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This paper

Q: How to solve heterogeneous-agent (HA) models in GE with aggregate shocks?

• When idiosyncratic risk� aggregate risk, two leading options:

1. Linearize wrt aggregate shocks, solve linear state space system [Reiter method]

2. Assume perfect foresight wrt aggregate shocks, solve nonlinear system in space of
aggregate sequences (sequence space) [MIT shock method]

For small shocks, 1⇔ 2 by certainty equivalence [Boppart, Krusell, Mitman]

• Here: directly solve linear system in the sequence space: same, but faster!
• Our method: three steps

1. Write HA model as a collection of blocks along a directed acyclic graph (DAG)

2. Compute the Jacobian of each block: key “su�cient statistic” for GE interactions

3. Use Jacobians for: IRFs, determinacy, full-info estimation, nonlinear transitions, ...
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Why is our method useful?

1. Fast: for state-of-the-art, two-asset HANK model,
• First impulse response takes ∼5s (vs ∼100s with leading alternative methods)
• Additional impulse responses take ∼100ms (vs 100s) by re-using Jacobians
• This makes model estimation possible

2. Accurate: no “model reduction” necessary, only error is from truncation

3. Modular: easy to build complex models by stitching blocks together

4. Intuitive: block Jacobians often have simple interpretation [eg MPCs]

5. Accessible: key steps automated in publicly available code [in Python]
• Most ideas are also easily implemented in Matlab
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Literature: our method combines several innovations

• Write equilibrium as linear system in aggregates
[Reiter 2009, McKay and Reis 2016, Winberry 2018, Bayer, Luetticke, Pham-Dao and Tjaden 2019,
Mongey and Williams 2017, Ahn, Kaplan, Moll, Winberry and Wolf 2018, ...]

→ size of system now independent of underlying HA, no Schur decomposition that’s
costly for large state space

• Solve for impulse responses in sequence space
[Auerbach and Kotliko� 1987, Guerrieri and Lorenzoni 2017, McKay, Nakamura and Steinsson 2016,
Kaplan, Moll and Violante 2018, Boppart, Krusell and Mitman 2018, ...]

→ but now compute all in one go, no slowly-converging iteration

• Capture heterogeneity using GE su�cient statistics
[Auclert and Rognlie 2018, Auclert, Rognlie and Straub 2018, Guren, McKay, Nakamura and
Steinsson 2018, Koby and Wolf 2018, Wolf 2019]

→ previously empirical or conceptual, now a computational tool
4



Roadmap

1 Models as collections of blocks arranged along a DAG

2 All you need are block Jacobians

3 Speeding up HA Jacobian computation
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Models as collections of blocks
arranged along a DAG



Introducing models as collections of blocks

• Block: Mapping from sequence of inputs to sequence of outputs

Example 1: heterogeneous household block {rt,wt} → {Ct}

Example 2: representative �rm block with L = 1
Example 3: goods market clearing block

• Model: Set of blocks, arranged along a directed acyclic graph (DAG)
• some inputs are exogenous shocks, e.g. {Zt}
• some inputs are endogenous unknowns, e.g. {Kt}
• some outputs are target sequences that must equal zero in GE, e.g. {Ht}
[must have as many targets as unknowns]

• Many models can be written in this way.
• Key restriction: agents interact via limited set of aggregate variables
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Introducing models as collections of blocks

• Block: Mapping from sequence of inputs to sequence of outputs
Example 1: heterogeneous household block {rt,wt} → {Ct}
• Exogenous Markov chain for skills Π (e′|e)

• Households

max E0
∑
t
βtu(cit)

cit + kit ≤ (1+ rt)kit−1 + wteit
kit ≥ 0

→ Given initial distribution D0 (e, k−), path of aggregate consumption
Ct ≡

∫
ct (e, k−)Dt (e,dk−) only depends on {rs,ws}∞s=0.

