Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models

Adrien Auclert, Bence Bardóczy, Matt Rognlie, Ludwig Straub

Computational Economics and Finance Remote Brown Bag, May 2020

Q: How to solve heterogeneous-agent (HA) models in GE with aggregate shocks?

Q: How to solve heterogeneous-agent (HA) models in GE with aggregate shocks?

- ullet When idiosyncratic risk \gg aggregate risk, two leading options:
 - 1. Linearize wrt aggregate shocks, solve linear state space system [Reiter method]
 - Assume perfect foresight wrt aggregate shocks, solve nonlinear system in space of aggregate sequences (sequence space)

 [MIT shock method]

Q: How to solve heterogeneous-agent (HA) models in GE with aggregate shocks?

- When idiosyncratic risk ≫ aggregate risk, two leading options:
 - 1. Linearize wrt aggregate shocks, solve linear state space system [Reiter method]
 - Assume perfect foresight wrt aggregate shocks, solve nonlinear system in space of aggregate sequences (sequence space)
 [MIT shock method]

For small shocks, $1 \Leftrightarrow 2$ by certainty equivalence

[Boppart, Krusell, Mitman]

Q: How to solve heterogeneous-agent (HA) models in GE with aggregate shocks?

- ullet When idiosyncratic risk \gg aggregate risk, two leading options:
 - 1. Linearize wrt aggregate shocks, solve linear state space system [Reiter method]
 - Assume perfect foresight wrt aggregate shocks, solve nonlinear system in space of aggregate sequences (sequence space)
 [MIT shock method]

For small shocks, $1 \Leftrightarrow 2$ by certainty equivalence [Boppart, Krusell, Mitman]

• Here: directly solve linear system in the sequence space: same, but faster!

Q: How to solve heterogeneous-agent (HA) models in GE with aggregate shocks?

- ullet When idiosyncratic risk \gg aggregate risk, two leading options:
 - 1. Linearize wrt aggregate shocks, solve linear state space system [Reiter method]
 - Assume perfect foresight wrt aggregate shocks, solve nonlinear system in space of aggregate sequences (sequence space)

 [MIT shock method]

For small shocks, $1 \Leftrightarrow 2$ by certainty equivalence [Boppart, Krusell, Mitman]

- Here: directly solve linear system in the sequence space: same, but faster!
- Our method: three steps

Q: How to solve heterogeneous-agent (HA) models in GE with aggregate shocks?

- When idiosyncratic risk ≫ aggregate risk, two leading options:
 - 1. Linearize wrt aggregate shocks, solve linear state space system [Reiter method]
 - Assume perfect foresight wrt aggregate shocks, solve nonlinear system in space of aggregate sequences (sequence space)

 [MIT shock method]

For small shocks, $1 \Leftrightarrow 2$ by certainty equivalence [Boppart, Krusell, Mitman]

- Here: directly solve linear system in the sequence space: same, but faster!
- Our method: three steps
 - 1. Write HA model as a collection of **blocks** along a **directed acyclic graph (DAG)**
 - 2. Compute the Jacobian of each block: key "sufficient statistic" for GE interactions
 - 3. Use Jacobians for: IRFs, determinacy, full-info estimation, nonlinear transitions, ... 2

Why is our method useful?

- 1. **Fast**: for state-of-the-art, two-asset HANK model,
 - First impulse response takes \sim **5s** (vs \sim **100s** with leading alternative methods)
 - Additional impulse responses take \sim 100ms (vs 100s) by re-using Jacobians
 - This makes model estimation possible
- 2. Accurate: no "model reduction" necessary, only error is from truncation
- 3. Modular: easy to build complex models by stitching blocks together
- 4. Intuitive: block Jacobians often have simple interpretation [eg MPCs]
- 5. Accessible: key steps automated in publicly available code [in Python]
 - Most ideas are also easily implemented in Matlab

Literature: our method combines several innovations

- Write equilibrium as linear system in aggregates
 - [Reiter 2009, McKay and Reis 2016, Winberry 2018, Bayer, Luetticke, Pham-Dao and Tjaden 2019, Mongey and Williams 2017, Ahn, Kaplan, Moll, Winberry and Wolf 2018, ...]
 - ightarrow size of system now independent of underlying HA, no Schur decomposition that's costly for large state space
- Solve for impulse responses in sequence space

[Auerbach and Kotlikoff 1987, Guerrieri and Lorenzoni 2017, McKay, Nakamura and Steinsson 2016, Kaplan, Moll and Violante 2018, Boppart, Krusell and Mitman 2018, ...]

- ightarrow but now compute all in one go, no slowly-converging iteration
- Capture heterogeneity using GE sufficient statistics
 [Auclert and Rognlie 2018, Auclert, Rognlie and Straub 2018, Guren, McKay, Nakamura and Steinsson 2018, Koby and Wolf 2018, Wolf 2019]
 - $\,
 ightarrow\,$ previously empirical or conceptual, now a computational tool

Roadmap

Models as collections of blocks arranged along a DAG

2 All you need are block Jacobians

3 Speeding up HA Jacobian computation

Models as collections of blocks

arranged along a DAG

• **Block:** Mapping from sequence of *inputs* to sequence of *outputs*

- **Block:** Mapping from sequence of *inputs* to sequence of *outputs* Example 1: **heterogeneous household block** $\{r_t, w_t\} \rightarrow \{C_t\}$
 - Exogenous Markov chain for skills $\Pi\left(e'|e\right)$
 - Households

$$egin{aligned} \max & \mathbb{E}_{\mathsf{o}} \sum_{t} eta^t u(\mathsf{c}_{it}) \ & c_{it} + k_{it} \leq (\mathsf{1} + r_t) k_{it-1} + w_t e_{it} \ & k_{it} \geq \mathsf{o} \end{aligned}$$

