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Abstract

We derive a microfounded, dynamic version of the traditional Keynesian cross, which we
call the intertemporal Keynesian cross. It characterizes the mapping from all partial equilibrium
demand shocks to their general equilibrium outcomes. The aggregate demand feedbacks be-
tween periods can be interpreted as a network, and the linkages in the network can be general-
ized to reflect both the feedback from consumption and other dynamic forces, such as fiscal and
monetary policy responses. We explore the general equilibrium amplification and propagation
of impulses, and show how they vary with features of the economy. General equilibrium am-
plification is especially strong when agents are constrained, face uncertainty, or are unequally
exposed to aggregate fluctuations, and it plays a crucial role in the transmission of monetary
policy.

1 Introduction

The Keynesian cross is a staple of introductory macroeconomics, and one of the central ideas in
the analytical tradition that began with Keynes (1936). It spells out a simple feedback mechanism:
when some shock leads to a rise in demand for aggregate output, part of the income earned from
producing that output goes back into consumption demand, leading to a further rise in demand
for aggregate output, and so on.

Locally, the traditional Keynesian cross equation can be written as

dY = ∂Y + MPC · dY (1)

where ∂Y is the impulse to aggregate demand, dY is the equilibrium change in output, and MPC is
the aggregate marginal propensity to consume out of income. Equation (1) can be solved to obtain
dY = (1−MPC)−1∂Y, where (1−MPC)−1 = 1 + MPC + MPC2 + . . . is called the multiplier and
reflects the accumulated consumption feedback amplifying the original impulse.

Although the traditional Keynesian cross embodies a useful intuition, it has a number of weak-
nesses. It is static, not dynamic. It does not address budget constraints: an impulse to demand
from government spending comes out of thin air, rather than being offset by taxation or a cut

1



in spending at some other date. It does not directly correspond to any standard, microfounded
model.

This paper presents a modernized alternative, the intertemporal Keynesian cross, that addresses
these weaknesses and captures the general equilibrium feedback mechanisms in a variety of dy-
namic macroeconomic models. It has the form

dY = ∂Y + MdY (2)

which is an intertemporal generalization of (1), with Y being the vector of output at different dates
and M being a matrix of aggregate marginal propensities to consume, where each entry shows
the fraction of aggregate income in one date that will be spent, at the margin, in another. M can
be generalized to include intertemporal feedbacks other than household consumption, such as
investment, fiscal policy, or monetary policy.

The solution to (2) gives a general equilibrium multiplier that maps impulses ∂Y to equilibrium
output changes dY, reminiscent of the traditional (1− MPC)−1 multiplier. The multiplier, how-
ever, is now a matrix, and it reflects rich higher-order interactions: for instance, some income
earned in period 1 will be spent in period 2, from which some income will be spent again in pe-
riod 1. This multiplier matrix characterizes simultaneously the general equilibrium consequences
of all partial equilibrium shocks to the intertemporal pattern of demand—including those com-
ing from preference shocks, changes to fiscal or monetary policy, or changes in the distribution of
income among heterogenous agents.

In deriving the general equilibrium multiplier from the intertemporal Keynesian cross, we
uncover subtleties not present in the traditional, static analysis. One crucial observation is that
in net present value terms, all income is eventually consumed. In analytical terms, this implies
that the matrix M eigenvalue of one, and that it is impossible to invert I −M to solve (2) for
arbitrary impulses ∂Y. Intuitively, the problem is that if an impulse has positive net present value,
then applying M will preserve that net present value, and the series I + M + M2 + . . . of iterated
consumption feedbacks will diverge to +∞.

This difficulty, however, is mitigated by another observation: since individual agents must
respect budget constraints, a well-defined partial equilibrium impulse to demand must have zero
net present value. For instance, the substitution effect from a shock to interest rates changes the
pattern of household consumption over time without changing its net present value; assuming
asset market clearing and Ricardian fiscal policy, the net present value of the combined income
effects must also be zero. Due to this zero net present value property of demand shocks ∂Y, it is
possible to solve the intertemporal Keynesian cross (2) for general equilibrium dY.

Since M has an eigenvalue of one, however, there is at least one nonzero solution to the equa-
tion dY = MdY, meaning that the general equilibrium solution is indeterminate using (2) alone.
This indeterminacy is inherent to models with nominal rigidities, and can be resolved by mone-
tary policy. Different policy rules will lead to different outcomes—monetary policy can determine,
for instance, whether a given impulse from government spending will result in an increase in the
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net present value of output or leave it unchanged.
These analytical tools provide us with a variety of results. In a very simple case, we show that

they reduce to a version of the traditional Keynesian cross. In more general cases, however, there
are rich consequences for the general equilibrium amplification or dampening of various shocks.
We find, for instance, that there is greater amplification when households face tighter financial
constraints and more uncertain incomes. This directly increases the impact of fiscal policy, while
for monetary policy it offsets a decline in the partial equilibrium effect, since constraints and un-
certainty make agents less directly responsive to interest rates. As anticipated monetary policy
shocks are pushed further into the future, the initial partial equilibrium effect does less and less,
while the general equilibrium amplification does more and more.

Network interpretation. As we will see, one useful way to understand the amplification mech-
anisms inherent to our model is to think of time periods as nodes of a network. Each new unit of
income generated at a given node is spent, partly on itself and partly on every other node, accord-
ing to relationships given by the matrix M. This round of spending generates additional income
at each node, which is again spent according to the same pattern, and so on. The final outcome for
the distribution of income across nodes is our main object of interest. It is the general equilibrium
effect on consumption after the intertemporal Keynesian cross has run its course.

If the matrix M is written in net present value units—as we generally do—then the fact that all
income is spent in net present value terms means that M is a left-stochastic matrix, with columns
summing to one. It can then be interpreted as the transition matrix for a Markov chain, which pro-
vides a even more evocative view of the network. A number of analytical results can be usefully
viewed in light of this interpretation: for instance, the indeterminacy of GE solutions arises be-
cause M has a (generally unique) Perron-Frobenius eigenvector with eigenvalue one. This eigen-
vector corresponds to the stationary distribution of the Markov chain.
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(b) General equilibrium amplification

Figure 1: The Intertemporal Keynesian Cross
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2 A deterministic framework

In this section we write down a dynamic general equilibrium environment. Agents are hetero-
geneous in terms of their preferences, their income, the taxes they pay, and their ability to access
financial markets. Production results from an aggregate of different types of labor. Hence, our
environment incorporates many of the sources of heterogeneity that the recent literature has con-
sidered.

In this environment we derive, in Proposition 1, the Intertemporal Keynesian Cross: there exists
a matrix M such that the general equilibrium effect on output dY of a shock to aggregate demand
(from preferences, government spending or monetary policy) satisfies

dY = ∂Y + MdY (3)

where ∂Y is the partial equilibrium effect of the shock. Furthermore, we have 1′M = 1′ (Lemma
1) and, for any shock, 1′∂Y = 0 (Lemma 2). In the next sections, we will characterize the solutions
to (3) and illustrate the usefulness of this proposition in a number of important contexts.

