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Q: How to solve heterogeneous-agent (HA) models in GE with aggregate shocks?
e When idiosyncratic risk >> aggregate risk, two leading options:
1. Linearize wrt aggregate shocks, solve linear state space system [Reiter method]

2. Assume perfect foresight wrt aggregate shocks, solve nonlinear system in space of
aggregate sequences (sequence space) [MIT shock method]

For small shocks, 1 < 2 by certainty equivalence [Boppart, Krusell, Mitman]
e Here: directly solve linear system in the sequence space: same, but faster!
e Our method: three steps
1. Write HA model as a collection of blocks along a directed acyclic graph (DAG)
2. Compute the Jacobian of each block: key “sufficient statistic” for GE interactions

3. Use Jacobians for: IRFs, determinacy, full-info estimation, nonlinear transitions, ... -



Why is our method useful?

1. Fast: for state-of-the-art, two-asset HANK model,

e First impulse response takes ~5s (vs ~100s with leading alternative methods)
e Additional impulse responses take ~100ms (vs 100s) by re-using Jacobians
® This makes model estimation possible

2. Accurate: no “model reduction” necessary, only error is from truncation
3. Modular: easy to build complex models by stitching blocks together

4. Intuitive: block Jacobians often have simple interpretation [eg MPCs]

5. Accessible: key steps automated in publicly available code [in Python]

® Most ideas are also easily implemented in Matlab



Literature: our method combines several innovations

e Write equilibrium as linear system in aggregates
[Reiter 2009, McKay and Reis 2016, Winberry 2018, Bayer, Luetticke, Pham-Dao and Tjaden 2019,
Mongey and Williams 2017, Ahn, Kaplan, Moll, Winberry and Wolf 2018, ...]
— size of system now independent of underlying HA, no Schur decomposition that's
costly for large state space

e Solve for impulse responses in sequence space
[Auerbach and Kotlikoff 1987, Guerrieri and Lorenzoni 2017, McKay, Nakamura and Steinsson 2016,
Kaplan, Moll and Violante 2018, Boppart, Krusell and Mitman 2018, ...]

— but now compute all in one go, no slowly-converging iteration

e Capture heterogeneity using GE sufficient statistics
[Auclert and Rognlie 2018, Auclert, Rognlie and Straub 2018, Guren, McKay, Nakamura and
Steinsson 2018, Koby and Wolf 2018, Wolf 2019]

— previously empirical or conceptual, now a computational tool



@ Models as collections of blocks arranged along a DAG
@ All you need are block Jacobians

© Speeding up HA Jacobian computation
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Introducing models as collections of blocks

¢ Block: Mapping from sequence of inputs to sequence of outputs

Example 1: heterogeneous household block {r, w:} — {Ct}
e Exogenous Markov chain for skills 1 (e’|e)
® Households

max Eq Z Btu(ci)
t

Cit + Rie < (14 re)Rit—y + weej
ki > 0

— Given initial distribution D, (e, k_), path of aggregate consumption
Ct = [ci(e,R_)D:(e,dk_) only depends on {rs, ws}32,.
[Farhi-Werning 2017, Kaplan-Moll-Violante 2018, Auclert-Rognlie-Straub 2018]
(We'llassume rs = r, ws = w for s > To.)



Introducing models as collections of blocks

¢ Block: Mapping from sequence of inputs to sequence of outputs
Example 1: heterogeneous household block {r:, w:} — {Ct}
Example 2: representative firm block with L = 1 {K¢, Zt} — { Vs, I, re, we}
Y = ZiKE
le =Kt — (1—6) Ke_
re = aZiKe' =0

Wy = (1 = Oé) Zthaf‘l

— Given initial capital K_,, path of {Y¢, It, rt, w: }£2, only depends on {Ks,Zs}3° .
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Introducing models as collections of blocks