- **Block:** Mapping from sequence of *inputs* to sequence of *outputs* Example 1: heterogeneous household block $\{r_t, w_t\} \rightarrow \{C_t\}$
 - Exogenous Markov chain for skills $\Pi(e'|e)$
 - Households

$$egin{aligned} \max \mathbb{E}_{\mathsf{o}} \sum_t eta^t u(c_{it}) \ c_{it} + k_{it} & \leq (1 + r_t) k_{it-1} + w_t e_{it} \ k_{it} & \geq \mathsf{o} \end{aligned}$$

ightarrow Given initial distribution $D_{\rm o}$ (e,k_-) , path of aggregate consumption $C_{\rm t} \equiv \int c_{\rm t} \left(e,k_-\right) D_{\rm t} \left(e,dk_-\right)$ only depends on $\{r_{\rm s},w_{\rm s}\}_{\rm s=o}^{\infty}$. [Farhi-Werning 2017, Kaplan-Moll-Violante 2018, Auclert-Rognlie-Straub 2018] (We'll assume $r_{\rm s}=r$, $w_{\rm s}=w$ for $s\geq T_{\rm o}$.)

• Block: Mapping from sequence of inputs to sequence of outputs

Example 1: heterogeneous household block $\{r_t, w_t\} \rightarrow \{C_t\}$

Example 2: representative firm block with $L = 1 \{K_t, Z_t\} \rightarrow \{Y_t, I_t, r_t, w_t\}$

$$\begin{aligned} Y_t &= Z_t K_{t-1}^{\alpha} \\ I_t &= K_t - (1 - \delta) K_{t-1} \\ r_t &= \alpha Z_t K_{t-1}^{\alpha - 1} - \delta \\ w_t &= (1 - \alpha) Z_t K_{t-1}^{\alpha} \end{aligned}$$

 \rightarrow Given initial capital K_{-1} , path of $\{Y_t, I_t, r_t, w_t\}_{t=0}^{\infty}$ only depends on $\{K_s, Z_s\}_{s=0}^{\infty}$.

• Block: Mapping from sequence of inputs to sequence of outputs

Example 1: heterogeneous household block $\{r_t, w_t\} \rightarrow \{C_t\}$

Example 2: representative firm block with L=1 $\{K_t,Z_t\} \rightarrow \{Y_t,I_t,r_t,w_t\}$

Example 3: goods market clearing block $\{Y_t, C_t, I_t\} \rightarrow \{H_t \equiv C_t + I_t - Y_t\}$

• Block: Mapping from sequence of inputs to sequence of outputs

```
Example 1: heterogeneous household block \{r_t, w_t\} \rightarrow \{C_t\}
Example 2: representative firm block with L = 1 \{K_t, Z_t\} \rightarrow \{Y_t, I_t, r_t, w_t\}
Example 3: goods market clearing block \{Y_t, C_t, I_t\} \rightarrow \{H_t \equiv C_t + I_t - Y_t\}
```

- Model: Set of blocks, arranged along a directed acyclic graph (DAG)
 - some inputs are exogenous **shocks**, e.g. $\{Z_t\}$
 - some inputs are endogenous **unknowns**, e.g. $\{K_t\}$
 - some outputs are target sequences that must equal zero in GE, e.g. {H_t}
 [must have as many targets as unknowns]

• Block: Mapping from sequence of inputs to sequence of outputs

```
Example 1: heterogeneous household block \{r_t, w_t\} \to \{C_t\}
Example 2: representative firm block with L = 1 \{K_t, Z_t\} \to \{Y_t, I_t, r_t, w_t\}
Example 3: goods market clearing block \{Y_t, C_t, I_t\} \to \{H_t \equiv C_t + I_t - Y_t\}
```

- Model: Set of blocks, arranged along a directed acyclic graph (DAG)
 - some inputs are exogenous **shocks**, e.g. $\{Z_t\}$
 - some inputs are endogenous **unknowns**, e.g. $\{K_t\}$
 - some outputs are target sequences that must equal zero in GE, e.g. {H_t}
 [must have as many targets as unknowns]
- Many models can be written in this way.
 - Key restriction: agents interact via limited set of aggregate variables

• DAG can be collapsed into mapping

$$H_t\left(\{\begin{matrix} K_s \end{matrix}\}, \{\begin{matrix} Z_s \end{matrix}\}\right) = C_t + I_t - Y_t$$

• DAG can be collapsed into mapping

$$H_t\left(\{\begin{matrix} K_s \end{matrix}\}, \{\begin{matrix} Z_s \end{matrix}\}\right) = C_t + I_t - Y_t$$

• GE path of $\{K_s\}$ achieves $H_t(\{K_s\}, \{Z_s\}) = 0$

Dealing with endogenous labor: add an unknown and a target

Dealing with endogenous labor: add an unknown and a target

• DAG can be collapsed into mapping

$$\boldsymbol{H}_t\left(\{\boldsymbol{K_s},\boldsymbol{L_s}\},\{\boldsymbol{Z_s}\}\right) = \{C_t + I_t - Y_t, N_s - \boldsymbol{L_s}\}$$