2.1 Environment and flexible price equilibrium

We consider a T + 1 period economy populated by a finite set of I types of agents who face no
uncertainty. There are µi agents of type i = 1 . . . I, with masses normalized such that ∑I

i=1 µi = 1.
All agents within a type have the same preferences and face the same environment, so they behave
identically.

Agents. Each agent type i ∈ I has utility over consumption

Ui
(

ci
0, ci

1, . . . , ci
T; θ
)

(4)

where θ is an aggregate preference parameters, whose effect on agent i depends on the utility
function Ui. Agent i consumes ci

t goods and works ni
t units of time in period t. Work provides

disutility Vi (ni
0, ni

1, . . . , ni
T
)
. Utility in consumption and leisure is separable, so overall utility is

Ui −Vi. The agent can trade in nominal assets, and faces borrowing and saving limits which may
be i- and t-specific. Specifically, his budget constraint in period t is

Ptci
t + Ai

t = (1 + it−1) Ai
t−1 + W i

t ni
t − PtTi

t ∀t, i (5)

Ai
t

Pt
∈

[
ai

t, ai
t

]
In (5), it is the nominal interest rate, and Pt the nominal price of goods, equal for all agents. W i

t is
the wage of type i labor, and Ti

t are taxes, which are lump sum but may be i and t specific. As we
will see shortly, in equilibrium there are no firm profits to be distributed. Agents are born and die
with no wealth: we impose Ai

−1 = Ai
T = 0 for all i.
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Recursively substituting in (5) and imposing our initial and terminal conditions yields the
intertemporal budget constraint

T

∑
t=0

Qtci
t =

T

∑
t=0

Qt

(
W i

t
Pt

ni
t − Ti

t

)
∀i (6)

where the real discount rate Qt is the time-0 price of a unit of consumption at time t,

Qt ≡
t−1

∏
s=0

1
Rs

(7)

and the gross real interest rate between periods s and s + 1 is defined as

Rs ≡ (1 + is)
Ps

Ps+1
(8)

Maximization of (4) subject to (5) implies the Euler equations(
Ui

ct

(
ci

0, ci
1, . . . , ci

T; θ
)

Ui
ct+1

(
ci

0, ci
1, . . . , ci

T; θ
) − Rt

)(
Ai

t
Pt
− ai

t

)(
ai

t −
Ai

t
Pt

)
= 0 ∀i, t (9)

Our preference setup is very general. It accomodates arbitrary preferences, asset market partic-
ipation, and population structure, and can generate a wide array of equilibrium time paths for
consumption and labor supply, as well as marginal propensities to consume.

Production. Each period, a perfectly competitive firm produces the unique final good in this
economy using a technology that aggregates labor from each type of worker

Yt = Ft

(
l1
t , . . . l I

t

)
∀t

where, in each period t, Ft (·) has constant returns to scale and diminishing returns to each labor
type. Firm prices are perfectly flexible. Profit maximization implies

Pt =
W i

t

Fli ,t
(
l1
t , . . . l I

t
) ∀t, i (10)

where W i
t is the wage of worker type i. Constant returns then imply that firms make zero profits

at all times.

Government. The government spends Gt in period t. It raises taxes Ti
t to pay for this spending,

and adjusts the stock of nominal public debt Bt, so as to satisfy its budget constraint

Pt

(
n

∑
i=I

µiTi
t

)
+ Bt = (1 + it−1) Bt−1 + PtGt ∀t (11)
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We impose B−1 = BT = 0, to enforce market asset market clearing at the initial and terminal date.

Flexible wage equilibrium. In a flexible wage equilibrium, firms optimize, implying (10). House-
holds optimize, implying (5) and (9) for each i together with

Vi
nt

(
ni

0, ni
1, . . . , ni

T
)

Ui
ct

(
ci

0, ci
1, . . . , ci

T; θ
) =

W i
t

Pt
∀t, i (12)

Further, labor markets clear, implying

li
t = µini

t ∀t, i (13)

Finally, goods markets clear:

∑
i

µici
t + Gt = Yt ∀t (14)

Equivalently, asset markets clear, ∑i µi Ai
t = Bt, ∀t. Fix an allocation

{
Yn

t , Gn
t , ci,n

t , ni,n
t , Ti,n

t , Ai,n
t , Rn

t , W i,n
t , Pn

t

}
satisfying these equations and call it the “natural allocation” (in some cases, there may be multiple
such allocations, but we will consider perturbations away from a particular one).

Note that, given our initial and terminal conditions on debt, the flow government constraints
(11) imply that the following intertemporal constraint must hold in equilibrium:

T

∑
t=0

Qt

(
n

∑
i=I

µiTi
t

)
=

T

∑
t=0

QtGt (15)

2.2 Sticky wage equilibrium

Consider a natural allocation
{

Yn
t , Gn

t , ci,n
t , ni,n

t , Ti,n
t , Ai,n

t , Rn
t , W i,n

t , Pn
t

}
. We define a sticky wage

equilibrium relative to that allocation. Following the lead of the large New Keynesian literature,
we are then also interested in characterizing equilibrium outcomes relative to that allocation.

Consider next an arbitrary path {θ, it, Gt} for preferences, nominal interest rates and fiscal
policy, as well as a transfer rule

Ti = T i (G, R) (16)

specifying transfers Ti
t at time t for individual i as a function of the path for spending and real

interest rates. The rule (16) is constrained to satisfy Ti,n
t = T i (Gn, Rn) as well as (15) for any path

G and R.
Given these paths and our initial natural allocation, a sticky wage equilibrium is defined as a set

of equilibrium prices and quantities
{

Yt, ci
t, ni

t, Ai
t, Rt, W i

t , Pt
}

such that wages have to remain at
their at their natural level:

W i
t = W i,n

t ∀i, t (17)

firms optimize, implying (10), households optimize their consumption plan, implying (5), (6) and
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(9) for each i, and labor, goods and asset markets clear, implying (13) and (14).
Hence the only difference with a flexible wage equilibrium is that equation (17) replaces the

requirement that househols be on their labor supply curves, i.e. equation (12). By construction,
the natural allocation under the baseline level of parameters

{
θn, in

t , Gn
t , Ti,n

t

}
is a sticky wage

equilibrium.
The following remark simplifies the analysis of equilibrium.

Remark 1. In a sticky wage equilibrium, prices remain at their natural-allocation level at all times:

Pt = Pn
t ∀t (18)

Proof. Since the production function Ft has constant returns to scale, its derivatives Fli ,t are homo-
geneous of degree 0. Equation (10) implies that

Fli ,t
(
l1
t , . . . l I

t
)

Fl j,t
(
l1
t , . . . l I

t
) =

W i
t

W j
t

=
W i,n

t

W j,n
t

=
Fli ,t

(
l1,n
t , . . . l I,n

t

)
Fl j,t

(
l1,n
t , . . . l I,n

t

)
and hence there exists a sequence {λt} such that li

t = λtli,n
t for all i, t. Applying (10) again for any

i, we find that Pt = Pn
t for all t.