¢ Block: Mapping from sequence of inputs to sequence of outputs

Example 1: heterogeneous household block {r:, w:} — {Ct}
Example 2: representative firm block with L = 1 {K;, Zt} — { Y, Ie, re, we}
Example 3: goods market clearing block {Y:, C;, It} — {H: = Ct + It — Y}
* Model: Set of blocks, arranged along a directed acyclic graph (DAG)
® some inputs are exogenous shocks, e.g. {Z;}
e some inputs are endogenous unknowns, e.g. {K;}
® some outputs are target sequences that must equal zero in GE, e.g. {H;}
[must have as many targets as unknowns]
e Many models can be written in this way.
e Key restriction: agents interact via limited set of aggregate variables
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Krusell-Smith model DAG » Capital market clearing

bz
unknown K w, rT goods mkt.

shock Z v | clearing

K,Z ,
\/ H=C+Il-Y

e DAG can be collapsed into mapping

He ({Ks}, {2s}) = Ce 4+ le — Ve

® GE path of {K} achieves H; ({Ks},{Zs}) =0
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Dealing with endogenous labor: add an unknown and a target

labor market
het. N .
clearing
agent

c Hy=N—L
unknowns K, L w, rI
shock Z K,L,Z

\ Y.l goods mkt.

clearing
Hy=C+I1-Y

e DAG can be collapsed into mapping

Ht ({KS, LS}, {Zs}) = {Ct + It — Yt, Ns — Ls}

e GE path of {K,Ls} achieves H; ({Ks, Ls},{Zs}) =0
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Simple one-asset HANK model with sticky wages: another DAG with one unknown

ypost het.
T\ agent
Y, r e
T N
goods mkt.
unknown Y Y clearing
shock r H=C-Y

e DAG can be collapsed into mapping

He ({Vs} {rs}) = G — Vs

e GE path of {V:} achieves H; ({Ys},{rs}) =0



Two-asset HANK model in paper: richer DAG with three unknowns

Fisher eq.

(Ha)

asset mkt.
clearing (H.)

unknowns r,w, Y
shocks Z,r*, G

NKPC-w
(H3)

10
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Block Jacobians

e Suppose we have set the DAG and initial conditions [typically the steady state]

e Define a block Jacobian as the derivatives of its outputs wrt its inputs

® e.g. household block

het.
agent

\
W,rI
— two Jacobians: 75" = 2& [iMPCs, Auclert-Rognlie-Straub] and J." = %%

S = Ows S = ors
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Block Jacobians

e Suppose we have set the DAG and initial conditions [typically the steady state]

e Define a block Jacobian as the derivatives of its outputs wrt its inputs

® e.g. household block

het.
agent

e

— two Jacobians: .7tCS’W = gTC/tS [iMPCs, Auclert-Rognlie-Straub] and jtcs’r = g—f:

e Next: block Jacobians are sufficient to compute GE impulse responses

1"



Krusell-Smith model Jacobians

het.
o —c
unknown K W’FT goods mkt.
shock Z K,Z Y.l clearing
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Krusell-Smith model Jacobians

het.
<
unknown K W’FT goods mkt.
shock z K,Z Y.l clearing

e Jacobians here:

* het. agent: {3—&} ; {g—f:} ~ denote JEw gCr

. ) owy oW, or; or K Z K Z
° rep'ﬁrm'{Wé}’{aizst}’{alé}7{aizi}""WdenOtejW ajw “'7( ajr PR

e We can then chain the Jacobians along the DAG to get the Jacobians of H:

g:.(l _ jc’rjr’K—i—jC’WjW’K—|—j”K—JY’K (;I; _ jC7rjr,Z+jC,WjW,Z+jI,Z_jY,Z

12



From block Jacobians to impulse responses

Once Jacobians are chained to give 2 and 9}, we are done:

Suppose shock is dZ = {dZ;} [with dZ; = 0, t > T,], what are the impulse responses?
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From block Jacobians to impulse responses

Once Jacobians are chained to give 2 and 9}, we are done:

Suppose shock is dZ = {dZ;} [with dZ; = 0, t > T,], what are the impulse responses?