[Farhi-Werning 2017, Kaplan-Moll-Violante 2018, Auclert-Rognlie-Straub 2018]
(We’ll assume rs = r, ws = w for s ≥ T0.)
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Krusell-Smith model DAG Capital market clearing

het.
agent

rep.
�rm

unknown K
shock Z

goods mkt.
clearing

H = C + I− Y
K, Z

C

Y, I
w, r

• DAG can be collapsed into mapping

Ht ({Ks}, {Zs}) = Ct + It − Yt

• GE path of {Ks} achieves Ht ({Ks}, {Zs}) = 0
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Dealing with endogenous labor: add an unknown and a target

het.
agent

rep.
�rm

unknowns K, L
shock Z goods mkt.

clearing
H2 = C + I− Y

labor market
clearing
H1 = N− L

K, L, Z

C

Y, I

w, r

N

L

• DAG can be collapsed into mapping

Ht ({Ks, Ls}, {Zs}) = {Ct + It − Yt,Ns − Ls}

• GE path of {Ks, Ls} achieves Ht ({Ks, Ls}, {Zs}) = 0
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Simple one-asset HANKmodel with sticky wages: another DAGwith one unknown

unknown Y
shock r

�scal
het.
agent

goods mkt.
clearing
H = C − Y

Y, r

Y

Ypost

r
C

• DAG can be collapsed into mapping

Ht ({Ys}, {rs}) = Ct − Yt

• GE path of {Ys} achieves Ht ({Ys}, {rs}) = 0
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unknown Y
shock r
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Two-asset HANK model in paper: richer DAG with three unknowns

unknowns r,w, Y
shocks Z, r∗,G

prod.

�scal

NKPC-p

equity

�nance

mon pol

het.
agents

asset mkt.
clearing (H2)

NKPC-w
(H3)

Fisher eq.
(H1)

r,w, Y, Z

w, r,G

Nr∗

mc

p,d, r

π

π

π

ra,rb

i, r, π

p

A,B

U

i

Y, r,w

τ,w,N

τ,w,N

r, Y

q,K
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All you need are block Jacobians



Block Jacobians

• Suppose we have set the DAG and initial conditions [typically the steady state]

• De�ne a block Jacobian as the derivatives of its outputs wrt its inputs

• e.g. household block

het.
agent C

w, r

→ two Jacobians: J C,w
t,s ≡

∂Ct
∂ws [iMPCs, Auclert-Rognlie-Straub] and J

C,r
t,s ≡

∂Ct
∂rs

• Next: block Jacobians are su�cient to compute GE impulse responses
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Krusell-Smith model Jacobians

het.
agent

rep.
�rm

unknown K
shock Z

goods mkt.
clearing

H = C + I− Y
K, Z

C

Y, I
w, r

• Jacobians here:
• het. agent:

{
∂Ct
∂ws

}
,
{
∂Ct
∂rs

}
 denote J C,w,J C,r

• rep. �rm:
{
∂wt
∂Ks

}
,
{
∂wt
∂Zs

}
,
{
∂rt
∂Ks

}
,
{
∂rt
∂Zs

}
, . . . denote J w,K,J w,Z,J r,K,J r,Z, . . .

• We can then chain the Jacobians along the DAG to get the Jacobians of H:
∂H
∂K

= J C,rJ r,K+J C,wJ w,K+J I,K−J Y,K ∂H
∂Z

= J C,rJ r,Z+J C,wJ w,Z+J I,Z−J Y,Z
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From block Jacobians to impulse responses

Once Jacobians are chained to give ∂H
∂K and

∂H
∂Z , we are done:

Suppose shock is dZ = {dZt} [with dZt = 0, t ≥ T0], what are the impulse responses?

1.
2. Use Jacobians to back out any IRF of interest, e.g. IRF of output

dY = J Y,KdK + J Y,ZdZ

⇒ Block Jacobians are su�cient to obtain all GE impulse responses

Can also compute moments of the distribution Dt (e, k−) this way

[in paper: generalize using automatic di�erentiation along the DAG]
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Aggregate shocks and MA (∞) representation

• Certainty equivalence⇒ dK is also the MA(∞) representation in model with
aggregate shocks:

• Suppose {dZ̃t} is MA(∞) in iid structural innovation vectors {εt}:

dZ̃t =
∞∑
s=0

dZsεt−s

then
dK̃t =

∞∑
s=0

dKsεt−s

→ Applications:
1. Simulation method (immediate)
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Estimation

• Let V(θ) be the covariance matrix for a set of k outputs, where θ ≡ parameters
• Assuming Gaussian innovations, log-likelihood of observed data Y given θ:

L(Y; θ) = − 12 log detV(θ)− 1
2Y
′V(θ)−1Y

• No need for Kalman �lter! Old estimation strategy in time series.
• several recent revivals in DSGE [e.g. Mankiw and Reis 2007]
• [in practice: use Cholesky or Levinson on V, or Whittle approx when T is large]
• �rst application to het agents, perfectly suited for sequence-space methods

• Estimating shock processes dZ almost free: use same Jacobians for any dZ!