Given this remark, the analysis of monetary policy in this model is particularly simple: the
exogenous path for the nominal interest rate it translates into a path for the real interest rate equal
to Rt = (1 + it)

Pn
t

Pn
t+1

, and we can alternatively think of a sticky wage equilibrium as being defined
given such a path.

Our framework is therefore appropriate to study the three main types of “demand” shocks
considered in the business cycle literature: preference shocks θ, government spending shocks Gt,
and monetary policy shocks it.1

Towards our derivation of the intertemporal Keynesian cross (3), we now define a number of
objects of interest. These correspond to certain combinations of derivatives of policy functions
evaluated at the natural allocation.

2.3 Aggregate demand and MPCs

We start by defining marginal propensities to consume.

2.3.1 MPCs out of individual income

Since agents in a sticky wage equilibrium are not able to choose their labor supply, we define
MPCs taking this constraint into account. Specifically, we consider a modified problem for each
agent, in which we treat income as an exogenous stream

{
yi

t
}

. Agent i maximizes (4) subject to

1A few simple modifications to this setup would allow us to study productivity shocks as well.
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the constraints

ci
t + ai

t = Rt−1ai
t−1 + yi

t

ai
t ∈

[
ai

t, ai
t

]
and ai

−1 = ai
T = 0. The solution determines Marshallian demand functions ci

t
({

yi
t
}

, {Rt} ; θ
)
. In

particular, the following intertemporal budget constraint holds for each i

T

∑
t=0

Qtci
t

({
yi

t

}
, {Rt} ; θ

)
=

T

∑
t=0

Qtyi
t (19)

For every pair s, t, define Qt,s ≡ Qt
Qs

as the time-s price of a unit of consumption at date t.

Definition 1. The marginal propensity to consume of individual i at time t, for income received at
date s is

MPCi
t,s ≡ Qt,s

∂ct

∂ys

⌋
yt=

Wi,n
t

Pn
t

ni,n
t −Ti

t ,Rt=Rn
t ,θ=θn

It is the derivative of the Marshallian demand function, discounted back to the date of the income
receipt s, and evaluated at the natural allocation, where income is defined as yi

t =
W i,n

t
Pn

t
ni,n

t − Ti
t and

the real interest rate is Rt = Rn
t .

2.3.2 Individual income response to aggregate macroeconomic changes

In order to define aggregate demand, we need to determine how individual income yi
t =

W i
t

Pi
t

ni
t− Ti

t

is affected by macroeconomic aggregates Yt, Gt and Rt. We have already established that W i
t

Pi
t
=

Wi,n
t

Pi,n
t

,

The fiscal rule (16) implies that Ti
t = T i

t (G, R). We now turn to the determinants of ni
t .

Consider the firm problem in a sticky wage equilibrium. Since Ft has constant returns and is
therefore homothetic, with constant input prices (17), labor demand for each type scales linearly
in the level of production

li
t = li,n

t
Yt

Yn
t

(20)

Since the labor market for each type of labor clears (13), this implies that individual hours worked
scale linearly in the amount of aggregate output Yt

ni
t = ni,n

t
Yt

Yn
t

Combining this with (10), (17), and (18), the gross labor earnings of individual i at time t are
therefore

W i
t

Pt
ni

t =
W i,n

t
Pn

t
ni,n

t
Yt

Yn
t
=

γi,n
t

µi
Yt (21)

where γi,n
t =

Fli ,t l
i,n
t

Yn
t

is the share of labor type i in production at time t (which is identical in the
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natural and the sticky wage allocation).

2.3.3 Aggregate demand

Having established the way in which individual income responds to aggregates Y ≡ {Yt}, G ≡
{Gt} and R ≡ {Rt}, we naturally define the consumption demand ci,d

t of individual i at time t as
follows

ci,d
t (Y, G, R, θ) = ci

t

({
γi,n

t
µi

Yt − T i
t (G, R)

}
, R; θ

)
(22)

It is the level of consumption that individual i chooses when macroeconomic aggregates are Y, G
and R, taking into account the effects these aggregates have on his income. We use these functions
to define aggregate demand as

Yd
t (Y, G, R, θ) = ∑

i
µic

i,d
t (Y, G, R, θ) + Gt (23)

Goods market clearing (14) implies that in sticky wage equilibrium Yd
t = Yt. Hence solving for

equilibrium involves solving for the fixed point in which aggregate output is equal to aggregate
demand:

Yt = Yd
t (Y, G, R, θ) ∀t

Our main proposition below characterizes this fixed point. We need two further definitions.

2.3.4 MPC matrix

We first define the matrix M with elements

Mt,s ≡
I

∑
i=1

γi
s MPCi

t,s (24)

Notice from differentiating (22) that

MPCt,sγ
i,n
s = µiQt,s

∂ci,d
t ({Yt} , {Rt} , θ)

∂Ys
(25)

Hence, Mt,s is also the discounted response of aggregate consumption to an increase in aggregate
income Ys at date s. Our assumptions on production and transfers guarantee that the endogenous
response of consumption at time t to such an increase happens only via the response of individual
income in that period. Moreover, the aggregate income sensitivity of individual i’s income in
period s is γi

s, which is this type’s share in production.
The incidence-weighted MPC matrix M has the following important property.

Lemma 1. The vector 1 is a left eigenvector of M with eigenvalue 1, that is

1′M = 1′ (26)
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Proof. Differentiating the budget constraint (6) for each s, we see that

T

∑
t=0

MPCi
t,s = 1 ∀s, i (27)

Applying (25) and (27), we therefore find

T

∑
t=0

Mt,s =
T

∑
t=0

(
I

∑
i=1

γi,n
s MPCi

t,s

)
=

I

∑
i=1

γi,n
s

T

∑
t=0

(
MPCi

t,s

)
=

I

∑
i=1

γi,n
s = 1

In words, Lemma 1 comes from the fact that our economy is “closed”, in the sense that any
additional money earned by the agents in some period s will be spent.

2.3.5 Partial equilibrium effects

We next define the partial equilibrium response ∂YX to any shock X ∈ {θ, G0 · · ·GT, R0 · · · RT} as
discounted value of the partial derivative of the aggregate demand function (23).

∂YX
t ≡ Qt

∂Yd
t

∂X
dX (28)

The following lemma is a fundamental property of partial equilibrium shocks.

Lemma 2. Vectors of partial equilibrium responses have zero present value, ie

1′∂YX = 0 (29)

for any shock X ∈ {θ, G0 · · ·GT, R0 · · · RT}.

The proof, written separately for each shock in appendix A.1, is a consequence of the agent’s
and the government’s budget constraints holding with equality in partial equilibrium. Since these
are “pure” demand shocks that leave total earnings unchanged, all the partial equilibrium re-
sponses have to net out to have a zero net present value.

