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Abstract

We develop a winding number criterion for determinacy and existence of solutions
in the sequence space. We apply this criterion to heterogeneous-agent New-Keynesian
(HANK) models. We demonstrate that, in common applications, our criterion is iden-
tical to a simple analytical formula.

1 Introduction

The sequence space has become a powerful way to analyze and solve heterogeneous-agent models
(e.g. Auclert, Rognlie and Straub 2023, Boppart, Krusell and Mitman 2018, Auclert, Rognlie and
Straub 2020, Auclert, Bardóczy, Rognlie and Straub 2021, Wolf 2021). This is because it allows to
solve for first-order aggregate shocks, a la Reiter (2009), without the need to carry around large
state spaces or rely on dimensionality reduction (Reiter 2010, Bayer and Luetticke 2020). At the
core of this approach is the solution x to a linear system of equations,

J · x = y (1)

Here, J = [Jt,s] is a sequence-space Jacobian, a matrix with columns and rows indexed by the natural
numbers; for example, this could be a matrix that maps small changes in date s income into small
changes in date t asset demand by households. The vector x = {xt} is a sequence of unknowns
that we would like to solve for; this could, for example, be the response of aggregate income to
a shock. The vector y = {yt} is a sequence of known shocks; this could, for example, capture
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Figure 1: The columns of the Jacobian capturing the asset demand response to income shocks

an increase in asset supply resulting from expansionary fiscal policy. Mathematically, x and y are
square-summable sequences and J is a linear operator on square-summable sequences.

In this paper, we ask two questions: First, for which J does a solution x to (1) exist? And second,
for which J is the solution unique, or in other words, (locally) determinate?

For general sequence-space Jacobians J, there is no simple condition for existence and unique-
ness short of assuming the result, namely that J be a surjective operator (for existence) and J be
an injective operator (for uniqueness). The starting point of our paper is to restrict attention to a
specific class of sequence-space Jacobians J, known as quasi-Toeplitz operators. These are Jacobians
whose columns converge to a fixed pattern as we go down along the diagonal towards the bottom
right. This property captures the idea that the date 90 asset demand response to an income shock
at date 100 is nearly identical to the date 190 asset response to a date 200 income shock. We denote
by jk the the date date s + k response to a date s shock for large s, that is, jk = limt→∞ Js+k,s, for any
integer k. A very useful way to represent the entries {jk} is as a complex function, a Laurent series
or z-transform, j(z) ≡ ∑∞

k=−∞ jkzk for complex z. This function is formally known as the symbol of J.
Figure 1 illustrates the quasi-Toeplitz property of the Jacobian of asset demand with respect

to income in a standard heterogeneous-agent model (see section 4 for details). The figure plots
several columns J·,s of this Jacobian. For each s, column J·,s gives the impulse response of asset
demand to the date-0 announcement that income will increase at date s for one period. We see
that the impulse response to an unanticipated income shock (s = 0) looks quite different from the
response to an anticipated shock at date s = 10. However, the response to a date s = 20 shock
looks very similar to the response to a date s = 30 shock, except that it is shifted to the right
by 10 periods. This is the key feature of a quasi-Toeplitz Jacobian. The entries {jk} in this case
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Figure 2: The curve in the complex plane described by j(z) evaluated along the unit circle

correspond to the asymptotic responses of asset demand at date s + k for an income shock at a
far-out date s.

The first contribution of this paper is to propose a new criterion for existence and determinacy
of a solution x to (1) based on the symbol j(z). Evaluating j(z) along the complex unit circle,
z = e2πiθ for θ ∈ [0, 1], j(z) describes a simple closed curve in the complex plane. If this curve
hits zero for any θ, our sequence-space Jacobian J is not invertible. If it does not hit zero, we can
count how many times it “wraps around” zero in a counter-clockwise fashion, counting clockwise
circling as negatives (see figure 2 for an example). This object is known as the winding number
of j(z). Our criterion states that the sequence-space Jacobian J is generically injective, ensuring
determinacy, if and only if the winding number of j(z) is greater or equal to zero; and that the
sequence-space Jacobian J is generically surjective, ensuring existence, if and only if the winding
number of j(z) is less or equal to zero. J is generically invertible when the winding number of j(z)
is zero.