• GE path of $\{K_s, L_s\}$ achieves $H_t(\{K_s, L_s\}, \{Z_s\}) = 0$

Simple one-asset HANK model with sticky wages: another DAG with one unknown

Simple one-asset HANK model with sticky wages: another DAG with one unknown

DAG can be collapsed into mapping

$$H_t\left(\{Y_s\},\{\textbf{r}_s\}\right) = C_t - Y_t$$

• GE path of $\{Y_s\}$ achieves $H_t(\{Y_s\}, \{r_s\}) = 0$

Two-asset HANK model in paper: richer DAG with three unknowns

All you need are block Jacobians

- Suppose we have set the DAG and initial conditions [typically the steady state]
- Define a block **Jacobian** as the derivatives of its outputs wrt its inputs

- Suppose we have set the DAG and initial conditions [typically the steady state]
- Define a block **Jacobian** as the derivatives of its outputs wrt its inputs
 - e.g. household block

- Suppose we have set the DAG and initial conditions [typically the steady state]
- Define a block **Jacobian** as the derivatives of its outputs wrt its inputs
 - e.g. household block

ightarrow two Jacobians: $\mathcal{J}_{t,s}^{\text{C},\text{w}}\equiv \frac{\partial C_t}{\partial w_s}$ [iMPCs, Auclert-Rognlie-Straub] and $\mathcal{J}_{t,s}^{\text{C},\text{r}}\equiv \frac{\partial C_t}{\partial r_s}$

- Suppose we have set the DAG and initial conditions [typically the steady state]
- Define a block **Jacobian** as the derivatives of its outputs wrt its inputs
 - e.g. household block

- ightarrow two Jacobians: $\mathcal{J}_{t,s}^{\text{C},\text{w}}\equiv \frac{\partial C_t}{\partial w_s}$ [iMPCs, Auclert-Rognlie-Straub] and $\mathcal{J}_{t,s}^{\text{C},\text{r}}\equiv \frac{\partial C_t}{\partial r_s}$
- Next: block Jacobians are sufficient to compute GE impulse responses

- Jacobians here:
 - $\bullet \ \ \text{het. agent:} \ \left\{ \frac{\partial C_t}{\partial w_s} \right\}, \left\{ \frac{\partial C_t}{\partial r_s} \right\} \leadsto \text{denote} \ \mathcal{J}^{\text{C}, w}, \mathcal{J}^{\text{C}, r}$

- Jacobians here:
 - het. agent: $\left\{ \frac{\partial C_t}{\partial w_s} \right\}, \left\{ \frac{\partial C_t}{\partial r_s} \right\} \leadsto \text{denote } \mathcal{J}^{C,w}, \mathcal{J}^{C,r}$
 - rep. firm: $\left\{\frac{\partial w_t}{\partial K_s}\right\}, \left\{\frac{\partial w_t}{\partial Z_s}\right\}, \left\{\frac{\partial r_t}{\partial K_s}\right\}, \left\{\frac{\partial r_t}{\partial Z_s}\right\}, \ldots \leadsto \text{denote } \mathcal{J}^{w,K}, \mathcal{J}^{w,Z}, \mathcal{J}^{r,K}, \mathcal{J}^{r,Z}, \ldots$

- Jacobians here:
 - het. agent: $\left\{ \frac{\partial C_t}{\partial w_s} \right\}, \left\{ \frac{\partial C_t}{\partial r_s} \right\} \leadsto \text{denote } \mathcal{J}^{C,w}, \mathcal{J}^{C,r}$
 - rep. firm: $\left\{\frac{\partial w_t}{\partial K_s}\right\}, \left\{\frac{\partial w_t}{\partial Z_s}\right\}, \left\{\frac{\partial r_t}{\partial K_s}\right\}, \left\{\frac{\partial r_t}{\partial Z_s}\right\}, \ldots \leadsto \text{denote } \mathcal{J}^{w,K}, \mathcal{J}^{w,Z}, \mathcal{J}^{r,K}, \mathcal{J}^{r,Z}, \ldots$
- We can then **chain the Jacobians along the DAG** to get the Jacobians of **H**:

$$\frac{\partial \mathbf{H}}{\partial \mathbf{K}} = \mathcal{J}^{\mathsf{C},\mathsf{r}} \mathcal{J}^{\mathsf{r},\mathsf{K}} + \mathcal{J}^{\mathsf{C},\mathsf{w}} \mathcal{J}^{\mathsf{w},\mathsf{K}} + \mathcal{J}^{\mathsf{I},\mathsf{K}} - \mathcal{J}^{\mathsf{Y},\mathsf{K}} \qquad \frac{\partial \mathbf{H}}{\partial \mathbf{Z}} = \mathcal{J}^{\mathsf{C},\mathsf{r}} \mathcal{J}^{\mathsf{r},\mathsf{Z}} + \mathcal{J}^{\mathsf{C},\mathsf{w}} \mathcal{J}^{\mathsf{w},\mathsf{Z}} + \mathcal{J}^{\mathsf{I},\mathsf{Z}} - \mathcal{J}^{\mathsf{Y},\mathsf{Z}}$$

From block Jacobians to impulse responses

Once Jacobians are chained to give $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$ and $\frac{\partial \mathbf{H}}{\partial \mathbf{Z}}$, we are done:

Suppose shock is $d\mathbf{Z} = \{d\mathbf{Z}_t\}$ [with $d\mathbf{Z}_t = 0$, $t \geq T_0$], what are the impulse responses?

