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According to the Chamley-Judd result, capital should not be taxed in the long run.

In this paper, we overturn this conclusion, showing that it does not follow from the

very models used to derive it. For the main model in Judd (1985), we prove that

the long run tax on capital is positive and significant, whenever the intertemporal

elasticity of substitution is below one. For higher elasticities, the tax converges to

zero but may do so at a slow rate, after centuries of high tax rates. The main model

in Chamley (1986) imposes an upper bound on capital taxes. We provide conditions

under which these constraints bind forever, implying positive long run taxes. When

this is not the case, the long-run tax may be zero. However, if preferences are recursive

and discounting is locally non-constant (e.g., not additively separable over time), a

zero long-run capital tax limit must be accompanied by zero private wealth (zero tax

base) or by zero labor taxes (first best). Finally, we explain why the equivalence of a

positive capital tax with ever increasing consumption taxes does not provide a firm

rationale against capital taxation.

Keywords: Optimal taxation; Capital taxation

1 Introduction

One of the most startling results in optimal tax theory is the famous finding by Chamley
(1986) and Judd (1985). Although working in somewhat different settings, their conclu-
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on research assistance from Greg Howard, Lucas Manuelli and Andrés Sarto. We also thank seminar par-
ticipants at Harvard and the 8th Banco de Portugal Conference on Monetary Economics. All remaining
errors are our own. This paper supersedes “A Reappraisal of Chamley-Judd Zero Capital Taxation Results”
presented by Werning at the Society of Economic Dynamics’ 2014 meetings in Toronto.
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sions were strikingly similar: capital should go untaxed in any steady state. This im-
plication, dubbed the Chamley-Judd result, is commonly interpreted as applying in the
long run, taking convergence to a steady state for granted.1 The takeaway is that taxes on
capital should be zero, at least eventually.

Economic reasoning sometimes holds its surprises. The Chamley-Judd result was not
anticipated by economists’ intuitions, despite a large body of work at the time on the
incidence of capital taxation and on optimal tax theory more generally. It represented
a major watershed from a theoretical standpoint. One may even say that the result is
puzzling, as witnessed by the fact that economists have continued to take turns putting
forth various intuitions to interpret it, none definitive nor universally accepted.

Interpretation aside, a crucial issue is the result’s applicability. Many have ques-
tioned the model’s assumptions, especially that of infinitely-lived agents (e.g. Golosov
and Werning, 2006; Banks and Diamond, 2010). Still others have set up alternative mod-
els, searching for different conclusions. These efforts notwithstanding, opponents and
proponents alike acknowledge Chamley-Judd as one of the most important benchmarks
in the optimal tax literature.

In this paper, we do not propose a new model or seek to take a stand on the ap-
propriate model. Instead, we question the Chamley-Judd results by arguing that a zero
long-run tax result does not follow even within the logic of these models. For both the
models in Chamley (1986) and Judd (1985), we provide results showing a positive long-
run tax when the intertemporal elasticity of substitution is less than or equal to one. We
conclude that these models do not actually provide an unambiguous argument against
long-run capital taxation. We discuss what went wrong with the original results, their
interpretations and proofs.

Before summarizing our results in greater detail, it is useful to briefly recall the setups
in Chamley (1986) and Judd (1985), where in the latter case we will specifically focus on
the model in Judd (1985, Section 3).2

1To quote from a few examples, Judd (2002): “[...] setting τk equal to zero in the long run [...] vari-
ous results arguing for zero long-run taxation of capital; see Judd (1985, 1999) for formal statements and
analyses.” Atkeson et al. (1999): “By formally describing and extending Chamley’s (1986) result [...] This
approach has produced a substantive lesson for policymakers: In the long run, in a broad class of envi-
ronments, the optimal tax on capital income is zero.” Phelan and Stacchetti (2001): “A celebrated result of
Chamley (1986) and Judd (1985) states that with full commitment, the optimal capital tax rate converges
to zero in the steady state.” Saez (2013): “The influential studies by Chamley (1986) and Judd (1985) show
that, in the long-run, optimal linear capital income tax should be zero.”

2Judd (1985) also provides extensions to the model in Judd (1985, Section 3) that generally bring the
setup somewhat closer to that in Chamley (1986). In particular, Judd (1985, Section 4-5) allow workers to
save, capitalists to work and considers non-constant discounting a la Uzawa (1968). However, throughout
the formal analysis in Judd (1985) the government is assumed to run a balanced budget, i.e. no government
bonds are allowed. Interpolating our results for Judd (1985, Section 3) and Chamley (1986), we believe
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Start with the similarities. Both papers assume infinitely-lived agents and take as
given an initial stock of capital. Taxes are basically restricted to proportional taxes on
capital and labor—lump-sum taxes are either ruled out or severely limited. To prevent
expropriatory capital levies, the tax rate on capital is constrained by an upper bound.3

Turning to differences, Chamley (1986) focused on a representative agent and assumed
perfect financial markets, with unconstrained government debt. Judd (1985) emphasizes
heterogeneity and redistribution in a two-class economy, with workers and capitalists.
In addition, the model in Judd (1985) features financial market imperfections: workers
do not save and the government balances its budget, i.e. debt is restricted to zero. As
emphasized by Judd (1985), it is most remarkable that a zero long-run tax result obtains
despite the restriction to budget balance.4 Although extreme, imperfections of this kind
may capture relevant aspects of reality, such as the limited participation in financial mar-
kets, the skewed distributions of wealth and a host of difficulties governments may face
managing their debts or assets.5

We begin with the model in Judd (1985) and focus on situations where desired redis-
tribution runs from capitalists to workers. Working with an isoelastic utility over con-
sumption for capitalists, U(C) = C1−σ

1−σ , we establish that when the intertemporal elasticity
of substitution (IES) is below one, σ > 1, taxes rise and converge towards a positive limit
tax, instead of declining towards zero. This limit tax is significant, driving capital to its
lowest feasible level. Indeed, with zero government spending the lowest feasible capital
stock is zero and the limit tax rate on wealth goes to 100%. The long-run tax is not only
not zero, it is far from that.

The economic intuition we provide for this result is based on the anticipatory savings
effects of future tax rates. When the IES is less than one, any anticipated increase in
taxes leads to higher savings today, since the substitution effect is relatively small and
dominated by the income effect. When the day comes, higher tax rates do eventually
lower capital, but if the tax increase is sufficiently far off in the future, then the increased
savings generate a higher capital stock over a lengthy transition. This is desirable, since
it increases wages and tax revenue. To exploit such anticipatory effects, the optimum

similar conclusions apply for these variant models in Judd (1985, Section 4–5).
3Consumption taxes (Chamley, 1980; Coleman II, 2000) and dividend taxes with capital expenditure

(investment) deductions (Abel, 2007) can mimic initial wealth expropriation. Both are disallowed.
4Because of the presence of financial restrictions and imperfections, the model in Judd (1985) does not fit

the standard Arrow-Debreu framework, nor the optimal tax theory developed around it such as Diamond
and Mirrlees (1971).

5Another issue may arise on the other end. Without constraints on debt, capitalists may become highly
indebted or not own the capital they manage. The idea that investment requires “skin in the game” is
popular in the finance literature and macroeconomic models with financial frictions (see Brunnermeier et
al., 2012; Gertler and Kiyotaki, 2010, for surveys).
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involves an increasing path for capital tax rates. This explains why we find positive tax
rates that rise over time and converge to a positive value, rather than falling towards zero.

When the IES is above one, σ < 1, we verify numerically that the solution converges
to the zero-tax steady state.6 This also relies on anticipatory savings effects, working in
reverse. However, we show that this convergence may be very slow, potentially taking
centuries for wealth taxes to drop below 1%. Indeed, the speed of convergence is not
bounded away from zero in the neighborhood of a unitary IES, σ = 1. Thus, even for
those cases where the long-run tax on capital is zero, this property provides a misleading
summary of the model’s tax prescriptions.

We confirm our intuition based on anticipatory effects by generalizing our results for
the Judd (1985) economy to a setting with arbitrary savings behavior of capitalists. Within
this more general environment we also derive an inverse elasticity formula for the steady
state tax rate, closely related to one in Piketty and Saez (2013). However, our deriva-
tion stresses that the validity of this formula requires sufficiently fast convergence to an
interior steady state, a condition that we show fails in important cases.

We then turn to the representative agent Ramsey model studied by Chamley (1986).
As is well appreciated, in this setting upper bounds on the capital tax rate are imposed to
prevent expropriatory levels of taxation. We provide two sets of results.

Our first set of results show that in cases where the tax rate does converge to zero,
there are other implications of the model, hitherto unnoticed. These implications under-
mine the usual interpretation against capital taxation. Specifically, if the optimum con-
verges to a steady state where the bounds on tax rates are slack, we show that the tax is
indeed zero. However, for recursive non-additive utility, we also show that this zero-tax
steady state is necessarily accompanied by either zero private wealth—in which case the
tax base is zero—or a zero tax on labor income—in which case the first best is achieved.
This suggests that zero taxes on capital are attained only after taxes have obliterated pri-
vate wealth or allowed the government to proceed without any distortionary taxation.
Needless to say, these are not the scenarios typically envisioned when interpreting zero
long-run tax results. Away from additive utility, the model simply does not justify a
steady state with a positive tax on labor, a zero tax on capital and positive private wealth.

Returning to the case with additive utility, our second set of results show that the tax
rate may not converge to zero. In particular, we show that the upper bounds imposed
on the tax rate may bind forever, implying a positive long-run tax on capital. We prove
that this is guaranteed if the IES is below one and debt is high enough. Importantly, the

6We complement these numerical results by proving a local convergence result around the zero-tax
steady state when σ < 1.
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debt level required is below the peak of the Laffer curve, so this result is not driven by
budgetary necessity: the planner chooses to tax capital indefinitely, but is not compelled
to do so. Intuitively, higher debt leads to higher labor taxes, making capital taxation
attractive to ease the labor tax burden. However, because the tax rate on capital is capped,
the only way to expand capital taxation is to prolong the time spent at the bound. At some
point, for high enough debt, indefinite taxation becomes optimal.

All of these results run counter to established wisdom, cemented by a significant
follow-up literature, extending and interpreting long-run zero tax results. In particular,
Judd (1999) presents an argument against positive capital taxation without requiring con-
vergence to a steady state, using a representative agent model without financial market
imperfections, similar in this regard to Chamley (1986). However, as we explain, these
arguments invoke assumptions on endogenous multipliers that may be violated at the
optimum. We also explain why the intuition offered in that paper, based on the obser-
vation that a positive capital tax is equivalent to a rising tax on consumption, does not
provide a rationale against indefinite capital taxation.

To conclude, we present a hybrid model that combines heterogeneity and redistribu-
tion as in Judd (1985), but allows for government debt as in Chamley (1986). Capital
taxation turns out to be especially potent in this setting: whenever the IES is less than
one, the optimal policy sets the tax rate at the upper bound forever. This suggests that
positive long-run capital taxation should be expected for a wide range of models that are
descendants of Chamley (1986) and Judd (1985).

Related Literature. Aside from a long literature finding different kinds of zero capital
tax results,7 our paper is part of a strand of papers that find positive or negative long-
run capital taxes can be optimal.8 Almost all of these papers obtain positive long-run
taxation by modifying the environment, moving away from the setups in Chamley (1986)
and Judd (1985).

One exception is Lansing (1999), who considered a special case of the setup in Judd
(1985, Section 3) with σ = 1 and found that positive long-run capital taxes are possible
(see our discussion in Section 2); Reinhorn (2002 and 2013) further clarified the nature of

7For papers with exogenous growth see e.g. Chamley (1980, 1986); Judd (1985, 1999); Atkeson et al.
(1999); Chari and Kehoe (1999) . For papers with endogenous growth see e.g. Lucas (1990); Jones et al.
(1993, 1997). For results with uncertainty see e.g. Zhu (1992); Judd (1993); Chari et al. (1994). For results
with heterogeneous agents see e.g. Werning (2007); Greulich et al. (2016).

8For results on capital taxation in OLG models, see e.g. Erosa and Gervais (2002). For models with social
weights on future periods/generations, see e.g. Farhi and Werning (2010, 2013). For results with limited
commitment, see e.g. Chari and Kehoe (1990); Stokey (1991); Farhi et al. (2012). For models with incomplete
markets and idiosyncratic risk, see e.g. Aiyagari (1995); Conesa et al. (2009).
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this discrepancy with Judd (1985, Section 3). Bassetto and Benhabib (2006) study capi-
tal taxation in a political economy model where agents are heterogeneous with respect
to initial wealth. Their main result provides a median-voter theorem and a “bang-bang
property” for capital taxes. For a case with linear AK technology and σ > 1, they also
provide a condition for the median voter to prefer indefinite capital taxation. The exam-
ple in Lansing (1999) was viewed as a knife-edged case, applying only to σ = 1, while
the example in Bassetto and Benhabib (2006) was obtained for a hybrid model that is not
a special case of any economy explicitly treated in Judd (1985) or Chamley (1986).9 How-
ever, our results show that these previous examples were indicative of an unnoticed and
more general problem with the zero long-run capital taxation prediction in the precise
models of Judd (1985) and Chamley (1986).

Finally, several authors study a variant of the Chamley (1986) economy where capital
tax bounds are only imposed in the initial period, to limit expropriation, but not im-
posed in later periods, see e.g. Chari et al. (1994), Chari and Kehoe (1999), Sargent and
Ljungqvist (2004) and Werning (2007). Our analysis does not apply in these cases; indeed,
as these studies correctly show, with additively separable and isoelastic preferences over
consumption, the capital tax is zero after the second period.

2 Capitalists and Workers

We start with the two-class economy without government debt laid out in Judd (1985).
Time is indefinite and discrete, with periods labeled by t = 0, 1, 2, . . . .10 There are two
types of agents, workers and capitalists. Capitalists save and derive all their income from
the returns to capital. Workers supply one unit of labor inelastically and live hand to
mouth, consuming their entire wage income plus transfers. The government taxes the
returns to capital to pay for transfers targeted to workers.

Preferences. Both capitalists and workers discount the future with a common discount
factor β < 1. Workers have a constant labor endowment n = 1; capitalists do not work.
Consumption by workers will be denoted by lowercase c, consumption by capitalists by

9Unlike Chamley (1986), their model features heterogeneity and inelastic labor supply; unlike Judd
(1985), their model features no financial frictions, so there is no hand-to-mouth worker and the govern-
ment can issue bonds.

10Judd (1985) formulates the model in continuous time, but this difference is immaterial. As usual, the
continuous-time model can be thought of as a limit of the discrete time one as the length of each period
shrinks to zero.
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uppercase C. Capitalists have utility

∞

∑
t=0

βtU(Ct) with U(C) =
C1−σ

1− σ

for σ > 0 and σ 6= 1, and U(C) = log C for σ = 1. Here 1/σ denotes the (constant)
intertemporal elasticity of substitution (IES). Workers have utility

∞

∑
t=0

βtu(ct)

where u is increasing, concave, continuously differentiable and limc→0 u′(c) = ∞.

Technology. Output is obtained from capital and labor using a neoclassical constant
returns production function F(kt, nt) satisfying standard conditions.11 Capital depreciates
at rate δ > 0. In equilibrium nt = 1, so define f (k) = F(k, 1). The government consumes a
constant flow of goods g > 0. We normalize both populations to unity and abstract from
technological progress and population growth. The resource constraint in period t is then

ct + Ct + g + kt+1 ≤ f (kt) + (1− δ)kt.

There is some given positive level of initial capital, k0 > 0.

Markets and Taxes. Markets are perfectly competitive, with labor being paid wage
w∗t = Fn(kt, nt) and the before-tax return on capital being given by

R∗t = f ′(kt) + 1− δ.

The after-tax return equals Rt and can be parameterized as either

Rt = (1− τt)(R∗t − 1) + 1 or Rt = (1− Tt)R∗t ,

where τt is the tax rate on the net return to wealth and Tt the tax rate on the gross return
to wealth, or wealth tax for short. Whether we consider a tax on net returns or on gross
returns is irrelevant and a matter of convention. We say that capital is taxed whenever
Rt < R∗t and subsidized whenever Rt > R∗t .

11We assume that F is increasing and strictly concave in each argument, continuously differentiable, and
satisfying the standard Inada conditions Fk(k, 1) → ∞ as k → 0 and Fk(k, 1) → 0 as k → ∞. Moreover
assume that capital is essential for production, that is, F(0, n) = 0 for all n.
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Capitalist and Worker Behavior. Capitalists solve

max
{Ct,at+1}

∞

∑
t=0

βtU(Ct) s.t. Ct + at+1 = Rtat and at+1 ≥ 0,

for some given initial wealth a0. The associated Euler equation and transversality condi-
tions,

U′(Ct) = βRt+1U′(Ct+1) and βtU′(Ct)at+1 → 0,

are necessary and sufficient for optimality.
Workers live hand to mouth, their consumption equals their disposable income

ct = w∗t + Tt = f (kt)− f ′(kt)kt + Tt,

which uses the fact that Fn = F − Fkk. Here Tt ∈ R represent government lump-sum
transfers (when positive) or taxes (when negative) to workers.12

Government Budget Constraint. As in Judd (1985), the government cannot issue
bonds and runs a balanced budget. This implies that total wealth equals the capital stock
at = kt and that the government budget constraint is

g + Tt = (R∗t − Rt) kt.

Planning Problem. Using the Euler equation to substitute out Rt, the planning problem
can be written as13

max
C−1,{ct,Ct,kt+1}

∞

∑
t=0

βt(u(ct) + γU(Ct)), (1a)

subject to

ct + Ct + g + kt+1 = f (kt) + (1− δ)kt, (1b)

βU′(Ct)(Ct + kt+1) = U′(Ct−1)kt, (1c)

βtU′(Ct)kt+1 → 0. (1d)

12Equivalently, one can set up the model without lump-sum transfers/taxes to workers, but allowing for
a proportional tax or subsidy on labor income. Such a tax perfectly targets workers without creating any
distortions, since labor supply is perfectly inelastic in the model.

13Judd (1985) includes upper bounds on the taxation of capital, which we have omitted because they
do not play any important role. As we shall see, positive long run taxation is possible even without these
constraints; adding them would only reinforce this conclusion. Upper bounds on taxation play a more
crucial role in Chamley (1986).
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The government maximizes a weighted sum of utilities with weight γ on capitalists. By
varying γ one can trace out points on the constrained Pareto frontier and characterize
their associated policies. We often focus on the case with no weight on capitalists, γ = 0,
to ensure that desired redistribution runs from capitalists towards workers. Equation (1b)
is the resource constraint. Equation (1c) combines the capitalists’ first-order condition and
budget constraint and (1d) imposes the transversality condition; together conditions (1c)
and (1d) ensure the optimality of the capitalists’ saving decision.

The necessary first-order conditions are

µ0 = 0, (2a)

λt = u′(ct), (2b)

µt+1 = µt

(
σ− 1
σκt+1

+ 1
)
+

1
βσκt+1υt

(1− γυt) , (2c)

u′(ct+1)

u′(ct)
( f ′(kt+1) + 1− δ) =

1
β
+ υt(µt+1 − µt), (2d)

where κt ≡ kt/Ct−1, υt ≡ U′(Ct)/u′(ct) and the multipliers on constraints (1b) and (1c)
are βtλt and βtµt, respectively.14 Here, (2a) follows from the first order condition with
respect to C−1.

2.1 Previous Steady State Results

Judd (1985, pg. 72, Theorem 2) provided a zero-tax result, which we adjust in the follow-
ing statement to stress the need for the steady state to be interior and for multipliers to
converge.

Theorem 1 (Judd, 1985). Suppose quantities and multipliers converge to an interior steady state,
i.e. ct, Ct, kt+1 converge to positive values, and µt converges. Then the tax on capital is zero in the
limit: Tt = 1− Rt/R∗t → 0.

The proof is immediate: from equation (2d) we obtain R∗t → 1/β, while the capital-
ists’ Euler equation requires that Rt → 1/β. The simplicity of the argument follows from
strong assumptions placed on endogenous outcomes. This raises obvious concerns. By
adopting assumptions that are close relatives of the conclusions, one may wonder if any-
thing of use has been shown, rather than assumed. We elaborate on a similar point in
Section 3.3.

14We chose the sign of λt in the conventional way and the sign of µt such that the term in the current
value Lagrangian is given by µt (βU′(Ct)(Ct + kt+1)−U′(Ct−1)kt).
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In our rendering of Theorem 1, the requirement that the steady state be interior is
important: otherwise, if ct → 0 one cannot guarantee that u′(ct+1)/u′(ct)→ 1 in equation
(2d). Likewise, even if the allocation converges to an interior steady state but µt does not
converge, then υt(µt+1 − µt) may not vanish in equation (2d). Thus, the two situations
that prevent the theorem’s application are: (i) non-convergence to an interior steady state;
or (ii) non-convergence of µt+1 − µt to zero. In general, one expects that (i) implies (ii).
The literature has provided an example of (ii) where the allocation does converge to an
interior steady state.

Theorem 2. (Lansing, 1999; Reinhorn, 2002 and 2013) Assume σ = 1. Suppose the allocation
converges to an interior steady state, so that ct, Ct and kt+1 converge to strictly positive values.
Then,

Tt →
1− β

1 + γυβ/(1− γυ)
,

where υ = lim υt and the multiplier µt in the system of first-order conditions (2c) does not con-
verge. This implies a positive long-run tax on capital if redistribution towards workers is desirable,
1− γυ > 0.

The result follows easily by combining (2c) and (2d) for the case with σ = 1 and
comparing it to the capitalist’s Euler equation, which requires Rt = 1

β at a steady state.
Lansing (1999) first presented the logarithmic case as a counterexample to Judd (1985).
Reinhorn (2002 and 2013) correctly clarified that in the logarithmic case the Lagrange
multipliers explode, explaining the difference in results.15

Lansing (1999) depicts the result for σ = 1 as a knife-edge case: “the standard ap-
proach to solving the dynamic optimal tax problem yields the wrong answer in this
(knife-edge) case [...]” (from the Abstract, page 423) and “The counterexample turns out
to be a knife-edge result. Any small change in the capitalists’ intertemporal elasticity of
substitution away from one (the log case) will create anticipation effects [...] As capital-
ists’ intertemporal elasticity of substitution in consumption crosses one, the trajectory of
the optimal capital tax in this model undergoes an abrupt change.” (page 427) Lansing
(1999) suggests that whenever σ 6= 1 the long-run tax on capital is zero. We shall show
that this is not the case.

15Lansing (1999) suggests a technical difficulty with the argument in Judd (1985) that is specific to σ = 1.
Indeed, at σ = 1 one degree of freedom is lost in the planning problem, since Ct−1 must be proportional
to kt. However, since equations (2) can still satisfied by the optimal allocation for some sequence of mul-
tipliers, we believe the issue can be framed exactly as Reinhorn (2002 and 2013) did, emphasizing the non
convergence of multipliers.
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2.2 Main Result: Positive Long-Run Taxation

Logarithmic Utility. Before studying σ > 1, our main case of interest, it is useful to
review the special case with logarithmic utility, σ = 1. We assume γ = 0 to guarantee
that desired redistribution runs from capitalists to workers.

When U(C) = log C capitalists save at a constant rate s > 0,

Ct = (1− s)Rtkt and kt+1 = sRtkt.

Although s = β with logarithmic preferences, nothing we will derive depends on this
fact, so we can interpret s as a free parameter that is potentially divorced from β.16

The planning problem becomes

max
{ct,kt+1}

∞

∑
t=0

βtu(ct) s.t. ct +
1
s

kt+1 + g = f (kt) + (1− δ)kt,

with k0 given. This amounts to an optimal neoclassical growth problem, where the price
of capital equals 1

s > 1 instead of the actual unit cost. The difference arises from the
fact that capitalists consume a fraction 1 − s. The government and workers must save
indirectly through capitalists, entrusting them with resources today by holding back on
current taxation, so as to extract more tomorrow. From their perspective, technology
appears less productive because capitalists feed off a fraction of the investment. Lower
saving rates s increase this inefficiency.17

Since the planning problem is equivalent to a standard optimal growth problem, we
know that there exists a unique interior steady state and that it is globally stable. The
modified golden rule at this steady state is βsR∗ = 1. A steady state also requires sRk = k,
or simply sR = 1. Putting these conditions together gives R/R∗ = β < 1.

Proposition 1. Suppose γ = 0 and that capitalists have logarithmic utility, U(C) = log C.
Then the solution to the planning problem converges monotonically to a unique steady state with
a positive tax on capital given by T = 1− β.

This proposition echoes the result in Lansing (1999), as summarized by Theorem 2,
but also establishes the convergence to the steady state. Interestingly, the long-run tax

16This could capture different discount factors between capitalists and workers or an ad hoc behavioral
assumption of constant savings, as in the standard Solow growth model. We pursue this line of thought in
Section 2.3 below.

17This kind of wedge in rates of return is similar to that found in countless models where there are
financial frictions between “experts” able to produce capital investments and “savers”. Often, these models
are set up with a moral hazard problem, whereby some fraction of the investment returns must be kept by
experts, as “skin in the game” to ensure good behavior.
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rate depends only on β, not on the savings rate s or other parameters.
Although Lansing (1999) and the subsequent literature interpreted this result as a

knife-edge counterexample, we will argue that this is not the case, that positive long run
taxes are not special to logarithmic utility. One way to proceed would be to exploit con-
tinuity of the planning problem with respect to σ to establish that for any fixed time t,
the tax rate Tt(σ) converges as σ → 1 to the tax rate obtained in the logarithmic case
(which we know is positive for large t). While this is enough to dispel the notion that the
logarithmic utility case is irrelevant for σ 6= 1, it has its limitations. As we shall see, the
convergence is not uniform and one cannot invert the order of limits: limt→∞ limσ→1 Tt(σ)

does not equal limσ→1 limt→∞ Tt(σ). Therefore, arguing by continuity does not help char-
acterize the long run tax rate limt→∞ Tt(σ) as a function of σ. We proceed by tackling the
problem with σ 6= 1 directly.

Positive Long-Run Taxation: IES < 1. We now consider the case with σ > 1 so that
the intertemporal elasticity of substitution 1

σ is below unity. We continue to focus on the
situation where no weight is placed on capitalists, γ = 0. Section 2.4 shows that the same
results apply for other value of γ, as long as redistribution from capitalists to workers is
desired.