The second contribution of this paper is to show that most sequence-space Jacobians encoun-
tered in modern macroeconomic models are indeed quasi-Toeplitz. This is because the Jacobians
of individual model elements, or “blocks”, are themselves quasi-Toeplitz; and the composition of
quasi-Toeplitz Jacobians remains quasi-Toeplitz. While the latter result is well-known in the math-
ematics literature (e.g. Böttcher and Grudsky 2005a), the former is new to this paper. Specifically,
we show that as long as a heterogeneous-agent model is stationary, its Jacobians are naturally
quasi-Toeplitz. The repetitive nature of the Jacobian shown in figure 1 is therefore a natural out-
come in a wide class of heterogeneous-agent models.

We use our winding number criterion in two applications. First, we consider an analytical
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model with bonds in the utility function, and show that the winding number criterion coincides
with the determinacy and existence criterion that we can obtain through standard methods. Sec-
ond, we consider a heterogeneous-agent New-Keynesian (HANK) model a la Kaplan, Moll and
Violante (2018) and Auclert et al. (2023), and use the criterion to describe the parameter space for
which this model admits a determinate solution. We conjecture an analytical Taylor principle for
our HANK economy and show this Taylor principle delivers the correct solution in our appli-
cation. Interestingly, even absent cyclical income risk, the Taylor principle allows for parameter
regions in which nominal interest rate pegs deliver determinate solutions.

In future iterations of this note, we plan to study several extensions of our criterion. For
instance, our baseline criterion focuses on the case in which the unknown x = {x0, x1, . . .} is
single-dimensional within each period, xt ∈ R. In an extension, we plan to allow xt to be an m-
dimensional vector with m > 1. In that case, J is naturally quasi block-Toeplitz, consisting of small
m × m matrix blocks Js+k,s which, asymptotically in s, converge to matrices jk. Now, J’s symbol
j(z) = ∑∞

k=−∞ jkzk is matrix valued. We conjecture that the winding number criterion still works,
only that the winding number of the determinant of j(z) is the correct one to use.

Our result builds on the previous work by Onatski (2006), who presents a largely overlooked
way to check determinacy and generic existence using the winding number for standard rational
expectations models in the state space. To apply the Onatski (2006) criterion, x = {x0, x1, . . .}
needs to contain the entire state of the model in every entry xt. In larger models, this makes xt

m-dimensional, with potentially very large m. Once all states are represented in x, J is no longer
quasi but exactly block-Toeplitz, Js+k,s = jk for any s, not just in the limit for large s. In this case,
Onatski (2006) shows that the same winding number criterion applies. Our contribution relative
to Onatski (2006) is to show that the winding number criterion applies to quasi-Toeplitz matrices J
as well. This is important for the analysis of heterogeneous-agent models, where the state space is
very large, possibly infinitely dimensional, making it prohibitively costly to stack the entire state
in each xt; and it is important for all models, with or without heterogeneity, that are solved in the
sequence space using current methods (Auclert et al. 2021), in which Jacobians are almost never
exactly Toeplitz.

Layout. The layout of this paper is as follows. Section 2 starts with equation (1) and derives our
main result, the winding number criterion for quasi-Toeplitz matrices J. Section 3 then shows that
quasi-Toeplitz matrices indeed emerge very naturally in models that are being analyzed in the
sequence space, including stationary heterogeneous-agent models. We discuss the two applica-
tions in section 4. We discuss practical implementation considerations in section 5, and conclude
in section 6.
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2 Generic Existence and Uniqueness Result

The general setting of our paper is that of a general linear system of equations in the sequence
space,

J · x = y (2)

where y = {y0, y1, . . .} ∈ ℓ2 is a given square-summable sequence;1 J = [Jt,s] ∈ RN×N is a
quasi-Toeplitz sequence-space Jacobian;2 and x = {x0, x1, . . .} ∈ ℓ2 is an unknown we wish to
characterize. In the following, we formally introduce quasi-Toeplitz Jacobians, their symbols, and
prove the winding number criterion for the existence and uniqueness of a solution x to (2).

2.1 Sequence space

We work in the Hilbert space of real, square-summable sequences ℓ2 with the usual inner product.
We denote the associated norm by ∥ · ∥, so for sequence x = {x0, x1, . . .} ∈ ℓ2 we have

∥x∥2 =
∞

∑
t=0

x2
t < ∞

Any sequence x ∈ ℓ2 necessarily converges to zero. This means that if there exist multiple solu-
tions to (2), there necessarily is local indeterminacy in the sense of Woodford (2003). Vice versa, if
there is a unique solution to (2) in ℓ2, we treat this as indication of local determinacy.3 Note that
uniqueness in ℓ2, just like local determinacy, does not rule out “explosive solutions” to (2) that lie
outside of ℓ2.

