-= W,P,1Wr + Qf (28) 

where the (i, j) element of Qrf is given by 

qiAj_+ 

i[(;w;bw(wi;) {Wj- 6} _ {W(2@j;6) - 61 
____ {W(Xi;;6W)76}1 

(Qfrf)i = i j # O 

I sin [ (1{6) i-i ]' i + j = 0. (29) 
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If, say, ki = 0, then {W(Ai; () - (}/6i is replaced by 52/2. The updating equa- 
tions are 

ar = + P{1/1G'ZG F -vr (30a) 

and 

Pt = Pr _ -l'Z'F - 1Z GPf , (30b) 

where a,l, and PT/1 are defined as in (13), but F, is defined by (27) and 
the matrix P{f1 - is 

pf,_1 =eAPr1Vp + Qf (31a) 

where 

- [ W(Aj; 6) 
- 

( i; 6)], Ai + ~j =A 

xf) . + Ai. 

k 1tJj = i(W(/ (5 - Ai i + Ai = 0. (31b) 

The derivation of (27) and (29) is given in the next two subsections. These 
may be omitted without any loss in continuity. 

The modified Kalman-Bucy filter thus consists of the prediction equations 
(13), together with the updating equations (30). When the model is stationary, 
starting values can be computed from (18), exactly as before. The likelihood 
function is as in (19), except that F, is defined as in (27). 

Computing the likelihood function with fixed initial conditions is best 
carried out by treating all the elements in a*(to) as fixed. Since no observations 
are available at time to, 0 = x*(to) and M = Np. Rosenberg's algorithm 
operates essentially as before, but with F, defined as in (27), P,/,- , replaced 
by Prf,_1, Z,G replaced by ZZGKZ, and z running from 1 to T - 1. The 
starting value for (20) is the Np x Np matrix J0 = T1 G- '. 

Derivation of the Covariance Matrix of 
the Prediction Error Vector 

Since 

x(t 1 + s) = eA,r,_I + e eA(s u) 1 + u) du (32) 
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it follows from (24) and (26) that the prediction error vector is 

VT =y - YT/T-1 

= ZTG[WT(a - ar 1) + fO j' eA(s8)-u(tti + u) duds] + r. (33) 

The matrix we need to evaluate is Pff1 in (27), which is the expectation 
of the matrix in square brackets in (33) multiplied by its complex conjugate 
transpose. It is apparent from (33) that Pff{_- is made up of the sum of 
two matrices, the first of which is simply WIP, 1 W. When Ai + )j = 0, the 
ijth element of the second matrix Qff, is 

(Qf)ij = qij eis+ Ajr TeO-e(r i + e+j)u dudrds 

qij fa Air-+Ajs eO(s-r) drds, (34) 
Ai + Rj 

where 

q(s - r) ={-R(s-r), 
s > r 

- 
js- r), s < r 

Now 

f T eAr ?jsdrds - W(A,; 6)W(Xj; 6) (35) 

while 

TO fO e4(s-r) drds 
- TO f eAi(s-r) drds + f e- i(s-r) dsdr 

eL 1 e ] ' (36) 

Substituting (35) and (36) into (34) gives (29). In the case Ai + j = 0, expression 
(34) becomes 

Ta Ta eAis + Ajr* min (r, s) drds 

w 2h a be rewritte2An as in (2 

which can be rewritten as in (29). 
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Derivation of the Updating Equations 

Consider the state vector defined at a finite number of equally spaced points 
between t 1 and tr, i.e., a(t, 1 + {Ii/k}), i = 1,... , k. The observation yT is 

YT - ZTGE E ?(tr1 + {ii/k}) x /k] + 4 (38) 

= Z GS(k)c4k) + r 

where ~xk) is an Npk x 1 vector containing the stacked state vectors at 
tr1 + i3/k, i = 1,... , k, and S(k) is an Np x Npk summation matrix 

S(k) = (INpINp.... INp) X l/k (39) 

Let the MMSE of a(tr- 1 + {i6/k}) be a(tT- 1 + {ji/k}/tj. 1), for i = 1,.. , k, 
and let ark) 1 be the vector corresponding to a(k). The Kalman filter updating 
equations combine the information in aTk)1 with that in Yr to produce the 
MMSE of a(k). Following Duncan and Horn [4] or Harvey [7, p. 108-9], 
we may write 