For example, a preference shock alters the pattern of intertemporal spending of each agent
but, with labor supply constrained to be constant, does not generate more income. Hence, the
present value of consumption is constant, implying (29). Similarly, the government’s intertempo-
ral budget constraint (15) implies that an extra unit of spending must be paid for by an equivalent
increase in the present value of taxes. Since each agent responds to a unit-size increase in the
present value of taxes by reducing the present value of their spending by a unit, the overall re-
duction in the present value of aggregate consumption must exactly offset the increase in that of
government spending, so that (29) holds. Finally, a monetary policy shock can generate present-
value redistribution between various individuals or the government depending on their patterns
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of intertemporal trade in the natural allocation, but when summed up, these individual responses
net out to a zero aggregate present value effect.

2.4 The Intertemporal Keynesian Cross

We are now ready for our main proposition of this section.

Proposition 1. Consider any variable X ∈ {θ, G0 · · ·GT, R0 · · · RT}. The change in output dYX that
results from a change dX is characterized to first order by

dYX = ∂YX + MdYX (30)

where M is defined in (24), ∂YX is defined in (28), and dYX
t ≡ QtdYt is the discounted value of the change

in output at time t relative to the natural allocation.

Proof. Start by totally differentiating the individual consumption demand function (22)

dci,d
t =

∂ci
t

∂X
dX +

T

∑
s=0

∂ci
t

∂Ys
dYs

aggregating, we therefore have

dCt = ∑
i

µidci,d
t = ∑

i
µi

∂ci
t

∂X
dX +

T

∑
s=0

µiQt
∂ci

t
∂Ys

dYs

But from (24) and (25),

QtdYt = Qtd (Ct + Gt) = Qt
∂Yd

t
∂X

dX +
T

∑
s=0

Mt,sQsdYs

which, by (28) and our definition dYX
t ≡ QtdYt, results in

dYX = ∂YX + MdY

as we set out to prove.

Proposition 1 derives our intertemporal analogue of the traditional Keynesian Cross, describ-
ing any general equilibrium response dYX as sum of the partial equilibrium response and the
feedback of dYX through the MPC matrix. As it turns out, equation (30) describes the determina-
tion of aggregated demand in even more more general settings than the one we have introduced in
this section. One could therefore think of it as a “fundamental law” that underlies many modern
macroeconomic models.

The next sections explore the implications of Proposition 1.
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3 Solving the Intertemporal Keynesian Cross

We now investigate the intertemporal Keynesian cross (30) in detail. Our main result is a charac-
terization of the solution(s) of (30). As it will turn out, since our MPC network is closed—that is,
there is no demand “flowing” in or out of the system—an equation like (30) admits infinitely many
solutions. This requires an equilibrium selection rule. In analogy to policy experiments in stan-
dard New-Keynesian models, where monetary policy implements a zero output gap after either
finite time or asymptotically, we shall select the equilibrium that sets the terminal output gap to
zero, dYX

T = 0.2

Throughout this section, we will drop the superscript X and instead regard (30) independently
of its derivation. This requires us to be precise about the objects involved in it. In particular, we
assume that M is a column-stochastic matrix in R(T+1)×(T+1), ∑T

t=0 Mt,s = 1, and that ∂Y ∈ RT+1

has zero net present value (NPV), that is, ∑T
t=0 ∂Yt = 0, which we also write as ∂Y ∈ 1⊥, using

“⊥” to denote the orthogonal complement.
An equation of the form (30) does not necessarily admit any solution, even with the assump-

tion in place so far. For example, suppose the MPC matrix M is the identity matrix. In that case, no
solution dY exists whenever ∂Y 6= 0. Clearly, such an MPC matrix would not be a very convincing
description of an aggregate economy for it would imply that any additional income dYt earned in
some period t is entirely spent in that period. In other words, there is no money being spent across
periods. We now introduce two restrictions on the MPC matrix M that rule out such strict “within
period” spending, the first slightly more general than the second.

Assumption 1. M is non-negative and irreducible: that is, for each s, t ∈ {0, . . . , T}, Mt,s ≥ 0 and there
exists an m ∈N such that (Mm)t,s > 0.

According to this assumption, M needs to be such that, for each two periods s and t, an increase
in aggregate income in period s will be partially spent in period t after m iterations. To give an
example of m > 1, take a world in which additional aggregate income in period t + 1 is spent
in period t but not period t− 1. Yet, since spending in period t is equal to income in period t, it
is true—after two iterations—that some additional income in period t + 1 will be spent in period
t− 1 despite the lack of a direct link.

If there is such a direct link, we refer to a matrix as M as primitive, as specified in the follwing,
more demanding assumption.

Assumption 2. M is primitive: that is, it is non-negative, and there exists an m ∈N such that (Mm)t,s >

0 for any s, t ∈ {0, . . . , T}.

Utilizing the link of our methodology to network theory and Markov chains, we note that As-
sumptions 1 and 2 are also commonly used in the theory of Markov chains: Viewing M as the
transition matrix of a Markov chain, Assumption 1 implies the existence of a unique stationary

2In future versions of this paper, we intend to provide a formal argument to establish this connection.
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distribution of that Markov chain; and Assumption 2 implies convergence to the stationary distri-
bution starting from any other initial distribution. Both of these properties will come in handy in
our characterization of the solution to the intertemporal Keynesian cross (30).

Even though these two assumptions may appear restrictive at first glance, both are in fact
satisfied under minimal restrictions on the environment presented in Section 2, as we demonstrate
in the following lemma.

Lemma 3 (Properties of the MPC matrix). Suppose that for each pair of periods s, t ∈ {0, . . . , T} there
exists a an agent i with positive marginal utility of consuming in period s, Ui

cs
> 0, with positive income

sensitivity in period t, γi
t > 0, and, with no binding borrowing or savings constraint between periods s and

t. Then, the MPC matrix M is primitive, and Assumptions 1 and 2 are satisfied.

Proof. The proof is immediate: Under the stated assumptions, Mt,s > 0 for each pair of periods
s, t ∈ {0, . . . , T}. Thus, M is primitive (with m = 1 in the Assumption 2).

Having introduced the restrictions M needs to satisfy, we next describe the family of solutions
to (30), before the imposition of a monetary policy rule.

Theorem 1 (Solving the Intertemporal Keynesian Cross). Let M satisfy Assumption 1. Then, there
exists a matrix A ∈ R(T+1)×(T+1) mapping the set of zero-NPV vectors 1⊥ into itself, with the following
property: For any solution dY to the intertemporal Keynesian cross (30) there exists a scalar λ ∈ R such
that

dY = A∂Y + λv, (31)

and for any λ ∈ R this is a solution. Here, v ∈ RT+1 is the unique and positive right-eigenvector of M
with respect to eigenvalue 1 that is normalized to 1′v = 1. Under Assumption 2, A∂Y can be expressed by
the infinite sum

A∂Y = ∂Y + M∂Y + M2∂Y + M3∂Y + . . . . (32)

Proof. Since M is column-stochastic, it has an eigenvalue of 1 and admits a right-eigenvector
v ∈ RT+1. By the Perron-Frobenius Theorem for non-negative, irreducible, (column-)stochastic
matrices, this eigenvalue is unique and weakly exceeds the absolute value of every other eigen-
value. Moreover, v can be chosen to be positive in all entries. We normalize it henceforth so that
1′v = 1.