Once Jacobians are chained to give $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$ and $\frac{\partial \mathbf{H}}{\partial \mathbf{Z}}$, we are done:

Suppose shock is $d\mathbf{Z} = \{d\mathbf{Z}_t\}$ [with $d\mathbf{Z}_t = 0$, $t \geq T_0$], what are the impulse responses?

1.
$$\mathbf{H}(\mathbf{K}, \mathbf{Z}) = \mathbf{0}$$
 after the shock

$$\frac{\partial \mathbf{H}}{\partial \mathbf{K}} d\mathbf{K} + \frac{\partial \mathbf{H}}{\partial \mathbf{Z}} d\mathbf{Z} = \mathbf{0}$$

Once Jacobians are chained to give $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$ and $\frac{\partial \mathbf{H}}{\partial \mathbf{Z}}$, we are done:

Suppose shock is $d\mathbf{Z} = \{d\mathbf{Z}_t\}$ [with $d\mathbf{Z}_t = 0$, $t \geq T_0$], what are the impulse responses?

1. $\mathbf{H}(\mathbf{K}, \mathbf{Z}) = \mathbf{0}$ after the shock. Solve for unknown $d\mathbf{K} \Rightarrow$

$$d\mathbf{K} = -\left(\frac{\partial \mathbf{H}}{\partial \mathbf{K}}\right)^{-1} \frac{\partial \mathbf{H}}{\partial \mathbf{Z}} d\mathbf{Z}$$

Once Jacobians are chained to give $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$ and $\frac{\partial \mathbf{H}}{\partial \mathbf{Z}}$, we are done:

Suppose shock is $d\mathbf{Z} = \{d\mathbf{Z}_t\}$ [with $d\mathbf{Z}_t = 0$, $t \geq T_0$], what are the impulse responses?

1. $\mathbf{H}(\mathbf{K}, \mathbf{Z}) = \mathbf{0}$ after the shock. Solve for unknown $d\mathbf{K} \Rightarrow$

$$d\mathbf{K} = -\left(\frac{\partial \mathbf{H}}{\partial \mathbf{K}}\right)^{-1} \frac{\partial \mathbf{H}}{\partial \mathbf{Z}} d\mathbf{Z}$$

2. Use Jacobians to back out any IRF of interest, e.g. IRF of output

$$d\mathbf{Y} = \mathcal{J}^{Y,K} d\mathbf{K} + \mathcal{J}^{Y,Z} d\mathbf{Z}$$

Once Jacobians are chained to give $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$ and $\frac{\partial \mathbf{H}}{\partial \mathbf{Z}}$, we are done:

Suppose shock is $d\mathbf{Z} = \{d\mathbf{Z}_t\}$ [with $d\mathbf{Z}_t = 0$, $t \geq T_0$], what are the impulse responses?

1. $\mathbf{H}(\mathbf{K}, \mathbf{Z}) = \mathbf{0}$ after the shock. Solve for unknown $d\mathbf{K} \Rightarrow$

$$d\mathbf{K} = -\left(\frac{\partial \mathbf{H}}{\partial \mathbf{K}}\right)^{-1} \frac{\partial \mathbf{H}}{\partial \mathbf{Z}} d\mathbf{Z}$$

2. Use Jacobians to back out any IRF of interest, e.g. IRF of output

$$d\mathbf{Y} = \mathcal{J}^{Y,K} d\mathbf{K} + \mathcal{J}^{Y,Z} d\mathbf{Z}$$

 \Rightarrow Block Jacobians are sufficient to obtain all GE impulse responses Can also compute moments of the distribution $D_t(e, k_-)$ this way

Once Jacobians are chained to give $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$ and $\frac{\partial \mathbf{H}}{\partial \mathbf{Z}}$, we are done:

Suppose shock is $d\mathbf{Z} = \{d\mathbf{Z}_t\}$ [with $d\mathbf{Z}_t = 0$, $t \geq T_0$], what are the impulse responses?

1. $\mathbf{H}(\mathbf{K}, \mathbf{Z}) = \mathbf{0}$ after the shock. Solve for unknown $d\mathbf{K} \Rightarrow$

$$d\mathbf{K} = -\left(\frac{\partial \mathbf{H}}{\partial \mathbf{K}}\right)^{-1} \frac{\partial \mathbf{H}}{\partial \mathbf{Z}} d\mathbf{Z}$$

2. Use Jacobians to back out any IRF of interest, e.g. IRF of output

$$d\mathbf{Y} = \mathcal{J}^{Y,K} d\mathbf{K} + \mathcal{J}^{Y,Z} d\mathbf{Z}$$

 \Rightarrow Block Jacobians are sufficient to obtain all GE impulse responses Can also compute moments of the distribution $D_t(e,k_-)$ this way [in paper: generalize using automatic differentiation along the DAG]

Aggregate shocks and $\mathit{MA}\left(\infty\right)$ representation

• Certainty equivalence \Rightarrow dK is also the $MA(\infty)$ representation in model with aggregate shocks:

Aggregate shocks and $\mathit{MA}\left(\infty\right)$ representation

- Certainty equivalence \Rightarrow dK is also the $MA(\infty)$ representation in model with aggregate shocks:
- Suppose $\{d\tilde{Z}_t\}$ is $MA(\infty)$ in iid structural innovation vectors $\{\epsilon_t\}$:

$$d\tilde{\mathbf{Z}}_{t} = \sum_{s=0}^{\infty} d\mathbf{Z}_{s} \epsilon_{t-s}$$

then

$$d\tilde{K}_t = \sum_{s=0}^{\infty} dK_s \epsilon_{t-s}$$

Aggregate shocks and MA (∞) representation

- Certainty equivalence \Rightarrow dK is also the $MA(\infty)$ representation in model with aggregate shocks:
- Suppose $\{d\tilde{Z}_t\}$ is $MA(\infty)$ in iid structural innovation vectors $\{\epsilon_t\}$:

$$d\tilde{\mathbf{Z}}_{t} = \sum_{s=0}^{\infty} d\mathbf{Z}_{s} \epsilon_{t-s}$$

then

$$d\tilde{K}_t = \sum_{s=0}^{\infty} dK_s \epsilon_{t-s}$$

- \rightarrow Applications:
 - 1. Simulation method (immediate)
 - 2. Analytical second moments for any X, Y: $Cov(d\tilde{X}_t, d\tilde{Y}_{t'}) = \sigma_{\epsilon}^2 \sum_{s=0}^{T-(t'-t)} dX_s dY_{s+t'-t}$
 - 3. Estimation (next)

- Let $V(\theta)$ be the covariance matrix for a set of k outputs, where $\theta \equiv$ parameters
- Assuming Gaussian innovations, log-likelihood of observed data ${\bf Y}$ given θ :

$$\mathcal{L}(\mathbf{Y}; \theta) = -\frac{1}{2} \log \det \mathbf{V}(\theta) - \frac{1}{2} \mathbf{Y}' \mathbf{V}(\theta)^{-1} \mathbf{Y}$$

- Let $\mathbf{V}(\theta)$ be the covariance matrix for a set of k outputs, where $\theta \equiv$ parameters
- Assuming Gaussian innovations, log-likelihood of observed data \mathbf{Y} given θ :

$$\mathcal{L}(\mathbf{Y}; \theta) = -\frac{1}{2} \log \det \mathbf{V}(\theta) - \frac{1}{2} \mathbf{Y}' \mathbf{V}(\theta)^{-1} \mathbf{Y}$$

- No need for Kalman filter! Old estimation strategy in time series.
 - several recent revivals in DSGE [e.g. Mankiw and Reis 2007]
 - [in practice: use Cholesky or Levinson on V, or Whittle approx when T is large]
 - first application to het agents, perfectly suited for sequence-space methods

- Let $\mathbf{V}(\theta)$ be the covariance matrix for a set of k outputs, where $\theta \equiv$ parameters
- Assuming Gaussian innovations, log-likelihood of observed data \mathbf{Y} given θ :

$$\mathcal{L}(\mathbf{Y}; \theta) = -\frac{1}{2} \log \det \mathbf{V}(\theta) - \frac{1}{2} \mathbf{Y}' \mathbf{V}(\theta)^{-1} \mathbf{Y}$$

- No need for Kalman filter! Old estimation strategy in time series.
 - several recent revivals in DSGE [e.g. Mankiw and Reis 2007]
 - [in practice: use Cholesky or Levinson on V, or Whittle approx when T is large]
 - first application to het agents, perfectly suited for sequence-space methods
- Estimating shock processes dZ almost free: use same Jacobians for any dZ!

- Let $\mathbf{V}(\theta)$ be the covariance matrix for a set of k outputs, where $\theta \equiv$ parameters
- Assuming Gaussian innovations, log-likelihood of observed data ${\bf Y}$ given θ :

$$\mathcal{L}(\mathbf{Y}; \theta) = -\frac{1}{2} \log \det \mathbf{V}(\theta) - \frac{1}{2} \mathbf{Y}' \mathbf{V}(\theta)^{-1} \mathbf{Y}$$

- No need for Kalman filter! Old estimation strategy in time series.
 - several recent revivals in DSGE [e.g. Mankiw and Reis 2007]
 - [in practice: use Cholesky or Levinson on V, or Whittle approx when T is large]
 - first application to het agents, perfectly suited for sequence-space methods
- Estimating shock processes $d\mathbf{Z}$ almost free: use same Jacobians for any $d\mathbf{Z}$!
- Other estimation still **very fast** as long as we don't need to recalculate HA s.s. [eg, cap. adjustment costs, degree of price stickiness, ...]
 - \rightarrow can use the same HA Jacobians $\mathcal{J}^{c,w},\mathcal{J}^{c,r}$, etc.

- 1. In practice, our method involves the inversion of $nT \times nT$ matrix $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$, where n = # unknowns and $T = \text{truncation horizon [typically } T \simeq 300-500]$
 - very fast as long as DAG doesn't have too many unknowns
 - key benefit of DAGs: reduce n without any loss in accuracy [typically $n \le 3$]
 - in practice, choice of T depends on persistence of exogenous variables
- 2. This matrix is invertible if the model is locally **determinate**
 - simple test based on the winding number criterion of Onatski (2006) [see paper]
- 3. Jacobians are also useful to get the **nonlinear perfect-foresight** solution
 - Solve $\mathbf{H}(\mathbf{K}, \mathbf{Z}) = \mathbf{0}$ using Newton's method with s.s. Jacobian $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$ [see paper]

- 1. In practice, our method involves the inversion of $nT \times nT$ matrix $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$, where n = # unknowns and $T = \text{truncation horizon [typically } T \simeq 300-500]$
 - very fast as long as DAG doesn't have too many unknowns
 - key benefit of DAGs: reduce n without any loss in accuracy [typically $n \le 3$]
 - in practice, choice of T depends on persistence of exogenous variables
- 2. This matrix is invertible if the model is locally **determinate**
 - simple test based on the winding number criterion of Onatski (2006) [see paper]
- 3. Jacobians are also useful to get the **nonlinear perfect-foresight** solution
 - Solve $\mathbf{H}(\mathbf{K}, \mathbf{Z}) = \mathbf{0}$ using Newton's method with s.s. Jacobian $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$ [see paper]

Next: how to rapidly compute the Jacobians of heterogeneous-agent blocks

Speeding up HA Jacobian computation

Computing heterogeneous-agent Jacobians

So far: DAG + Jacobians \Rightarrow IRFs, determinacy, estimation, nonlinear transitions

But how do we get the block Jacobians?