Towards a contradiction, suppose there existed an optimal allocation that converges
to an interior steady state kt → k, Ct → C, ct → c with k, C, c > 0. This implies that κt and
υt also converge to positive values, κ and υ. Moreover, the entire path {kt, Ct−1, ct} must
also be interior, such that the first order conditions (2) necessarily hold at the optimum.18

Combining equations (2c) and (2d) and taking the limit for the allocation, we obtain

f ′(k) + 1− δ =
1
β
+ υ(µt − µt−1) =

1
β
+ µt

σ− 1
σκ

υ +
1

βσκ
.

Since σ > 1, this means that µt must converge to

µ = − 1
(σ− 1)βυ

< 0. (3)

Now consider whether µt → µ < 0 is possible. From the first-order condition (2a) we
have µ0 = 0. Also, from equation (2c), whenever µt ≥ 0 then µt+1 ≥ 0. It follows that
µt ≥ 0 for all t = 0, 1, . . . , a contradiction to µt → µ < 0.19 This proves that the solution

18If at any date t one of kt, Ct−1 or ct were zero, then that same variable must remain equal to zero
thereafter: for k, see (1b); for C, see (1c); for c, see (2d). This contradicts the assumed convergence to an
interior steady state.

19This argument did not require convexity of the planning problem (1a). It relied, instead, on the fact that
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cannot converge to any interior steady state, including the zero-tax steady state.

Proposition 2. If σ > 1 and γ = 0, no solution to the planning problem converges to the zero-tax
steady state, or any other interior steady state.

It follows that if the optimal allocation converges, then either kt → 0, Ct → 0 or ct → 0.
With positive spending g > 0, kt → 0 is not feasible; this also rules out Ct → 0, since
capitalists cannot be starved while owning positive wealth.

Thus, provided the solution converges, ct → 0. This in turn implies that either kt → kg

or kt → kg where kg < kg are the two solutions to 1
β k + g = f (k) + (1− δ)k, using the

fact that (1c) implies C = 1−β
β k at any steady state.20 We next show that the solution does

indeed converge, and that it does so towards the lowest sustainable value of capital, kg,
so that the long-run tax on capital is strictly positive. The proof uses the fact that µt → ∞
and ct → 0, as argued above, but requires many other steps detailed in the appendix.21

Proposition 3. If σ > 1 and γ = 0, any solution to the planning problem converges to ct → 0,
kt → kg, Ct → 1−β

β kg, with a positive limit tax on wealth: Tt = 1− Rt
R∗t
→ T g > 0. The limit

tax T g is decreasing in spending g, with T g → 1 as g→ 0.

The zero-tax interpretation of Judd (1985) is invalidated here because the allocation
does not converge to an interior steady state and multipliers do not converge. According
to our result, the tax rate not only does not converge to zero, it reaches a sizable level.
Perhaps counterintuitively, the long-run tax on capital, T g, is inversely related to the
level of government spending, since kg is increasing with spending g. This underscores
that long-run capital taxation is not driven by budgetary necessity.

As the proposition shows, optimal taxes may reach very high levels. Up to this point,
we have placed no limits on tax rates. It may be of interest to consider a situation where
the planner is further constrained by an upper bound on the tax rate for net returns (τ)
or gross wealth (T ), perhaps due to evasion or political economy considerations. If these
bounds are sufficiently tight to be binding, it is natural to conjecture that the optimum
converges to these bounds, and to an interior steady state allocation with a positive limit
for worker consumption, limt→∞ ct > 0.

Solution for IES near 1. Figure 1 displays the time path for the capital stock and the tax
rate on wealth, Tt = 1− Rt/R∗t , for a range of σ that straddles the logarithmic σ = 1 case.

the first-order conditions (2) are necessary for an interior allocation {kt, Ct−1, ct}.
20Here we assume that government spending g is feasible, that is, g < maxk{ f (k) + (1− δ)k− 1

β k}.
21This result also does not rely on convexity of the planning problem (1a). In the appendix, after dealing

with boundaries explicitly, we only rely on the necessity of the first-order conditions (2).

13



Figure 1: Optimal time paths for capital (left) and wealth taxes (right).
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Note. This figure shows the optimal time paths of capital kt (left panel) and wealth taxes Tt (right panel) for
various values of the inverse IES σ.

We set β = 0.95, δ = 0.1, f (k) = kα with α = 0.3 and u(c) = U(c). Spending g is chosen
so that g

f (k) = 20% at the zero-tax steady state. The initial value of capital, k0, is set at the
zero-tax steady state. Our numerical method is based on a recursive formulation of the
problem described in the appendix.

To clarify the magnitudes of the tax on wealth, Tt, consider an example: If R∗ = 1.04
so that the before-tax net return is 4%, then a tax on wealth of 1% represents a 25% tax on
the net return; a wealth tax of 4% represents a tax rate of 100% on net returns, and so on.

A few things stand out in Figure 1. First, the results confirm what we showed theo-
retically in Proposition 3, that for σ > 1 capital converges to kg = 0.0126. In the figure
this convergence is monotone22, taking around 200 years for σ = 1.25. The asymptotic
tax rate is very high, approximately T g = 1− R/R∗ = 85%, lying outside the figure’s
range, and, since the after-tax return equals R = 1/β in the long run, this implies that the
before-tax return R∗ = f ′(kg) + 1− δ is exorbitant.

Second, for σ < 1, the path for capital is non-monotonic23 and eventually converges
to the zero-tax steady state. However, the convergence is relatively slow, especially for
values of σ near 1. This makes sense, since, by continuity, for any period t, the solution
should converge to that of the logarithmic utility case as σ → 1, with positive taxation as
described in Proposition 1. By implication, for σ < 1 the rate of convergence to the zero-
tax steady state must be zero as σ ↑ 1. To further punctuate this point, Figure 2 shows the
number of years it takes for the tax on wealth to drop below 1% as a function of σ ∈ (1

2 , 1).
As σ rises, it takes longer and longer and as σ ↑ 1 it takes an eternity.

The logarithmic case leaves other imprints on the solutions for σ 6= 1. Returning to

22This depends on the level of initial capital. For lower levels of capital the path first rises then falls.
23This is possible because the state variable has two dimensions, (kt, Ct−1). At the optimum, for the same

capital k, consumption C is initially higher on the way down than it is on the way up.
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Figure 2: Slow speed of convergence to zero taxes for σ close to but below 1.
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Note. This plot shows the time it takes until the wealth tax Tt falls below 1% for an inverse IES σ ∈ ( 1
2 , 1).

Figure 1, for both σ < 1 and σ > 1 we see that over the first 20-30 years, the path ap-
proaches the steady state of the logarithmic utility case, associated with a tax rate around
T = 1− β = 5%. The speed at which this takes place is relatively quick, which is ex-
plained by the fact that for σ = 1 it is driven by the standard rate of convergence in the
neoclassical growth model. The solution path then transitions much more slowly either
upwards or downwards, depending on whether σ > 1 or σ < 1.

Intuition: Anticipatory Effects of Future Taxes on Current Savings. Why does the op-
timal tax eventually rise for σ > 1 and fall for σ < 1? Why are the dynamics relatively
slow for σ near 1?

To address these normative questions it helps to back up and review the following
positive exercise. Start from a constant tax on wealth and imagine an unexpected an-
nouncement of higher future taxes on capital. How do capitalists react today? There are
substitution and income effects pulling in opposite directions. When σ > 1, the substitu-
tion effect is muted compared to the income effect, and capitalists lower their consump-
tion to match the drop in future consumption. As a result, capital rises in the short run
and falls in the long run.24 When instead σ < 1, the substitution effect is stronger and
capitalists increase current consumption. In the logarithmic case, σ = 1, the two effects
cancel out, so that current consumption and savings are unaffected.

Returning to the normative questions, lowering capitalists’ consumption and increas-
ing capital is desirable for workers. When σ < 1, this can be accomplished by promising

24It is important to note that σ > 1 does not imply that the supply for savings “bends backward”. Indeed,
as a positive exercise, if taxes are raised permanently within the model, then capital falls over time to a
lower steady state for any value of σ, including σ > 1. Higher values of σ imply a less elastic response over
any finite time horizon, and thus a slower convergence to the lower capital stock. The case with σ > 1 is
widely considered more plausible empirically.
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lower tax rates in the future. This explains why a declining path for taxes is optimal.
In contrast, when σ > 1, the same is accomplished by promising higher tax rates in the
future; explaining the increasing path for taxes. These incentives are absent in the loga-
rithmic case, when σ = 1, explaining why the tax rate converges to a constant.

When σ < 1 the rate of convergence to the zero-tax steady state is also driven by these
anticipatory effects. With σ near 1, the potency of these effects is small, explaining why
the rate of convergence is low and indeed becomes vanishingly small as σ ↑ 1.

In contrast to previous intuitions offered for zero long-run tax results, the intuition we
provide for our results—zero and nonzero long-run taxes alike, depending on σ—is not
about the desired level for the tax. Instead, we provide a rationale for the desired slope
in the path for the tax: an upward path when σ > 1 and a downward path when σ < 1.
The conclusions for the optimal long-run tax then follow from these desired slopes, rather
than the other way around.

Our intuition based on slopes has an interesting implication for the effects of limited
commitment in this economy. Since the planner promises higher future taxation when
σ > 1, renegotiation by the planner might lead to lower rather than higher capital taxes.
This is the polar opposite of the conventional wisdom, according to which limited com-
mitment leads to higher capital taxation.

2.3 General Savings Functions and Inverse Elasticity Formula

The intuition suggests that the essential ingredient for positive long run capital taxation
in the model of Judd (1985, Section 3) is that capitalists’ savings decrease in future interest
rates. To make this point even more transparently, we now modify the model and assume
capitalists behave according to a general “ad-hoc” savings rule,

kt+1 = S(Rtkt; Rt+1, Rt+2, . . . ),

where S(It; Rt+1, Rt+2, . . . ) ∈ [0, It] is a continuously differentiable function taking as ar-
guments current wealth It = Rtkt ≥ 0 and future interest rates {Rt+1, Rt+2, . . .} ∈ RN

+ .
We assume that savings increase with income, SI > 0. This savings function encom-
passes the case where capitalists maximize an additively separable utility function, as in
Judd (1985), but is more general. For example, the savings function can be derived from
the maximization of a recursive utility function, or even represent behavior that cannot be
captured by optimization, such as hyperbolic discounting or self-control and temptation.
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Again, we focus on the case γ = 0. The planning problem is then

max
{ct,Rt,kt+1}

∞

∑
t=0

βtu(ct),

subject to

ct + Rtkt + g = f (kt) + (1− δ)kt,

kt+1 = S(Rtkt; Rt+1, Rt+2, . . . ),

with k0 given.
We can show that, consistent with the intuition spelled out above, long-run capital

taxes are positive whenever savings decrease in future interest rates.

Proposition 4. Suppose γ = 0 and assume the savings function is decreasing in future rates,
so that SRt(I; R1, R2, . . . ) ≤ 0 for all t = 1, 2, . . . and all arguments {I, R1, R2, . . .}. If the
optimum converges to an interior steady state in c, k, and R, and at the steady state βRSI 6= 1,
then the limit tax rate is positive and βRSI < 1.

This generalizes Proposition 2, since the case with iso-elastic utility and IES less than
one is a special case satisfying the hypothesis of the proposition. Once again, the intu-
ition here is that the planner exploits anticipatory effects by raising tax rates over time to
increase present savings.

The result requires βRSI < 1 at the steady state, which is satisfied when savings are
linear in income, since then SI R = 1 at a steady state. Note that savings are linear in
income in the isoelastic utility case. More generally, RSI < 1 is natural, as it ensures local
stability for capital given a fixed steady-state return, i.e. the dynamics implied by the
recursion kt+1 = S(Rkt, R, R, · · · ) for fixed R.

Inverse Elasticity Formula. There is a long tradition relating optimal tax rates to elas-
ticities. In the context of our general savings model, spelled out above, we derive the
following “inverse elasticity rule”

T = 1− R
R∗

=
1− βRSI

1 + ∑∞
t=1 β−t+1εS,t

, (4)

where εS,t ≡ Rt
S

∂S
∂Rt

(R0k0; R1, R2, . . .) denotes the elasticity of savings with respect to future
interest rates evaluated at the steady state in c, k, and R. Although the right hand side is
endogenous, equation (4) is often interpreted as a formula for the tax rate. Our inverse
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elasticity formula is closely related to a condition derived by Piketty and Saez (2013, see
their Section 3.3, equation 16).25

We wish to make two points about our formula. First, note that the relevant elasticity
in this formula is not related to the response of savings to current, transitory or permanent,
changes in interest rates. Instead, the formula involves a sum of elasticities of savings
with respect to future changes in interest rates. Thus, it involves the anticipatory effects
discussed above. Indeed, the variation behind our formula changes the after-tax interest
rate at a single future date T, and then takes the limit as T → ∞. For any finite T, the
term ∑T

t=1 β−t+1εS,t represents the sum of the anticipatory effects on capitalists’ savings
behavior in periods 0 up to T − 1; while ∑∞

t=1 β−t+1εS,t captures the limit as T → ∞. It
is important to keep in mind that, precisely because it is anticipatory effects that matter,
the relevant elasticities are negative in standard cases, e.g. with additive utility and IES
below one.

Second, the derivation we provide in the appendix requires convergence to an interior
steady state as well as additional conditions (somewhat cumbersome to state) to allow
a change in the order of limits and obtain the simple expression ∑∞

t=1 β−t+1εS,t. These
latter conditions seem especially hard to guarantee ex ante, with assumptions on prim-
itives, since they may involve the endogenous speed of convergence to the presumed
interior steady state.26 As we have shown, in this model one cannot take these proper-
ties for granted, neither the convergence to an interior steady state (Proposition 3) nor
the additional conditions. Indeed, Proposition 4 already supplies counterexamples to the
applicability of the inverse elasticity formula.

Corollary. Under the conditions of Proposition 4, the inverse elasticity formula (4) cannot hold if
1 + ∑∞

t=1 β−t+1εS,t < 0.

This result provides conditions under which the formula (4) cannot characterize the
long run tax rate. Whenever the discounted sum of elasticities with respect to future rates,

∑∞
t=1 β−t+1εS,t, is negative and less than −1, the formula implies a negative limit tax rate.

Yet, under the same conditions as in Proposition 4, this is not possible since this result
shows that if convergence takes place, the tax rate is positive.

25Their formula is derived under the special assumptions of additively separable utility, an exogenously
fixed international interest rate and an exogenous wage. None of this is important, however. The two
formulas remain different because of slightly different elasticity definitions; ours is based on partial deriva-
tives of the primitive savings function S with respect to a single interest rate change, while theirs is based on
the implicit total derivative of the capital stock sequence with respect to a permanent change in the interest
rate.

26Unfortunately, one cannot ignore transitions by choice of a suitable initial condition. For example, even
in the additive utility case with σ < 1 and even if we start at the zero capital tax steady state, capital does
not stay at this level forever. Instead, capital first falls and then rises back up at a potentially slow rate.
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The case with additive and iso-elastic utility is an extreme example where the sum of
elasticities ∑∞

t=1 β−t+1εS,t diverges. As it turns out, in this case β−tεS,t = −σ−1
σ

1−β
β at a

steady state and the sum of elasticities diverges. It equals +∞ if the IES is greater than
one, or −∞ if the IES is less than one.27 In both cases, formula (4) suggests a zero steady
state tax rate. Piketty and Saez (2013) use this to argue that this explains the Chamley-
Judd result of a zero long-run tax. However, as we have shown, when the IES is less than
one the limit tax rate is not zero. This counterexample to the applicability of the inverse
elasticity formula (4) assumes additive utility and, thus, an infinite sum of elasticities.
However, the problem may also arise for non-additive preferences or with ad hoc saving
functions. Indeed, the conditions for the corollary may be met in cases where the sum of
elasticities is finite, as long as its value is sufficiently negative.

It should be noted that our corollary provides sufficient conditions for the formula to
fail, but other counterexamples may exist outside its realm. Suggestive of this is the fact
that when the denominator is positive but small the formula may yield tax rates above
100%, which seems nonsensical, requiring R < 0. More generally, very large tax rates
may be inconsistent with the fact that steady state capital must remain above kg > 0.

To summarize, the inverse elasticity formula (4) fails in important cases, providing
misleading answers for the long run tax rate. This highlights the need for caution in the
application of steady state inverse elasticity rules.

2.4 Redistribution Towards Capitalists

In the present model, a desire to redistribute towards workers, away from capitalists, is
a prerequisite to create a motive for positive wealth taxation. Proposition 3 assumes no
weight on capitalists, γ = 0, to ensure that desired redistribution runs in this direction.
When γ > 0 the same results obtain as long as the desire for redistribution continues to
run from capitalists towards workers. In contrast, when γ is high enough the desired
redistribution flips from workers to capitalists. When this occurs, the optimum naturally
involves negative tax rates, to benefit capitalists.

We verify these points numerically. Figure 3 illustrates the situation by fixing σ = 1.25
and varying the weight γ. Since initial capital is set at the zero-tax steady state, k∗, the
direction of desired redistribution flips exactly at γ∗ = u′(c∗)/U′(C∗). At this value of
γ, the planner is indifferent between redistributing towards workers or capitalists at the
zero-tax steady state (k∗, c∗, C∗).28 When σ > 1 and γ > γ∗ the solution converges to

27Proposition 12 in the appendix shows that the infinite sum ∑∞
t=1 β−t+1εS,t also diverges for general

recursive, non-additive preferences.
28Rather than displaying γ in the legend for Figure 3, we perform a transformation that makes it more
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Figure 3: Wealth taxes diverge as long as the planner has a desire for redistribution.
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Note. This figure shows the optimal time paths over 300 years for the capital stock (left panel) and wealth
taxes (right panel), for various redistribution preferences (zero represents no desire for redistribution; see
footnote 28).

the highest sustainable capital kg, the highest solution to 1
β k + g = f (k) + (1− δ)k, rather

than kg, the lowest solution to the same equation.
A deeper understanding of the dynamics can be grasped by noting that the planning

problem is recursive in the state variable (kt, Ct−1). It is then possible to study the dy-
namics for this state variable locally, around the zero tax steady state, by linearizing the
first-order conditions (2). We do so for a continuous-time version of the model, to ensure
that our results are comparable to Kemp et al. (1993). The details are contained in the
appendix. We obtain the following characterization.

Proposition 5. For a continuous-time version of the model,

(a) if σ > 1, the zero-tax steady state is locally saddle-path stable;

(b) if σ < 1 and γ ≤ γ∗, the zero-tax steady state is locally stable;

(c) if σ < 1 and γ > γ∗, the zero-tax steady state may be locally stable or unstable and the
dynamics may feature cycles.

The first two points confirm our theoretical and numerical observations. For σ > 1
the solution is saddle-path stable, explaining why it does not converge to the zero-tax
steady state—except for the knife-edged cases where there is no desire for redistribution,
in which case the tax rate is zero throughout. For σ < 1 the solution converges to the

easily interpretable: we report the proportional change in consumption for capitalists that would be desired
at the steady state, e.g. −0.4 represents that the planner’s ideal allocation of the zero-tax output would
feature a 40% reduction in the consumption of capitalists, relative to the steady state value C = 1−β

β k. The
case γ = γ∗ corresponds to 0 in this transformation.
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zero tax steady state whenever redistribution towards workers is desirable. This lends
theoretical support to our numerical findings for σ < 1, discussed earlier and illustrated
in Figure 1.

The third point raises a distinct possibility which is not our focus: the system may
become unstable or feature cyclical dynamics. This is consistent with Kemp et al. (1993),
who also studied the linearized system around the zero-tax steady state. They reported
the potential for local instability and cycles, applying the Hopf Bifurcation Theorem.
Proposition 5 clarifies that a necessary condition for this dynamic behavior is σ < 1 and
γ > γ∗. The latter condition is equivalent to a desire to redistribute away from workers
towards capitalists. We have instead focused on low values of γ that ensure that desired
redistribution runs from capitalists to workers. For this reason, our results are completely
distinct to those in Kemp et al. (1993).

3 Representative Agent Ramsey

In the previous section we worked with the two-class model without government debt in
Judd (1985, Section 3). Chamley (1986), in contrast, studied a representative agent Ramsey
model with unconstrained government debt; Judd (1999) adopted the same assumptions.
This section presents results for such representative agent frameworks.

We first consider situations where the upper bounds on capital taxation do not bind in
the long run (Section 3.1). We then prove, for additively separable preferences, that these
bounds may, in fact, bind indefinitely (Section 3.2). Readers mainly interested in the latter
result may skip Section 3.1.

3.1 First Best or Zero Taxation of Zero Wealth?

In this subsection, we first review the discrete-time model and zero capital tax steady
state result in Chamley (1986, Section 1) and then present a new result. We show that
if the economy settles down to a steady state where the bounds on the capital tax are
not binding, then the tax on capital must be zero. This result holds for general recur-
sive preferences that, unlike time-additive utility, allow the rate of impatience to vary.
Non-additive utility constituted an important element in Chamley (1986, Section 1), to en-
sure that zero-tax results were not driven by an “infinite long-run elasticity of savings”.29

29At any steady state with additive utility one must have R = 1/β for a fixed parameter β ∈ (0, 1). This
is true regardless of the wealth or consumption level. In this sense, the supply of savings is infinitely elastic
at this rate of interest.
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However, we also show that other implications emerge away from additive utility. In
particular, if the economy converges to a zero-tax steady state there are two possibilities.
Either private wealth has been wiped out, in which case nothing remains to be taxed,
or the tax on labor also falls to zero, in which case capital income and labor income are
treated symmetrically. These implications paint a very different picture, one that is not
favorable to the usual interpretation of zero capital tax results.

Preferences. We write the representative agent’s utility as V(U0, U1, . . .) with per period
utility Ut = U(ct, nt) depending on consumption ct and labor supply nt. Assume that
utility V is increasing in every argument and satisfies a Koopmans (1960) recursion

Vt = W(Ut, Vt+1) (5a)

Vt = V(Ut, Ut+1, . . .) (5b)

Ut = U(ct, nt). (5c)

Here W(U, V′) is an aggregator function. We assume that both U(c, n) and W(U, V′) are
twice continuously differentiable, with WU, WV , Uc > 0 and Un < 0. Consumption and
leisure are taken to be normal goods,

Ucc

Uc
− Unc

Un
≤ 0 and

Ucn

Uc
− Unn

Un
≤ 0,

with at least one strict inequality.
Regarding the aggregator function, the additively separable utility case amounts to

the particular linear choice W(U, V′) = U + βV′ with β ∈ (0, 1). Nonlinear aggregators
allow local discounting to vary with U and V′, as in Koopmans (1960), Uzawa (1968)
and Lucas and Stokey (1984). Of particular interest is how the discount factor varies
across potential steady states. Define Ū(V) as the solution to V = W(Ū(V), V) and let
β̄(V) ≡ WV(Ū(V), V) denote the steady state discount factor. It will prove useful below
to note that the strict monotonicity of V immediately implies that β̄(V) ∈ (0, 1) at any
steady state with utility V.30

Technology. The economy is subject to the sequence of resource constraints

ct + kt+1 + gt ≤ F(kt, nt) + (1− δ)kt t = 0, 1, . . . (6)

30A positive marginal change dU in the constant per period utility stream increases steady state utility by
some constant dV . By virtue of (5a) this implies dV = WUdU + WVdV , which yields a contradiction unless
WV < 1.
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where F is a concave, differentiable and constant returns to scale production function
taking as inputs labor nt and capital kt, and the parameter δ ∈ [0, 1] is the depreciation
rate of capital. The sequence for government consumption, {gt}, is given exogenously.

Markets and Taxes. Labor and capital markets are perfectly competitive, yielding before
tax wages and rates of return given by w∗t = Fn(kt, nt) and R∗t = Fk(kt, nt) + 1− δ.

The agent maximizes utility subject to the sequence of budget constraints

c0 + a1 ≤ w0n0 + R0k0 + Rb
0b0,

ct + at+1 ≤ wtnt + Rtat t = 1, 2, . . . ,

and the No Ponzi condition at+1
R1R2···Rt

→ 0. The agent takes as given the after-tax wage
wt and the after-tax gross rates of return, Rt. Total assets at = kt + bt are composed of
capital kt and government debt bt; with perfect foresight, both must yield the same return
in equilibrium for all t = 1, 2, . . . , so only total wealth matters for the agent; this is not
true for the initial period, where we allow possibly different returns on capital and debt.
The after-tax wage and return relate to their before-tax counterparts by wt = (1− τn

t )w
∗
t

and Rt = (1− τt)(R∗t − 1) + 1 (here it is more convenient to work with a tax rate on net
returns than on gross returns).

Importantly, we follow Chamley (1986) and allow for an indirect constraint on the cap-
ital tax rate given by Rt ≥ 1. For positive before-tax interest rates R∗ − 1 this is precisely
equivalent to assuming τt ≤ 1.31 As is well understood, without constraints on capital
taxation the solution involves extraordinarily high initial capital taxation, typically com-
plete expropriation, unless the first best is achieved first. Taxing initial capital mimics
the missing lump-sum tax, which has no distortionary effects. We note that our main re-
sult in this section, Proposition 6, does not depend on the specific form of the capital tax
constraint.

Planning problem. The implementability condition for this economy is

∞

∑
t=0

(V ctct + Vntnt) = Vc0

(
R0k0 + Rb

0b0

)
, (7)

whose derivation is standard. In the additive separable utility case Vct = βtUct and Vnt =

βtUnt and expression (7) reduces to the standard implementability condition popularized

31When R∗ − 1 is negative, however, an upper bound directly imposed on taxes τt allows arbitrarily low
after-tax interest rates Rt.
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by Lucas and Stokey (1983) and Chari et al. (1994). Given R0 and Rb
0, any allocation

satisfying the implementability condition and the resource constraint (6) can be sustained
as a competitive equilibrium for some sequence of prices and taxes.32

To enforce the constraints on the taxation of capital in periods t = 1, 2, . . . we impose

Vct = Rt+1Vct+1, (8a)

Rt ≥ 1. (8b)

The planning problem maximizes V(U0, U1, . . .) subject to (6), (7) and (8). In addition, we
take Rb

0 as given. The constraint Rt ≥ 1 may or may not bind forever. In this subsection
we are interested in situations where the constraint does not bind asymptotically, i.e. it
is slack after some date T < ∞. In the next subsection we discuss the possibility of the
constraint binding forever.