[at_ ij = L I (k) + Lar j (40) 

from which the updating equations are 

aTk) - aT-1 + PT/T 1k T (41) 

and 

P(kp(k)P(k)-1 - p(k) S(k),G Z{F (k)} -Z,GS(k)P(k-1' (42) 

where 

F(k) = ZGS( k)Pp(kT1S(k) GZT ? HT (43) 

and 

p =k E[6(k) c4k) }{(k) --Ik)}i T/T- 1 -E[I r - 
aT- LX 

} 

- 
aT- 1}] 

If we now let k - oo, it can be seen that S(k)P/,r 1S(k)' PTff'), where 
p 1_ is defined in (28). Hence FTk) -) FT in (27). Turning to (41), it will be 
observed that we only need consider the last Np rows since we are only 
interested in obtaining an updated estimator for the state vector at time tr. 
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Thus, on letting k -soo, the updating equations for ax become (30a) and 
(30b) with 

Pf = { E[{2(t + 
(3)-a(tT1 

+ ? /t- 1)}{ 
(tr-I 

+ S) 

-a(t.1 + S/t- 1)}]ds. (44) 

Substituting from (25) and (32) gives 

pfl l= jO e eAs ds + j eAO - u)QeA(s - u) duds, (45) 

and evaluating the integrals gives (31). 

4. MIXTURES OF STOCKS AND FLOWS 

In many models, y(t) will consist of both stocks and flows. In order to develop 
the appropriate formulas for this case it will be assumed that there are Ns 
stock variables and Nf flow variables and that the N = NS + Nf eleme:nts 
of y(t) have been ordered so that the stocks come first. 

Using obvious notation the measurement equations can be written as 

ys= ZsGaxr + Qs (46a) 

r= ZfG f (tr - 1 + s) ds + rf (46b) 

where Zs and Zf are Ns x Np and Nf x Np matrices, respectively. The co- 
variance matrix of (4s,Qff)f will be denoted by Hr. The elements of YTIT- 

1 are 
obtained by replacing the Z,, matrices in (15) and (26) by Z' and Zf, respec- 
tively. The covariance matrix of the prediction error, vr, is 

FZSGPrxr_ G'Zrt' ZSrGPfr G'Zr' it I t/t-1 t 
Si 

F= ZsGPfi-,/- G ,Zr I Zs G Ptf,r - G'Zf'r r(7 F - ? H-1 H, (47) 
LZ{fGPf1~ 'GfZs' Zf{GPff -1 G'Z 

where P{fr and Pff1 are as defined by (31) and (28) respectively. This 
expression for F, can be derived by using the approach set out in Section 3. 
Similarly, it can be shown that the updating equations are 

ar =a/ 1 + Psf. -a1 Fl'vr (48a) 

and 
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where 

pr/rsf = [Prlr G Zf r I Pf/ IC8c 

The Kalman-Bucy filter therefore consists of the predicton equations, (13), 
together with the updating equations (48). The ML estimators are again 
obtained by minimizing a function of the form (19). Rosenberg's algorithm 
can be applied by fixing y(t) at to, as in the pure flow case. Since -/j_ 1 can 
be written as 

=rT L~Ka.t1, (49) [ZTGK T 

the matrix Z G in (20) to (22) is replaced by the matrix in square brackets in 
(49). FT is defined as in (47), while the Kalman gain is 

K=psf_ F 

5. EXOGENOUS VARIABLES 

In an open system, the model in (1) becomes 

p 
DPy(t) = E AjDP -y(t) + Bx(t) + 4(t), 

j=1 

where x(t) is a K x 1 vector of exogenous variables and B is an N x K 
matrix of parameters. The system can again be written in first-order form 
by defining an Np x K matrix B* = [0 ... 0 B']' and adding B*x(t) to 
the right-hand side of (4). The transition equation governing the change in 
the transformed state vector from t - l to tr is 

aT = -1 + CT + J0 eA(s),1(tr-1 + s) ds, 

where 

Ct = i eA(b -S)G-1B*x(t, + s)ds; 

cf. (12). If c, can be evaluated, the procedures set out in the previous sections 
will yield the exact likelihood function. The only change necessary is the 
addition of ct to the right-hand side of (13a). The starting values are obtained 
using Rosenberg's algorithm and since nonstationarity in the elements of y(t) 
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will normally be regarded as coming from nonstationarity in the elements of 
x(t), it will usually be reasonable to constrain the roots of A to have negative 
real parts. 