Rewrite (30) as (1−M)dY = ∂Y. Using the fact that the Kernel of 1−M is single-dimensional,
the rank-nullity theorem implies that the image of 1−M must be T dimensional. But, as every
vector in the image of 1−M is orthogonal to a vector of ones 1, it follows that the image of 1−M
is exactly 1⊥—the space of zero NPV vectors. Moreover, note that RT+1 can be decomposed into
1⊥ ⊕ Ke(1−M) since 1′v 6= 0.

Together, this means that 1−M defines a linear bijection (automorphism) from 1⊥ into itself.
Let A be any matrix that is equal to the inverse of this bijection when restricted to 1⊥. There exists
a one-dimensional family of such matrices; an obvious choice is A = 1 −M + v1′. Then, any
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solution to (30) is of the general form

dY = A∂Y + λv

with λ ∈ R.
If M is a primitive matrix (Assumption 2), we know that any non-unit eigenvalue of M has an

absolute value strictly below 1. Since M maps 1⊥ into itself, any vector w ∈ 1⊥ can be decomposed
into a linear combination of eigenvectors of M, w = ∑T−1

i=1 λiwi, where Mwi = µiwi, wi 6= 0, and
µi is a (possibly complex) eigenvalue with |µi| < 1. Therefore, the infinite sum

w + Mw + M2w + ...

has the finite (and real) limit wlim = ∑T−1
i=1

1
1−µi

λiwi, which clearly satisfies (1−M)wlim = w. This
concludes our proof of Theorem 1.

According to Theorem 1, the general solution (31) to the intertemporal Keynesian cross consists
of two terms: A zero-NPV term A∂Y and an eigenvector term λv. We describe each in turn. As
equation (32) illustrates in the special case where M is primitive, the first term is analogous to
the MPC sum when solving the traditional Keynesian cross. The key difference, however, is that
the elements in our MPC sum are vectors: ∂Y is the direct partial equilibrium impact; M∂Y is
the second order impact, including the fact that one agent’s spending is another agent’s income;
M2∂Y is the third order impact, and so on. All these effects are zero-NPV as M preserves zero-NPV
vectors.

As a side note, this is precisely why the infinite sum (32) converges when M is primitive: In
that case, Mnx approaches κv for any vector x ∈ RT+1 where the scale κ of v is just the sum of the
elements of x, κ = 1′x. In the case at hand, ∂Y has a zero NPV, that is, κ = 0, so Mn∂Y → 0. This
is a requirement for the infinite sum (32) to be well-defined, which also turns out to be sufficient.

The fact that the first term A∂Y is zero NPV raises an important question: Does our intertem-
poral Keynesian cross imply that all partial equilibrium shocks ∂Y, which have to respect the bud-
get constraints and are therefore zero NPV, can only have zero NPV general equilibrium effects?
Effectively, this would mean that any positive demand shock today is necessarily followed by a
negative demand shock in the future.

That this is not the case is due to the second term λv in our expression for dY, (31). This
second term captures how the equilibrium selection rule (or in other words, the monetary policy
rule) can crucially influence the dynamics of consumption. Our approach clarifies that any such
equilibrium selection rule acts by shifting the level of dY up or down proportional to v. This
vector can be regarded as a measure of (eigenvector) centrality in the Markov chain described
by transition matrix M: For each period t it gives a value vt of income that corresponds to the
additional income earned in period t if spending in all other periods increases according to v. In
that sense, v is “self-sustaining”. As all of its elements are positive, it is naturally positive NPV
and we normalize its NPV to 1, implying that λ corresponds to the net present value of the total
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general equilibrium demand response that was caused by the partial equilibrium shock ∂Y. We
summarize this insight in the following corollary.

Corollary 1. The NPV of the general equilibrium aggregate demand response to partial equilibrium shock
∂Y is given by

∑
t

dYt = λ,

where λ is the unique scalar in the decomposition (31).

Of course, when evaluating the general equilibrium transmission of a partial equilibrium
shock, the equilibrium selection rule needs to be taken into account. As we mentioned above,
we assume monetary policy to implement a zero output gap in the terminal period. This means λ

adjusts endogenously to ∂Y in order to ensure dYT = 0, giving the following result.

Corollary 2. When including the equilibrium selection rule dYT = 0, the solution (31) becomes

dY =

(
1− ve′T

vT

)
A∂Y (33)

where eT = (0, ...0, 1)′. In particular, the total demand generated by the partial equilibrium shock ∂Y is
given by

λ = − (A∂Y)T

vT
.

The expression in (33) combines the zero NPV feedback inside A∂Y with the nonzero NPV
shift coming in through the equilibrium selection rule. One way to think about the combination is
that A∂Y implies a certain path for consumption, which is then lifted up or down along the vector
v, proportional to the value of (A∂Y)T.

4 Examples

To illustrate the power of the decomposition provided in the previous section, we now provide
specific examples of economies and partial equilibrium shocks ∂Y. We start with a simple 2 period
model that provides an intertemporal formalization of the traditional Keynesian cross. Then, we
consider a more general economy in which all agents are unconstrained, and lastly move to a
study what happens when hand-to-mouth agents enter the picture. Throughout, we will assume
that M satisfies Assumption (1).

4.1 Intertemporal and traditional Keynesian cross

In this subsection, we consider a special case of the analysis in Section 3, where there are only
two periods, that is, T = 1. One may view this as the most straightforward microfoundation of a
traditional Old-Keynesian cross. We will prove that in this case, any nonzero partial equilibrium
equilibrium response will be amplified into a general equilibrium one of the same sign, with a
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factor that precisely corresponds to the one in the Old-Keynesian cross, 1/(1−MPC), with MPC
being the MPC to spend income earned in the initial period on the initial period.

With two periods and due to its stochasticity property, the MPC matrix M only has two degrees
of freedom and can be written as

M =

[
MPC0,0 1−MPC1,1

1−MPC0,0 MPC1,1

]
(34)

where we assume MPC0,0 and MPC1,1 to lie strictly inside (0, 1), ensuring that M is indeed a
primitive matrix (see Assumption 2). As one can easily verify, the eigenvector v in this case is

v =
1

2−MPC1,1 −MPC0,0

[
1−MPC1,1

1−MPC0,0

]
.

Moreover, there is a second eigenvector w, which will help in deriving the matrix A. It is given by

w =

[
1
−1

]

and has eigenvalue η = MPC00 + MPC11 − 1 < 1. Notice that w is zero NPV and therefore any
partial equilibrium response ∂Y will be proportional to w. Finally, we find A by computing the
infinite sum (32) using w as zero NPV vector,

Aw =
(
1 + η + η2 + . . .

)
w =

1
1− η

w =
1

2−MPC1,1 −MPC0,0
w.

We summarize these steps in the following proposition.