Chamley (1986) provided the following result—slightly adjusted here to make explicit
the need for the steady state to be interior, for multipliers to converge and for the bounds
on taxation to be asymptotically slack.

Theorem 3 (Chamley, 1986, Theorem 1). Suppose the optimum converges to an interior steady
state where the constraints on capital taxation are asymptotically slack. Let Λ̃t = VctΛt denote
the multiplier on the resource constraint (6) in period t. Suppose further that the multiplier Λt

converges to an interior point Λt → Λ > 0. Then the tax on capital converges to zero Rt
R∗t
→ 1.

The proof is straightforward. Consider a sufficiently late period t, so that the bounds
on the capital tax rate are no longer binding. Then the first-order condition for kt+1 in-
cludes only terms from the resource constraint (6) and is simply Λ̃t = Λ̃t+1R∗t+1. Equiva-
lently, using that Λ̃t = VctΛt we have

VctΛt = Vct+1Λt+1R∗t+1.

On the other hand the representative agent’s Euler equation (8a) is

Vct = Vct+1Rt+1.

The result follows from combining these last two equations.
With the specific constraint Rt ≥ 1 on capital taxation assumed here and in Chamley

(1986), there would be no need to require the constraints on capital taxation not to bind.
The reason is that in this case the constraints imposed by (8) do not involve kt+1, so the

32The argument is identical to that in Lucas and Stokey (1983) and Chari et al. (1994).
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argument above goes through unchanged. In fact, this is essentially the form that Theo-
rem 1 in Chamley (1986) takes, although the assumption of converging multipliers is not
stated explicitly, but imposed within the proof. We chose to explicitly assume the capital
tax constraints to be no longer binding to allow a broader applicability of the theorem to
situations without the specific constraints in (8).33

The main result of this subsection is stated in the next proposition. Relative to Theo-
rem 3, we make no assumptions on multipliers and prove that the steady-state tax rate is
zero. More importantly, we derive new implications of reaching an interior steady state.

Proposition 6. Suppose the optimal allocation converges to an interior steady state and assume
the bounds on capital tax rates are asymptotically slack. Then the tax on capital is asymptotically
zero. In addition, if the discount factor is locally non-constant at the steady state, so that β̄′(V) 6=
0, then either

(a) private wealth converges to zero, at → 0; or

(b) the allocation converges to the first-best, with a zero tax rate on labor.

This result shows that at any interior steady state where the bounds on capital taxes
do not bind, the tax on capital is zero; this much basically echoes Chamley (1986), or our
rendering in Theorem 3. However, as long as the rate of impatience is not locally constant,
so that β̄′(V) 6= 0, the proposition also shows that this zero tax result comes with other
implications. There are two possibilities. In the first possibility, the capital income tax base
has been driven to zero—perhaps as a result of heavy taxation along the transition. In
the second possibility, the government has accumulated enough wealth—perhaps aided
by heavy taxation of wealth along the transition—to finance itself without taxes, so the
economy attains the first best. Thus, capital taxes are zero, but the same is true for labor
taxes.

To sum up, if the economy converges to an interior steady state, then either both labor
and capital are treated symmetrically or there remains no wealth to be taxed. Both of these
implications do not sit well with the usual interpretation of the zero capital tax result. To
be sure, in the special (but commonly adopted) case of additive separable utility one can
justify the usual interpretation where private wealth is spared from taxation and labor
bears the entire burden. However, this is no longer possible when the rate of impatience
is not constant. In this sense, the usual interpretation describes a knife edged situation.

33Note that as long as the multiplier Λt converges, one does not even need to assume the allocation con-
verges to arrive at the zero-tax conclusion. This is essentially the argument used by Judd (1999). However,
the problem is that one cannot guarantee that the multiplier converges. We shall discuss this in subsection
3.3.
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3.2 Long Run Capital Taxes Binding at Upper Bound

We now show that the bounds on capital tax rates may bind forever, contradicting a claim
by Chamley (1986). This claim has been echoed throughout the literature, e.g. by Judd
(1999), Atkeson et al. (1999) and others.

For our present purposes, and following Chamley (1986) and Judd (1999), it is con-
venient to work with a continuous-time version of the model and restrict attention to
additively separable preferences,34

∫ ∞

0
e−ρtU(ct, nt)dt. (9a)

U(c, n) = u(c)− v(n) with u(c) =
c1−σ

1− σ
, v(n) =

n1+ζ

1 + ζ
, (9b)

where σ, ζ > 0. Following Chamley (1986), we adopt an iso-elastic utility function over
consumption; this is important to ensure the bang-bang nature of the solution. We also as-
sume iso-elastic disutility from labor, but we believe similar results to ours can be shown
for arbitrary convex disutility functions v(n). The resource constraint is

ct + k̇t + g = f (kt, nt)− δkt, (10)

where f has constant returns to scale with f (0, n) = f (k, 0) = 0, is differentiable and
strictly concave in each argument, and satisfies the usual Inada conditions. For simplicity,
government consumption is taken to be constant at g > 0. We denote the before-tax net
interest rate by r∗t = fk(kt, nt)− δ. The implementability condition is now∫ ∞

0
e−ρt (u′(ct)ct − v′(nt)nt

)
= u′(c0)a0, (11)

where a0 = k0 + b0 denotes initial private wealth, consisting of capital k0 and government
bonds b0. Since unrestricted subsidies to capital act as lump-sum tax when initial private
wealth is negative, we focus on the case where initial private wealth is positive, a0 > 0.35

34Continuous time allowed Chamley (1986) to exploit the bang-bang nature of the optimal solution. Since
we focus on cases where this is not the case it is less crucial for our results. However, we prefer to keep the
analyses comparable.

35Observe that, in Proposition 7, a0 > 0 is always satisfied if b0 ∈ [b, b] for σ > 1, so the focus on a0 > 0
does not affect our main result.
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To enforce bounds on capital taxation we follow Chamley (1986) and impose

θ̇t = θt(ρ− rt), (12a)

rt ≥ 0, (12b)

where θt = u′(ct) denotes the marginal utility of consumption, and rt denotes the after-
tax interest rate. Whenever the before-tax return on capital r∗t ≡ fk(kt, nt)− δ is positive,
constraint (12b) corresponds to a capital tax constraint τt = 1− rt/r∗t ≤ τ̄ with τ̄ ≡ 1. The
planning problem maximizes (9a) subject to (10), (11) and (12).

Chamley (1986, Theorem 2, pg. 615) formulated the following claim regarding the
path for capital tax rates.36

Claim. There exists a time T with the following three properties:

(a) for t < T, the constraint (12b) is binding, that is, rt = 0 and τt = 1;

(b) for t > T capital income is untaxed, that is, rt = r∗t and τt = 0;

(c) T < ∞.

At a crucial juncture in the proof of this claim, Chamley (1986) states in support of part
(c) that “The constraint rt ≥ 0 cannot be binding forever (the marginal utility of private
consumption [...] would grow to infinity [...] which is absurd).”37 Our next result shows
that there is nothing absurd about this within the logic of the model and that, quite to
the contrary, part (c) of the above claim is incorrect: indefinite taxation, T = ∞, may be
optimal.

Before presenting our result, some definitions are in order. Given a path for govern-
ment spending, the tax burden the government must impose varies with initial govern-
ment debt b0. As with a regular, “static Laffer curve” there exists a maximum burden of
taxes agents can finance, here given by a threshold level for initial government debt, b.
When b0 > b, no feasible allocation exists, while there are always feasible allocations if
b0 < b. Naturally, at the peak of this “Laffer curve” when b0 = b the tax on capital must
be set to its upper bound indefinitely. Crucially, however, it may be optimal to set the tax
on capital at its upper bound indefinitely when b0 < b, even not doing so is feasible.

36Similar claims are made in Atkeson et al. (1999), Judd (1999) and many other papers.
37It is worth pointing out, however, that although Chamley (1986) claims T < ∞ it never states that T is

small. Indeed, it cautions to the possibility that it is quite large saying “the length of the period with capital
income taxation at the 100 per cent rate can be significant.”

27



Proposition 7. Suppose preferences are given by (9). Fix any initial capital stock k0 > 0 and
assume initial private wealth k0 + b0 is positive.

Then, the bang-bang property holds, so that at any optimum of the planning problem there
exists a time T ∈ [0, ∞], such that capital taxes τt are set at their upper bound τ̄ = 1 before T and
set to zero thereafter. Whenever the economy is not at its first best, T is strictly positive. Moreover:

A. For σ > 1, there exists a lower bound on debt b < b, such that:

(a) If b0 = b, the unique optimum has T = ∞ and there is no feasible allocation with
T < ∞.

(b) If b0 ∈ [b, b), the unique optimum has T = ∞ but there exist feasible allocations with
T < ∞.

(c) If b0 < b, any optimum has T < ∞.

B. For σ = 1:

(a) If b0 = b, the unique optimum has T = ∞ and there is no feasible allocation with
T < ∞.

(b) If b0 < b, any optimum has T < ∞.

C. For σ < 1: Any optimum has T < ∞.

Proposition 7 offers a full characterization of the optimal capital tax policy in this econ-
omy. First, we prove a bang-bang property of capital taxes, according to which capital
taxes are binding at their upper bound, τt = 1, until some time T and drop to zero there-
after. It turns out that previous proofs of the bang-bang property (see, e.g., Chamley
(1986) or Atkeson et al. (1999)) heavily relied on the false premise that capital taxes can-
not be positive forever. We provide a new proof that avoids this issue.

Using the bang-bang property of capital taxes, we then characterize optimal capital
taxes, distinguishing by the position of σ relative to 1. For σ > 1, we prove that it is
optimal to tax capital indefinitely for a positive-measure interval of b0. Crucially, for
b0 < b indefinite taxation is not driven by budgetary need—there are feasible plans with
T < ∞; however, the plan with T = ∞ is simply better. This is illustrated in Figure 4 with
a qualitative plot of the set of states (k0, b0) for which indefinite capital taxation is optimal
if σ > 1. By contrast, for σ < 1 we show that at any optimum, T < ∞, so T = ∞ is never
optimal. The case σ = 1 lies in between, in that T = ∞ is optimal only if b0 = b.

The basic idea behind our proof of part A of Proposition 7 is simple. To illustrate it, let
λt denote the multiplier on the resource constraint (10) at time t and µ be the multiplier
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Figure 4: Graphical representation of the case σ > 1 in Proposition 7.

T = ∞

T < ∞

k0

b0

on the IC constraint (11). Both can be proven to be non-negative. Using this notation, if
the period T of positive capital taxation is finite, the first order condition for consumption
ct after time T reads

λt = (1− µ(σ− 1))u′(ct),

which requires µ ≤ 1/(σ− 1). Yet, as initial government debt b0 becomes large, b0 > b,
so does µ, to the point where it crosses 1/(σ− 1), making it impossible for finite capital
taxation to be optimal. Therefore, a sufficiently large burden of taxation due to high
b0, coupled with an intertemporal elasticity σ−1 less than 1 points to indefinite capital
taxation. To make this approach watertight, we specifically construct allocations with
T = ∞ and show that they satisfy the first order conditions whenever b0 ≥ b. Since, as we
show, the planning problem can be recast into a concave maximization problem, the first
order conditions (together with transversality conditions) are sufficient for an optimum.

Our next result assumes g = 0 and constructs the solution for a set of initial conditions
that allow us to guess and verify its form.

Proposition 8. Suppose that preferences are given by (9) with σ > 1, and that g = 0. There
exist k < k̄ and b0(k0) such that: for any k0 ∈ (k, k̄] and initial debt b0(k0) the optimum satisfies
τt = 1 for all t ≥ 0 and ct, kt, nt → 0 exponentially with constant nt/kt and ct/kt.

Under the conditions stated in the proposition the solution converges to zero in a ho-
mogeneous, constant growth rate fashion. This explicit example illustrates that conver-
gence takes place, but not to an interior steady state. It turns out that this latter property
is more general: at least with additively separable utility, whenever indefinite taxation
of capital is optimal, T = ∞, no interior steady state exists, even if capital taxes are con-
strained by tax bounds τ̄ < 1, that is, if we impose rt ≥ r∗t (1− τ).

To see why this is the case consider first the case with τ̄ = 1. Then the after tax in-
terest rate is zero whenever the bound is binding. Since the agent discounts the future
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positively this prevents a steady state. In contrast, when τ̄ < 1 the before-tax interest rate
may be positive and the after tax interest rate equal to the discount rate, (1− τ̄)r∗ = ρ, the
condition for constant consumption. This suggests the possibility of a steady state. How-
ever, we must also verify whether labor, in addition to consumption, remains constant.
This, in turn, requires a constant labor tax. Yet, one can show that under the assumptions
of Proposition 7, but allowing τ̄ < 1, we must have

∂tτ
n
t = (1− τn

t )τtr∗t ,

implying that the labor tax strictly rises over time whenever the capital tax is positive,
τt > 0. This rules out an interior steady state. Intuitively, the capital tax inevitably distorts
the path for consumption, but the optimum attempts to undo the intertemporal distortion
in labor by varying the tax on labor. We conjecture that the imposition of an upper bound
on labor taxes solves the problem of an ever-increasing path for labor taxes, leading to the
existence of interior steady states with positive capital taxation.

3.3 Revisiting Judd (1999)

Up to this point we have focused on the Chamley-Judd zero-tax results. A follow-up
literature has offered both extensions and interpretations. One notable case doing both
is Judd (1999). This paper is related to Chamley (1986) in that it studies a representative
agent economy with perfect financial markets and unrestricted government bonds. It also
allows for other state variables, such as human capital, and in that sense builds on Judd
(1985, Section 5) and Jones et al. (1993). At its core, Judd (1999) provides a zero capital
tax result without requiring the allocation to converge to a steady state. The paper also
offers a connection between capital taxation and rising consumption taxes to provide an
intuition for zero-tax results. Let us consider each of these two points in turn.

Bounded Multipliers and Zero Average Capital Taxes. Abstracting away from some of
the additional ingredients in Judd (1999), the essence of the main result in Judd (1999) can
be restated using our continuous-time setup from Section 3.2. With τ̄ = 1, the planning
problem maximizes (9a) subject to (10), (11), (12a), and (12b). Let Λ̂t = θtΛt denote
the co-state for capital, that is, the current value multiplier on equation (10), satisfying
˙̂Λt = ρΛ̂t − r∗t Λ̂t. Using that ˙̂Λt/Λ̂t = θ̇t/θt + Λ̇t/Λt and θ̇t/θt = ρ− rt we obtain

Λ̇t

Λt
= rt − r∗t .
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If Λt converges then rt − r∗t → 0. Thus, the Chamley (1986) steady state result actually
follows by postulating the convergence of Λt, without assuming convergence of the al-
location. Judd (1999, pg. 13, Theorem 6) goes down this route, but assumes that the
endogenous multiplier Λt remains in a bounded interval, instead of assuming that it con-
verges.

Theorem 4 (Judd, 1999). Let θtΛt denote the (current value) co-state for capital in equation (10)
and assume

Λt ∈ [Λ, Λ̄],

for 0 < Λ ≤ Λ̄ < ∞. Then the cumulative distortion up to t is bounded,

log
(

Λ0

Λ̄

)
≤
∫ t

0
(rs − r∗s )ds ≤ log

(
Λ0

Λ

)
,

and the average distortion converges to zero,

1
t

∫ t

0
(rs − r∗s )ds→ 0.

In particular, under the conditions of this theorem, the optimum cannot converge to
a steady state with a positive tax on capital.38 More generally, the condition requires
departures of rt from r∗t to average zero.

Note that our proof proceeded without any optimality condition except the one for
capital kt.39 In particular, we did not invoke first-order conditions for the interest rate rt

nor for the tax rate on capital τt. Naturally, this poses two questions. Do the bounds on
Λt essentially assume the result? And are the bounds on Λt consistent with an optimum?

Regarding the first question, we can say the following. The multiplier e−ρtΛ̂t repre-
sents the planner’s (time 0) social marginal value of resources at time t. Thus,

MRSSocial
t,t+s = e−ρs Λ̂t+s

Λ̂t
= e−

∫ s
0 r∗t+s̃ ds̃

represents the marginal rate of substitution between t and t+ s, which, given the assump-
tion τ̄ = 1, is equated to the marginal rate of transformation. The private agent’s marginal

38The result is somewhat sensitive to the assumption that τ̄ = 1; when τ̄ 6= 1 and technology is nonlinear,
the co-state equation acquires other terms, associated with the bounds on capital taxation.

39In this continuous time optimal control formulation, the costate equation for capital is the counterpart
to the first-order condition with respect to capital in a discrete time formulation. Indeed, the same result
can be easily formulated in a discrete time setting.
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rate of substitution is
MRSPrivate

t,t+s = e−ρs θt+s

θt
= e−

∫ s
0 rt+s̃ds̃,

where θt represents marginal utility. It follows, by definition, that

MRSSocial
t,t+s =

Λt+s

Λt
·MRSPrivate

t,t+s .

This expressions shows that the rate of growth in Λt is, by definition, equal to the wedge
between social and private marginal rates of substitution. Thus, the wedge Λt+s

Λt
= e

∫ s
0 (rt+s̃−r∗t+s̃)ds̃

is the only source of nonzero taxes. Whenever Λt is constant, social and private MRSs
coincide and the intertemporal wedge is zero, rt = r∗t ; if Λt is enclosed in a bounded
interval, the same conclusion holds on average.

These calculations afford an answer to the first question posed above: assuming the
(average) rate of growth of Λt is zero is tantamount to assuming the (average) zero long-
run tax conclusion. We already have an answer to the second question, whether the
bounds are consistent with an optimum, since Proposition 7 showed that indefinite taxa-
tion may be optimal.

Corollary. At the optimum described in Proposition 7 we have that Λt → 0 as t → ∞. Thus, in
this case the assumption on the endogenous multiplier Λt adopted in Judd (1999) is violated.

There is no guarantee that the endogenous object Λt remains bounded away from
zero, as assumed by Judd (1999), making Theorem 4 inapplicable.

Exploding Consumption Taxes. Judd (1999) also offers an intuitive interpretation for
the Chamley-Judd result based on the observation that an indefinite tax on capital is
equivalent to an ever-increasing tax on consumption. This casts indefinite taxation of
capital as a villain, since rising and unbounded taxes on consumption appear to contra-
dict standard commodity tax principles, as enunciated by Diamond and Mirrlees (1971),
Atkinson and Stiglitz (1972) and others.

The equivalence between capital taxation and a rising path for consumption taxes is
useful. It explains why prolonging capital taxation comes at an efficiency cost, since it
distorts the consumption path. If the marginal cost of this distortion were increasing in T
and approached infinity as T → ∞ this would give a strong economic rationale against
indefinite taxation of capital. We now show that this is not the case: the marginal cost
remains bounded, even as T → ∞. This explains why a corner solution with T = ∞ may
be optimal.
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We proceed with a constructive argument and assume, for simplicity, that technology
is linear, so that f (k, n)− δk = r∗k + w∗n for fixed parameters r∗, w∗ > 0.

Proposition 9. Suppose utility is given by (9), with σ > 1. Suppose technology is linear. Then
the solution to the planning problem can be obtained by solving to the following static problem:

max
T,c,n

u(c)− v(n), (13)

s.t. (1 + ψ(T)) c + G = k0 + ωn,

u′(c)c− v′(n)n = (1− τ(T))u′(c)a0,

where ω > 0 is proportional to w∗; G is the present value of government consumption; and, c
and n are measures of lifetime consumption and labor supply, respectively. The functions ψ and τ

are increasing with ψ(0) = τ(0) = 0; ψ is bounded away from infinity and τ is bounded away
from 1. Moreover, the marginal trade-off between costs (ψ) and benefits (τ) from extending capital
taxation

dψ

dτ
=

ψ′(T)
τ′(T)

is bounded away from infinity.

Given c, n and T we can compute the paths for consumption ct and labor nt. Behind
the scenes, the static problem solves the dynamic problem. In particular, it optimizes over
the path for labor taxes. In this static representation, 1 + ψ(T) is akin to a production cost
of consumption and τ(T) to a non-distortionary capital levy. On the one hand, higher T
increases the efficiency cost from the consumption path. On the other hand, it increases
revenue in proportion to the level of initial capital. Prolonging capital taxation requires
trading off these costs and benefits.

Importantly, despite the connection between capital taxation and an ever increasing,
unbounded tax on consumption, the proposition shows that the tradeoff between costs
and benefits is bounded, dψ

dτ < ∞, even as T → ∞. In other words, indefinite taxation
does not come at an infinite marginal cost and helps explain why this may be optimal.

Should we be surprised that these results contradict commodity tax principles, as
enunciated by Diamond and Mirrlees (1971), Atkinson and Stiglitz (1972) and others? No,
not at all. As general as these frameworks may be, they do not consider upper bounds on
taxation, the crucial ingredient in Chamley (1986) and Judd (1999). Their guiding prin-
ciples are, therefore, ill adapted to these settings. In particular, formulas based on local
elasticities do not apply, without further modification.

Effectively, a bound on capital taxation restricts the path for the consumption tax to lie
below a straight line going through the origin. In the short run, the consumption tax is
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constrained to be near zero; to compensate, it is optimal to set higher consumption taxes
in the future. As a result, it may be optimal to set consumption taxes as high as possible
at all times. This is equivalent to indefinite capital taxation.

4 A Hybrid: Redistribution and Debt

Throughout this paper we have strived to stay on target and remain faithful to the original
models supporting the Chamley-Judd result. This is important so that our own results are
easily comparable to those in Judd (1985) and Chamley (1986). However, many contribu-
tions since then offer modifications and extensions of the original Chamley-Judd models
and results. In this section we depart briefly from our main focus to show that our results
transcend their original boundaries and are relevant to this broader literature.

To make this point with a relevant example, we consider a hybrid model, with redistri-
bution between capitalists and workers as in Judd (1985), but sharing the essential feature
in Chamley (1986) of unrestricted government debt. It is very simple to modify the model
in Section 2 in this way. We add bonds to the wealth of capitalists at = kt + bt, modifying
equation (1c) to

βU′(Ct)(Ct + kt+1 + bt+1) = U′(Ct−1)(kt + bt)

and the transversality condition to βtU′(Ct)(kt+1 + bt+1)→ 0. Together, these two condi-
tions imply a present value implementability condition, which with U(C) = C1−σ/(1−
σ) and initial returns on capital and bonds of R0 and Rb

0 is given by

(1− σ)
∞

∑
t=0

βtU(Ct) = U′(C0)(R0k0 + Rb
0b0). (14)

Anticipated Confiscatory Taxation. For σ > 1 the left hand side in equation (14) is
decreasing in Ct and the right hand side is decreasing in C0. In particular, the values of
Ct, for all t = 0, 1, . . ., can be set infinitesimally small without violating (14). Since (14) is
strictly speaking not defined for Ct = 0, the problem without weight on capitalists (γ = 0)
has a supremum that can only be approximated as Ct → 0. Given σ > 1, this limit can be
implemented by making Rt infinitesimally small in some period t ≥ 1, or, equivalently,
setting the wealth tax (i.e. tax on gross returns) Tt in that period arbitrarily close to 100%.
This same logic applies if the tax is temporarily restricted for periods t ≤ T − 1 for some
given T, but is unrestricted in period T.

Proposition 10. Consider the two-class model from Section 2 but with unrestricted government
bonds. Suppose σ > 1 and γ = 0. If capital taxation is unrestricted in at least one period, then
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the optimum (a supremum) features a wealth tax Tt → 100% in some period t and Ct → 0 for all
t = 0, 1, . . .

This result exemplifies how extreme the tax on capital may be without bounds. In ad-
dition to this result, even when σ < 1, if no constraints are imposed on taxation except at
t = 0, then in the continuous time limit as the length of time periods shrinks to zero, tax-
ation tends to infinity. This point was also raised in Chamley (1986) for the representative
agent Ramsey model, and served as a motivation for imposing a stationary constraint,
Rt ≥ 1.

Long Run Taxation with Constraints. We now impose upper bounds on capital taxation
and show that these constraints may bind forever, just as in Section 3.2.

Proposition 11. Consider the two-class model from Section 2 but with unrestricted government
bonds. Suppose σ > 1 and γ = 0. If capital taxation is restricted by the constraint Rt ≥ 1, then
at the optimum Rt = 1 in all periods t, i.e. capital should be taxed indefinitely.

Intuitively, σ > 1 is enough to ensure indefinite taxation of capital in this model be-
cause γ = 0 makes it optimal to tax capitalists as much as possible. Similar results hold
for positive but low enough levels of γ, so that redistribution from capitalists to workers
is desired. The results also hold for less restrictive constraints than Rt ≥ 1.

Proposition 11 assumes that transfers are perfectly targeted to workers and capitalists
do not work. However, indefinite taxation, T = ∞, is also possible when these assump-
tions are relaxed, so that capitalists work and receive equal transfers. We have also main-
tained the assumption from Judd (1985) that workers do not save. In a political economy
context, Bassetto and Benhabib (2006) study a situation where all agents save (in our con-
text, both workers and capitalists) and are taxed linearly at the same rate. Indeed, they
report the possibility that indefinite taxation is optimal for the median voter.

Overall, these results suggest that indefinite taxation can be optimal in a range of mod-
els that are descendants of Chamley-Judd, with a wide range of assumptions regarding
the environment, heterogeneity, social objectives and policy instruments.

5 Conclusions

This study revisited two closely related models and results, Chamley (1986) and Judd
(1985). Our findings contradict well-known results or their standard interpretations. We
showed that, provided the intertemporal elasticity of substitution (IES) is less than one,
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the long run tax on capital can actually be positive. Empirically, an IES below one is
considered most plausible.

Why were the proper conclusions missed by Judd (1985), Chamley (1986) and many
others? Among other things, these papers assume that the endogenous multipliers asso-
ciated with the planning problem converge. Although this seems natural, we have shown
that this is not necessarily true at the optimum. In fact, on closer examination it is evi-
dent that presuming the convergence of multipliers is equivalent to the assumption that
the intertemporal rates of substitution of the planner and the agent are equal. This then
implies that no intertemporal distortion or tax is required. Consequently, analyses based
on these assumptions amount to little more than assuming zero long-run taxes.