• Other estimation still very fast as long as we don’t need to recalculate HA s.s.
[eg, cap. adjustment costs, degree of price stickiness, ...]
→ can use the same HA Jacobians J C,w,J C,r, etc.
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Remarks Determinacy Nonlinear transitions

1. In practice, our method involves the inversion of nT × nT matrix ∂H
∂K ,

where n = # unknowns and T = truncation horizon [typically T ' 300-500]
• very fast as long as DAG doesn’t have too many unknowns
• key bene�t of DAGs: reduce n without any loss in accuracy [typically n ≤ 3]
• in practice, choice of T depends on persistence of exogenous variables

2. This matrix is invertible if the model is locally determinate
• simple test based on the winding number criterion of Onatski (2006) [see paper]

3. Jacobians are also useful to get the nonlinear perfect-foresight solution
• Solve H (K, Z) = 0 using Newton’s method with s.s. Jacobian ∂H

∂K [see paper]

Next: how to rapidly compute the Jacobians of heterogeneous-agent blocks
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Speeding up HA Jacobian
computation



Computing heterogeneous-agent Jacobians

So far: DAG + Jacobians⇒ IRFs, determinacy, estimation, nonlinear transitions

But how do we get the block Jacobians?

• simple blocks: (e.g. representative �rms) simple, sparse matrix

• HA blocks? → next
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Jacobian of consumption with respect to wage

• Want to know Jt,s ≡ ∂Ct
∂ws for s, t ∈ {0, . . . , T − 1} [intertemporal MPCs]

• Assume initial condition is s.s., with rt = r, wt = w, D0 (e, k−) = D (e, k−)

• Direct algorithm: perturb ws ≡ w + ε

1. iterate backwards to get perturbed policies: cst (e, k−), kst (e, k−)

2. iterate forward to get perturbed distributions Dst (e, k−)

3. put together to get perturbed aggregate consumption: Cst =
∫
cst (e, k−)Dst (e,dk−)

4. compute J from Jt,s ≡ (Cst − C)/ε

• This is slow, since 1–4 needs to be done T times, once for each s

• Paper proposes fake news algorithm that is T times faster:
• requires single backward iteration & single forward iteration
• key idea: exploit time symmetries around the steady-state

18
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(0) The fake news matrix

• We can think of J ≡
(
∂Ct
∂ws

)
as a news matrix

• column s = response to news that shock hits in period s

• De�ne a new auxiliary matrix:

Ft,s ≡

 ∂Ct
∂ws s = 0 or t = 0
∂Ct
∂ws −

∂Ct−1
∂ws−1

s, t > 0

• Can think of this as fake news matrix:
• at t = 0: news shock that period s shock hits→ ∂C0

∂ws
• at t = 1: news shock that there won’t be a shock at s→ ∂C1

∂ws −
∂C0
∂ws−1

• useful: starting in t = 1, agents’ policy functions are unchanged by fake news
shock

• Can recover J from F : news shock = sequence of fake news shocks
19



(0) The fake news matrix

J =


J00 J01 J02 · · ·
J10 J11 J12 · · ·
J20 J12 J22 · · ·
...

...
... . . .

 F =


J00 J01 J02 · · ·
J10 J11 − J00 J12 − J 01 · · ·
J20 J12 − J10 J22 − J11 · · ·
...

...
... . . .


• Can recover J from F by adding elements from top left diagonal

20



(1) Single backward iteration

• Claim: Single backward iteration is enough to recover cst (e, k−), kst (e, k−)

• Why? only the time s− t until the perturbation matters

cst (e, k−) =

c(e, k−) s < t
cT−1T−1−(s−t)(e, k−) s ≥ t

• Thus, only need a single backward iteration with s = T − 1 to get all the cst

• From these we get:

• Cs0 =
∫
cs0(e, k−)D(e,dk−), so �rst row of Jacobian J0s = ∂C0

∂ws = F0s

• Ds1(e,dk−), distributions at date 1 implied by new policy cs0 at date 0

21
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(2) Single forward iteration

• Let’s iterate those distributions forward using s.s. policies

Ds1(e,dk−) 7→ Ds2(e,dk−) 7→ Ds3(e,dk−) 7→ . . .