Proposition 2 (Intertemporal and traditional Keynesian Cross.). Let T = 1 and assume M is of the
form in (34) with MPC0,0, MPC1,1 ∈ (0, 1). Then, our general decomposition in (31) takes the form

dY =
1

1− η
∂Y +

λ

1− η

[
1−MPC1,1

1−MPC0,0

]

where η ≡ MPC00 + MPC11 − 1 < 1. When it is imposed that the terminal output gap is zero, dY1 = 0,
this gives

dY0 =
1

1−MPC0,0
∂Y0. (35)

Propostion 2 is the analogue of Theorem 1 and Corollary 2 for the two period case. A very
simple result emerges: The first period output response behaves precisely as predicted by a tradi-
tional Old-Keynesian cross. One may wonder how this is possible given that the Old-Keynesian
cross is neither microfounded nor closed? The logic is slightly different in the intertemporal ver-
sion: Any partial equilibrium response ∂Y by itself is zero NPV. Yet if for example the second
period response ∂Y1 is negative, then the equilibrium selection rule requires an intervention (in
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practice this might happen through a Taylor rule, as mentioned above), lifting both periods’ ag-
gregate demand upwards. Through this mechanism, the zero NPV partial equilibrium response
∂Y is turned into a nonzero NPV general equilibrium response, with an amplified first period re-
sponse dY0. Remarkably, this amplification factor is the exact same as in the traditional Keynesian
cross, 1/(1−MPC0,0).

We wish to point out that this discussion treated the partial equilibrium response ∂Y as ex-
ogenous. Yet, as we shall see in the following subsections, to evaluate the general equilibrium re-
sponses from specific shocks or interventions, such as a rise in government spending, the specific
assumptions on the underyling economic environment (preferences, constraints, etc) will matter.
Not just does the partial equilibrium response ∂Y to a given shock depend on the environment,
but the MPCs themselves might also influence ∂Y, possibly undoing the amplification we found
in (35).

4.2 Unconstrained agents with constant income sensitivities

We start with an economy of N unconstrained agents whose income sensitivities γi
t are constant

over time, that is, for each agent i, γi
t = γi for some γi. In that case, all agents only care about the

present value of their income, and therefore choose to spend income in the same way, no matter
in what period it was earned. Together with the fact that income sensitivities are equal across
periods, the definition of the MPC matrix M in equation (24) shows that in this case the columns
of M are the same. This turns out to simplify our decomposition a lot.

Proposition 3 (Equal columns in M.). Suppose that all columns in M are alike and positive, that is, for
all s, t it holds that Mt,s = Mt for some Mt > 0. Then, A = 1 and vt = Mt in the decomposition in
Theorem (1). In particular, the general equilibrium response to a shock ∂Y is given by

dY = ∂Y− ∂YT

MT
v. (36)

Proof. Since M has equal columns, it maps zero NPV vectors to zero. Therefore, A∂Y = ∂Y for
all zero NPV ∂Y, using (32). This means A = 1 is a feasible choice for the decomposition in (31).
Moreover, it is straightforward to prove that the column vector (Mt) itself is a right-eigenvector
of M if M has equal columns.

The proposition establishes a simple general equilibrium correction in the case of unconstrained
agents and constant income sensitivities. There are no higher order effects in A, because the first
order effect ∂Y has no effect the present value of income, which here is the only thing that matters
for any higher order effects. The total NPV of the general equilibrium demand response is given
by −∂YT/MT, so, for example, backloaded financing of a stimulative policy tends to increase the
NPV of demand more than frontloaded financing. The NPV of dY is also larger if agents are more
impatient and tend to spend their marginal income in earlier periods, lowering MT. Finally, any
monetary policy rule changes dY according to the spending propensities in v = (Mt).
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To bring this decomposition to more life, we now consider two specific policy examples: A
government spending shock and a monetary policy shock.

Tax-financed government spending shock. Suppose the government levies lump-sum taxes to
pay for an increase in government spending by G > 0 in the first period. For simplicity, assume
that the tax paid by agent i is proportional to its income sensitivity γi. Since agents reduce their
consumption accordingly, the partial equilibrium shock is given by ∂Y0 = G(1−M0) > 0 in the
first period, and by ∂Yt = −GMt thereafter. By design, ∑ ∂Yt = 0. According to (36), the general
equilibrium impact is then

dYt = ∂Yt + GMt =

G for t = 0

0 for t > 0
. (37)

Moreover, the total demand created is precisely equal to G. This result seems to stand in remark-
able contrast to our previous two-period result in (35). After all, our government spending result
(37) also holds in two periods, so why are they different? The answer to this question lies in the
way the partial equilibrium response ∂Y is determined. For our Old-Keynesian result (35), we
assumed a fixed partial equilibrium response ∂Y. Yet, as we illustrate in this simple example, ∂Y
after a government spending shock will depend on MPCs itself. In particular, ∂Y0 = G(1−M0)

is smaller if the agents’ average MPC to spend in period 0, M0, is larger. Intuitively, this is because
(unconstrained) high MPC agents tend to reduce their consumption more in response to future
tax cuts. This effect precisely undoes the amplification effect highlighted in (35).3

The effect of government spending here is also reminiscent of the analogous result in Wood-
ford (2010), where he studies government spending in a New-Keynesian model while keeping real
rates constant. Our approach emphasizes that this response comes about because the partial equi-
librium response ∂Y is canceled to zero in every period after the first, by an endogenous response
of monetary policy in the future.

As we will show below, a key driving force behind the result in (37)—one that is shared by the
textbook New-Keynesian model—is the assumption of unconstrained agents. This assumption is
also what caused the multiplier in the traditional Keyensian cross (35) to be exactly canceled by
the 1−M0 term in the partial equilibrium response.

Monetary policy shock. To tractably illustrate the PE and GE mechanics of a monetary policy
shock, we shall make further restrictions on the agents’ utility functions Ui. In particular, we
assume that all preferences are equal Ui = U, and have a constant elasticity of intertemporal
substitution σ−1. Letting βt be the share of income spent on period t, we then have Mt = βt = vt.
Let d log R1 be the exogenous interest rate change between periods t = 0 and t = 1. Finally,

3We shall note that the government could alternatively also finance its expenditure by cutting future government
spending, in which case the partial equilibrium response is not mitigated by any MPC terms and the Old Keynesian
cross formula (35) fully applies.
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note that aggregate consumption in period t is just given by Yt. The shock then induces a partial
equilibrium response equal to

∂Yt =

−(1− β0)Y0
1
σ d log R1 for t = 0

βtY0
1
σ d log R1 for t > 0

.

Again, note that ∑t ∂Ct = 0. The total amount of demand generated is now given by λ =

−Y1
1
σ d log R1, and the general equilibrium demand response is given by

dYt =

−Y0
1
σ d log R1 for t = 0

0 for t > 0
,

where we note that, again, the monetary policy rule at t = T implies that the simple partial
equilibrium response is offset by (λv)t = −βtY0

1
σ d log R1 in any period t > 0. Even if this result,

according to which only the initial period is affected, looks analogous to the previous one, it is less
robust. It heavily depends on the fact all agents’ preferences are the same and homothetic, which
is basically equivalent to the assumption of a representative agent.