In this paper, we have stayed away from evaluating the realism of the existing Chamley-
Judd models or proposing an alternative model. Instead, we explored the implications of
their assumptions. Different models offer different prescriptions and we should settle the
mapping from models to prescriptions, on the one hand, and discuss the applicability of
one model versus another, on the other hand. The scope of this paper has been concerned
with the former, not the latter.

Even within the two models, it may well be the case that one finds a zero long-run tax
on capital, e.g. for the model in Judd (1985) one may set σ < 1, and in Chamley (1986)
the bounds may not bind forever if debt is low enough.40 In this paper, we refrain from
making any such claim, one way or another. We confined our attention to the original
theoretical zero-tax results, widely perceived as delivering ironclad conclusions that are
independent of parameter values or initial conditions. Based on our results, we have
found little basis for such an interpretation.
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Appendix (For Online Publication)

A Recursive Formulation of (1a)

In our numerical simulations, we use a recursive representation of the Judd (1985) econ-
omy. The two constraints in the planning problem feature the variables Ct−1, kt, Ct, kt+1
and ct. This suggests a recursive formulation with (kt, Ct−1) as the state and ct as a control.
The associated Bellman equation is then

V(k, C−) = max
c≥0,(k′,C)∈A

{u(c) + γU(C) + βV(k′, C)} (15)

c + C + k′ + g = f (k) + (1− δ)k
βU′(C)(C + k′) = U′(C−)k
c, C, k′ ≥ 0.

Here, A is the feasible set, that is, states (k0, C−1) such that there exists a sequence {kt+1, Ct}
satisfying all the constraints in (1) including the transversality condition. At t = 0, cap-
ital k0 is given, so there is no need to impose βU′(C0)(C0 + k1) = U′(C−1)k0. Thus, the
planner maximizes V(k0, C−1) with respect to C−1. If V is differentiable, the first order
condition is

VC(k0, C−1) = 0.

Since one can show that µt = VC(kt, Ct−1)U′′(Ct−1)kt, this is akin to the condition µ0 = 0
in equation (2a).41

B Proof of Proposition 3

The proof of Proposition 3 consists of three parts. In the first part, we provide a few
definitions that are necessary for the proof. In particular, we define the feasible set of
states. In the second part, we characterize the feasible set of states geometrically. The
proofs for the results in that part are somewhat cumbersome and lengthy, so they are
relegated to the end of this section to ensure greater readability. Finally, in the third part,

41Alternatively, we may impose that R0 is taken as given, with R0 = R∗0 for example, to exclude an initial
capital tax. In that case the planner solves

max
k1,c0,C0

{u(c0) + γU(C0) + βV(k1, C0)}

subject to

C0 + k1 = R0k0

c0 + C0 + k1 = f (k0) + (1− δ)k0

c0, C0, k1 ≥ 0.

This alternative gives rise to similar results.
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we use our geometric results to prove Proposition 3. Readers interested only in the main
steps of the proof are advised to jump straight to the third part.

B.1 Definitions

For the proof of Proposition 3 we make a number of definitions, designed to simplify
the exposition. A state (k, C−) as in the recursive statement (15) of problem (1a) will
sometimes be abbreviated by z, and a set of states by Z. The total state space is denoted
by Zall ⊂ R2

+ and is defined below. It will prove useful at times to express the set of
constraints in (15) as

k′ = x− C−

(
βx
k

)1/σ

(16a)

C = C−

(
βx
k

)1/σ

(16b)

Cσ/(σ−1)
−

(
β

k

)1/(σ−1)

≤ x ≤ f (k) + (1− δ)k− g, (16c)

where x = k′ + C replaces c = f (k) + (1− δ)k − g − x as control. In the last equation,
the first inequality ensures non-negativity of k′ while the second inequality is merely the
resource constraint. Substituting out x, we can also write the law of motion for capital as
k′ = 1

β
k

Cσ
−

Cσ − C, which we will be using below.
The whole set of future states z′ which can follow a given state z = (k, C−) is denoted

by Γ(z), which can be the empty set. We will call a path {zt} feasible if (a) zt+1 ∈ Γ(zt) for
all t ≥ 0, which precludes Γ(zt) from being empty; and (b) if the transversality condition
holds along the path, βtC−σ

t kt+1 → 0. Similarly, a state z will be called feasible, if there
exists a feasible (infinite) path {zt} starting at z0 = z. In this case, z is generated by {zt}.
Because z1 ∈ Γ(z), we also say z is generated by z1. A steady state z = (k, C−) ∈ R2

+ is
defined to be a state with C− = (1− β)/βk. For very low and high capital levels k, steady
states turn out to be infeasible, but all others are self-generating, z ∈ Γ(z), as we argue
below. Similarly, a set Z is called self-generating if every z ∈ Z is generated by a sequence
in Z. Denote by Z∗ (= A in the notation above) the set of all feasible states. An integral
part of the proof will be to characterize Z∗.

It will be important to specify between which capital stocks the economy is moving.
For this purpose, define kg and kg > kg to be the two roots to the equation

k = f (k) + (1− δ)k− g︸ ︷︷ ︸
≡F(k)

−1− β

β
k. (17)

Demanding that kg > kg is tantamount to specifying F′(kg) < 1/β < F′(kg). Equation
(17) was derived from the resource constraint, demanding that capitalists’ consumption is
at the steady state level of C = 1−β

β k and workers’ consumption is equal to zero. Equation
(17) need not have two solutions, not even a single one, in which case government con-
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Figure 5: The state space of the Judd (1985) planning problem.

wg

wg
(k∗, C∗)

(kg, Cg)

(kg, Cg)

Z2

Z1
Z3

Z4

k̄
k

C−

Note. This figure shows the two-dimensional state space of the Judd (1985) model. The entire state space is
denoted by Zall, which includes the feasible set Z∗ (between the two red curves), and all sets Zi (separated
by the blue curves). The point (k∗, C∗) is the zero-tax steady state. Showing that this is the qualitative shape
of the feasible set Z∗ is an integral part of the proof of Proposition 3

sumption is unsustainably high for any capital stock. Such values for g are uninteresting
and therefore ruled out. Corresponding to kg and kg, we define Cg ≡ (1− β)/β kg and
Cg ≡ (1− β)/β kg as the respective steady state consumption of capitalists. The steady
states (kg, Cg) and (kg, Cg) represent the lowest and highest feasible steady states, respec-
tively. The reason for this is that the steady state resource constraint (17) is violated for
any k 6∈ [kg, kg].

As in the Neoclassical Growth Model, the set of feasible states of this model is easily
seen to allow for arbitrarily large capital stocks. This is why we cap the state space for
high values of capital, and we take the total state space to be Zall = [0, k̄]×R+ for states
(k, C−), where k̄ ≡ max{kmax, k0} and k = kmax solves k = f (k) + (1− δ)k− g. This way,
the set of capital stocks that are resource feasible given an initial capital stock of k0 must
necessarily lie in the interval [0, k̄], so the restriction for k̄ is without loss of generality for
any given initial capital stock k0. Note that with this state space, the set of feasible states
Z∗ is also capped at k̄ in its k-component.

We now characterize the geometry of the set of feasible states Z∗. The results derived
there are essential for the actual proof of Proposition 3 in Section B.3.

B.2 Geometry of Z∗

For better guidance through this section, we refer the reader to figure 5, which shows the
typical shape of Z∗. The main results in this section are characterizations of the bottom
and top boundaries of Z∗. We proceed by splitting up the state space, Zall = [0, k̄]×R+,
into four pieces and characterizing the feasible states in each of the four pieces.
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Define

wg(k) ≡


1−β

β k for 0 ≤ k ≤ kg

Cg

(
k
kg

)1/σ
for kg ≤ k ≤ k̄

wg(k) ≡


1−β

β k for 0 ≤ k ≤ kg

Cg
(

k
kg

)1/σ
for kg ≤ k ≤ k̄,

and split up the state space as follows (see figure 5)

Zall =

{
k < kg, C− ≥

1− β

β
k
}

︸ ︷︷ ︸
Z1

∪
{

C− < wg(k)
}︸ ︷︷ ︸

Z2

∪
{

k ≥ kg, wg(k) ≤ C− ≤ wg(k)
}︸ ︷︷ ︸

Z3

∪
{

k ≥ kg, C− ≥ wg(k)
}︸ ︷︷ ︸

Z4

.

Lemma 1 characterizes the feasible states in sets Z1 and Z2.

Lemma 1. Z∗ ∩ Z1 = Z∗ ∩ Z2 = ∅. All states with k < kg or C− < wg(k) are infeasible.

Proof. See Subsection B.4.1.

In particular, Lemma 1 shows that all states with C− < wg(k) are infeasible. Lemma
2 below complements this result stating that all states with wg(k) ≤ C− ≤ wg(k) (and
k ≥ kg) in fact are feasible, that is, lie in Z∗. This means, {C− = wg(k), k ≥ kg} constitutes
the lower boundary of the feasible set Z∗.

Lemma 2. Z3 ⊆ Z∗, or equivalently, all states with wg(k) ≤ C− ≤ wg(k) and k ≥ kg are feasi-
ble and generated by a feasible steady state. Moreover, states on the boundary {C− = wg(k), k >
kg} can only be generated by a single feasible state, (kg, Cg). Thus, there is only a single “feasible”
control for those states, c > 0.

Proof. See Subsection B.4.2.

Lemma 2 finishes the characterization of all feasible states with C− ≤ wg(k). What
remains is a characterization of feasible states with C− > wg(k), or in terms of the k −
C− diagram of Figure 5, the characterization of the red top boundary. This boundary is
inherently more difficult than the bottom boundary because it involves states that are not
merely one step away from a steady state. Rather, paths might not reach a steady state at
all in finite time. The goal of the next set of lemmas is an iterative construction to show
that the boundary takes the form of an increasing function w̄(k) such that states with
C− > wg(k) are feasible if and only if C− ≤ w̄(k).

For this purpose, we need to make a number of new definitions: Let ψ(k, C−) ≡ (k +
C−)/Cσ

−. Applying the ψ function to the successor (k′, C) of a state (k, C−) and using the
IC constraint (1c) gives ψ(k′, C) = β−1k/Cσ

−, a number that is independent of the control
x. Hence, for every state (k, C−) there exists an iso-ψ curve containing all its potential
successor states.
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In some situations it will be convenient to abbreviate the laws of motion for capitalists’
consumption and capital, equations (16a) and (16b), as k′(x, k, C−) and C(x, k, C−).

Finally, define an operator T on the space of continuous, increasing functions v :
[kg, k̄]→ R+, as,

Tv(k) = sup{C− | ∃x ∈ (0, F(k)] : v(k′(x, k, C−)) ≥ C(x, k, C−)}, (18)

where recall that F(k) = f (k) + (1 − δ)k − g, as in (17). The operator is designed to
extend a candidate top boundary of the set of feasible states by one iteration. To make
this formal, let Z(i) be the set of states with C− ≥ wg(k) which are i steps away from
reaching C− = wg(k). For example, Z(0) = {C− = wg(k)}. Lemma 3 proves some basic
properties of the operator T.

Lemma 3. T maps the space of continuous, strictly increasing functions v : [kg, k̄] → R+ with
ψ(k, v(k)) strictly decreasing in k and v(kg) = Cg, v(kg) = Cg, into itself.

Proof. See Subsection B.4.3.

Lemma 4 uses the operator T to describe the sets Z(i).

Lemma 4. Z(i) = {wg(k) ≤ C− ≤ Tiwg(k)}. In particular Tiwg(k) ≥ T jwg(k) ≥ wg(k) for
i ≥ j.

Proof. See Subsection B.4.4.

The next two lemmas characterize the limit function w̄(k), whose graph will describe
the top boundary of the set of feasible states.

Lemma 5. There exists a continuous limit function w̄(k) ≡ limi→∞ Tiwg(k) = Tw̄(k), with
w̄(kg) = Cg and w̄(kg) = Cg. All states with C− = w̄(k) are feasible, but only with policy
c = 0.

Proof. See Subsection B.4.5.

Lemma 6. No state with C− > w̄(k) (and kg ≤ k ≤ k̄) is feasible.

Proof. See Subsection B.4.6.

Finally, Lemma 7 shows an auxiliary result which is both used in the proof of Lemma
6 and in Lemma 9 below.

Lemma 7. Let {kt+1, Ct} be a path starting at (k0, C−1) with controls ct = 0. Let kg < k0 ≤ k̄.
Then:

(a) If C−1 = w̄(k0), (kt+1, Ct)→ (kg, Cg).

(b) If C−1 > w̄(k0), (kt+1, Ct) 6→ (kg, Cg).

Proof. See Subsection B.4.7.
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B.3 Proof of Proposition 3

Armed with the results from Section B.2 we now prove Proposition 3 in a series of inter-
mediate results. For all statements in this section, we consider an economy with an initial
capital stock of k0 ∈ [kg, k̄]. We call a path {kt+1, Ct} optimal path, if the initial C−1 was
optimized over given the initial capital stock k0. Analogously, we call a path {kt+1, Ct}
locally optimal path, if the initial C−1 was not optimized over but rather taken as given at
a certain level, respecting the constraint that (k0, C−1) be feasible. If {kt+1, Ct} is a locally
optimal path, with control ct+1 at some point {kt+1, Ct} we say this control is optimal at
{kt+1, Ct}. Notice that along both optimal and locally optimal paths, first order condi-
tions are necessary, as long as paths are interior; they need not be sufficient, in the sense
that there could be multiple optima that satisfy our characterization below.

The first lemma proves that the multiplier on the capitalists’ IC constraint explodes
along an optimal path, and at the same time, workers’ consumption drops to zero.

Lemma 8. Along any optimal path, ct → 0.

Proof. Let {kt+1, Ct} be the optimal path. Suppose first the optimal path hits the boundary
of the feasible set Z∗ at some finite time. Given that no path can hit the k = k̄ boundary
after t = 0, and given Lemma 2 this means the path hits the top boundary—the graph of
w̄—after finite time. Lemma 5 showed that along that boundary, the control is necessarily
zero, c = 0.

Now suppose the optimal path is interior at all times. In that case, the first order
conditions are necessary. Using the notation from problem (1a) the necessary first order
conditions are equations (2a)–(2d). In particular, the one for µt states

µt+1 = µt

(
σ− 1
σκt+1

+ 1
)
+

1
βσκt+1υt

.

From Lemma 1 we know that κt+1 = kt+1/Ct is bounded away from ∞. Since µ0 = 0 by
(2a) and σ > 1, it follows that µt ≥ 0 and µt → ∞. To show that ct → 0, suppose to the
contrary that ct 6→ 0. In this case, there exists c > 0 and an infinite sequence of indices
(ts) such that cts ≥ c for all s. Along these indices, the FOC for capital (2d) implies

u′(cts)︸ ︷︷ ︸
≤u′(c)

( f ′(kts) + (1− δ)) =
1
β

u′(cts−1)︸ ︷︷ ︸
≥0

+ U′(cts−1)︸ ︷︷ ︸
bounded away from 0

· (µts − µts−1)︸ ︷︷ ︸
≥const·µts−1→∞

,

and so kts → 0 for s→ ∞, which is impossible within the feasible set Z∗ because it violates
k ≥ kg (see Lemma 1). This proves that also for interior optimal paths, ct → 0.

Lemma 8 is important because it shows that workers’ consumption drops to zero.
Together with the following lemma, this gives us a crucial geometric restriction of where
an optimal path goes in the long run.

Lemma 9. The set of states where c = 0 is an optimal control is the top boundary, the graph of w̄.
It follows that an optimal path approaches either (kg, Cg) or (kg, Cg).
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Proof. First, we show that any state in the interior of Z∗ can be generated by a path with
positive controls c > 0. Any state in the interior of Z∗ is element of some Z(i), i < ∞, and
can thus reach the set {C− ≤ wg(k)} \ {(kg, Cg), (kg, Cg)} in finite time. From there, at
most two steps are necessary to reach a interior steady state (kss, Css) with kg < kss < kg

and hence positive consumption css > 0. Note that such an interior steady state can
be reached without leaving the interior of the feasible set, since by Lemmas 2 and 7,
hitting the upper or lower boundary once means convergence to a non-interior steady
state.42 This proves that any state in the interior is generated by such an interior path,
with positive controls c > 0.

Now take an interior state (k0, C−1). We prove that any optimal control at that state is
positive. Suppose to the contrary, c0 = 0 is an optimal control at (k0, C−1). This means,
(k0, C−1) is generated by a locally optimal path {kt+1, Ct}, where (k1, C0) is precisely
linked to (k0, C−1) using control c0 = 0, or equivalently, x0 = F(k0). Since (k0, C−1) is
interior, any state (k′(x̃0, k0, C−1), C(x̃0, k0, C−1)) with slightly positive controls, that is,
x̃0 < F(k0), has to be feasible too. Therefore, we find the following first order necessary
condition for local optimality of c0,43

u′(c1)

u′(c0)
( f ′(k1) + 1− δ) ≥ 1

β
+ υ0(µ1 − µ0),

where the inequality is there due to the (implicit) boundary condition c0 ≥ 0. This condi-
tion can only be satisfied if c1 = 0 as well. We can iterate this logic: If (k1, C0) is interior, it
must be that c2 = 0 is optimal at (k2, C1). If (k1, C0) is not interior, then it must be on the
top boundary of Z∗, that is, on the graph of w̄,44 where it has policy c = 0 forever after.
This proves, by induction, that if any interior state (k, C−) has c = 0 as an optimal policy,
any locally optimal path starting at (k, C−) with c = 0 as initial optimal policy must have
c = 0 forever, yielding utility u(0)/(1− β). This, however, contradicts local optimality
of such a path: We showed above that any interior state (k0, C−1) is generated by a path
with strictly positive controls. Therefore, any optimal control at an interior state (k0, C−1)
is positive.

Finally, notice that states (k, C−), k > kg, along the bottom boundary of Z∗ only admit
a single feasible control, which is positive (see Lemma 2). Thus, by Lemma 5, the set
where c = 0 is an optimal control is precisely the top boundary {(k, C−) | k ∈ [kg, k̄], C− =
w̄(k)}. It follows that an optimal path either hits the boundary of Z∗ at some point, in
which case it converges either to (kg, Cg) or (kg, Cg) (by Lemma 7), or it remains interior
forever and thus (by Lemma 8) approaches the set {c = 0} of all states where c = 0 is an
optimal control, that is, the graph of w̄.45 Then it must share the same limiting behavior

42Note that hitting the right boundary at k = k̄ (other than with k0) is of course not feasible due to
depreciation.

43A locally optimal path still satisfies the first order conditions (2b)–(2d), just not (2a) which comes from
the optimal choice of C−1.

44On the lower boundary of Z∗ (excluding (kg, Cg)), a policy of c = 0 would not be feasible, see Lemma 2.
45By the Maximum Theorem, the control c is upper hemicontinuous in the state, so its graph is closed.

Hence, if along a path {kt+1, Ct} it holds that ct → 0, then {kt+1, Ct} necessarily approximates the set
{c = 0}, in the sense that the distance between {kt+1, Ct} and the set shrinks to zero (or else you could take
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as states in the set {c = 0}.46 By virtue of Lemma 7, it can then either converge to (kg, Cg)
or (kg, Cg).

Lemma 10. If an optimal path {kt+1, Ct} converges to (kg, Cg), then the value function V is
locally decreasing in C at each point (kt+1, Ct), for all t > T, with T large enough.

Proof. Let xt ≡ F(kt)− ct and consider the following variation: Suppose that at a point
T, (kT+1, CT) is not at the lower boundary (in which case it cannot converge to (kg, Cg)
anyway) and that ct < F(kt)− F′(kt)kt for all t ≥ T.47 For simplicity, call this T = −1. Do
the perturbation Ĉ−1 ≡ C−1− ε, k̂0 = k0, but keep the controls ct at their optimal level for
(k0, C−1), that is ĉt = ct. Denote the perturbed capital stock and capitalists’ consumption
by k̂t+1 = kt+1 + dkt+1 and Ĉt = Ct + dCt. Then the control x changes by dxt = F′t dkt
to first order. We want to show that dkt+1 > 0 and dCt < 0 for all t ≥ 0, knowing that
dC−1 = −ε and dk0 = 0.

From the constraints we find,

dkt+1 = F′(kt)dkt︸ ︷︷ ︸
≥0

− Ct

Ct−1
dCt−1︸ ︷︷ ︸

>0

+
1
σ

Ct

xt

F(kt)− F′(kt)kt − ct

kt
dkt︸ ︷︷ ︸

≥0

> 0

dCt =
Ct

Ct−1
dCt−1︸ ︷︷ ︸
≤0

− 1
σ

Ct

xt

F(kt)− F′(kt)kt − ct

kt
dkt︸ ︷︷ ︸

≤0

< 0.

Using matrix notation, this local law of motion can be written as(
dkt+1
dCt

)
=

(
at + bt −dt
−bt dt

)(
dkt

dCt−1

)
,

with at = F′(kt), dt = Ct/Ct−1, bt =
1
σ

Ct
xt

F(kt)−F′(kt)kt−ct
kt

. Close to (kg, Cg), this matrix has
d ≈ 1. Suppose for one moment that a was zero; the fact that a > 0 only works in favor
of the following argument. With a = 0, the matrix has a single nontrivial eigenvalue of
b + d, which exceeds 1 strictly in the limit, and the associated eigenspace is spanned by
(1,−1). The trivial eigenvalue’s eigenspace is spanned by (d, b). Notice that the latter
eigenvector is not collinear with the initial perturbation (0,−1), implying that dk∞ > 0
and dC∞ < 0. Hence, k̂∞ > k∞ = kg and Ĉ∞ < C∞ = Cg.

But notice that to the bottom right of (kg, Cg), the new point is interior, which im-
plies a continuation value strictly larger than u(0)/(1− β) (see proof of Lemma 9). More

a subsequence {knt+1, Cnt , cnt} in the graph of c whose limit is not in the graph, contradicting the graph
being closed).

46The formal reason for this is as follows: Suppose the optimal path {kt+1, Ct} did not share the limit-
ing behavior of the set {c = 0}, that is, suppose the path had a convergent subsequence {knt+1, Cnt} →
{k∗, C∗} ∈ {c = 0} \ {(kg, Cg), (kg, Cg)}. Suppose k∗ ∈ (kg, kg), the case k∗ > kg is analogous. Because
w̄(k∗) > 1−β

β k∗, h(knt+1, Cnt) is eventually strictly decreasing in t (see logic around equation (30)) and con-

verges to h(k∗, C∗). But convergence of h(knt+1, Cnt) implies C∗ = 1−β
β k∗—a contradiction.

47Such a finite T > 0 exists for two reasons: (a) because ct → 0; and (b) because F(k)− F′(k)k which is
positive in a neighborhood around k = kg since kg was defined by F(kg) = kg/β and F′(kg) < 1/β.
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formally, this means there must exist a time T′ > 0 for which the continuation value
of (kT′+1, CT′) is strictly dominated by the one for (k̂T′+1, ĈT′), that is, V(kT′+1, CT′) <
V(k̂T′+1, ĈT′). Because all controls were equal up until time T′, this implies that V(kT+1, CT) <
V(kT+1, CT − ε) for ε small (Recall that we had set T = −1 during the proof). Thus, the
value function must increase if CT is lowered, for a path starting at (kT+1, CT), for large
enough T. This proves that the value function is locally decreasing in C at that point.

And finally, Lemma 11 proves Proposition 3.

Lemma 11. An optimal path converges to (kg, Cg).

Proof. By Lemma 9 it is sufficient to prove that an optimal path does not converge to
(kg, Cg). Suppose the contrary held and there was an optimal path converging to (kg, Cg).
By Lemma 10, this means that the value function is locally decreasing around the optimal
path (kt+1, Ct) for t ≥ T, with T > 0 sufficiently large. Consider the following feasible
variation for t = −1, 0, . . . , T, Ĉt = Ct(1− dεt), k̂t+1 = kt+1, x̂t = xt − Ctdεt where48

dεt =

(
1− 1

σ

Ct

xt

)−1

dεt−1. (19)

Observe that (19) is precisely the relation which ensures that the variation satisfies all
the constraints of the system (in particular (16b) of which (19) is the linearized version).
Workers’ consumption increases with this variation by dct = Ctdεt > 0. Therefore, the
value of this path changes by

dV =
T

∑
t=0

βtu′(ct)dct︸ ︷︷ ︸
>0

+βT+1 (V(kT+1, CT − CTdεT)−V(kT+1, CT))︸ ︷︷ ︸
>0, by Lemma 10

> 0,

which is contradicting the optimality of {kt+1, Ct}. An optimal path converges to (kg, Cg).

B.4 Proofs of Auxiliary Lemmas

B.4.1 Proof of Lemma 1

Proof. Focus on Z1 first and consider a state (k1, C0) ∈ Z1, that is, k1 < kg and C0 ≥ 1−β
β k1.

Suppose (k1, C0) was feasible, and as such generated by a path of states {(kt+1, Ct)}t≥0,
each of which compatible with (16a)–(16c). We now show by induction the claim that
(kt+1, Ct) ∈ Z1 and kt+1 ≤ βF(kt) for any t ≥ 0. This will lead to a contradiction
since βF(k) is a concave and increasing function with βF(0) < 0 and smallest fixed point
βF(kg) = kg. Thus, any sequence of capital stocks {kt+1} satisfying kt+1 ≤ βF(kt), start-
ing at any k1 < kg, necessarily drops below zero in finite time, contradicting feasibility.

48Notice that xt = Ct + kt+1 ≥ Ct by definition of xt, and σ > 1. Hence this expression is well defined.
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Pick a point (kt, Ct−1) of the sequence and assume (kt, Ct−1) ∈ Z1. Then, xt+1 ≡
kt+1 + Ct ≤ F(kt) by (16c), and so

kt+1 = xt+1 − Ct

(
βxt+1

kt

)1/σ

︸ ︷︷ ︸
≥βxt+1/kt

≤ βxt+1

(
1
β
− Ct

kt

)
≤ βxt+1 ≤ βF(kt), (20)

where in the first inequality we used the fact that βxt+1/kt ≤ βF(kt)/kt < 1 which holds
since kt < kg; and in the second inequality we used that Ct−1 ≥ 1−β

β kt. Building on (20),
the fact that kt+1 ≤ βxt+1 proves that

Ct = xt+1 − kt+1 ≥
1− β

β
kt+1. (21)

To sum up, this implies that kt+1 ≤ βF(kt) < kg and that Ct ≥ 1−β
β kt+1, so (kt+1, Ct) ∈ Z1.