1. H(K,Z) = o after the shock. Solve for unknown di{ =

OH\ ' OH
- () Mgy

2. Use Jacobians to back out any IRF of interest, e.g. IRF of output
dy = 7" dK + 7Y4dz
= Block Jacobians are sufficient to obtain all GE impulse responses

Can also compute moments of the distribution D; (e, k_) this way
[in paper: generalize using automatic differentiation along the DAG] 13
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Aggregate shocks and MA (o) representation

e Certainty equivalence = dI is also the MA(oo) representation in model with
aggregate shocks:

e Suppose {dZ;} is MA(co) in iid structural innovation vectors {e;}:
dzt ES Z dZsetfs
5=0

then - o0
dl(t = E d’(setfs
$=0

— Applications:
1. Simulation method (immediate)
2. Analytical second moments for any X, Y: Cov(dX;,dYy) = o2 zl;ét 1) dXsdYs vt

3. Estimation (next)
1%



® Let V(0) be the covariance matrix for a set of k outputs, where 6§ = parameters
e Assuming Gaussian innovations, log-likelihood of observed data Y given 6:

L(Y;0) = —% log detV(6) — %Y’V(O)”Y
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® Let V(0) be the covariance matrix for a set of k outputs, where 6§ = parameters
e Assuming Gaussian innovations, log-likelihood of observed data Y given 6:

L(Y;0) = —% log detV(6) — %Y’V(O)”Y

* No need for Kalman filter! Old estimation strategy in time series.
e several recent revivals in DSGE [e.g. Mankiw and Reis 2007]
e [in practice: use Cholesky or Levinson on V, or Whittle approx when T is large]
e first application to het agents, perfectly suited for sequence-space methods

e Estimating shock processes dZ almost free: use same Jacobians for any dz!

e Other estimation still very fast as long as we don’t need to recalculate HA s.s.
[eg, cap. adjustment costs, degree of price stickiness, ...]

— can use the same HA Jacobians 7%, 7', etc. -



Rema rl(S » Determinacy  » Nonlinear transitions

1. In practice, our method involves the inversion of nT x nT matrix 28,
where n = # unknowns and T = truncation horizon [typically T ~ 300-500]

e very fast as long as DAG doesn’t have too many unknowns
e key benefit of DAGs: reduce n without any loss in accuracy [typically n < 3]
® in practice, choice of T depends on persistence of exogenous variables

2. This matrix is invertible if the model is locally determinate
e simple test based on the winding number criterion of Onatski (2006) [see paper]

3. Jacobians are also useful to get the nonlinear perfect-foresight solution
® Solve H(K,Z) = o using Newton's method with s.s. Jacobian % [see paper]
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where n = # unknowns and T = truncation horizon [typically T ~ 300-500]

e very fast as long as DAG doesn’t have too many unknowns
e key benefit of DAGs: reduce n without any loss in accuracy [typically n < 3]
® in practice, choice of T depends on persistence of exogenous variables

2. This matrix is invertible if the model is locally determinate
e simple test based on the winding number criterion of Onatski (2006) [see paper]

3. Jacobians are also useful to get the nonlinear perfect-foresight solution
® Solve H(K,Z) = o using Newton's method with s.s. Jacobian % [see paper]

Next: how to rapidly compute the Jacobians of heterogeneous-agent blocks 16
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So far: DAG + Jacobians = IRFs, determinacy, estimation, nonlinear transitions

But how do we get the block Jacobians?
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Computing heterogeneous-agent Jacobians

So far: DAG + Jacobians = IRFs, determinacy, estimation, nonlinear transitions
But how do we get the block Jacobians?

e simple blocks: (e.g. representative firms) simple, sparse matrix

e HA blocks? — next

17



Jacobian of consumption with respect to wage

* Want to know J;s = 5 for s, t € {0, — 1} [intertemporal MPCs]
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Jacobian of consumption with respect to wage