An interesting insight that can be gleaned from this decomposition is that the general equilib-
rium impact dY0/Y0 of the monetary policy shock is independent of the agents’ impatience β0,
even though higher impatience reduces the partial equilibrium response ∂Y0/Y0. The reason is an
offsetting general equilibrium multiplier: Whenever β0 is larger, agents are more likely to spend
any additional demand created by the monetary policy rule in period t = 0.

Forward guidance. We can also turn to our framework to decompose the effect of forward guid-
ance as well. To do this, consider the environment we used for monetary policy. In this environ-
ment, an interest rate shock between periods τ and τ + 1 (our simplified forward guidance policy)
d log Rτ+1 causes the following partial equilibrium response,

∂Yt

Yt
=

− (∑s>τ βs)
1
σ d log Rτ+1 for t ≤ τ

(1−∑s>τ βs)
1
σ d log Rτ+1 for t > τ

.

It is straightforward to check that this response is indeed zero NPV. Clearly, its percentage impact
on the initial period falls in τ, and is therefore smaller, the later the intervention is announced. To
calculate the general equilibrium impact of forward guidance, recall that the monetary policy rule
dictates that dYT = 0 and therefore, the total amount of demand generate is

λ = −Y0
1−∑s>τ βs

β0

1
σ

d log Rτ+1.
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The general equilibrium demand response is then

dYt

Yt
=

− 1
σ d log Rτ+1 for t ≤ τ

0 for t > τ
.

This is a remarkable result. However far in the future we announce a monetary policy intervention
of a given size, this baseline model predicts the same initial response. This is an incarnation of the
forward guidance puzzle.4 Our approach illustrates that the share of the response being due to
partial equilibrium effects is given by ∑s>τ βs and falls to zero as τ becomes larger. In that sense,
the forward guidance puzzle is entirely due to general equilibrium effects.

4.3 Hand to mouth agents

Consider any economy like the one introduced in Section (??), with MPC matrix M and a partial
equilibrium shock ∂Y. We now explore what happens to dY if hand to mouth agents are added to
this economy, so that they constitute a fraction µ > 0 of the total population and have a constant
income sensitivity γh2m. We have the following formal result.

Proposition 4 (Adding hand to mouth agents.). If a measure µ of hand to mouth agents with income
sensitivity γh2m is added to an economy with population size 1− µ and MPC matrix M, it holds that:

Mnew = (1− µγh2m)M + µγh2mI,

where I is the T + 1 dimensional identity matrix. Moreover, in the decomposition in Theorem (1), we now
have Anew = 1

1−µγh2m A and vnew = v. The decomposition is therefore given by

dYnew =
1

1− µγh2m A∂Y + λnewv =
1

1− µγh2m dY.

Proposition 4 shows that adding hand to mouth agents scales up the general equilibrium re-
sponse by a factor 1/(1− µγh2m), where µγh2m ∈ (0, 1) is the share of income going to hand to
mouth agents in each period. It is important to recognize that his result holds conditional on the
same partial equilibrium response ∂Y. Of course, in general one would expect ∂Y to change as
well. To illustrate the role of hand to mouth agents more concretely, we assume for the remain-
der of this subsection that the economy is populated by 1− µ unconstrained agents with constant
income sensitivities as in Section 4.2 and µ > 0 hand to mouth agents. We repeat the two experi-
ments from before.

Government spending shock. Again, suppose the government increases its spending by G > 0
in the initial period but now levies lump-sum taxes in future periods on both unconstrained and
hand to mouth agents. In particular, suppose unconstrained agents pay a share of taxes χ ∈ [0, 1],

4See also Del Negro Giannoni Patterson (2015), McKay Nakamura Steinsson (2016), Angeletos Lian (2016), cite more?
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again in proportion to their respective income sensitivities, while hand to mouth agents pay share
(1−χ)ϕt in period t, where ∑T

t=1 ϕt = 1. For simplicity, assume that ϕT = 0. Here, the distribution
across periods is important as hand to mouth agents cannot consolidate their budget constraints
and therefore the specific income stream matters, rather than just its present value. Then, the
partial equilibrium spending shock is given by ∂Y1 = G− χGM1− (1− χ)ϕ1G in the first period,
and by ∂Yt = −χGMt − (1− χ)ϕtG thereafter. Applying Proposition 4, the general equilibrium
response is

dYt =
1

1− µγh2m

(
∂Yt +

−∂YT

MT
vt

)
=


1

1−µγh2m (G− (1− χ)Gϕt) for t = 0

− 1
1−µγh2m (1− χ)Gϕt for t > 0

,

and the total NPV of demand created is

λ =
1

1− µγh2m χG.

These expressions carry a few important insights. First, assume the tax share on hand to mouth
agents is zero, χ = 1. In that case, dY is only nonzero in the initial period, but now the initial
impact is scaled up by 1/(1− µγh2m). Government spending therefore has a multiplier in excess
of 1, different from the textbook New-Keynesian model. This shows that the presence of hand to
mouth agents can bring back an “Old-Keynesian” feature that is often used as a criticism of the
New-Keynesian approach.

Second, assume the tax share on hand to mouth is close to 1, i.e. χ→ 0. Somehwat surprisingly,
the total NPV of demand created then tends zero as well. To explain why notice that the partial
equilibrium response has ∂YT = 0 in that limit. Therefore the monetary policy rule enforces
dYT = 0 with λ = 0. In other words, such a policy implies a temporary boom in the initial period,
followed by a bust.

Monetary policy shock. To study monetary policy, we use the same setup that we used to study
monetary policy in Section 4.2. In particular, we assume that all unconstrained households share
the same preferences Ui = U with a constant elasticity of intertemporal substitution σ−1 and
share βt of income spent on consumption in period t. Again we let d log R1 be an exogenous
interest change between periods t = 1 and t = 2. Moreover, let ψh2m be the income share earned
by a hand to mouth agent on average, net of possible debt payments. Notice that µψh2m is then
the average share of income going to hand to mouth agents, while µγh2m is the marginal share of
any additional income going to hand to mouth agents.

Since hand to mouth agents do not respond to monetary policy, we are in fact in the exact
situation of Proposition 4. Therefore, the total initial response after a monetary policy shock is
then given by

dY1 = −1− µψh2m

1− µγh2m Y1
1
σ

d log R1,
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and zero in all other periods. Here, we already expressed the income earned (and spent) by un-
constrained agents Yunc

1 as share of the total income, (1− µψh2m)Y1, after interest payments. This
leads us to the following insights.

First, contrary to their role as amplifier for government spending, hand to mouth agents have
to opposing effects on the effectiveness of monetary policy: A higher share of hand to mouth
agents reduces its effectiveness since those agents do not respond to monetary policy, but it also
amplifies any demand increases or decreases in the initial period. A case where they exactly
balance is when ψh2m = γh2m, a case that is satisfied if hand to mouth agents do not have any
initial assets and where their average income is equal to their marginal income.5 The wealthier
hand to mouth agents are, the larger is their income share (after interest payments) ψh2m, and
therefore the weaker is the aggregate monetary policy response.