Moreover, kt+1 ≤ βF(kt). This proves the aforementioned claim and hence the desired
contradiction. No state in Z1 is feasible.

Now consider a state (k1, C0) ∈ Z2. Again, suppose it was generated by a path of
feasible states {(kt+1, Ct)}. Define h(k, C−) ≡ k/Cσ

− for any state (k, C−). The proof idea
is to show the claim that (kt+1, Ct) ∈ Z2 for all t and that h(kt+1, Ct) is strictly increasing
and diverges to +∞. Since kt+1 is bounded from above by k, this will mean that Ct →
0. Moreover, kt+1 is bounded away from zero since feasibility requires βF(k) ≥ 0 and
βF(k) turns negative for k sufficiently close to zero. Lemma 12 below proves that this
combination of convergence of Ct to zero and kt+1 bounded away from zero violates the
transversality condition.

We now prove the aforementioned claim by induction. Take a state (kt, Ct−1) ∈ Z2
from the sequence. By construction of Z2, it holds that Ct−1 < wg(kt), or in particular,
(Ct−1/Cg)σ < kt/kg.49 Notice that if the next state in the sequence, (kt+1, Ct), satisfied
Ct ≥ 1−β

β kt+1, we must have (kt+1, Ct) ∈ Z1 which is infeasible according to the above.50

Therefore, Ct <
1−β

β kt+1. Then,

h(kt+1, Ct) =
kt+1

Cσ
t

=
kt+1

Cσ
t−1βxt+1/kt

=
kt

Cσ
t−1

kt+1

β(kt+1 + Ct)︸ ︷︷ ︸
>1

> h(kt, Ct−1), (22)

49This inequality even holds if kt < kg because there, Cg(kt/kg)1/σ > (1− β)/βkt. To see this recall that
Cg = (1− β)/βkg and so Cg(kt/kg)1/σ/((1− β)/βkt) = (kt/kg)1/σ−1 > 1, where we used σ > 1.

50Note that if Ct ≥ (1− β)/β kt+1, then kt+1 < kg. The reason is as follows: The constraints (16a) and
(16b) can be rewritten as kt+1 = (Ct/Ct−1)

σ kt/β − Ct. Because (Ct−1/Cg)σ < kt/kg, this implies that
kt+1 >

(
Ct/Cg

)σ kg/β − Ct. Note that the right hand side of this inequality is increasing in Ct as long
as it is positive (which is the only interesting case here). Substituting in Ct ≥ (1− β)/β kt+1, this gives
kt+1 >

(
kt+1/kg

)σ kg/β− (1− β)/βkt+1. Rearranging, kt+1/kg >
(
kt+1/kg

)σ, a condition which can only
be satisfied if kt+1/kg < 1 (recall that σ > 1).
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which, together with Ct < 1−β
β kt+1 implies that both (kt+1, Ct) ∈ Z2 and h(kt+1, Ct) is

strictly increasing in t. To show that h(kt+1, Ct) diverges to +∞, suppose it were the case
that h(kt+1, Ct) converged to some H > 0. Using (22), convergence of h(kt+1, Ct) would
imply that kt+1/ (β(kt+1 + Ct)) → 1, or equivalently that kt+1/Ct → β/(1− β). Since
kt+1 is bounded away from zero (see argument in previous paragraph), this can only be
the case if (kt+1, Ct) converges to a feasible steady state,51 that is some

(
k, 1−β

β k
)

with
kg ≤ k ≤ kg. However, as (kt+1, Ct) ∈ Z2 for any t, it is the case that (Ct/Cg)σ < kt+1/kg,
or,

h(kt+1, Ct) > h(kg, Cg) = sup
kg≤k≤kg

h(k, (1− β)/βk),

where the equality follows because k/((1− β)/βk)σ is decreasing in k. This shows that
h(kt+1, Ct)→ ∞ and hence completes the proof by contradiction. No state in Z2 is feasible.

Lemma 12. Suppose that Ct → 0 and kt+1 bounded away from zero for a given path of states
(kt+1, Ct). Then, this path is not feasible.

Proof. Suppose the path (kt+1, Ct) is feasible. In particular, this necessitates that the IC
condition βU′(Ct)(Ct + kt+1) = U′(Ct−1)kt and the transversality condition βtU′(Ct)kt+1 →
0 hold. We back out (after tax) interest rates from the allocation as Rt ≡ U′(Ct−1)/(βU′(Ct)).
Thus we can recover the capitalists’ per period budget constraint Ct + kt+1 = Rtkt, and,
using the transversality condition, also present value budget constraints starting at any
given time t0 ≥ 0,

∞

∑
t=t0

1
Rt0,t

Ct = Rt0kt0 , (23)

where we denote Rt0,t ≡ Rt0+1 · · · Rt. Also, by construction of Rt, consumption can be
expressed as

Ct = β(t−t0)/σ
(

Rt0,t
)1/σ Ct0 . (24)

Define K ≡ inft kt+1 > 0 and K ≡ supt kt+1 > 0. Using the per period budget constraints,
we then have

Rt =
Ct + kt+1

kt
≥ kt+1

kt

and similarly,

Rt0,t ≥
kt+1

kt0+1
≥ K

K
. (25)

Combining (23), (24) and (25), we find

kt0 =
1

Rt0

∞

∑
t=t0

β(t−t0)/σ
(

Rt0,t
)−(1−1/σ)︸ ︷︷ ︸

≤(K/K)
−(1−1/σ)

Ct0 ≤ Ct0

(
K/K

)−(2−1/σ)

1− β1/σ
.

51Notice that, if kt+1/Cσ
t → H > 0 and kt+1/Ct → β/(1− β) then convergence of kt+1 and Ct+1 them-

selves immediately follows.

51



Since t0 was arbitrary, this implies that kt → 0, leading to the desired contradiction. Thus,
the path (kt+1, Ct) cannot be feasible.

B.4.2 Proof of Lemma 2

Proof. Consider a state (k, C−) with wg(k) ≤ C− ≤ wg(k) and k ≥ kg. In particular,
C− ≤ (1 − β)/βk, (C−/Cg)σ ≥ k/kg and (C−/Cg)σ ≤ k/kg.52 The idea of the proof
is to show that in fact such a state can be generated by a steady state (kss, Css) (with
Css = (1− β)/βkss and kg ≤ kss ≤ kg). By definition of kg and kg, such a steady state is
always self-generating.

Guess that the right steady state has kss = (βC−/(1− β))σ/(σ−1) k−1/(σ−1) and Css =
(1 − β)/βkss. It is straightforward to check that this steady state can be attained with
control x = (Css/C−)σk/β. This steady state is self-generating because kg ≤ kss ≤ kg,
which follows from (C−/Cg)σ ≥ k/kg and (C−/Cg)σ ≤ k/kg. Finally, the control x is
resource-feasible because C− ≤ (1− β)/βk and thus,

x =
1
β


(

β
1−β C−

)σ

k


1/(σ−1)

≤ k
β
≤ f (k) + (1− δ)k− g,

where the latter inequality follows from the fact that kg ≤ k ≤ kg and the definition of kg
and kg. This concludes the proof that all states with wg(k) ≤ C− ≤ wg(k) and k ≥ kg are
feasible.

Now regard a state on the boundary {C− = wg(k), k > kg}, so we also have that
C− < (1 − β)/βk.53 Such a state is generated by (kss, Css) = (kg, Cg). Moreover, the
unique control which moves (k, C−) to (kg, Cg) is x < k/β ≤ f (k) + (1− δ)k − g, or in
terms of c, c > 0.

To show that (kg, Cg) is in fact the only feasible state generating (k, C−), let (k′, C) be a
state generating (k, C−). If k′ < kg, then (k′, C) is not feasible by Lemma 1, and if k′ = kg

only (kg, Cg) generates (k, C−). Suppose k′ > kg. Then, C < (1− β)/βk′,54 and so we can
recycle equation (22) to see h(k′, C) > h(k, C−). Because h(k, C−) = h(kg, Cg) however,
this implies that h(k′, C) > h(kg, Cg), or put differently, C < wg(k′). Again by Lemma
1 such a (k′, C) is not feasible. Therefore, the only state that can generate a state on the
boundary {C− = wg(k), k > kg} is (kg, Cg), and the associated unique control involves
positive c.

52These inequalities hold for all k ≥ kg. The proofs are analogous to the proofs in footnotes 49 and 53.
53This holds because C− = wg(k) = Cg(k/kg)1/σ and thus C−/((1− β)/βk) = (k/kg)1/σ−1 < 1.
54This holds because by the IC constraint (1c), β(k′ + C)/Cσ = kg/Cσ

g or equivalently (k′ + C)/C =

1/(1− β) (C/Cg)σ. Thus, letting κ = k′/C, (κ + 1)κσ = (1− β)−1 · (β/(1− β))σ · (k′/kg)σ. Since the right
hand side is increasing in κ, the fact that k′ > kg tells us that κ > β/(1− β), which is what we set out to
show.
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B.4.3 Proof of Lemma 3

Proof. Let V (Ṽ) be the space of all continuous, weakly (strictly) increasing functions v :
[kg, k̄]→ R+ with ψ(k, v(k)) weakly (strictly) decreasing in k, and v(kg) = Cg, v(kg) = Cg.
For these functions, T is well-defined since for small values of C−, k′(F(k), k, C−) tends
to F(k) ∈ (kgk̄]. Moreover, the supremum in (18) is attained for all k ∈ [kg, k̄] since the
set of C− in (18) is closed and bounded. We next show that (a) instead of considering
all possible controls x, it is sufficient to consider x = F(k); and (b) instead of looking for
C− that satisfy the inequality in (18), it suffices to look for solutions to the corresponding
relation with equality. This will allow us to write

Tv(k) = max{C− | v(k′(F(k), k, C−)) = C(F(k), k, C−)}, (26)

The formal arguments behind these two steps are:

(a) Fix k ∈ [kg, k̄] and v ∈ V . Suppose the supremum in (18) is attained by C−, with
control x0 < F(k). Define Φv,k,C− : [0, F(k)]→ R by

Φv,k,C−(x) = ψ
(
k′(x, k, C−), C(x, k, C−)

)︸ ︷︷ ︸
constant in x

−ψ
(
k′(x, k, C−), v(k′(x, k, C−))

)︸ ︷︷ ︸
decreasing in x

(27)

and notice that v(k′(x0, k, C−)) ≥ C(x0, k, C−) is equivalent to Φv,k,C−(x0) ≥ 0. Since
Φv,k,C−(x) is weakly increasing in x due to v ∈ V , Φv,k,C−(F(k)) ≥ Φv,k,C−(x0) and
so v(k′(F(k), k, C−)) ≥ C(F(k), k, C−). Therefore, focusing on controls x = F(k) is
without loss in (18).

(b) Now argue that equality (rather than inequality) is without loss in (18). Suppose
the supremum were attained by C− with control x = F(k) and strict inequality,
v(k′(F(k), k, C−)) > C(F(k), k, C−). Since both sides of this inequality are contin-
uous in C−, it follows that slightly increasing C− still satisfies the inequality and
hence C− could not have attained the supremum in the first place.
Notice also that the equation v(k′(F(k), k, C−)) = C(F(k), k, C−) can never have
more than one solution since raising C− weakly decreases the left hand side and
strictly increases the right hand side.

Now we argue that T maps V into Ṽ . Take v ∈ V . To show Tv is continuous and strictly
increasing, define first the auxiliary function Ψv : [kg, k̄]×R++ → R by

Ψv : (k, C−) = ψ
(
k′(F(k), k, C−), C(F(k), k, C−)

)︸ ︷︷ ︸
↗ in k and↘ in C−

− ψ
(
k′(F(k), k, C−), v(k′(F(k), k, C−))

)︸ ︷︷ ︸
↘ in k and↗ in C−

.

The function Ψv is continuous and consists of two terms: The first term is equal to β−1k/Cσ
−,

using the definition of ψ, and hence strictly increasing in k and strictly decreasing in C−.
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For the second term, recall that

k′(F(k), k, C−) = F(k)

(
1− C−

(
β

kF(k)σ−1

)1/σ
)

is strictly increasing in k and strictly decreasing in C−, and v is such that ψ(k, v(k)) is
weakly decreasing in k. Thus, the second term is weakly decreasing in k and weakly in-
creasing in C−. Putting both terms together gives us that Ψv(k, C−) is continuous, strictly
increasing in k, and strictly decreasing in C−. We can rewrite Tv as

Tv(k) = C− where C− is the unique number with Ψv(k, C−) = 0.

Since Ψv is continuous, strictly increasing in k, strictly decreasing in C− and admits a
unique solution C− = Tv(k) to the equation Ψv(k, C−) = 0, it follows that Tv(k) is con-
tinuous and strictly increasing.55

To prove that k 7→ ψ(k, Tv(k)) is strictly decreasing, pick k1 < k2 in [kg, k̄]. Suppose
ψ(k1, Tv(k1)) ≤ ψ(k2, Tv(k2)). Since Tv(k) is strictly increasing, it follows that

k1

Tv(k1)σ
− k2

Tv(k2)σ
<

k1

Tv(k1)σ
+ Tv(k1)

1−σ︸ ︷︷ ︸
ψ(k1,Tv(k1))

− k2

Tv(k2)σ
− Tv(k2)

1−σ︸ ︷︷ ︸
−ψ(k2,Tv(k2))

≤ 0.

Defining k
′
i ≡ k′(F(ki), ki, Tv(ki)) and Ci ≡ C(F(ki), ki, Tv(ki)), we find

ψ(k′1, C1) = β−1 k1

Tv(k1)σ
< β−1 k2

Tv(k2)σ
= ψ(k′2, C2). (28)

This, however, implies that Tv(k2) cannot have been optimal: Pick an alternative con-
sumption level C2,− as C2,− = Tv(k1)(k2/k1)

1/σ, which exceeds Tv(k2) by (28). Moreover,
pick the policy x2 ≡ F(k1), which is feasible, x2 ≤ F(k2). Since k1/Tv(k1)

σ = k2/Cσ
2,− by

construction, it follows that (k′(x2, k2, C2,−), C(x2, k2, C2,−)) = (k′1, C1), which lies on the
graph of v. Hence Tv(k2) cannot have been optimal and so ψ(k, Tv(k)) is decreasing in k.

Finally, we prove that Tv(kg) = Cg. Note that k′(F(kg), kg, Cg) = kg and C(F(kg), kg, Cg) =
Cg. Because k′(F(kg), kg, C−) is strictly decreasing in C− and so k′(F(kg), kg, C−) < kg for
C− > Cg (for k < kg, v(k) is not even defined), this implies that Tv(kg) = Cg, concluding
the proof that T(V) ⊂ Ṽ .

B.4.4 Proof of Lemma 4

Proof. Note that any state (k, C−) reaches the space {C− ≤ v(k)} in one step if and only
if C− ≤ Tv(k) (provided that v satisfies the regularity properties in Lemma 3). Thus, by
iteration, Z(i) = {wg(k) ≤ C− ≤ Tiwg(k)}. Because Z(i) ⊇ Z(j) for i ≥ j, it holds that

55This is a fact that holds more generally: If I1, I2 ⊂ R are intervals and f : I1 × I2 → R is continuous,
strictly increasing in x, and strictly decreasing in y with the property that for each x there exists a unique
y∗(x) s.t. f (x, y∗(x)) = 0, then y∗(x) must be continuous and strictly increasing in x.
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Tiwg(k) ≥ T jwg(k).56

B.4.5 Proof of Lemma 5

Proof. The existence of the limit limi→∞ Tiwg(k) is straightforward for every k (monotone
sequence, bounded above because for large values of C−, k′(F(k), k, C−) < kg for any k).
It can easily be verified that wg ∈ V . Thus, using Lemma 3, w̄ must be weakly increasing,
w̄(kg) = Cg, w̄(kg) = Cg, and ψ(k, w̄(k)) must be weakly decreasing. To show w̄ ∈ V ,
suppose now that w̄ were not continuous. Then, there would have to be two arbitrarily
close values of k, k1 < k2 with a significant gap between TNwg(k1) and TNwg(k2) >
TNwg(k1) for some large N. Since k′(...) and C(...) are both continuous, k1 and k2 can be
chosen sufficiently close so that

k′1 ≡ k′(F(k1), k1, TNwg(k1)) > k′(F(k2), k2, TNwg(k2)) ≡ k′2,

yet the inequality is reversed for C(...), C1 ≡ C(F(k1), k1, TNwg(k1)) < C(F(k2), k2, TNwg(k2)) ≡
C2. However, this contradicts the definition of TNwg since both pairs (k′1, C1) and (k′2, C2)
have to lie on the graph of the same increasing function TN−1wg but the latter is to the
top left of the former. Therefore, w̄ is continuous and w̄ ∈ V .

Applying Dini’s Theorem, the convergence of Tnwg to w̄ is also uniform, and by inter-
changing limits we find that

w̄(k′(F(k), k, w̄(k)) = lim
n→∞

Tnwg(k′(F(k), k, Tn+1wg(k)))

= lim
n→∞

C(F(k), k, Tn+1wg(k)) = C(F(k), k, w̄(k)), (29)

and thus, by the representation of T in (26), w̄ = Tw̄. This also means that w̄ ∈ Ṽ , so w̄
is strictly increasing and ψ(k, w̄(k)) strictly decreasing. Hence, for any given k, the only
feasible policy at point (k, w̄(k)) is x = F(k) (or equivalently c = 0) since for any feasible
policy x, Φw̄,k,w̄(k)(x) from (27) needs to be non-negative; but by w̄ ∈ Ṽ and (29), Φw̄,k,w̄(k)
is strictly increasing with Φw̄,k,w̄(k)(F(k)) = 0, so x = F(k) is the only feasible policy.

B.4.6 Proof of Lemma 6

Proof. Define h as before, h(k′, C) ≡ k′/Cσ. Fix a state (k1, C0) with C0 > w̄(k1). First,
consider the case C0 ≥ (1 − β)/βk1 and suppose it were generated by a feasible path
{(kt+1, Ct)}. As an intermediate result we now establish that Ct > (1− β)/βkt+1 along
such a path. We do this by distinguishing the following two cases:

(a) If kt+1 ≤ kg, this follows directly from Ct > w̄(kt+1) ≥ (1− β)/βkt+1. The former
inequality holds by construction of w̄,57 the latter by Lemma 4.

56A subtlety here is that Z(i) ⊇ Z(j) only holds because states in the set {C− = wg(k)} is “self-generating”,
that is, if a path hits the set {C− = wg(k)} after j steps, it can stay in that set forever. In particular, it can hit
the set after i ≥ j steps as well. This explains why Z(i) ⊇ Z(j).

57If it were violated, C0 ≤ Ttw̄(k1) = w̄(k1) by construction of w̄. This would contradict our assumption
that C0 > w̄(k1).
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(b) If instead kt+1 > kg, it must be the case that ks+1 > kg for all s < t as well.58 But
then, using that xt ≤ F(kt) < kt/β for kt > kg,

kt+1

Ct
=

xt

Ct
− 1 <

kt/β

Ct−1
− 1 =

β

1− β
.

We use our intermediate result as follows (still for the case C0 ≥ (1− β)/βk1). Consider

h(kt+1, Ct) =
kt+1

Cσ
t

=
kt

Cσ
t−1

kt+1

β(kt+1 + Ct)︸ ︷︷ ︸
<1

< h(kt, Ct−1). (30)

If h(kt+1, Ct) converges to zero, then either kt+1 → 0 or Ct → ∞ (in which case kt+1 → 0
by the law of motion for capital and the fact that kt ≤ k̄). Such a path is not feasible
because then F(kt+1) drops below zero in finite time (see the proof of Lemma 1 for a
similar argument). Hence, suppose h(kt+1, Ct) → h > 0. Then, kt+1/(β(kt+1 + Ct)) → 1,
so the path must approximate the steady state line described by {(k, C−) |C− = (1 −
β)/βk}. Because Ct > w̄(kt+1) along the path, (kt+1, Ct) must be converging to (kg, Cg).

Next we show that this convergence is still true if we take ct to be zero. Suppose there
were times with ct > 0. Then, define a new path {(k̂t+1, Ĉt)}, starting at the same initial
state (k1, C0) but with controls ct = 0. Observe that

h(k̂t+1, Ĉt) = ψ(k̂t+1, Ĉt)− Ĉ1−σ
t = β−1h(k̂t, Ĉt−1)− h(k̂t, Ĉt−1)

(σ−1)/σ(βF(k̂t))
−(σ−1)/σ

k̂t+1 = F(k̂t)−
(

βF(k̂t)

h(k̂t, Ĉt−1)

)1/σ

,

where the first equation is increasing in h(k̂t, Ĉt−1) for the relevant parameters for which
h(k̂t+1, Ĉt) ≥ 0, and similarly the second equation is increasing in F(k̂t) if k̂t+1 ≥ 0. By
induction over t, if h(k̂t, Ĉt−1) ≥ h(kt, Ct−1) and k̂t ≥ kt (induction hypothesis), then,
because F(k̂t) ≥ xt,

h(k̂t+1, Ĉt) ≥ β−1h(kt, Ct−1)− h(kt, Ct−1)
(σ−1)/σ(βxt)

−(σ−1)/σ = h(kt+1, Ct)

k̂t+1 ≥ F(kt)−
(

βF(kt)

h(kt, Ct−1)

)1/σ

,

confirming that k̂t ≥ kt and h(k̂t, Ĉt−1) ≥ h(kt, Ct−1) for all t. Given that h(kt+1, Ct) →
58The reason for this is that for any state (k, C−) with k ≤ kg and C− > w̄(k) we have that

k′ ≡ k′(x, k, C−) ≤ kg for any control x ≤ F(k). First, if ψ(k′, C) ≥ ψ(kg, Cg), then the curve
{(k′(x, k, C−), C(x, k, C−)), x > 0} and the graph of w̄ necessarily intersect at a state k̃ with capital less
than kg. The intersection is unique since ψ(k, w̄(k)) is strictly increasing. Since C− > w̄(k) it cannot
be that k̃ = k′(x, k, C−) for a feasible x ≤ F(k) and therefore, any k′(x, k, C−) with a feasible x ≤ F(k)
is necessarily less than k̃ ≤ kg. Second, if ψ(k′, C) < ψ(kg, Cg), that is, k/Cσ

− < kg/(Cg)σ, then

k′ ≤ F(k)− C−
(

βF(k)
k

)1/σ
< F(kg)− Cg

(
βF(kg)

kg

)1/σ
= kg.
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h > 0, either
(

k̂t+1, Ĉt

)
→ (kg, Cg) as well, or {(k̂t+1, Ĉt)} converges to some steady state

between kg and kg. The latter cannot be because of Ĉt > w̄(k̂t+1) along the path. But
the former is precluded by Lemma 7 below. This provides a contradiction, proving that a
state (k1, C0) with C0 > w̄(k1) and C0 > (1− β)/βk1 cannot be feasible.

Now, consider the case C0 < (1− β)/βk1. Due to C0 > w̄(k1), this can only be the case
if k1 > kg. Again, suppose (k1, C0) were generated by a feasible path {(kt+1, Ct)}. Given
the first half of this proof, if at any point (kt+1, Ct) lies above the steady state line, we have
the desired contradiction. Therefore, suppose Ct < (1− β)/βkt+1 for all t. In that case,

h(kt+1, Ct) =
kt+1

Cσ
t

=
kt

Cσ
t−1

kt+1

β(kt+1 + Ct)︸ ︷︷ ︸
>1

> h(kt, Ct−1).

Note that h(kt+1, Ct) is bounded from above, for example by h(kg, Cg) (because all states
below the steady state line with h equal to h(kg, Cg) are below the graph of wg and thus
below w̄ as well). So, h(kt+1, Ct) converges and kt+1/(β(kt+1 + Ct)) → 1. The state ap-
proximates the steady state line. Because the only feasible steady state with below the
steady state line but above the graph of w̄ is (kg, Cg) it follows that (kt+1, Ct) → (kg, Cg).
Following the same steps as before, it can be shown that without loss of generality, con-
trols ct can be taken to be zero along the path. By Lemma 7 below this is a contradiction,
concluding our proof that no state (k1, C0) with C0 > w̄(k1) is feasible.

B.4.7 Proof of Lemma 7

Proof. We prove each of the results in turn.

(a) Notice that c = 0 takes any state on the graph of w̄ to another state on the graph of w̄
(because Tw̄ = w̄). Suppose k1 < kg (the case k1 > kg is analogous). Then, no future
capital stock kt+1 can exceed kg. Because if it did, there would have to be a capital
stock k ∈ (kg, kg) with k′(F(k), k, w̄(k)) = kg, by continuity of k 7→ k′(F(k), k, w̄(k)).
But this is impossible by definition of kg.59 Thus, along the path, Ct > (1− β)/βkt+1
and so h(kt+1, Ct) is decreasing. As h(kg, Cg) > h(k, w̄(k)) for all k > kg,60 this means
(kt+1, Ct)→ (kg, Cg).