The difficulty in applying ML to an open system, even a first-order one, 
is that the exogenous variables will not normally be analytic functions of 
time. Hence c. cannot be evaluated exactly. However, various approximations 
can be made to cT and if the elements of x(t) are reasonably smooth, the ML 
estimators will tend to have satisfactory properties; see, for example, Refer- 
ences 1 (Chs. 4, 7, and 8), 11, and 14. 

6. ASYMPTOTIC PROPERTIES OF ESTIMATOR 

For a stationary model with observations at equally spaced intervals, the 
asymptotic properties of the estimator described in this paper have been 
established by Bergstrom [2, pp. 147-9] without the assumption that the 
observations are normally distributed. Under fairly general conditions he 
shows that the Gaussian estimator of f is asymptotically normal with mean 
vector zero and a covariance matrix equal to the inverse of the large sample 
information matrix for normally distributed observations. In terms of the 
quantities used in (19), the finite sample approximation to the large sample 
information matrix has as its ijth element 

Iij Z 2 tr[F- '(aFt/alfr)F 
- 
'(Ft/a/I)] + E (/vtQ)'F 

- 
'v avj/ar, 2 t t t 

i,j = 1,.. .,n; (50) 

cf. Engle and Watson [5]. This expression depends on first derivatives only 
and these derivatives can be evaluated recursively as shown in Appendix B. 
Note that the derivation of these recursions is not altogether straightforward 
here because of the transformation needed to diagonalize the A matrix. 

The corresponding analytic expression for the score vector is 

alo 
L(-) Z E tr (Ft- l FU/tae)(I - F- 'v,v) -E (av,l/ao/)'F7- 'vt, 

i = 1,..., n. (52) 

Expression (52) can be used in the numerical optimization procedure, as can 
(51), although the complexity of the recursions suggests that this may not 
be worthwhile in practice. Nevertheless, (51) can be expected to yield a 
more acceptable asymptotic covariance matrix than an estimate based on 
numerical derivatives. 
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APPENDIX A 

Rosenberg [13] gives an algorithm for obtaining starting values in a discrete time 
Kalman filter, but provides very little detail on how the algorithm was derived. This 
appendix provides a derivation. 

Consider the discrete time state space model 

Ot= Ttlt_ 1 + qt, 't NID(O, Qt) (A.la) 

Yt = Ztit + 0, t d t NID(O, Ht) (A.lb) 

for t = 1, . T, with E(n,S) = 0 for all t, s. The Kalman filter for this model is essen- 
tially the same as the Kalman-Bucy filter for the continuous time model in Sec- 
tion 2. The only difference lies in the presence of the transformation matrix G and 
the fact that this results in some of the matrices being complex. 

Suppose that the initial-state vector, oio is unknown but fixed, so that its elements 
can be treated as additional parameters. Rosenberg sets up a Kalman filter in which 
the starting values are do = 0 and PO = 0 and a set of prediction error vectors, 

.1 V . . ., VT are produced. If oo were known, the Kalman-Bucy filter would be run 
with ao = oiO and PO = 0 to give the prediction error vectors, vl, . . ., VT. This second 
set of prediction errors are needed to form the likelihood function. Bearing in mind that 
the P, matrices in the two filters are the same, the idea behind Rosenberg's algorithm 
is to obtain v1 . . ., VT from the output from the first filter. 

Write the initial state vector as 

a0 = do + ao 

where do = 0. The prediction and updating equations for the state vector, (13) and 
(17) can be written together as 

atlt -1 = TI - Kt_ -Zt- -)a .a 1/t-2 + TtKt lYt- 1, t = 1.T (A.2) 

where kt 1 is the Kalman gain. The vector at/t- 1 is conditional on oco, but it can be 
written as 

atltl 
= at1t-1 + Jt_1a0, t = 1, . . ., T (A.3) 

where dt, - 1 is output from the first filter and Jt is computed recursively from 

it = Tt+ 1(I - KtZt)Jt 1, t = 1, T - 1 (A.4) 

with JO = T1. 
The prediction error vector can similarly be split up into two parts, i.e., 

Vt = Yt- Ztatlt 1 = Yt - Zttlt 1-Ztjt Io 
= Vt-ZtJt- 1o, t = 1, , T. (A.5) 
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Substituting (A.5) into a likelihood function of the form (19) and differentiating with 
respect to xo gives 