Second, our approach sheds light on the role of GE amplification for dY1. Even in the case
where ψh2m = γh2m, a higher share µ of hand to mouth agents will lead to a smaller partial equi-
librium response, ∂Yt scales with 1 − µψh2m, but a larger general equilibrium response, scaling
with 1/(1− µγh2m). This decomposition can be used to interpret the recent findings in Kaplan
Moll Violante (2016).

5 Infinite-horizon stochastic model

In this section, we generalize the model of the previous sections to an infinite-horizon environ-
ment, allowing for uninsured idiosyncratic risk and introducing investment and other elements
to make the model more quantitatively realistic.

We show that the key steps of our analysis carry over to this more general environment, as the
intertemporal Keynesian cross can be solved to obtain a general equilibrium multiplier operator
that carries partial equilibrium impulses {∂Yt} to general equilibrium outcomes {dYt}. There
are, however, a few key differences that come with the richer model. First, there is no longer
necessarily the same multiplicity of solutions, at least if we require these solutions to be bounded:
although the matrix M still has an eigenvalue of one, this often corresponds to an eigenvector
that grows explosively as t → ∞. We show that this is, in particular, the case when the monetary
policy feedbacks embedded in M take a form conventionally associated with determinacy, such
as a Taylor rule.

Second, when a partial equilibrium shock directly affects the supply side of the economy—as
with, for instance, the capital accumulation response to a monetary shock—it is necessary to frame
the analysis in terms of net demand impulses {∂Yt}. Although many of the steps remain the same,
the interpretation becomes more subtle.

Although our primary analysis is of unanticipated shocks at date 0, this also characterizes to
first order the impulse responses with respect to aggregate shocks in a stochastic equilibrium.
We observe that the partial equilibrium output volatility in response to a shock is directly tied

5The logic here is related to the benchmark case in Werning (2016), where borrowing constraints relax with output.
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to the 2-norm ‖∂Y‖ of its partial equilibrium impulse response, and the general equilibrium out-
put volatility correspondingly depends on the 2-norm ‖dY‖ of the resulting general equilibrium
sequence. The relationship between ‖∂Y‖ and ‖dY‖—the extent to which the propagation mech-
anisms in the economy amplify the volatility from partial equilibrium shocks—depends on the
structure of the general equilibrium multiplier, which we explore quantitatively.

We show how this and other features of the general equilibrium multiplier can be decomposed
between the various components of the model, including heterogenous agents and different com-
ponents of the matrix M.

We particularly emphasize the transmission of fiscal and monetary policy, and how the general
equilibrium amplification of both becomes larger when idiosyncratic risk and constraints are se-
vere. The partial equilibrium impulse from monetary policy, however, generally is attenuated un-
der the same circumstances, implying that the general equilibrium effect from fiscal policy grows
in relative terms.

(To be completed.)

A Proofs

A.1 Proof of lemma 2

In this section, we define vectors of partial equilibrium responses ∂YX to different shocks X, and
prove that they each satisfy a fundamental NPV-0 property (29), thereby establishing lemma 2.

A.1.1 Preference shocks

Differentiating the intertemporal budget constraint (19) with respect to θ, we see that for all i,

T

∑
t=0

Qt
∂ci

t
({

yi
t
}

, {Rt} ; θ
)

∂θ
= 0 (38)

In the case of preference shocks, we have ∂Yθ
t = Qt ∑i µi

∂ci,d
t

∂θ . Hence, by (38) and (27), we obtain

T

∑
t=0

∂Yθ
t =

T

∑
t=0

Qt

(
∑

i
µi

∂ci
t

∂θ

)
= ∑

i
µi

(
T

∑
t=0

Qt
∂ci

t
∂θ

)
= 0

A.1.2 Government spending shocks

Consider a change Gs in government spending at date s. The partial equilibrium effect is defined
as

∂YGs
t = Qt

(
∑

i
µi

∂ci
t

∂Gs
+ 1{t=s}

)
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Now, for each individual i, we have, using the definition (22) together with (27),

T

∑
t=0

Qt
∂ci,d

t
∂Gs

= −
T

∑
t=0

Qt

T

∑
u=0

∂ci
t

∂yu

∂T i
u

∂Gs
= −

T

∑
u=0

Qu
∂T i

u
∂Gs

T

∑
t=0

Qt

Qu

∂ci
t

∂yu
= −

T

∑
u=0

Qu
∂T i

u
∂Gs

T

∑
t=0

MPCt,u = −
T

∑
u=0

Qu
∂T i

u
∂Gs

In other words, the present value reduction in consumption of individual i resulting from an
increase in government spending at date s is equal to the present value of the increase in taxes for
that individual.

But, differentiating the government budget constraint (15)

T

∑
u=0

Qu

(
n

∑
i=I

µi
∂T i

u
∂Gs

)
= Qs

Together, these relationships imply that the date-s value of the aggregate consumption response
to an increase in government spending at date s is one:

T

∑
t=0

Qt

(
∑

i
µi

∂ci,d
t

∂Gs

)
= −Qs

and hence
T

∑
t=0

∂YGs
t = −Qs + Qs = −Qs + Qs = 0

A.1.3 Monetary policy shocks

Consider a change in the nominal interest rate at date s, inducing a change in the real interest rate
Rs by remark 1. The partial equilibrium effect is defined as

∂YGs
t = Qt

(
∑

i
µi

∂ci
t

∂Rs

)

From (22), the response of individual i at time t has two components: i’s direct response to Rs and
his indirect response through the effect of the change in interest rates on tranfers.

∂ci,d
t

∂Rs
=

∂ci
t

∂Rs
−

T

∑
u=0

∂ci
t

∂yu

∂T i
u

∂Rs

Hence, using the same steps as above,

∑
t

Qt
∂ci,d

t
∂Rs

= ∑
t

Qt
∂ci

t
∂Rs
−

T

∑
u=0

Qu
∂T i

u
∂Rs

Now, for the first part, differentiating the intertemporal budget constraint (19) with respect to Rs,
we find
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T

∑
t=0

Qt
∂ci

t
∂Rs

=
T

∑
t=0

∂Qt

∂Rs

(
yi

t − ci
t

)
This implies that, aggregating across agents,

T

∑
t=0

∂YGs
t =

T

∑
t=0

∂Qt

∂Rs

(
∑

i
µi

(
yi

t − ci
t

))
−

T

∑
u=0

Qu

(
∑

i
µi

∂T i
u

∂Rs

)

We follow the same steps as in section A.1.2, differentiating (15) to find

T

∑
u=0

Qu

(
∑

i
µi

∂T i
u

∂Rs

)
=

T

∑
u=0

∂Qu

∂Rs
(Gu − Tu)

Notice also that

∑
i

µiyi
t = ∑

i
µi

(
W i,n

t
Pn

t
ni,n

t − Ti
t

)
= ∑

i
Fili

t − Tt = Yt − Tt

Combining, we therefore obtain

T

∑
t=0

∂YGs
t =

T

∑
t=0

∂Qt

∂Rs
(Yt − Tt − Ct − Gt + Tt)

=
T

∑
t=0

∂Qt

∂Rs
(Yt − Ct − Gt)

= 0

where we used goods market clearing at each date (14) to obtain the final equation.
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