(b) For simplicity, focus on the case k0 < kg. Again, the case k0 > kg is completely
analogous. Suppose (kt+1, Ct) were converging to (kg, Cg). Note that at kg, F(k)/k
is decreasing.61 Thus, there exists a time T > 0 for which the capital stock kT is
sufficiently close to kg that F(k)/k is decreasing for all k in a neighborhood of kg

which includes {kt}t≥T. Let {k̂t+1, Ĉt} denote the path with ct = 0, starting from
(kT, w̄(kT)). We already know that {k̂t+1, Ĉt} does indeed converge to (kg, Cg) from
the first part of this proof. Also, observe that both (kt+1, Ct) and (k̂t+1, Ĉt) have

59By definition of kg, F(kg) = kg + Cg, and so, F(k) < kg + Cg for k < kg.
60Note that w̄(k) > wg(k) and h(k, wg(k)) = const, see Lemmas 1 and 2 above.
61This holds because F′(kg) < 1/β and F(kg) = 1/βkg, and so d

dk F(k)/k < 0.
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controls ct = 0 here, unlike in the proof of Lemma 6.
In the remainder of this proof, we denote the “zero control c = 0” laws of motion for
capital and capitalists’ consumption by Lk(k, C−) ≡ k′(F(k), k, C−) and LC(k, C−) ≡
C(F(k), k, C−) (only for this proof). Since F(k)/k is locally decreasing, it follows
that dLk/dk > 0, dLk/dC− < 0 and dLC/dk < 0, dLC/dC− > 0. This implies that
because CT−1 > w̄(kT) (which must hold or else C0 ≤ w̄(k1) by construction of w̄),
Ct > Ĉt and kt+1 > k̂t+1 for all t ≥ T. Moreover, borrowing from equation (22), we
know that

h(kt+1, Ct) = h(kt, Ct−1)

(
1
β
−
(

1
h(kt, Ct−1)

)1/σ 1
(βF(kt))1−1/σ

)
,

which implies that by induction h(kt+1, Ct) ≤ h(k̂t+1, Ĉt), that is,

log h(kt+T, Ct+T−1)

= log h(kT, CT−1) +
t−1

∑
s=0

log

(
1
β
−
(

1
h(kT+s, CT+s−1)

)1/σ 1
(βF(kT+s))1−1/σ

)

≤ log h(kT, CT−1) +
t−1

∑
s=0

log

(
1
β
−
(

1
h(k̂T+s, ĈT+s−1)

)1/σ 1
(βF(k̂T+s))1−1/σ

)
= log h(k̂t+T, Ĉt+T−1) + log h(kT, CT−1)− log h(k̂T, ĈT−1).

As t→ ∞, this equation yields

log h(kg, Cg) ≤ log h(kg, Cg) + log h(kT, CT−1)− log h(k̂T, ĈT−1)︸ ︷︷ ︸
=−kT(Ĉ−σ

T−1−C−σ
T−1)<0

,

which is a contradiction. Therefore, (kt+1, Ct) 6→ (kg, Cg).

C Numerical Method

To solve the Bellman equation (15) we must first compute the feasible set Z∗. We restrict
the range of capital to a closed interval [k, k̄] with k ≥ kg. This leads us to seek a subset
Z∗k ⊂ Z∗ of the feasible set Z∗. We compute this set numerically as follows.

Start with the set Z∗(0) defined by C− = 1−β
β k and k ∈ [k, k̄]. This set is self generating

and thus Z∗(0) ⊂ Z∗k. We define an operator that finds all points (k, C−) for which one
can find c, K′, C satisfying the constraints of the Bellman equation and (k′, C) ∈ Z∗(0). This
gives a set Z∗(1) with Z∗(0) ⊂ Z∗(1). Iterating on this procedure we obtain Z∗(0), Z∗(1), Z∗(2), . . .
and we stop when the sets do not grow much. We then solve the Bellman equation by
value function iteration. We start with a guess for V0 that uses a feasible policy to evaluate
utility. This ensures that our guess is below the true value function. Iterating on the Bell-
man equation then leads to a monotone sequence V0, V1, . . . and we stop when iteration n
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yields a Vn that is sufficiently close to Vn−1. Our procedure uses a grid that is defined on a
transformation of (k, C−) that maps Z∗ into a rectangle. We linearly interpolate between
grid points.

The code was programmed in Matlab and executed with parallel ’parfor’ commands,
to improve speed and allow denser grids, on a cluster of 64-128 workers. Grid density
was adjusted until no noticeable difference in the optimal paths were observed.

D Proof of Proposition 4

As in Appendix B we use the notation that F(k) = f (k) + (1− δ)k. The derivatives of S
evaluated at some time τ are denoted by SI,τ ≡ ∂Sτ

∂Iτ
and Sτ,Rt ≡

∂Sτ
∂Rt

, for t > τ.
Define the following object,

ωτ =
dWτ

dkτ+1
= ∑

τ′≥τ+1
βτ′−τu′(cτ′)(F′(kτ′)− Rτ′)

(
τ′−1

∏
s=τ+1

SI,sRs

)
, (31)

which corresponds to the response in welfare Wτ, measured in units of period τ utility, of
a change in savings by an infinitesimal unit between periods τ and τ + 1. Now consider
the effect of a one-time change in the capital tax, effectively changing Rt to Rt + dR in
period t. This has three types of effects on total welfare: It changes savings behavior in
all periods τ < t through the effect of Rt on Sτ. It changes capitalists’ income in period
t through the effect of Rt on Rtkt. And finally it changes workers’ income in period t
directly through the effect of Rt on F(kt) − Rtkt. Summing up these three effects, one
obtains a total effect of

dW =
t−1

∑
τ=0

βτ−tωτ Sτ,Rt dR︸ ︷︷ ︸
change in savings in period τ<t

+ ωt SI,tktdR︸ ︷︷ ︸
change in savings in period t

−u′(ct) ktdR︸︷︷︸
change in workers′ income in period t

.

The total effect needs to net out to zero along the optimal path, that is,

ωtSI,t − u′(ct) = −
1
kt

t−1

∑
τ=0

βτ−tωτSτ,Rt . (32)

By optimization over the initial interest rate R0, we find the condition

ω0SI,0k0 − u′(c0)k0 = 0. (33)

This shows that SI,0 > 0 and so ω0 ∈ (0, ∞). By their definition (31), the ωτ satisfy the
recursion

ωτ = u′(cτ+1)(F′(kτ+1)− Rτ+1) + βSI,τ+1Rτ+1ωτ+1.
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Since it is easy to see that Rτ+1 > 0 for all τ,62 it follows that ωτ is finite for all τ. Then,
due to the recursive nature of (32), if ωτ > 0 for τ < t,

ωtSI,t − u′(ct) = −
1
kt

t−1

∑
τ=0

βτ−t ωτ︸︷︷︸
>0

Sτ,Rt︸︷︷︸
≤0

≥ 0.

In particular, using the initial condition (33), this proves by induction that

ωtSI,t − u′(ct) ≥ 0 for all t > 0. (34)

Now suppose the economy were converging to an interior steady state with non-positive
limit tax (either zero or negative), that is, ∆t ≡ F′(kt) − Rt converges to a non-positive
number, ct → c > 0 and SI,tRt → SI R > 0. It is immediate by (31) that if ∆t converges to
a negative number, then ωt must eventually become negative—contradicting (34). Hence
suppose ∆t → 0. Distinguish two cases.

Case I: Suppose first that βSI R > 1. Thus, ∏τ
s=1(βSI,sRs) is unbounded and diverges

to ∞. Then, because ω0 is finite, we have that the partial sums in the expression for ω0
coming from (31) have to converge to zero,

ω̄τ ≡ ∑
τ′≥τ+1

βu′(cτ′)(F′(kτ′)− Rτ′)
τ′−1

∏
s=1

(βSI,sRs)→ 0, as τ → ∞.

Hence,

ωτ =

(
τ

∏
s=1

(βSI,sRs)

)−1

ω̄τ → 0,

contradicting the fact that ωt is bounded away from zero by u′(c)/SI . Therefore, βSI R >
1 is not compatible with any interior steady state. (This argument does not use the fact
that we focus on ∆t → 0.)

Case II: Suppose βSI R < 1. In this case, we show convergence of ωτ to zero directly. Fix
ε > 0. Let τ be large enough such that βSI,sRs < b for some b < 1 and that |u′(cτ′)∆τ′ | <
ε(1− b). Then,

|ωτ| ≤ ∑
τ′=τ+1

ε(1− b)bτ′−1−τ = ε.

Again, this contradicts the fact that ωt is bounded away from zero by u′(c)/SI .
This concludes our proof, establishing that the capital tax Tt = ∆t/F′(kt) must con-

verge to a positive number at the interior steady state.

62Otherwise capital would be zero forever after due to S(0, . . .) = 0, a contradiction to the allocation
converging to an interior steady state.
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E Derivation of the Inverse Elasticity Rule (4) and Proof of
the Corollary

Derivation of the Inverse Elasticity Rule. In this section, we continue using the nota-
tion and results of Section D. Consider equation (32). Because βSI R < 1, ωτ converges
to

ω =
β

1− βSI R
(F′(k)− R)u′(c).

We make the additional convergence assumption

t

∑
τ=1

β−τ ωt−τkt−τ

ωtkt
εSt−τ ,Rt →

∞

∑
τ=1

β−τεS,τ ∈ [−∞, ∞], as t→ ∞, (35)

which amounts to first taking the limit of the summands as t → ∞, and then taking the
limit of the series, instead of considering both limits simultaneously. Under this order of
limits assumption, we can characterize the limit of equation (32) as t→ ∞,

SI,t −
u′(ct)

ωt︸ ︷︷ ︸
→SI− u′(c)

ω

= −
t

∑
τ=1

β−τ ωt−τkt−τ

ωtkt
εSt−τ ,Rt︸ ︷︷ ︸

→∑∞
τ=1 β−τεS,τ

. (36)

Distinguish two cases according to whether ω = 0 or ω 6= 0. First, if ω = 0, or equiv-
alently the limit tax T is zero, then (36) reveals that ∑∞

τ=1 β−τεS,τ is either plus or minus
infinity. Therefore, the inverse elasticity formula holds in this case as both sides of (4)
converge to zero.

Second, if ω 6= 0, then by taking the limit of (32) as t → ∞ and using the condition
(35), we find

SI −
u′(c)

ω
= −

∞

∑
τ=1

β−τεS,τ,

which can be rewritten as

βSI R
1− βSI R

(F′(k)− R)− R = − 1
1− βSI R

(F′(k)− R)
∞

∑
τ=1

β−τ+1εS,τ.

Note that F′(k)− R = T
1−T R. Therefore, we can rearrange the condition to

βSI R
1− βSI R

− 1− T
T = − 1

1− βSI R

∞

∑
τ=1

β−τ+1εS,τ

⇒ T =
1− βRSI

1 + ∑∞
t=1 β−t+1εS,t

.

This is precisely the inverse elasticity formula (4).
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Proof of the Corollary. Notice that by Proposition 4 the limit tax rate is positive, T >
0, conditional on convergence to an interior steady state. If now the inverse elasticity
formula implies a negative tax rate, then either the regularity condition for the inverse
elasticity rule is not satisfied or the allocation does not converge to an interior steady
state.

F Infinite Sum of Elasticities with Recursive Utility

In this section, we prove the result that the infinite sum ∑∞
τ=1 β−τεS,τ does not converge

for any recursive utility function that is locally non-additive.
More specifically, we consider the capitalist’s optimization problem as in Section 2.3,

just with recursive preferences as in Section 3.1, with U = c. In particular, the capitalist’s
utility is characterized by the recursion Vt = W(Ct, Vt+1), assuming W is twice continu-
ously differentiable and strictly increasing in both arguments. Analogous to our analysis
in Section 3.1, we define β(c) ≡ WV(c, V(c)) as the steady state discount factor along a
constant consumption stream yielding steady state utility V(c) = W(c, V(c)).

Any such recursive utility function naturally yields an optimal savings function at+1 =
S(Rtat, Rt+1, . . .). Fix now constant interest rates R and a steady state of the capitalist’s
optimization problem (a, c, V). Let β = WV(c, V(c)) = β(c) the discount factor in that
specific steady state. Define εS,τ = 1

a R ∂ log S
∂ log Rτ

. The following proposition characterizes the
behavior of the infinite sum ∑∞

τ=1 β−τεS,τ.

Proposition 12. Suppose capitalists have recursive preferences represented by (5a) (see Section
3.1, with U = c). Then, if the discount factor is locally non-constant, β

′
(c) 6= 0, the series

∑T
τ=1 β−τεS,τ does not have a finite limit as T → ∞.

Proof. We first compute the elasticities εS,τ and then prove that the infinite sum does not
have a finite limit. To compute εS,τ, we consider an agent with the recursive preferences
introduced above, who is at a steady state (a, c, V) given a constant interest rates R. Note
that because utility is strictly increasing in a permanent increase in consumption at the
steady state, we have β = WV ∈ (0, 1).

The conditions for optimality are then,

Vt = W (Rtat − at+1, Vt+1)

WC (Rtat − at+1, Vt+1) = Rt+1WV (Rtat − at+1, Vt+1)WC (Rt+1at+1 − at+2, Vt+2) .

The first equation is the recursion for utility Vt and the second equation is the Euler equa-
tion. In particular, note that the latter implies that βR = 1 at the steady state. Linearizing
these equations around the steady state (denoted without time subscripts) yields,

WV dVt+1 = −WCR dat + WC dat+1 + dVt −WCa dRt (37)
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and

(RWCWVC − RWCC −WCC) dat+1 + WCC dat+2 − (WVWC + WCCa) dRt+1

+ (WCV − RWCWVV) dVt+1 −WCV dVt+2

= (R2WCWVC −WCCR) dat + (RWCWVCa−WCCa) dRt, (38)

where all derivatives are evaluated at the steady state ((R− 1) a, V). To save on notation,
we define ω ≡ WVC − βWCC/WC ∈ R, which is a term that will appear multiple times
below. We solve (37) and (38) by the method of undetermined coefficients, guessing

dat+1 = ωλ dat + a
∞

∑
τ=0

βτθτ dRt+τ (39a)

dVt = WCR dat + (WCa)
∞

∑
τ=0

βτ dRt+τ. (39b)

The form of equation (39b) is what is required by the Envelope condition. We are left to
find λ and the sequence {θτ}, where θτ = β−τεS,τ, for τ ≥ 1, is exactly the sequence
of elasticities were are looking for. Substituting the guesses (39a) and (39b) into (38), we
obtain an expression featuring dat, dat+1, dat+2 and dRt+τ for τ = 0, 1, . . . . Setting the
coefficient on dat to zero gives a quadratic for λ,

ω2λ2 +
(
−(1 + R)ω + (R− 1)β

′
(c)
)

λ + R = 0. (40)

Note that the solution of this equation can never be zero, i.e. λ 6= 0. Also, if β
′
(c) = 0,

the term in parentheses simplifies to −(1 + R)ω and the solutions are just λ = ω−1 and
λ = ω−1R.

Setting the coefficient on dRt to zero gives

θ0 = βωλ.

Similarly for dRt+1 we find after various simplifications,

θ1 = ωλ (θ0 − 1) + λ
(

β2a−1 + (1− β)β
′
(c)
)

and for dRt+τ after some more simplifications

θτ = ωλθτ−1 + λ (1− β) β
′
(c), (41)

for τ = 2, 3, . . . . The result then follows from this expression: If β
′
(c) 6= 0, the sum

∑T
τ=1 β−τεS,τ = ∑T

τ=1 θτ cannot converge. To see this, consider

T

∑
τ=1

θτ = θ1 +
T

∑
τ=2

θτ = θ1 +
T−1

∑
τ=1

ωλθτ +
T

∑
τ=2

λ(1− β)β
′
(c).
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If the left hand side of this equation converged to some limit Θ ∈ R, the right hand side
of this equation would diverge since the last sum diverges (while all other terms would
remain finite). Therefore, ∑T

τ=1 β−τεS,τ cannot converge to a finite limit.

G Linearized Dynamics and Proof of Proposition 5

A natural way to prove Proposition 5 would be to linearize our first order conditions in
(2), and to solve forward for the multipliers µt and λt using transversality conditions,
arriving at an approximate law of motion of the form(

kt+1
Ct

)
−
(

kt
Ct−1

)
= Ĵ

(
kt − k∗

Ct−1 − C∗

)
.

To maximize similarity with Kemp et al. (1993), however, we do not take that route; rather
we start with the continuous time problem, derive its first order conditions and linearize
them around the zero tax steady state. The problem in continuous time is

max
∫ ∞

0
e−ρt (u(ct) + γU(Ct)) dt

s.t. ct + Ct + g + k̇t = f (kt)− δkt

Ċt =
Ct

σ

(
f (kt)

kt
− δ− ct

kt
− ρ

)
.

Let pt and qt denote the costates corresponding respectively to the states kt and Ct. The
FOCs are,

u′t(ct) = ptct + qt
1
σ

Ct

kt

ṗt = ρpt − pt( f ′(kt)− δ) + qt
Ċt

kt
− qt

Ct

kt
( f ′(kt)− δ)

q̇t = ρqt − γU′(Ct)− qt
1
σ

(
f (kt)

kt
− δ− ct

kt
− ρ

)
.

Just like Kemp et al. (1993), we require the two transversality conditions to hold,

lim
t→∞

e−ρtqtCt = 0 and lim
t→∞

e−ρt ptkt = 0. (42)

Denote the 4-dimensional state of this dynamic system by xt = (kt, Ct, pt, qt) and its
unique positive steady state (the zero-tax steady state) by x∗ = (k∗, C∗, p∗, q∗). The lin-
earized system is,

ẋt = J(xt − x∗), (43)
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where J is a 4× 4 matrix with determinant

det J = (1− σ)
f ′′(k∗)u′(c∗)

u′′(c∗)︸ ︷︷ ︸
>0

ρ2

σ2 . (44)

Its eigenvalues can be written as,

λ1−4 =
ρ

2
±
[(ρ

2

)2
− χ

2
± 1

2

(
χ2 − 4 det J

)1/2
]1/2

, (45)

with

χ =
ρ

σ

u′(c∗)− γU′(C∗)
u′′(c∗)k∗

− f ′′(k∗)u′(c∗)
u′′(c∗)

. (46)

There are two “±” signs in (45). In the remainder, we number eigenvalues according
to those two signs in (45): λ1 has ++, λ2 has +−, λ3 has −+, and λ4 has −−. For
convenience, define γ∗ by γ∗ = u′(c∗)/U′(C∗).

In general, a solution xt to the linearized FOCs (43) can load on all four eigenvalues.
However, taking the two transversality conditions into account restricts the system to
only load on eigenvalues with Re(λi) ≤ ρ/2. In Lemma 13 below, we show that this
means the solution loads on eigenvalues λ3 and λ4.

Lemma 13. The eigenvalues in (45) can be shown to satisfy the following properties.

(a) It is always the case that

Reλ1 ≥ Reλ2 ≥ ρ/2 ≥ Reλ4 ≥ Reλ3.

(b) If σ > 1, then det J < 0, implying that

Reλ1 = λ1 > ρ > Reλ2 ≥ ρ/2 ≥ Reλ4 > 0 > λ3 = Reλ3. (47)

In particular, there is a exactly one negative eigenvalue. The system is saddle-path stable.

(c) If σ < 1 and γ ≤ γ∗, then det J > 0 and δ < 0, implying that

Reλ1, Reλ2 > ρ > 0 > Reλ4, Reλ3. (48)

In particular, there exist exactly two eigenvalues with negative real part. The system is
locally stable.

(d) If σ < 1 and γ > γ∗, the system may either be locally stable, or locally unstable (all
eigenvalues having positive real parts).

Proof. We follow the convention that the square root of a complex number a is defined as
the unique number b that satisfies b2 = a and has nonnegative real part (if Re(b) = 0 we also
require Im(b) ≥ 0). Hence, the set of all square roots of a is given by {±b}. We prove the
results in turn.
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(a) First, observe the following fact: Given a real number x and a complex number
b with nonnegative real part, it holds that Re

(√
x + b

)
≥ Re

(√
x− b

)
.63 From

there, it is straightforward to see that Reλ1 ≥ Reλ2 and Reλ4 ≥ Reλ3. Finally
Reλ2 ≥ ρ/2 ≥ Reλ4 holds according to our convention of square roots having
nonnegative real parts.

(b) The negativity of det J follows immediately from (44). This implies

−δ

2
+

1
2

(
δ2 − 4 det J

)1/2
> 0 > −δ

2
− 1

2

(
δ2 − 4 det J

)1/2
,

and so (47) holds, using monotonicity of Re
√

x for real numbers x.

(c) The signs of det J and δ follow immediately from (44) and (46). In this case, −δ/2±
1/2Re

(
δ2 − 4 det J

)1/2
> 0 proving (48).

(d) This is a simple consequence of the fact that if det J > 0, then either
−δ/2± 1/2Re

(
δ2 − 4 det J

)1/2
> 0, or −δ/2± 1/2Re

(
δ2 − 4 det J

)1/2
< 0, where

under the latter condition the system is locally unstable.

H Proof of Proposition 6

In this proof, we first exploit the recursiveness of the utility V to recast the IC constraint
(7) entirely in terms of Vt and W(U, V′). Then, using the first order conditions, we are
able to characterize the long-run steady state. Throughout this section, we denote by Xzt
the derivative of quantity X with respect to z, evaluated at time t. To save on notation, we
define f (k, n) ≡ F(k, n) + (1− δ)k.

Let βt ≡ ∏t−1
s=0 WVs. Using the definition of the aggregator in (3) this implies that

Vct = βtWUtUct and Vnt = βtWUtUnt. Thus the IC constraint (7) can be rewritten as

∞

∑
t=0

βtWUt(Uctct + Untnt) = WU0Uc0

(
R0k0 + Rb

0b0

)
, (49)

and the planning problem becomes

max
{Vt,ct,nt,R0}

V0

s.t. Vt = W(U(ct, nt), Vt+1) (50)
RC (6), IC (49), Rt ≥ 1.

63To prove this, let b̄ denote the complex conjugate of b and note that Re
(√

x + b
)

is monotonic in the

real number x. Then, Re
(√

x + b
)

= Re
(√

x + b̄
)

= Re
(√

x− b + (b̄ + b)
)
≥ Re

(√
x− b

)
where

b̄ + b = 2Re(b) ≥ 0 and monotonicity are used.
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To state the first order conditions, define for each t ≥ 0, At+1 ≡ 1
βt+1

∂
∂Vt+1

∑∞
s=0 βsWUs(Ucscs +

Unsns) and Bt ≡ 1
βt

∑∞
s=0

∂(βsWUs)
∂Ut

(Ucscs + Unsns). Let βtνt be the present value multiplier
on the Koopmans constraint (50), βtλt the present value multiplier on the resource con-
straint (6), and µ the multiplier on the IC constraint (49). As stated in the proposition,
we assume that the capital tax bound Rt ≥ 1 is not binding eventually, say from period
T onwards. The first order conditions for Vt+1, ct, nt, and kt+1 (in that order) are for each
t ≥ T given by

−νt + νt+1 + µAt+1 = 0
−νtWUtUct + µWUt (Uct + Ucc,tct + Unc,tnt) + µBtUct = λt

νtWUtUnt − µWUt (Unt + Ucn,tct + Unn,tnt)− µBtUnt = λt fnt

−λt + λt+1WVt fkt+1 = 0.

Suppose the allocation converges to an interior steady state in c, k, and n. Then Ut and
Vt converge, as well as their first and second derivatives (when evaluated at ct, kt, and
nt). Similarly, the representative agent’s assets at converge to a value a, which can be
characterized using a time t + 1 version of the IC constraint,

a = lim
t→∞

at+1 = lim
t→∞

(WUt+1Uct+1βt+1Rt+1)
−1

∞

∑
s=t+1

βsWUs(Ucscs + Unsns)

= ((1− β)UcR)−1 (Ucc + Unn) ,

where β ≡ β̄(V) = WV ∈ (0, 1) (see footnote 30). Using this expression, we see that At+1,
which can be written as,

At+1 =
WUV,t

WVt
(Uctct + Untnt) +

WVV,t

WVt
β−1

t+1

∞

∑
s=t+1

βsWUs(Ucscs + Unsns)︸ ︷︷ ︸
WUt+1Uct+1Rt+1at+1→WUUcRa

,

converges as well, to some limit A,

At+1 →
βU

β
(Ucc + Unn) +

βV

β
WUUcRa

=

(
1− β

WU
βU + βV

)
1
β

WUUcRa =
β̄′(V)

β
WUUcRa ≡ A. (51)

where we defined βX ≡ WVX and X = U, V. Similarly, we can show that Bt converges to
some finite value B. Taking the limits of quantities in the first order conditions above, we
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thus find a system of equations for multipliers νt, µ, λt,

−νt + νt+1 + µA = 0 (52a)

−νt + µ

(
1 +

Uccc
Uc

+
Uncn

Uc

)
+ µ

B
WU

= λt
1

WUUc
(52b)

−νt + µ

(
1 +

Ucnc
Un

+
Unnn

Un

)
+ µ

B
WU

= −λt
fn

WUUn
(52c)

−λt + λt+1β fk = 0. (52d)

Substituting out λt from (52d) using (52a) and (52b), we find

β fk − 1 =
λt

λt+1
− 1 = −WUUc

λt+1
µA. (53)

We now move to the two main results of this section. First, we show that steady state
capital taxes are zero. Second, we show that steady state labor taxes are also zero, unless
β̄′(V) = 0, when preferences are locally additive separable.

Lemma 14. At an interior steady state, capital taxes are zero, i.e. β fk = 1.

Proof. If A = 0 or µ = 0 the result is immediate from (53). Suppose instead that A 6= 0
and µ 6= 0. Then, (52a) implies that νt and hence λt diverges to +∞ or −∞. Then again,
β fk = 1 follows from (53).64

We move to our second result.

Lemma 15. At an interior steady state, labor taxes are zero, i.e. τn ≡ 1 + Un
Uc fn

= 0 if β̄′(V) 6= 0
and a > 0.

Proof. By combining equations (52b) and (52c) we find an expression for τn,

λtτ
n = µ

WUUn

fn

(
Uccc
Uc

+
Uncn

Uc
− Ucnc

Un
− Unnn

Un

)
, (54)

Note that by normality of consumption and labor the term in brackets is negative, Uccc
Uc

+
Uncn

Uc
− Ucnc

Un
− Unnn

Un
< 0. It is immediate from (54) that τn = 0 if λt diverges to either +∞

or −∞.65 Suppose λt → λ ∈ R. We distinguish whether µ = 0 or µ 6= 0. If µ = 0,
the economy was first best to start with, and the labor tax must be zero at any date,
including at the steady state. If µ 6= 0, convergence of λt (equivalent to convergence of
νt) necessitates that A = 0, using (52a). But then (51) contradicts our assumptions that
preferences are not locally additively separable, β̄′(V) 6= 0, and steady state assets are
positive a > 0.

64Notice that λt → 0 requires µ = 0 by (54), so the optimal allocation is first best to begin with, implying
β fk = 1.

65Since At → A 6= 0 and µ is constant over time, νt and thus also λt have a well-defined limit in [−∞, ∞].
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I Proof of Proposition 7

In this section, we prove Proposition 7. The proof is organized as follows. In Section I.1
we introduce the planning problem, derive and discuss the first order conditions, and
define the largest feasible level of initial government debt b. Section I.2 then focuses on
parts A and B (i) of Proposition 7. Finally, Section I.3 proves the bang-bang property and
parts B (ii) and C of Proposition 7.