• this is just a linear map: Dst = (Λ′)
t−1 Ds1 where Λ is s.s. transition matrix

• Now construct aggregate consumption using s.s. policies c

Cst ≡
∫
c(e, k−)Dst (e,dk−) ⇒ Cst = c′

(
Λ′
)t−1 Ds1

• this only requires computing c′, c′Λ′, c′ (Λ′)
2, . . .→ like a single forward iteration!

• This is exactly the fake news matrix

Ft,s = (Cst − C)/ε

22
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How long does this take?

Algorithm Krusell-Smith HD Krusell-Smith one-asset HANK two-asset HANK

Direct 26 s 1939 s 176 s 2107 s

step 1 (backward) 16 s 1338 s 150 s 1291 s

step 2 (forward) 10 s 601 s 27 s 815 s

Fake news 0.104 s 8.429 s 0.646 s 5.697 s

step 1 (backward) 0.067 s 5.433 s 0.525 s 5.206 s

step 2 (forward) 0.010 s 1.546 s 0.021 s 0.122 s

step 3 0.023 s 1.445 s 0.092 s 0.346 s

step 4 0.004 s 0.004 s 0.008 s 0.023 s

Gridpoints ng 3,500 250,000 3,500 10,500

23



Conclusion



What we do in this paper:

Computing times for: Krusell-Smith HD Krusell-Smith one-asset HANK two-asset HANK

Heterogeneous-agent Jacobians 0.10 s 8.4 s 0.65 s 5.7 s

One impulse response 0.0012 s 0.0012 s 0.017 s 0.120 s

All impulse responses 0.0068 s 0.0068 s 0.097 s 0.400 s

Bayesian estimation (shocks)

single likelihood evaluation 0.00088 s 0.00088 s 0.0021 s 0.058 s

entire estimation 0.12 s 0.12 s 0.50 s 21 s

Bayesian estimation (shocks + model)

single likelihood evaluation — — 0.011 s 0.18 s

entire estimation — — 16 s 570 s

Determinacy test 252 µs 252 µs 631 µs 631 µs

Nonlinear impulse responses 0.18 s 13.76 s 0.96 s 27 s



Conclusion

• New method to simulate, estimate & analyze HA models

1. model as collection of blocks

2. block Jacobians as su�cient statistics for GE

3. fast & accurate: IRFs, determinacy, full-info estimation, nonlinear transitions

https://github.com/shade-econ/sequence-jacobian

Comments welcome!

25
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Krusell-Smith model DAG alternative Back

unknown K
shock Z

�rms HA

asset mkt.
clearing
H = Ks − K

K, Z

K

r,w
Ks

• By Walras’s law, alternative target is capital market clearing:

Ht ({Ks}, {Zs}) = Kst − Kt

• GE path of {Ks} achieves Ht ({Ks}, {Zs}) = 0⇒ same solution as above.

26
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Determinacy Back

• In state space, have e.g. Blanchard-Kahn: count stable roots
• What analogue in sequence space?
• Could test singularity of HU: works, but slow and imprecise

• Asymptotic time invariance for the Jacobians of SHADE models:

[HU]t,s → At−s as t, s→∞

• Winding number criterion: precise and fast

• Local determinacy for generic model if winding number of

detA(λ) ≡ det
∑

Ajeijλ; λ ∈ [0, 2π]

around the origin is zero
• Generalizes criterion for exactly time invariant models [Onatski 2006]
• Given As, sample many λ and test in less than 1 ms using FFT 27



Nonlinear perfect foresight transitions

• Given Jacobian ∂H
∂K , can compute full nonlinear solution to

H(K, Z) = 0

• Idea: use (quasi)-Newton method

• Start from K(0) = Kss and iterate using

K(n) = K(n−1) −
(
∂H
∂K

)−1
H
(
K(n−1), Z

)
where ∂H

∂K is the steady state Jacobian computed with our method

28



Nonlinear perfect foresight transitions: example Back

0 5 10
Time t

0.00

0.05

0.10

0.15

0.20

%
 d

ev
ia

tio
n 

fro
m

 ss

Consumption response to 1% MP shock
linear
nonlinear

0 5 10
Time t

0.0

0.2

0.4

0.6

0.8

1.0

%
 d

ev
ia

tio
n 

fro
m

 ss

Consumption response to 5% MP shock
linear
nonlinear

(5 iterations) (8 iterations)

29


	Models as collections of blocks arranged along a DAG
	All you need are block Jacobians
	Speeding up HA Jacobian computation
	Conclusion