Computing heterogeneous-agent Jacobians

So far: DAG + Jacobians \Rightarrow IRFs, determinacy, estimation, nonlinear transitions

But how do we get the block Jacobians?

• simple blocks: (e.g. representative firms) simple, sparse matrix

Computing heterogeneous-agent Jacobians

So far: DAG + Jacobians \Rightarrow IRFs, determinacy, estimation, nonlinear transitions

But how do we get the block Jacobians?

- simple blocks: (e.g. representative firms) simple, sparse matrix
- HA blocks? \rightarrow next

- Want to know $\mathcal{J}_{t,s} \equiv \frac{\partial \mathcal{C}_t}{\partial W_s}$ for $s,t \in \{0,\ldots,T-1\}$ [intertemporal MPCs]
 - Assume initial condition is s.s., with $r_t = r$, $w_t = w$, $D_o(e, k_-) = D(e, k_-)$

- Want to know $\mathcal{J}_{t,s} \equiv \frac{\partial \mathcal{C}_t}{\partial w_s}$ for $s,t \in \{0,\ldots,T-1\}$ [intertemporal MPCs]
 - Assume initial condition is s.s., with $r_t = r$, $w_t = w$, $D_o\left(e, k_-\right) = D\left(e, k_-\right)$
- **Direct algorithm**: perturb $w_s \equiv w + \epsilon$

- Want to know $\mathcal{J}_{t,s} \equiv \frac{\partial \mathcal{C}_t}{\partial w_s}$ for $s,t \in \{0,\ldots,T-1\}$ [intertemporal MPCs]
 - Assume initial condition is s.s., with $r_t = r$, $w_t = w$, $D_o\left(e, k_-\right) = D\left(e, k_-\right)$
- **Direct algorithm**: perturb $w_s \equiv w + \epsilon$
 - 1. iterate backwards to get perturbed policies: $\mathbf{c}_t^s(e,k_-), \mathbf{k}_t^s(e,k_-)$
 - 2. iterate forward to get perturbed distributions $D_t^{\rm s}(e,k_-)$
 - 3. put together to get perturbed aggregate consumption: $C^{\rm s}_t = \int {f c}^{\rm s}_t(e,k_-) D^{\rm s}_t(e,dk_-)$
 - 4. compute \mathcal{J} from $\mathcal{J}_{t,s} \equiv (C_t^s C)/\epsilon$

- Want to know $\mathcal{J}_{t,s} \equiv \frac{\partial \mathcal{C}_t}{\partial w_s}$ for $s,t \in \{0,\ldots,T-1\}$ [intertemporal MPCs]
 - Assume initial condition is s.s., with $r_t = r$, $w_t = w$, $D_o\left(e, k_-\right) = D\left(e, k_-\right)$
- **Direct algorithm**: perturb $w_s \equiv w + \epsilon$
 - 1. iterate backwards to get perturbed policies: $\mathbf{c}_t^s(e,k_-), \mathbf{k}_t^s(e,k_-)$
 - 2. iterate forward to get perturbed distributions $D_t^s(e, k_-)$
 - 3. put together to get perturbed aggregate consumption: $C^{\rm s}_t = \int {f c}^{\rm s}_t(e,k_-) D^{\rm s}_t(e,dk_-)$
 - 4. compute \mathcal{J} from $\mathcal{J}_{t,s} \equiv (C_t^s C)/\epsilon$
- This is **slow**, since 1–4 needs to be done *T* times, once for each *s*

- Want to know $\mathcal{J}_{t,s} \equiv \frac{\partial \mathcal{C}_t}{\partial W_s}$ for $s,t \in \{0,\ldots,T-1\}$ [intertemporal MPCs]
 - Assume initial condition is s.s., with $r_t = r$, $w_t = w$, $D_o\left(e, k_-\right) = D\left(e, k_-\right)$
- **Direct algorithm**: perturb $w_s \equiv w + \epsilon$
 - 1. iterate backwards to get perturbed policies: $\mathbf{c}_t^{\mathrm{s}}(e,k_-), \mathbf{k}_t^{\mathrm{s}}(e,k_-)$
 - 2. iterate forward to get perturbed distributions $D_t^s(e, k_-)$
 - 3. put together to get perturbed aggregate consumption: $C_t^s = \int \mathbf{c}_t^s(e, k_-) D_t^s(e, dk_-)$
 - 4. compute \mathcal{J} from $\mathcal{J}_{t,s} \equiv (C_t^s C)/\epsilon$
- This is **slow**, since 1–4 needs to be done *T* times, once for each s
- Paper proposes fake news algorithm that is T times faster:
 - requires **single** backward iteration & **single** forward iteration
 - key idea: exploit **time symmetries** around the steady-state