I.1 Planning problem and first order conditions

As in the statement of the proposition, we fix some positive initial level of capital k0 > 0.
The problem under scrutiny is

V(b0) ≡ max
{ct,nt,kt,rt}

∫ ∞

0
e−ρt (u(ct)− v(nt)) dt (55a)

ċt = ct
1
σ
(rt − ρ) (55b)

ct + g + k̇t = f (kt, nt)− δkt (55c)∫ ∞

0
e−ρt (u′(ct)ct − v′(nt)nt

)
dt ≥ u′(c0)(k0 + b0) (55d)

ct > 0, nt ≥ 0, kt ≥ 0, rt ≥ 0

where recall that u(c) = c1−σ/(1− σ) and v(n) = n1+ζ/(1 + ζ), ζ > 0. In the entire anal-
ysis in this section, we write value functions such as V(b0) without explicit reference to k0
since we treat k0 as fixed. The current-value Hamiltonian of this optimal control problem
with subsidiary condition (55d) (see, e.g., Gelfand and Fomin, 2000) can be written as

H(c, k; n, r; λ, η, µ) = Φuu(c)−Φvv(n) + ηc
1
σ
(r− ρ) + λ ( f (k, n)− δk− c− g) , (56)

where we defined Φv ≡ 1 + µ(1 + ζ) and Φu ≡ 1 + µ(1− σ) with µ being the multiplier
on the IC constraint; and where we denoted the costates of consumption and capital by
ηt and λt, respectively. Notice that ηt ≤ 0 or else rt = ∞ were optimal, violating the
resource constraint. Problem (55a) implies the following first order conditions for the
controls {nt, rt},

Φvv′(nt) = λt fn(kt, nt) (57a)

rt

{
= 0 if ηt < 0
∈ [0, ∞) if ηt = 0,

(57b)
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the following laws of motion for the costates,

η̇t − ρηt = ηt
ρ

σ
+ λt −Φuu′(ct) (57c)

λ̇t = (ρ− r∗t )λt (57d)

and the following optimality condition for the initial state of consumption c0,

η0 = −µσc−σ−1
0 (k0 + b0). (57e)

In equation (57d) we defined the before-tax return on capital as r∗t = fk(kt, nt)− δ. The
conditions (57a)–(57e), together with the constraints (55b)–(55d) and the two transversal-
ity conditions

lim
t→0

e−ρtλtkt = 0 (57f)

lim
t→0

e−ρtηtct = 0 (57g)

are sufficient for an optimum if we are able to establish that the planning problem (55a)
is a concave maximization problem, or can be transformed into one using variable trans-
formations.

The first order conditions (57a)–(57e) (though not the transversality conditions (57f)
and (57g)) are necessary at an optimum since interiority is ensured by the imposition
of Inada conditions; that is, with the exception when that optimum is also maximizing
the subsidiary constraint, which is the IC constraint in our case (see Gelfand and Fomin,
2000). More specifically, the above first order conditions are not necessary when the opti-
mum to (55a) achieves the supremum in

b ≡ sup
{ct,nt,kt}

1
u′(c0)

∫ ∞

0
e−ρt (u′(ct)ct − v′(nt)nt

)
dt− k0 (58)

subject to the two other constraints (55b) and (55c). We deliberately formulated (58) in
a way to define b as the highest level of b0 for which there can possibly exist a feasible
allocation. Notice that b ∈ [−∞, ∞], allowing for b = −∞ if no feasible allocation exists at
all (which might happen if g is very large), and b = ∞ if there exists a feasible allocation
for any value of b0.

Since in the case that b0 = b the supremum in (58) is attained, there are still necessary
first order conditions the allocation satisfies, namely the ones corresponding to (58). These
are exactly the same as (57a)–(57e) after substituting µηt for ηt and µλt for λt, and then
dividing by µ and setting µ = ∞. This replaces Φu by (1 − σ) and Φv by (1 + ζ) in
(57a)–(57c), leaves (57d) unchanged and alters (57e) to η0 = −σc−σ−1

0 (k0 + b0).
One additional remark about the setup in (55a) is in place. We stated an inequality

IC constraint (55d), corresponding to a non-negative multiplier µ. This is without loss of
generality in our setup, since at any optimum, µ will indeed be non-negative: From the
first order condition (57e), we see that our assumption of positive initial private wealth,
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k0 + b0 > 0, together with the non-positivity of η0 means that µ ≥ 0.

I.2 Proof of parts A and B (i)

Our proof in this subsection proceeds in three steps. First, we characterize the space
of solutions to a restricted planning problem, in which the length T of capital taxation
is restricted to be infinity. Then we use these insights to prove that T = ∞ is in fact
optimal in the unrestricted planning problem for levels of initial debt b0 ∈ [b, b] (with non-
empty interior if σ > 1). Finally, we show that for all b0 < b there are feasible policies
with T < ∞. Throughout, we assume that σ ≥ 1, as is assumed in parts A and B (i) of
Proposition 7.

1st step: The restricted problem. We start by studying a restricted planning problem,
where we restrict ourselves to the case of indefinite capital taxation (at its upper bound).
Effectively, this implies that rt = 0 for all t and the path of ct is entirely characterized
by c0 and (55b). To characterize this restricted problem, it will prove useful to define
the minimum discounted sum of labor disutilities, henceforth effective disutility from labor,
needed to sustain this path {ct} as

ṽ(c0) ≡ min
{nt,kt}

∫ ∞

0
e−ρtv(nt)dt (59a)

s.t. c0e−ρ/σt + g + k̇t = f (kt, nt)− δkt. (59b)

We prove important properties of the effective disutility ṽ and the optimal control prob-
lem (59a) in Lemma 16.

Lemma 16. The function ṽ : R+ → R+ is strictly convex, strictly increasing and continuously
differentiable at any c0 ∈ R++. It satisfies ṽ(0) > 0. Moreover, for any c0 ≥ 0, there exists a
unique solution {n∞

t , k∞
t } and a costate of capital {λ∞

t }. Upon defining c∞
t = c0e−ρ/σt it holds

that, {c∞
t , n∞

t , k∞
t , λ∞

t } → (c∞, n∞, k∞, λ∞), where

c∞ = 0
f (k∞, n∞) = δk∞ + g (60a)

fk(k∞, n∞) = ρ + δ (60b)

v′(n∞) = λ∞ fn(k∞, n∞). (60c)

In particular, the transversality condition limt→∞ e−ρtλ∞
t k∞

t = 0 holds and

ṽ′(c0) =
∫ ∞

0
e−(ρ+ρ/σ)tλtdt. (60d)

Proof. The proof has 4 steps: First, we prove existence and uniqueness of the solution
to a “bounded” version of the optimal control problem (59a) with bounds on nt and kt.
Second, we characterize the optimal paths (k∞

t , n∞
t ) of this problem. Third, we show
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that increasing the bounds on kt and nt makes the bounded problem equivalent to (59a).
Finally, we establish that the claimed properties of ṽ.

First step. For this step, relax the constraint (59b) to be an inequality “≤” and intro-
duce upper bounds k > 0 and n > 0 on k and n. Using the definition of k∞ and n∞ in
(60a)–(60b), pick k > max{k0, k∞} and pick n large enough so that n > n∞ and so that
k̇0 > 0 is feasible at time t = 0.66 This means the problem is given by

ṽ(c0) ≡ min
{nt,kt}

∫ ∞

0
e−ρtv(nt)dt (61a)

s.t. c0e−ρ/σt + g + k̇t ≤ f (kt, nt)− δkt

kt ∈ [0, k], nt ∈ [0, n].

This problem is clearly a strictly convex minimization problem (strictly convex objective
and a convex constraint), even without bounds on k and n, and therefore at most admits
a single solution. A straightforward application of Seierstad and Sydsaeter (1987, Section
3.7, Theorem 15) to the optimal control problem (61a) reveals that there always exist paths
{n∞

t , k∞
t } that attain the minimum in (61a).67

Second step. We now study the long-run properties of the solution to the problem (61a).
Before we dive into the details, we note that k∞ > 0 and n∞ > 0 are uniquely determined
by (60a) and (60b) due to the Inada properties of fk(·, n) and the fact that f /k ≥ fk. λ∞

follows from (60c). At each point where kt < k and nt < n, the necessary first order
conditions corresponding to (61a) are given by

v′(nt) = λt fn(kt, nt) (62a)

λ̇t = λt(ρ− r∗t ), (62b)

where λt denotes the costate of kt. Notice that nt is continuous, as an immediate conse-
quence of (62a) and of the fact that both kt and λt are continuous. Also note that (62a)
implies λt ≥ 0, meaning our relaxation of the resource constraint (59b) to an inequality
was without loss of generality. Using the resource constraint (59b) and (62a)–(62b), we can
derive an ODE system entirely in terms of nt and kt, consisting of the resource constraint
(59b) itself and of

(ζ + αt)
ṅt

nt
= ρ + (1− αt)δ− αt

g + ct

kt
,

where αt = α(kt/nt) ≡ ∂ log fn
∂ log(kt/nt)

. We can also abbreviate the ODEs as k̇ = k̇(k, n, ct) and
ṅ = ṅ(k, n, ct). Define the two sets

At ≡ {(k, n) | ṅ(k, n, ct) > 0, k̇(k, n, ct) > 0}
Bt ≡ {(k, n) | ṅ(k, n, ct) < 0, k̇(k, n, ct) < 0}.

66k̇0 > 0 iff f (k0, n)− δk0 − g− c0 > 0.
67This relies on our choice of n which ensures that k̇0 > 0, so even for low values of k0 there exist

admissible paths {nt, kt}.
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Figure 6: Phase diagram characterizing the solution to the restricted problem (59a).
ṅ = 0

k̇ = 0

kt

nt

To illustrate these sets, note that for large t, ct ≈ 0, we can draw the phase diagram that
corresponds to the ODE system. This is done in Figure 6 for the Cobb-Douglas case where
αt = const. In that figure,At is the top right area, while Bt is the bottom left area. We now
argue that the state (kt, nt) can never be in At for any t, and never be in Bt for large t. If
for any t, (kt, nt) ∈ At, nt can be lowered to achieve k̇t = 0 at all times, clearly improving
the objective. If there does not exist a time s such that (kt, nt) 6∈ Bt for t > s, then it must
be that asymptotically (kt, nt) ∈ Bt for all sufficiently large t. But in that case, kt → 0,
contradicting feasibility (since government spending is positive, g > 0). Therefore, it
must be that (k∞

t , n∞
t )→ (k∞, n∞).

Note that the optimal costate λ∞
t can be computed using the first order condition for

labor, (62a). Due to the steady state convergence of the system, the transversality condi-
tion limt→∞ e−ρtλ∞

t k∞
t = 0 naturally holds.

Third step. We now show that there exists a sufficiently large bound n such that the
solutions of the problem without bounds, (59a) and the problem with bounds (61a) coin-
cide. This is the case if there exists a n such that n∞

t < n at the optimum at all times t.
Assume the contrary held, that is, no matter how large n is, at the corresponding optimal
path, which we denote by (k∞

t (n), n∞
t (n)) to emphasize the dependence on n, there exist

times t where n∞
t (n) = n. Since n∞

t (n) can never approach n from below (this would
require (kt, nt) ∈ At), it must be that there exists a time s > 0 such that n∞

t (n) = n for any
t ∈ [0, s] and any arbitrarily large n. It is straightforward to see that this lets k∞

s (n) grow
unboundedly large, in particular leading to (k∞

s (n), n∞
s (n)) ∈ As—a contradiction. This

completes our proof that problem (59a) admits a unique solution, which approaches the
steady state (k∞, n∞) asymptotically.

Fourth step. In our final step, we derive the claimed properties of ṽ. First, since the
objective is strictly convex, ṽ is strictly convex. It is also strictly increasing since the con-
straint tightens with larger c0. ṽ(0) > 0 follows directly from g > 0. For differentiability,
pick any ĉ0 ∈ R++ and denote the associated optimal path for capital by {k̂∞

t }. Follow-
ing the logic in Benveniste and Scheinkman (1979) we can define a strictly convex and

differentiable function w(c0) =
∫ ∞

0 e−ρt 1
1+ζ N

(
k̂∞

t , c0e−ρ/σt + g + ˙̂k∞
t + δk̂∞

t

)1+ζ
dt where

N(k, y) ≡ f (k, ·)−1(y) is the level of labor needed to fund output y ≥ 0 given capital

73



k > 0. By contsruction, w(ĉ0) = v(ĉ0) and w(c0) ≥ v(c0) locally around ĉ0.68 This implies
that ṽ is differentiable at any c0 ∈ R++ with derivative69

ṽ′(c0) =
∫ ∞

0
e−(ρ+ρ/σ)t v′(n∞

t )

fn(k∞
t , n∞

t )
dt. (63)

This formula for the derivative of ṽ is equivalent to (60d) after expressing the former in
terms of λt using the first order condition for labor (62a). This concludes our proof of
Lemma 16.

The effective disutility ṽ(c0) is convenient since in the original planning problem (55a),
labor disutility appears in present value terms both in the objective as well as in the IC
constraint (55d). Moreover, due to the assumption of power disutility, both present values
are essentially ṽ(c0) up to a constant factor. The restricted version of the original planning
problem (55a) can now be simply written as restricted problem

V∞(b0) ≡ max
c0>0

u(c0)
σ

ρ
− ṽ(c0) (64a)

c1−σ
0

σ

ρ
− (1 + ζ)ṽ(c0) ≥ c−σ

0 (k0 + b0). (64b)

We obtained (64a) from the original problem (55a) by requiring that T = ∞ and using the
definition of ṽ. We characterize the restricted problem (64a) in the following lemma.

Lemma 17. There exists a level of initial debt b
r ∈ R such that a solution to the restricted

planner’s problem (64a) exists if and only if b0 ≤ b
r
. For each b0 ≤ b

r
, there is a unique optimum

c∞
0 (b0) ∈ R++ and for each b0 < b

r
there is a unique multiplier µ∞(b0) ∈ [0, ∞) on the IC

constraint (64b) such that

Φuu′(c0)
σ

ρ
−Φvṽ′(c0) = −σµc−σ−1

0 (k0 + b0), (65)

for c0 = c∞
0 (b0), µ = µ∞(b0). Finally, there exists some b∗ < b

r
such that µ∞ : [b∗, b

r
) →

[0, ∞) is a continuous and strictly increasing bijection.

Proof. First, notice that the IC constraint of the restricted planning problem, (64b), can be
rewritten as

c0
σ

ρ
− (1 + ζ)cσ

0 ṽ(c0) ≥ k0 + b0. (66)

Observe that this is a convex constraint, as its left hand side is strictly concave. It is also
strictly increasing at c0 = 0 and diverges to −∞ for large c0.70 Therefore, there exists an

68The expression for w is obtained by substituting the resource constraint (59b) into the objective (59a).
69Notice that the derivative must be finite since ṽ is strictly convex and finite-valued for any c0 ∈ R+.
70Note that for σ = 1, (66) reads c0(

σ
ρ − (1 + ζ)ṽ(c0)) ≥ k0 + b0 and by positivity of k0 + b0 and mono-

tonicity of ṽ, this means that σ
ρ − (1 + ζ)ṽ(0) > 0 (which is exactly equal to the derivative of the left hand

side of (66) at c0 = 0).
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interior maximum at some c > 0. By definition, c0 = c is the only value that is compatible
with the IC constraint if b0 = b

r
, where we defined

b
r ≡ max

c0>0
c0

σ

ρ
− (1 + ζ)cσ

0 ṽ(c0)− k0. (67)

The maximizer c is then characterized by the first order conditions

σ

ρ
c̄−σ = (1 + ζ)σc̄−1ṽ(c̄) + (1 + ζ)ṽ′(c̄). (68)

For any b0 > b
r

the set of feasible c0 compatible with the IC constraint (64b) is empty, so
the restricted planning problem (64a) has a solution precisely when b0 ≤ b

r
.

An advantage of writing the IC constraint as in (66) is that it allows us to see that
the restricted problem (64a) has a strictly concave objective with a convex and bounded
constraint set. The objective attains its unconstrained maximum at some c∗ ∈ (0, ∞)
satisfying u′(c∗)σ

ρ = ṽ′(c∗). We can show that c∗ > c since the objective is increasing at c,

u′(c̄)
σ

ρ
− ṽ′(c̄) = (1 + ζ)σc̄−1ṽ(c̄) + ζṽ′(c̄) > 0,

where we used the first order condition for c, (68). Define b∗ ≡ c∗ σ
ρ − (1 + ζ)c∗ṽ(c∗)− k0,

so that c∗ lies in the constraint set (64b) if and only if b0 ≤ b∗—or in other words, the
constraint holds with equality for any b0 ≥ b∗. We next show that there exists (a) a
strictly decreasing (and hence continuous) bijection c∞ : [b∗, b

r
)→ (c, c∗] and (b) a strictly

increasing (and hence continuous) bijection µ∞ : [b∗, b
r
) → [0, ∞) such that c∞(b0) is the

unique solution to the strictly concave problem (64a), and constraint (64b) has Lagrange
multiplier µ∞(b0), for any b0 ∈ [b∗, b

r
).

Take any c0 ∈ (c, c∗]. Clearly, c0 is optimal with Lagrange multiplier µ when ini-
tial debt is b0 if the three objects c0, µ, b0 satisfy the first order condition of the prob-
lem—which can easily be seen to be given by (65)—and the constraint (64b). By sub-
stituting out b0 from (65) using the constraint, the first order condition can be expressed
as function of µ,

µ =

σ
ρ − cσ

0 ṽ′(c0)

(1 + ζ)σcσ−1
0 ṽ + (1 + ζ)cσ

0 ṽ′(c0)− σ/ρ
≡ M(c0).

For c0 ∈ (c, c∗], the denominator is positive and strictly increasing in c0, approaching
0 for c0 ↘ c; while the numerator is strictly decreasing and non-negative, with a zero
at c0 = c∗. This defines a strictly decreasing bijection M : (c, c∗] → [0, ∞). From the
constraint (64b), we see that

b0 = c0
σ

ρ
− (1 + ζ)cσ

0 ṽ(c0)− k0 ≡ B(c0)

which, by definition of b
r

and c, defines a strictly decreasing bijection B : (c, c∗]→ [b̃, b
r
).
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It follows that for any b0 ∈ [b̃, b
r
), the unique solution to (64a) is given by c∞(b0) =

B−1(b0), with associated multiplier µ∞(b0) = M(B−1(b0)). This concludes the proof.

We finished our characterization of the restricted planning problem and are now ready
for the second and main part of the proof of Proposition 7.

2nd step: Optimality of T = ∞ in the unrestricted problem. Before we proceed to
prove the optimality of T = ∞ in the unrestricted problem, we establish that b

r
is not just

the upper bound of possible initial debt in the restricted planning problem, but equal to
b, the one in the unrestricted planning problem (55a).

Lemma 18. Let b0 ∈ R and σ ≥ 1. The constraints (55b), (55c), (55d) define a non-empty set
for {ct, nt, kt, rt} if and only if b0 ≤ b

r
. In particular, b = b

r
. Moreover, if b0 = b

r
then capital is

necessarily taxed at the maximum, T = ∞.

Proof. It suffices to show that the constraint set in the original problem is empty for b0 >

b
r
, and that T = ∞ is necessary for b0 = b

r
. We show both by proving that any b0 ≥ b

r
is

infeasible with if capital is not taxed at its upper bound in all periods.
Hence fix some b0 ≥ b

r
and assume it was achievable without T = ∞ by {ct, nt, kt, rt}.

Then, it must be that rt > 0 on some non-trivial interval, and the path of consumption
is described by the Euler equation (55b), as always. Let the initial consumption value be
c0 and denote by ĉt the path which starts at the same initial consumption ĉ0 = c0 but
keeps falling at the fastest possible rate−ρ/σ forever, corresponding to T = ∞. Similarly,
define by n̂t the path for labor which keeps kt fixed but satisfies the resource constraint
with consumption equal to ĉt. Clearly, n̂t ≤ nt for all t and n̂t < nt on a positive-measure
set of times t. Because the left hand side of (55d) is weakly decreasing in ct and strictly
decreasing in nt, this strictly relaxes the IC constraint. Hence,∫ ∞

0
e−ρt ĉ1−σ

t dt−
∫ ∞

0
e−ρtv(n̂t)dt > ĉ−σ

0 (k0 + b0).

Notice, however, that for T = ∞, we can do even better by optimizing over labor (not
necessarily keeping capital constant, see (59a)), leading to

ĉ1−σ
0

σ

ρ
− (1 + ζ)ṽ(ĉ0) > ĉ−σ

0 (k0 + b0).

By definition of b
r

in (67) this is a contradiction to b0 ≥ b
r
. Therefore, b

r
is equal to the

highest sustainable debt level in the original problem, b, and can only be achieved with
T = ∞.

Our next lemma establishes that the unrestricted problem (55a) is a strictly concave
maximization problem with convex constraints. This will be helpful when proving unique-
ness in Lemma 20 below.

Lemma 19. Suppose σ ≥ 1. The unrestricted problem (55a) can be transformed into a strictly
concave maximization problem with convex constraints, using variable substitution. Therefore,
any optimum of (55a) is unique when σ ≥ 1.
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Proof. We rewrite (55a) in terms of the two variables ut ≡ u(ct) ∈ (−∞, 0) and vt ≡
v(nt) ∈ [0, ∞) instead of ct and nt. We only consider the case σ > 1; the case σ = 1 is
analogous. For σ > 1, the substitution yields

V(b0) ≡ max
{ut,vt,kt}

∫ ∞

0
e−ρt (ut − vt) dt (69)

u̇t ≥ (σ− 1)
ρ

σ
ut

((1− σ)ut)
−1/(σ−1) + g + k̇t ≤ f

(
kt, ((1 + ζ)vt)

1/(1+ζ)
)
− δkt∫ ∞

0
e−ρt ((1− σ)ut − (1 + ζ)vt) dt ≥ ((1− σ)u0)

σ/(σ−1) (k0 + b0)

ut < 0, vt ≥ 0, kt > 0.

We made two additional simplifications in (69): We incorporated the inequality for the
control rt ≥ 0 in the Euler equation constraint (55b); and the (strictly convex) resource
constraint was relaxed to be an inequality, which is without loss of generality since by
(57a) we know that its Lagrange multiplier, the costate of capital λt, is necessarily posi-
tive at any optimum. Since the resource constraint binds and is strictly convex, all other
constraints in (69) are also convex and the objective is linear, this planning problem can
at most have a single solution. And, (57a)–(57e), (57f), (57g), (55b)–(55d) are sufficient
conditions to find this solution.

Our next lemma finally establishes the optimality of T = ∞ in the unrestricted prob-
lem (55a).

Lemma 20. Suppose σ > 1 and define b ≡ (µ∞)−1
(

1
σ−1

)
with µ∞ as in Lemma 17. Indefinite

capital taxation is optimal in the Chamley problem (55a) if and only if b0 ∈ [b, b].

Proof. As a consequence of Lemma 19, the unrestricted planning problem (55a) can be
transformed into a strictly concave maximization problem with convex constraints. This
implies that the first order conditions (57a)–(57e), together with transversality conditions
(57f), (57g), and constraints (55b)–(55d) are in fact sufficient to characterize the unique
optimum of the unrestricted planning problem (55a). In this proof we guess a solution
and verify the sufficient conditions in a first step. In a second step, we prove that any
b0 < b does not imply positive long run capital taxation, where T < ∞. Throughout the
proof, we focus on b0 < b since we know from Lemma 18 that initial debt of b requires
indefinite capital taxation.

First step: Let b0 ∈ [b, b). We now construct an allocation {ct, nt, kt, rt} and multipliers
{λt, ηt}, µ that satisfy all the sufficient conditions. We define c0 ≡ c∞(b0) as in Lemma 17;
given c0, {ct, nt, kt} ≡ {c∞

t , n∞
t , k∞

t } and λt ≡ Φv · λ∞
t with notation as in Lemma 16;

µ ≡ µ∞(b0) as in Lemma 17; η0 ≡ Φuu′(c0)
σ
ρ −Φvṽ′(c0) (which is negative since Φu ≤ 0

by construction of µ) and ηt as solution to the ODE (57c) with initial condition η0. The
first order conditions (57a)–(57d) are satisfied by construction and by the fact that the
allocation {n∞

t , k∞
t , λ∞

t } satisfies (62a) and (62b). The first order condition for initial con-
sumption (57e) is equivalent to (65) in Lemma 17. The Euler equation constraint (55b) is
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trivially satisfied by construction of {ct}. The resource constraint holds for {c∞
t , n∞

t , k∞
t }

(see (59b) and Lemma 16) and therefore also for {ct, nt, kt}. Due to the fact that {n∞
t , k∞

t }
solves (59a) and ct = c0e−ρ/σt, the IC constraint (55d) can be seen to be equivalent to (64b)
and hence is satisfied since c0 was chosen to be c∞(b0). Finally, Lemma 16 implies that
the transversality condition for capital, (57f), holds. And, concluding the second step, the
transversality condition for consumption, (57g), holds since

e−ρtηtct = c0e−(ρ+ρ/σ)tηt = −c0

∫ ∞

t
e−(ρ+

ρ
σ )sλtdt + c0Φuu′(c0)

σ

ρ
e−

ρ
σ t → 0. (70)

and by this expression it also follows that ηt < 0 at all times t. The second equality in (70)
builds on an integral version of the law of motion of ηt, which we obtained by combining
(57c) with our definition of η0 as Φuu′(c0)

σ
ρ − Φvṽ′(c0) and the expression for ṽ′(c0) in

(60d) from Lemma 16. It will become important in the second step below that (70) also
reveals the limiting behavior of ηt itself: limt→∞ ηt = −∞ but limt→∞ e−ρtηt = Φuu′(c0)

σ
ρ .