T _1T 

x= Lt Jt 1'Z;F-'ZtJt t 1 J>-1ZtF7 'Y (A.6) 
-t= 1 _ t= 1 

This expression is the ML estimator of ao, conditional on any other parameters in 
the model. It can therefore be used to concentrate oc out of the likelihood function. 
This gives 

iT iT 
L(y1, . .YT) -- log IFt -- I3 (it - ZtJt -1 ci)'F -'(iYt - ZJ o L(yl. SYT)=-2 lgF|2 (tZJ_a)t 1v-tt1O 

T l T _ 1 T 

=- log IFt| -- I vt'F 4t + - io I JX- 1ZtFt t 2 t = F1 2 t =J1 2Zt= 

(A.7) 



APPENDIX B 

In this appendix, computable recursive relations for the derivatives avt/fr and aF,avI 
are presented, first for the case that all variables are stocks, and then for the case 
that all variables are flows. It is assumed that the parameter values are such that the 
process is stationary. The extension to the case of both stock and flow variables is 
straightforward. 

First we adopt some notation. Recall that * = Gccx. Similarly, let Wr* = GWTG-' 
and T* = GTTG'. Let P., = GP G', Q* = GQ,G', and so forth for Pf *, Qf*, etc. Let 
Cn be generated by the recursion Cn = COA' + ACn1, where CO = G '(8A/V0)G, 
and let C* = GCnG 1. Also, let 

()n(X) = eAx( - A) (n+l) (-Ax)/k! 
k = n+ 1 

of(x) = (-A) - 
)L (k + 1)(-Ax)k/(k + 2)! 

k n+ 1 

frl = R- MI)on + 2(6)eAb + qf + 1(6). 

Note that (Dn(x) and (Df(x) are diagonal; furthermore, they can be generated by rela- 
tively simple recursion relations. Finally, let F = G 1(a(R1R')/a1)(G') 1, and let the 
(i, j) elements of FU, Ff, and Fff be defined respectively by 

(F,)ij = flijW(i + ,j; 8) 

(Ff)ij = (f)ijei'[W(2j; 8) - W(- Ri; 6)]I(Xi + )j) 

(Ftff)i - (F)ij FW(;8)W(.i WQL (8i;) - 8 W(^; 8) - 

Recursions for Stocks 

a v 
-Z ar* -ZrT* ti 

- r = r*8r_ 1 t Hr 
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where 

OT* DO 1 Oa*~ OTa* + T* a 
@t flofl11 +lI !!8rCn+ IC. r/r+ , = - I r a*_ + TT* ' 

a n= (n + 1. , __ aF 

Oar*r aa 5T *_ 1 OT*', OF T*T-10+T*@t/1T* 

T_ = _ [ ' ZT F-'v + P* ZF'1TF F+rv Z'F-' 
at/i Pi a/i at/i 1Z It /i 

ap* aT* (aTT* 
\' 

P__ aQ* 
______ T/T- 1 TP* TTi T 

yl~~~IT' T*Prl* E(nQ) +1-O) +I + (-T)Q* ) TG 

ahe/i at/Oij a=/ /ri2 a t/i 
Recursons fr- FlowsT 0 

ap* WP* OF_ 

T= T/T1 [ 
-[IZ F',P,-]+P*,-Z'FJ1 'F-ZP TFT T ePt/r- T1 Z r T/Ti 

P* Z~FJ'Z* 

Tq=G Ft Y. (Cr + 1F6) + 1 

The derivatives with respect to the initial conditions are Oa*I1/at/i 0 and 

where (11O)ij = (F)jj/(~ + 

Recursions for Flows 

av, aw* aa* r = -z a*1 - ZW/ T -)! 

aF aPff* aRH 

- __ t/ Z'F_v ? P=YnZF 1 CI F' v2 + P,Z = Y n En 
at/ an a/iTTn/ 

_____ 1 = {g P*_r 1 W + T l v W + *f 1 T l + af/i 

aQf* = G [Frf + f (CnQ(l'n +, (i) WT-On + 2((5 + + aQf 
aT/i GLT? a (Q(Pn+i(3) -? 
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8pff* a w* - ap*~ (aw* yQf T/ - p*W*T_ i 
_W*' + WT A W* + Wr' IP_l( + 

,?Q{, -GFFf 
F 

E (C,nQn1, + fl1TQCn)lG' 

and where T*, aT*1/0, P*, and aP*l/ti are given by the same expressions as in the 
case of stocks. 
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