* Want to know J;s = 5 for s, t € {0, — 1} [intertemporal MPCs]
® Assume |n|t|alcond|t|on iss.s., withry =r,w; =w, Do (e,kR_) =D (e,k_)

e Direct algorithm: perturb ws = w + ¢
1. iterate backwards to get perturbed policies: ¢;(e, k_), ki (e, R-)
2. iterate forward to get perturbed distributions D3 (e, k_)
3. put together to get perturbed aggregate consumption: G; = [ c;(e,k_)Di(e,dk_)
4. compute J from J;s = (GG — C) /e

e This is slow, since 1-4 needs to be done T times, once for each s

e Paper proposes fake news algorithm that is T times faster:
® requires single backward iteration & single forward iteration
® key idea: exploit time symmetries around the steady-state 18



(o) The fake news matrix

e \We can think of 7 = <8Cf> as a news matrix

® column s = response to news that shock hits in period s

e Define a new auxiliary matrix:

ac, _ _
P s=oort=o0
BT e e g4 g
8W5 8W571 )

e Can think of this as fake news matrix:
e att=o: news shock that period s shock hits — &t

e att = 1: news shock that there won’t be a shock at s — 80 — aﬁf‘;

e useful: starting in t = 1, agents’ policy functions are unchanged by fake news
shock

e Can recover J from F: news shock = sequence of fake news shocks i



(o) The fake news matrix

jOO jO‘I j02 T \700 \701 L7O2
»,710 \7]1 L712 e JIO »711 - jOO jl2 - j01
J= F=

Joo T2 T2 - Joo J12—Jo T2 —In
e Can recover J from F by adding elements from top left diagonal

20



(1) Single backward iteration

e Claim: Single backward iteration is enough to recover ¢;(e, k_), ki(e, k)
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e Claim: Single backward iteration is enough to recover ¢;(e, k_), ki(e, k)

e Why? only the time s — t until the perturbation matters

Glek )= c(e,kR_) s<t
Casp(ek) s>t

e Thus, only need a single backward iteration with s = T — 1 to get all the ¢}
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(1) Single backward iteration

e Claim: Single backward iteration is enough to recover ¢;(e, k_), ki(e, k)

e Why? only the time s — t until the perturbation matters

ek )= cgik,) s<t
cT_1_(S_t)(e, R_) s>t

e Thus, only need a single backward iteration with s = T — 1 to get all the ¢}
® From these we get:

* C5 = [cS(e,k_)D(e,dk_), so first row of Jacobian J,s = g—fv‘; = Jes

e Di(e,dk_), distributions at date 1 implied by new policy ¢ at date 0

21



(2) Single forward iteration

e Let's iterate those distributions forward using s.s. policies
Di(e,dk_) — D3(e,dkR_) — D3(e,dR_) — ...

e this is just a linear map: D = (\')"' DS where A is s.s. transition matrix

22
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e Now construct aggregate consumption using s.s. policies ¢
C = / c(e.k)Di(e.dk.) = Ci=c (N) DS

* this only requires computing ¢, ¢/, ¢ (N')?, ... — like a single forward iteration!

22



(2) Single forward iteration

e Let's iterate those distributions forward using s.s. policies
Di(e,dk_) — D3(e,dkR_) — D3(e,dR_) — ...

e this is just a linear map: D = (\')"' DS where A is s.s. transition matrix

® Now construct aggregate consumption using s.s. policies c
C = / c(e.k)Di(e.dk.) = Ci=c (N) DS
* this only requires computing ¢, ¢/, ¢ (N')?, ... — like a single forward iteration!
e This is exactly the fake news matrix

Frs = (GG —C)/e
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How long does this take?