Second step: We proceed by contradiction. Suppose b0 < b gave rise to indefinite cap-
ital taxation (at the maximum rate). Then, reversing the logic of the first step, it must be
the case that the allocation {ct, nt, kt} is also optimal in the labor disutility minimiza-
tion problem (59a) with multipliers λ∞

t = 1
Φv

λt, given c0; and c0 and µ must be op-
timal given b0 in the restricted planning problem (64a), that is, c0 = c∞(b0) and µ =
µ∞(b0) <

1
σ−1 . Since the first order condition (57e) is necessary, it must then be the case

that η0 = Φuu′(c0)
σ
ρ −Φvṽ′(c0) by comparing it to (65). Equation (70) thus holds as in the

second step, implying limt→∞ e−ρtηt = Φuu′(c0)
σ
ρ which now is positive since Φu > 0, a

contradiction to the optimality of capital taxes.

3rd step: Feasibility of finite capital taxation for all b0 < b. We now move to the third
and last part of this section. Here, we establish:

Lemma 21. For any initial government debt level b0 < b, there are implementable allocations
with nonzero capital taxation for only a finite time, T < ∞.

Proof. Fix b0 ≤ b and fix the allocation {c∞
t , n∞

t , k∞
t } that is optimal among all allocations

with indefinite capital tax. By construction, this allocation satisfies the restricted problem
(64a). We now explicitly construct an allocation {c̃t, ñt, k̃t} for which there is no capital tax,
˙̃c = 1

σ (r
∗
t − ρ)c̃t, after time some time T < ∞ but that is feasible—satisfying constraints

(55b)–(55d)—with initial debt b0 − ε, for ε > 0 arbitrarily small. First, we describe the
allocation for all times t ≥ T. Consider

Vzero tax(k̂) ≡ max
{ct,nt,kt}t≥T

∫ ∞

T
e−ρ(t−T) (u(ct)− v(nt)) dt

s.t. ct + g + k̇t = f (kt, nt)− δkt

kT = k̂
ct > 0, nt ≥ 0, kt ≥ 0
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which is the social planning problem of a standard neoclassical growth model with power
utilities in consumption and labor, and a Cobb-Douglas technology (i.e. zero labor and
zero capital taxes). It is known that such a model has optimal paths {c∗t , n∗t , k∗t } that mono-
tonically converge to a unique positive steady state (c∗, n∗, k∗). This implies that {n∗t } is
bounded from above by n(k̂) = max{n∗, n(k̂)} where n(·) denotes the (continuous) pol-
icy function for labor supply. Moreover, the undistorted Euler condition holds along the
path for consumption {c∗t }. Also, it is well known that the consumption policy function
c(k) of this problem is continuous and strictly increasing, with c(k) > 0 for any k > 0. Fix
k̂ ≡ k∞

T . Since k∞
t converges to a positive limit k∞ > 0 but c∞

t → 0 (see Lemma 16), it is the
case for sufficiently large T that c(k̂) > c∞

T . Focus on such T. Also let n ≡ supt n(k∞
t ) < ∞

be an upper bound for labor (which by construction is uniform in T). Notice that n < ∞
since k∞

t converges to some k∞ > 0.
Now construct the paths {c̃t, ñt, k̃t} by piecing together {c∞

t , n∞
t , k∞

t } for t < T and a
zero-tax path {c∗t , n∗t , k∗t }, starting with k∗T = k∞

T , for t ≥ T. By design, the capital stock is
continuous at t = T and consumption jumps upwards at t = T.71 Using this construction,
the allocation satisfies the resource constraint at all periods, and the Euler equation with
equality for t > T. Also,∫ ∞

0
e−ρt (u′(c∞

t )c∞
t − v′(n∞

t )n∞
t
)

dt−
∫ ∞

0
e−ρt (u′(c̃t)c̃t − v′(ñt)ñt

)
dt =

∫ ∞

T
e−ρt (u′(c∞

t )c∞
t − u′(c∗t )c

∗
t
)

dt︸ ︷︷ ︸
≤e−ρTu′(c∞

T )c∞
T

σ
ρ

+
∫ ∞

T
e−ρt (v′(n∗t )n∗t − v′(n∞

t )n∞
t
)

dt︸ ︷︷ ︸
≤e−ρT 1

ρ n1+ζ

. (71)

As e−ρTu′(c∞
T )c

∞
T → 0 both terms in (71) approach zero. This is why for T sufficiently

large,
∫ ∞

0 e−ρt (u′(c̃t)c̃t − v′(ñt)ñt) dt approaches u′(c̃0)(k0 + b0). Thus, for any ε > 0,
there exists a T such that the allocation {c̃t, ñt, k̃t} is implementable without capital taxes
after time T, for initial debt b0 − ε,∫ ∞

0
e−ρt (u′(c̃t)c̃t − v′(ñt)ñt

)
dt ≥ u′(c̃0)(k0 + b0 − ε)

which is what we set out to show. This proves that for any b0 < b, there exists a feasible
(but not necessarily optimal) path with only a finite period of positive capital taxation.

Summary This concludes the proof of parts A and B (i) of Proposition 7. For part A, we
proved (i) in Lemma 18 , (ii) in Lemma 20 and (iii) in Lemma 21. Part B (i) was shown in
Lemma 18.

71We think of this as a very high capital subsidy for a very short amount of time (which would definitely
not be violating any capital tax constraints). If one prefers to avoid this simple limit case, one could easily
smooth out this jump over some very small interval. This makes no difference whatsoever for the argument
that follows.
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I.3 Proof of the bang-bang property and parts B (ii) and C

We proceed in three steps. We first establish a transversality condition that is necessary
at any optimum (in general, transversality conditions are not necessary). Then, using this
transversality condition, we derive the “bang-bang” property of capital taxes. Notice that
previous proofs of this property relied on the assumption that indefinite capital taxation is
not optimal, which we showed is not the case. The bang-bang property lets us summarize
an optimal capital tax plan by the date T ∈ [0, ∞] at which capital taxes jump from the
upper bound τ̄ to zero. In the final step, we prove parts B (ii) and C, that is, T < ∞ if
either σ < 1 or σ = 1 and b0 = b.

1st step: A necessary transversality condition.

Lemma 22. Let {ct, nt, kt, rt} be a solution to problem (55a), with multipliers {λt, ηt, µ}. If ∃ s ≥
0 such that ct = cse−ρ(t−s)/σ for all t ≥ s, then the transversality condition for consumption (57g)
holds.

Proof. We first establish that under the conditions of the lemma, {kt, nt} converges to a
positive steady state. If ct = cse−ρ(t−s)/σ, then {kt, nt}t≥s must be minimizing the stream
of labor disutilities (61a) given initial capital ks and initial consumption cs. Therefore,
{kt, nt} → {k∞, n∞}, using the notation from Lemma 16.

Thus, there exists some large enough n > 0 such that

f (kt, n)− δkt − ct − g > 0 (72)

for all t. Since the time t controls maximize the time t Hamiltonian Ht (see (56)), we then
have for any n

e−ρt(Φuu(ĉt)−Φvv(n)) + e−ρtηt ĉt
1
σ
(−ρ) + e−ρtλ( f (k̂t, n)− δk̂t − ĉt − g) ≤ e−ρtHt → 0

(73)
where the left hand side is the present value Hamiltonian with controls rt = 0 and nt = n,
and the right hand side is the present value Hamiltonian with optimal controls rt, nt (both
along the optimal path for ct, kt). The right hand side converges to zero following Michel
(1982). Notice that in (73), e−ρt(Φuu(ct)−Φvv(n))→ 0. Suppose lim inft→∞ e−ρtηtct were
negative. Then, according to (73) it would have to be that

lim sup
t→∞

e−ρtλ( f (kt, n)− δkt − ct − g) ≤ lim inf
t→∞

e−ρtηtct
1
σ

ρ < 0

contradicting (72). This means the transversality condition for consumption (57g) holds.

2nd step: The bang bang property. We move to the first main result of this subsection.

Lemma 23. A solution to problem (55a) is of the form that the capital tax τt binds at the upper
bound for some time T ∈ [0, ∞] and is equal to zero thereafter.
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Proof. Let {ct, nt, kt, rt} be an optimal allocation solving (55a), for some initial debt b0 ∈
R. Let {λt, ηt, µ} be a set of multipliers such that allocation and multipliers satisfy the
necessary first order conditions for the case b < b, (57a)–(57e) and constraints (55b)–(55d).
Our proof is analogous if b = b. We first show that if τt < τ̄ on some non-trivial interval,
then τt = 0 on that interval. Second, we prove that τt = 0 at all times after that interval
as well. The proof utilizes the fact that once τt = 0, it must not only be that r∗t ≥ 0 at that
time (or else the rt ≥ 0 constraint would be binding); but also that r∗t > 0 for all future
times. We formally prove this fact in Lemma 24 below.

First, suppose τt < τ̄ for some non-trivial interval t ∈ [s0, s1]. Then, by (57b), rt > 0
and ηt = 0 on that interval. Hence, by (57c), λt = Φuu′(ct). Taking logs and dif-
ferentiating implies an undistorted Euler equation of the agent. Therefore, τt = 0 for
t ∈ [s0, s1]. Second, suppose there is a later time where capital taxes are positive, that is
s′ ≡ inf{t > s1 | ηt < 0} < ∞. Observe that, between t = s1 and t = s′, both u′(ct) and
λt grow at the common rate ρ− r∗t , so λs′ = Φuu′(cs′). For any t > s′, u′(ct) still grows
at least as fast as λt, and, by definition of s′, for a positive-measure set of times t after s′,
u′(ct) grows at the faster rate ρ > ρ− r∗t since ηt < 0 and τt = τ̄ for those t. Therefore,
for any t > s′, Φuu′(ct) > λt. By (57c), this means η̇t < ηt

(
ρ + ρ

σ

)
, or in other words,

ηt < 0 and ct = cs′e−ρ(t−s′)/σ for t > s′. Moreover, lim supt→∞ e−ρtηtct < e−ρs′ηs′cs′ < 0,
contradicting Lemma 22. This concludes our proof of Lemma 23.

Lemma 24. If τs = 0 for s ≥ 0, then r∗s ≥ 0 and r∗s′ > 0 for all s′ > s.

Proof. For convenience we introduce Rt ≡ fk(kt, nt). Rt has the following law of motion,

(ζ + αt)β−1
t

Ṙt

Rt
= ρ + (1 + ζ)δ + ζ

g + ct

kt
− ζ f (1, h(Rt))− Rt,

which was obtained by log-differentiating the first order condition of labor (57a) and com-
bining it with the resource constraint (55c). Here, αt ≡ ∂ log fn

∂(kt/nt)
as before, βt ≡ ∂ log fk

∂(nt/kt)
, and

h(x) ≡ fk(1, ·)−1(x). Observe that h : R+ → R+ is strictly increasing and bijective. Since
Ṙ depends implicitly (through α and β) and explicitly on kt, Rt, and ct, we also write
Ṙt = Ṙ(k, R, c).

Our proof of this lemma proceeds in two steps. First, we show an auxiliary result,
namely that whenever

(kt, Rt, ct) ∈ A ≡ {(k, R, c) | R ≤ δ, Ṙ(k, R, c) ≤ 0},

for some time t = t0, then (kt, Rt, ct) ∈ A for all later times t > t0 too. Second, we
establish the result stated in the lemma.

First step. To prove the auxiliary result, it suffices to consider points (kt, Rt, ct) at the
boundary ofA and study whether the flows induced by the differential equation point to
the inside of A. There are two kinds of boundary points. If Rt = δ, it trivially holds that
d
dt Rt ≤ d

dt δ = 0. Suppose now that Ṙ(kt, Rt, ct) = 0 and ask whether d
dt Ṙ(kt, Rt, ct) ≤ 0.
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Generally, whenever (kt, Rt, ct) ∈ A, it is straightforward to see that

k̇
k
=

f (k, n)
k
− δ− g + ct

kt
≥ ρ

ζ
> 0. (74)

Moreover, ċt = − ρ
σ ct since r∗t = Rt − δ ≤ 0. The fact that kt is increasing and ct is

decreasing mean that

(ζ + αt)β−1
t

d
dt Ṙt

Rt
=

d
dt
(ζ + αt)β−1

t
Ṙ
R

=
d
dt

g + ct

kt︸ ︷︷ ︸
<0

− d
dt

(ζ f (1, h(R)) + R)︸ ︷︷ ︸
=0

< 0

establishing the auxiliary result.
Second step. Suppose τs = 0 for some s ≥ 0. The fact that r∗s ≥ 0 follows directly

from the constraint (1− τs)r∗s = rs ≥ 0. Let s′ ≡ inf{t > s|r∗t ≤ 0} and suppose s′ < ∞.
Since r∗t is continuous and differentiable, this means that r∗s′ = 0 and d

dt r∗t |t=s′ ≤ 0, or in
terms of Rt, Rs′ = δ and Ṙs′ ≤ 0. Applying the auxiliary result, (kt, Rt, ct) ∈ A for any
t > s′. Moreover, kt → ∞ due to (74) at all times t > s′. This is in sharp contradiction
to Lemma 16 (which applies here using ks′ as initial capital stock since ċt = − ρ

σ ct for all
t ≥ s′. Therefore r∗t > 0 for all t > s.

3rd step: Finite capital taxation T < ∞ in parts B (ii) and C.

Lemma 25. If either σ < 1 or σ = 1 and b0 < b, then T < ∞.

Proof. If either σ < 1 or σ = 1 and b0 < b, then Φu > 0 for any µ ≥ 0.72 In the following,
we prove that this is incompatible with T = ∞. By contradiction, suppose it were the
case that there exists an optimal allocation {ct, nt, kt, rt} with T = ∞, i.e. ct = c0e−ρt/σ.
Applying Lemma 22, (kt, nt) → (k∞, n∞). In particular, r∗t → ρ > 0 following the def-
inition of (k∞, n∞) in Lemma 16. Now, Φuu′(ct) grows at rate ρ while λt only grows at
rate ρ− r∗t < ρ. Therefore, there exists some finite time s such that λt < Φuu′(ct) for all
t > s. Using law of motion of ηt, (57c), this means η̇t < ηt

(
ρ + ρ

σ

)
for all t > s and so

lim supt→∞ e−ρtηtct < e−ρsηscs < 0, contradicting Lemma 22.

Summary. This concludes our proofs of the bang bang property (Lemma 23) and parts
B (ii) and C (Lemma 25).

J Proof of Proposition 8

We proceed by providing an explicit solution to the first order and transversality condi-
tions to problem (55a) with zero government spending and certain combinations of k0, b0.
We do so in two steps. First, taking k0 as given, we find paths {ct, nt, kt, rt}, {λt, ηt}, µ and

72If b0 = b and σ < 1, then as we explain in Section I, Φu can be taken to be (1− σ), and thus is positive
here.
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a level of initial debt b0 which together satisfy all first order conditions, transversality con-
ditions and constraints, with the one exception that ηt need not necessarily be negative.
In a second step, we choose k0 such that µ ≥ 1/(σ− 1) which will ensure that ηt < 0 at
all times t.

The reason this construction is analytically tractable is that along the optimum, ct, nt, kt
will all fall to zero at the exact same growth rate, which needs to equal ρ

σ by the Euler
equation (55b). At the same time, rt = 0 (since T = ∞). Taken together, to find the solution
for a given k0, it is necessary to find c0, n0, {λt, ηt}, µ, b0. Again, we use the previous
notation Φu = 1 + µ(1− σ) and Φv = 1 + µ(1 + ζ).

First step. We conjecture that ct = c0e−ρ/σt, nt = n0e−ρ/σt, kt = k0e−ρ/σt, rt = 0, λt =
λ0e−ζρ/σt. The Euler equation (55b) obviously holds. The resource constraint (55c) is
satisfied iff

c0 = f (k0, n0)− δk0 +
ρ

σ
k0. (75)

The IC constraint (55d) is satisfied iff

b0 = c0
σ

ρ
− 1

ρ + (1 + ζ)ρ/σ
cσ

0 n1+ζ
0 − k0. (76)

The first order condition for labor (57a) and the costate λt (57d) hold iff

fk(k0, n0) = ζ
ρ

σ
+ ρ + δ (77)

and
Φvnζ

0 = λ0 fn(k0, n0). (78)

Given k0, (77) pins down n0, (75) c0, and (76) b0. The law of motion of ηt (57c) and the
associated transversality condition (57g) are satisfied iff

ηt = −
λ0

ρ + (1 + ζ)ρ/σ
e−ζρ/σt +

σ

ρ
Φuc−σ

0 eρt. (79)

Notice that (57b) holds, i.e.ηt < 0, as long as Φu ≤ 0, requiring µ ≥ 1
σ−1 . The transversal-

ity condition for capital (57f) obviously holds.
It remains to determine λ0, η0, and µ subject to (79) (at t = 0), µ ≥ 1

σ−1 , (78), and the
first order condition for c0 (57e). For expositional reasons, define the initial labor tax as
τ`

0 ≡ 1− nζ
0cσ

0 /w∗. Then, we can solve for µ as

µ =
τ`

0 + σ + ζ

σ
(
(1− τ`

0 )
n0
c0

w∗ − 1
)
− τ`

0 (1 + ζ)
. (80)

Notice that whenever µ ∈ [ 1
σ−1 , ∞), λ0 > 0 is given by (78) and η0 < 0 is given by (79) (at

t = 0). So the last step in our construction is to determine whether there are levels for k0
for which µ ∈ [ 1

σ−1 , ∞).

83



Second step. The only object on the right hand side of (80) that depends on k0 is τ`
0 ,

and τ`
0 is a strictly decreasing function of k0 ∈ [0, ∞), with τ`

0 → 1 as k0 → 0 and τ`
0 →

−∞ as k0 → ∞. Moreover, µ is increasing in τ`
0 ∈ (−∞, 1] and has a pole at τ`

0,pole =
σw∗n0/c0−σ

σw∗n0/c0+1+ζ < 1, where it rises to +∞ from the left. For τ`
0 = 1, µ = −1 < 0. We define

k to be the value of k0 corresponding to τ`
0,pole. Putting the mapping from k0 to τ`

0 and the

one from τ`
0 to µ together, we find a function µ(k0) with the properties that

µ(k0) < 0 for k0 < k
µ(k0) ≥ 1/(σ− 1) for k0 ∈ (k, k̄]
µ(k0) < 1/(σ− 1) for k0 > k̄,

where k ≡ infk0≥k

{
k0 ≥ k | µ(k0) <

1
σ−1

}
∈ (k, ∞]. This proves that for k0 ∈ (k, k̄], there

exists a debt level b0(k0) for which the quantities ct, nt, kt all fall to zero at equal rate−ρ/σ
and the sufficient optimality conditions of the problem are satisfied.

K Proof of Proposition 9

First, we show that the planner’s problem is equivalent to (13). Then we show that the
functions ψ(T) and τ(T) are increasing, have ψ(0) = τ(0) = 0 and bounded derivatives.

The planner’s problem in this linear economy can be written using a present value
resource constraint, that is,

max
∫ ∞

0
e−ρt (u(ct)− v(nt)) dt (81)

s.t. ċ ≥ c
1
σ
((1− τ̄)r∗ − ρ)∫ ∞

0
e−r∗t(ct − w∗nt)dt + G = k0∫ ∞

0
e−ρt [(1− σ)u(ct)− (1 + ζ)v(nt)] dt ≥ u′(c0)a0,

where G =
∫ ∞

0 e−r∗tgdt is the present value of government expenses, k0 is the initial
capital stock, a0 is the representative agent’s initial asset position, and per-period util-
ity from consumption and disutility from work are given by u(ct) = c1−σ

t /(1− σ) and
v(nt) = n1+ζ

t /(1 + ζ). Note that we assumed σ > 1. The FOCs for labor imply that given
n0,

nt = n0e−(r
∗−ρ)t/ζ . (82)

An analogous argument to the bang-bang result in Appendix ?? implies the existence of
T ∈ [0, ∞] such that τt = τ̄ for t ≤ T and zero thereafter. In particular, the after-tax (net)
interest rate will be rt = (1− τ̄)r∗ ≡ r̄ for t ≤ T and rt = r∗ for t > T. Then, by the
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representative agent’s Euler equation, the path for consumption is determined by

ct = c0e−
ρ−r̄

σ t+ r∗−r̄
σ (t−T)+ . (83)

Substituting equations (82) and (83) into (81), the planner’s problem simplifies to,

max
T,c0,n̄

ψ1(T)u(c0)− ψ3v(n0) (84)

s.t. ψ2(T)(χ∗)−1c0 + G = k0 + ψ3w∗n0

ψ1(T)u′(c0)c0 − ψ3v′(n0)n0 = χ∗u′(c0)a0,

where ψ1(T) =
χ∗

χ

(
1− e−χT)+ e−χT, ψ2(T) =

χ∗

χ̂

(
1− e−χ̂T)+ e−χ̂T, ψ3 = χ∗

(
r∗ + r∗−ρ

ζ

)−1

and χ = σ−1
σ r̄ + ρ

σ , χ∗ = σ−1
σ r∗ + ρ

σ , χ̂ = r∗ + ρ−r̄
σ . Notice that χ̂ > χ∗ > χ.

Now normalize consumption and labor

c ≡ ψ1(T)1/(1−σ)c0/χ∗ n ≡ ψ
1/(1+ζ)
3 n0/ (χ∗)(1−σ)/(1+ζ)

and define an efficiency cost ψ(T) ≡ ψ2(T)ψ1(T)1/(σ−1) − 1, a capital levy τ(T) ≡ 1−
ψ1(T)−σ/(σ−1), and the present value of wage income ωn ≡ w∗ψζ/(1+ζ)

3 n. Here, we note
that by definition, ψ is bounded away from infinity and τ is bounded away from 1. Then,
we can rewrite problem (84) as

max
T,c,n

u(c)− v(n)

s.t. (1 + ψ(T))c + G = k0 + ωn
u′(c)c− v′(n)n = (1− τ(T))u′(c)a0,

which is what we set out to show. Notice that ψ1(0) = ψ2(0) = 1 and so ψ(0) = τ(0) = 0.
Further, given our assumption that σ > 1, ψ1(T) and τ(T) are increasing in T. To show
that ψ′(T) ≥ 0, notice that, after some algebra,

d
dT

(
ψ2ψ

1/(σ−1)
1

)
≥ 0 ⇔ χ̂

(
eχT − 1

)
≤ χ

(
eχ̂T − 1

)
,

which is true for any T ≥ 0 because χ̂ > χ. Therefore, ψ′(T) ≥ 0, with strict inequality
for T > 0, implying that ψ(T) is strictly increasing in T.

Now consider the ratio of derivatives,

ψ′(T)
τ′(T)

=
1
σ

ψ2ψ
(1+σ)/(σ−1)
1

(
(σ− 1)

ψ′2
ψ2

ψ1

ψ′1
+ 1
)

.

Notice that ψ1(T) ∈ [1, χ∗/χ] and ψ2(T) ∈ [χ∗/χ̂, 1], so both are bounded away from
infinity and zero. Further, the ratio ψ′2/ψ′1 is also bounded away from infinity, ψ′2/ψ′1 =

− 1
σ−1 e−(χ̂−χ)T ∈ [−1/(σ− 1), 0], implying that ψ′(T)/τ′(T) is bounded away from ∞.
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L Proof of Proposition 10

The planning problem is given by

sup
{ct,Ct,kt+1}

∞

∑
t=0

βtu(ct) (85)

ct + Ct + kt+1 = f (kt) + (1− δ)kt (86)
∞

∑
t=0

βtC1−σ
t = C−σ

0 a0. (87)

First, note that a0 must be positive or else the IC constraint (87) cannot be satisfied (recall
that σ > 1). Second, note that there exists a unique solution C0(ϕ) to the equation

Cσ
0 ϕ0ϕ1−σ + C0 = a0

for any ϕ0, ϕ > 0, and that C0(ϕ)→ 0 as ϕ→ 0. We now use this to construct a sequence
of feasible paths {C(n)

t }∞
t=0, n = 0, 1, . . ., with C(n)

t uniformly converging to 0 as n → ∞.
Take any sequence {C(0)

t }∞
t=0 that satisfies (87). Define

C(n)
t =

{
C0(ϕn) t = 0

ϕnC(0)
t t > 0

for some ϕ ∈ (0, 1), ϕ0 ≡ C−σ
0 (a0 − C0). By construction, C(n)

t → 0 uniformly and the
supremum in (85) approaches the maximum of the planning problem of a standard neo-
classical growth model,

max
{ct,Ct,kt+1}

∞

∑
t=0

βtu(ct)

ct + kt+1 = f (kt) + (1− δ)kt.

The way {C(n)
t }was constructed in this proof, it suggests an implementation via a wealth

tax T1 = R1/R∗1 → 100%. Analogous to this construction, a wealth tax approaching 100%
in any period would implement the same allocation. This also shows that only a single
period of unconstrained taxation is necessary to implement the supremum.
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M Proof of Proposition 11

As in Section 2, labor supply is inelastic at nt = 1. Denote the capitalist’s initial wealth by
a0 ≡ R0k0 + Rb

0b0. The planning problem is then

max
{ct,Ct,kt+1}

∞

∑
t=0

βtu(ct) (88a)

Ct+1 ≥ Ctβ
1/σ (88b)

ct + Ct + kt+1 = f (kt) + (1− δ)kt (88c)
∞

∑
t=0

βtU′(Ct)Ct = U′(C0)a0. (88d)

The necessary first order conditions for Ct and ct in problem (88a) are

β1/σηt − β−1ηt−1 = λt −ΦuU′(Ct) (89)

u′(ct) = λt (90)

β1/ση0 = λ0 −ΦuU′(C0)− µσC−σ−1
0 a0 (91)

where we defined Φu ≡ µ(1− σ). Here, µ is the multiplier on the IC constraint (88d), λt is
the multiplier of the resource constraint (88c)—which is positive by (90)—and ηt denotes
the costate of capitalists’ consumption Ct. If ηt < 0, constraint (88b) is binding. Also, it
follows from (88d) that

σC−σ−1
0 a0 = σC−1

0 ·U
′(C0)a0 = σC−1

0 ·
∞

∑
t=0

βtU′(Ct)Ct > (σ− 1)U′(C0),

where the inequality is obtained by dropping all terms with t > 0 from the infinite sum
and observing that σ > σ− 1. Using this inequality, (91) implies that µ must be positive
and Φu < 0.

Suppose now there existed a period T ≥ 0 where constraint (88b) is slack. In that case,
ηT = 0 and (89) becomes for t = T + 1

ΦuU′(CT+1) = λT+1 − β1/σηT+1 > 0

contradicting Φu < 0. Therefore, (88b) binds in all periods, or equivalently, Rt = 1 for all
t.
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