(o) The fake news matrix

- We can think of $\mathcal{J}\equiv\left(\frac{\partial \mathcal{C}_t}{\partial w_s}\right)$ as a **news matrix**
 - ullet column s = response to news that shock hits in period s
- Define a new auxiliary matrix:

$$\mathcal{F}_{t,s} \equiv egin{cases} rac{\partial C_t}{\partial W_s} & s = o \ or \ t = o \ rac{\partial C_t}{\partial W_s} - rac{\partial C_{t-1}}{\partial W_{s-1}} & s, t > o \end{cases}$$

- Can think of this as fake news matrix:
 - at t= o: news shock that period s shock hits $o rac{\partial C_0}{\partial w_s}$
 - at t= 1: news shock that there won't be a shock at $s o rac{\partial C_1}{\partial w_s} rac{\partial C_0}{\partial w_{s-1}}$
 - useful: starting in t = 1, agents' policy functions are unchanged by fake news shock
- Can recover \mathcal{J} from \mathcal{F} : news shock = sequence of fake news shocks

(o) The fake news matrix

$$\mathcal{J} = \begin{pmatrix} \mathcal{J}_{00} & \mathcal{J}_{01} & \mathcal{J}_{02} & \cdots \\ \mathcal{J}_{10} & \mathcal{J}_{11} & \mathcal{J}_{12} & \cdots \\ \mathcal{J}_{20} & \mathcal{J}_{12} & \mathcal{J}_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \mathcal{F} = \begin{pmatrix} \mathcal{J}_{00} & \mathcal{J}_{01} & \mathcal{J}_{02} & \cdots \\ \mathcal{J}_{10} & \mathcal{J}_{11} - \mathcal{J}_{00} & \mathcal{J}_{12} - \mathcal{J}_{01} & \cdots \\ \mathcal{J}_{20} & \mathcal{J}_{12} - \mathcal{J}_{10} & \mathcal{J}_{22} - \mathcal{J}_{11} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

ullet Can recover ${\mathcal J}$ from ${\mathcal F}$ by adding elements from top left diagonal

(1) Single backward iteration

• Claim: Single backward iteration is enough to recover $\mathbf{c}_t^s(e,k_-), \mathbf{k}_t^s(e,k_-)$

(1) Single backward iteration

- Claim: Single backward iteration is enough to recover $\mathbf{c}_t^s(e,k_-), \mathbf{k}_t^s(e,k_-)$
- Why? only the **time** s t **until the perturbation matters**

$$\mathbf{c}_{t}^{s}(e, k_{-}) = \begin{cases} \mathbf{c}(e, k_{-}) & s < t \\ \mathbf{c}_{T-1-(s-t)}^{T-1}(e, k_{-}) & s \ge t \end{cases}$$

ullet Thus, only need a single backward iteration with ${f s}={\it T}-{\it 1}$ to get all the ${f c}_t^{\it s}$

(1) Single backward iteration

- Claim: Single backward iteration is enough to recover $\mathbf{c}_t^s(e,k_-), \mathbf{k}_t^s(e,k_-)$
- Why? only the **time** s t **until the perturbation matters**

$$\mathbf{c}_{t}^{s}(e, k_{-}) = \begin{cases} \mathbf{c}(e, k_{-}) & s < t \\ \mathbf{c}_{T-1-(s-t)}^{T-1}(e, k_{-}) & s \ge t \end{cases}$$

- ullet Thus, only need a single backward iteration with ${f s}={\it T}-{\it 1}$ to get all the ${f c}_t^{\it s}$
- From these we get:
 - $C_0^s = \int \mathbf{c}_0^s(e, k_-) D(e, dk_-)$, so first row of Jacobian $\mathcal{J}_{os} = \frac{\partial C_0}{\partial w_s} = \mathcal{F}_{os}$
 - $D_1^{\rm s}(e,dk_-)$, distributions at date 1 implied by new policy ${\bf c}_0^{\rm s}$ at date 0

(2) Single forward iteration

• Let's iterate those distributions forward using **s.s. policies**

$$D_1^{\mathrm{S}}(e,dk_-)\mapsto D_2^{\mathrm{S}}(e,dk_-)\mapsto D_3^{\mathrm{S}}(e,dk_-)\mapsto\dots$$

• this is just a **linear map**: $\mathbf{D}_t^s = (\Lambda')^{t-1} \mathbf{D}_1^s$ where Λ is s.s. transition matrix

(2) Single forward iteration

Let's iterate those distributions forward using s.s. policies

$$D_1^s(e,dk_-)\mapsto D_2^s(e,dk_-)\mapsto D_3^s(e,dk_-)\mapsto\dots$$

- this is just a **linear map**: $\mathbf{D}_t^s = (\Lambda')^{t-1} \mathbf{D}_1^s$ where Λ is s.s. transition matrix
- Now construct aggregate consumption using s.s. policies c

$$C_t^{\mathsf{s}} \equiv \int \mathbf{c}(e, k_-) \, D_t^{\mathsf{s}}(e, dk_-) \quad \Rightarrow \quad C_t^{\mathsf{s}} = \mathbf{c}' \left(\mathsf{\Lambda}' \right)^{t-1} \mathbf{D}_1^{\mathsf{s}}$$

• this only requires computing \mathbf{c}' , $\mathbf{c}' \wedge \mathbf{c}'$, $\mathbf{c}' (\wedge')^2$, $\ldots \rightarrow$ like a **single** forward iteration!