Algorithm Krusell-Smith HD Krusell-Smith one-asset HANK two-asset HANK
Direct 26s 1939 s 176 s 2107's
step 1 (backward) 16's 1338 s 150's 1291s
step 2 (forward) 10s 601s 27s 815s
Fake news 0104 s 8.429 s 0.646 s 5.697 s
step 1 (backward) 0.067 s 5.433 S 0.525S 5.206 S
step 2 (forward) 0.010's 1.546 s 0.021s 0122's
step 3 0.023's 1445 'S 0.092's 0.346 S
step 4 0.004 S 0.004 S 0.008 s 0.023 s
Gridpoints ng 3,500 250,000 3,500 10,500

23



Conclusion




What we do in this paper:

Computing times for: Krusell-Smith  HD Krusell-Smith  one-asset HANK  two-asset HANK
Heterogeneous-agent Jacobians 0.10 s 8.4s 0.65 s 57S
One impulse response 0.0012's 0.0012 S 0.017 s 0120
All impulse responses 0.0068 s 0.0068 s 0.097 s 0.400 s

Bayesian estimation (shocks)
single likelihood evaluation 0.00088 s 0.00088 s 0.0021s 0.058 s

entire estimation 012's 012's 0.50's 21s

Bayesian estimation (shocks + model)

single likelihood evaluation - - 0.011's 018s
entire estimation — — 16s 570 s
Determinacy test 252 us 252 s 631 us 631 us

Nonlinear impulse responses 018s 13.76 s 0.96 s 27s




Conclusion

e New method to simulate, estimate & analyze HA models

1. model as collection of blocks
2. block Jacobians as sufficient statistics for GE

3. fast & accurate: IRFs, determinacy, full-info estimation, nonlinear transitions
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e New method to simulate, estimate & analyze HA models

1. model as collection of blocks
2. block Jacobians as sufficient statistics for GE

3. fast & accurate: IRFs, determinacy, full-info estimation, nonlinear transitions

https://github.com/shade-econ/sequence-jacobian

Comments welcome!
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Krusell-Smith model DAG alternative «Back
(1)
KS
K,Z
N N

asset mkt.
unknown K K clearing
shock Z H=Ks—K

e By Walras's law, alternative target is capital market clearing:

He ({Ks}, {Zs}) = Kt — Kq
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Krusell-Smith model DAG alternative «Back
(1)
KS
K,Z
N N

asset mkt.
unknown K K clearing
shock Z H=Ks—K

e By Walras's law, alternative target is capital market clearing:

He ({Ks}, {2:}) = K3 = Ke

e GE path of {Ks} achieves H; ({Ks},{Zs}) = 0 = same solution as above.
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Determinacy «Back

¢ |n state space, have e.g. Blanchard-Kahn: count stable roots
® What analogue in sequence space?
e Could test singularity of Hy: works, but slow and imprecise

e Asymptotic time invariance for the Jacobians of SHADE models:

[Hults = Ar—s ast,s — oo

e Winding number criterion: precise and fast
¢ Local determinacy for generic model if winding number of
detA(\) =det Y A’ X € [o,27]

around the origin is zero

® Generalizes criterion for exactly time invariant models [Onatski 2006]

® Given As, sample many )\ and test in less than 1 ms using FFT 27



Nonlinear perfect foresight transitions

* Given Jacobian %, can compute full nonlinear solution to
H(K,Z) =
e |dea: use (quasi)-Newton method

e Start from K(©) = Kss and iterate using

OM
(m) — K(n-1) _ (n-1)
K™ = K < ax) H (K",2)

where |s the steady state Jacobian computed with our method

28



Nonlinear perfect foresight transitions: example

. 2é:onsumption response to 1% MP shock ! 0Consumption response to 5% MP shock
—— linear \ —— linear

0 == nonlinear n 0.8 == nonlinear
© 0,151 W
: :
£ £0.6
§0.104 1S
® ®04
o 3
S 0.051 o
S x 02

0.001 0.0 :

0 5 10 0 5 10
Time t Time t
(5 iterations) (8 iterations)
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