(2) Single forward iteration

Let's iterate those distributions forward using s.s. policies

$$D_1^s(e,dk_-)\mapsto D_2^s(e,dk_-)\mapsto D_3^s(e,dk_-)\mapsto\dots$$

- this is just a **linear map**: $\mathbf{D}_t^s = (\Lambda')^{t-1} \mathbf{D}_1^s$ where Λ is s.s. transition matrix
- Now construct aggregate consumption using s.s. policies c

$$C_t^{\mathsf{s}} \equiv \int \mathbf{c}(e, k_-) \, D_t^{\mathsf{s}}(e, dk_-) \quad \Rightarrow \quad C_t^{\mathsf{s}} = \mathbf{c}' \left(\mathsf{\Lambda}' \right)^{t-1} \mathbf{D}_1^{\mathsf{s}}$$

- this only requires computing \mathbf{c}' , $\mathbf{c}' \wedge \mathbf{c}'$, $\mathbf{c}' (\wedge')^2$, ... \rightarrow like a **single** forward iteration!
- This is exactly the fake news matrix

$$\mathcal{F}_{\mathsf{t},\mathsf{s}} = (\mathsf{C}^\mathsf{s}_\mathsf{t} - \mathsf{C})/\epsilon$$

How long does this take?

Algorithm	Krusell-Smith	HD Krusell-Smith	one-asset HANK	two-asset HANK
Direct	26 s	1939 s	176 s	2107 S
step 1 (backward)	16 s	1338 s	150 s	1291 S
step 2 (forward)	10 S	601 s	27 S	815 s
Fake news	0.104 S	8.429 s	0.646 s	5.697 s
step 1 (backward)	0.067 s	5.433 s	0.525 s	5.206 s
step 2 (forward)	0.010 s	1.546 s	0.021 S	0.122 S
step 3	0.023 s	1.445 S	0.092 s	0.346 s
step 4	0.004 s	0.004 s	0.008 s	0.023 s
Gridpoints n_g	3,500	250,000	3,500	10,500

Conclusion

What we do in this paper:

Nonlinear impulse responses

Computing times for:	Krusell-Smith	HD Krusell-Smith	one-asset HANK	two-asset HANK
Heterogeneous-agent Jacobians	0.10 S	8.4 s	0.65 s	5.7 S
One impulse response	0.0012 S	0.0012 S	0.017 s	0.120 s
All impulse responses	o.oo68 s	o.0068 s	0.097 s	0.400 s
Bayesian estimation (shocks)				
single likelihood evaluation	o.ooo88 s	o.ooo88 s	0.0021 S	0.058 s
entire estimation	0.12 S	0.12 S	0.50 s	21 S
Bayesian estimation (shocks + model)				
single likelihood evaluation	_	_	0.011 s	0.18 s
entire estimation	_	_	16 s	570 s
Determinacy test	252 μ S	252 μ S	631 μ s	631 μ S

0.18 s

13.76 s

0.96 s

27 S

Conclusion

- New method to **simulate**, **estimate & analyze** HA models
 - 1. model as collection of blocks
 - 2. block Jacobians as sufficient statistics for GE
 - 3. fast & accurate: IRFs, determinacy, full-info estimation, nonlinear transitions

Conclusion

- New method to **simulate**, **estimate & analyze** HA models
 - 1. model as collection of blocks
 - 2. block Jacobians as sufficient statistics for GE
 - 3. fast & accurate: IRFs, determinacy, full-info estimation, nonlinear transitions

https://github.com/shade-econ/sequence-jacobian

Comments welcome!

• By Walras's law, alternative target is capital market clearing:

$$H_t\left(\{{\color{red}K_s}\},\{{\color{red}Z_s}\}\right)={\color{blue}K_t^s}-{\color{blue}K_t}$$

• By Walras's law, alternative target is capital market clearing:

$$H_t\left(\{{\color{red}K_s}\},\{{\color{red}Z_s}\}\right)={\color{blue}K_t^s}-{\color{blue}K_t}$$

• By Walras's law, alternative target is capital market clearing:

$$H_t\left(\{K_s\}, \{Z_s\}\right) = K_t^s - K_t$$

• GE path of $\{K_s\}$ achieves $H_t(\{K_s\}, \{Z_s\}) = o \Rightarrow$ same solution as above.

Determinacy

- In state space, have e.g. Blanchard-Kahn: count stable roots
 - What analogue in sequence space?
 - Could test singularity of \mathbf{H}_U : works, but slow and imprecise
- Asymptotic time invariance for the Jacobians of SHADE models:

$$[\mathbf{H}_U]_{t,s} o A_{t-s} \ \ \text{as} \ t,s o \infty$$

- Winding number criterion: precise and fast
- Local determinacy for generic model if winding number of

$$\det A(\lambda) \equiv \det \sum A_j e^{ij\lambda}; \quad \lambda \in [0,2\pi]$$

around the origin is zero

- Generalizes criterion for exactly time invariant models [Onatski 2006]
- Given As, sample many λ and test in less than 1 ms using FFT

Nonlinear perfect foresight transitions

• Given Jacobian $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$, can compute full nonlinear solution to

$$H(\mathbf{K}, \mathbf{Z}) = 0$$

- Idea: use (quasi)-Newton method
- Start from $\mathbf{K}^{(o)} = \mathbf{K}_{ss}$ and iterate using

$$\mathbf{K}^{(n)} = \mathbf{K}^{(n-1)} - \left(\frac{\partial \mathbf{H}}{\partial \mathbf{K}}\right)^{-1} H\left(\mathbf{K}^{(n-1)}, \mathbf{Z}\right)$$

where $\frac{\partial \mathbf{H}}{\partial \mathbf{K}}$ is the steady state Jacobian computed with our method

Nonlinear perfect foresight transitions: example

(5 iterations)

(8 iterations)