2.2 Quasi-Toeplitz operators

We make two assumptions on the matrix J motivated by the types of matrices encountered in the
analysis of models in the sequence space. First, we assume that J is a well-defined bounded linear
operator on ℓ2. That is, for each sequence x ∈ ℓ2, we require that: (i) ∑∞

s=0 Jt,s · xs is well defined
for each t ∈ N, and square summable across t; and (ii) that ∥J · x∥ is bounded above by M · ∥x∥
for some M > 0 that is independent of x.

Second, we assume that J is quasi-Toeplitz. We define this property in two steps, beginning with
Toeplitz operators.

Definition 1. A bounded linear operator J on ℓ2 is Toeplitz if it can be written as a matrix with

1ℓ2 is the space of all square-summable sequences.
2We follow the convention that 0 is included in the natural numbers N.
3We are not aware of any examples of sequences x that converge to zero, are not in ℓ2, and solve a sequence-space

equation like (2) with quasi-Toeplitz J.
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constant entries along the diagonals

T (j) ≡


j0 j−1 j−2

j1 j0 j−1

j2 j1 j0
. . .

. . . . . . . . .


where the entries j = {jk}∞

k=−∞ are absolutely summable, ∑∞
k=−∞ |jk| < ∞.

A bounded linear operator J is Toeplitz if it can be represented as a matrix that is, in some
sense, “translation invariant” along the diagonal, Js+k,s = jk. Toeplitz operators (or matrices) are
uniquely identified by the two-sided sequence j = {jk}∞

k=−∞.
As we demonstrate in section 3, sequence-space Jacobians are typically not Toeplitz operators.

However, it turns out that they are “close” to being Toeplitz, in the following sense.

Definition 2. A bounded linear operator J on ℓ2 is quasi-Toeplitz if it can be written as

J = T (j) + E

where T (j) is the Toeplitz matrix corresponding to some absolutely summable two-sided se-
quence j = {jk}∞

k=−∞; and E is a compact operator on ℓ2 known as the (compact) correction.

Quasi-Toeplitz operators J are Toeplitz up to a compact operator E (the “compact correction”).
Compact operators are the closure of all finite-dimensional operators on ℓ2. This means that quasi-
Toeplitz operators are Toeplitz except for a correction term that mostly affects J in finitely many
columns and rows and is small otherwise. One formal consequence of this is that Js+k,s is no longer
exactly constant and equal to jk. Instead, for a quasi-Toeplitz Jacobian J we have that

lim
s→∞

Js+k,s = jk

for all k ∈ Z.
To illustrate the quasi-Toeplitz nature of actual sequence-space Jacobians, figure 1 plots the

columns of the Jacobian of assets with respect to income for the standard heterogenous-agent
household side that we’ll describe more in section 4 below. Each column s of Jacobian J cor-
responds to the impulse response of aggregate asset demand to a one time expected change in
income at date s. We see that, as s gets larger, the impulse response converges to a regular pattern
relative to time s. This pattern is exactly given by lims→∞ Js+k,s = jk. The example illustrates how
the compact correction E, which does lead to noticeable deviations from translation invariance for
earlier columns (smaller s), dies out for larger s.
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2.3 Symbol

The asymptotic behavior of a quasi-Toeplitz operator J, described by the two-sided sequence j =
{jk}∞

k=−∞, will be the crucial determinant of whether (2) can be solved or not; and if it can, how
many solutions exist. A useful way to represent the two-sided sequence is as complex-valued
function over the complex unit circle T = {z ∈ C : |z| = 1}. We define the symbol of quasi-Toeplitz
operator J as the complex-valued function j : T → C, defined by the Laurent series

j(z) ≡
∞

∑
k=−∞

jkzk

The series is convergent since j is absolutely summable by definition 2. One way to think about
j(z) is that it is the z-transform of the two-sided sequence j.

A very useful property of quasi-Toeplitz matrices is that the product of two such matrices, say
J and J̃, with symbols j(z) and j̃(z), respectively, is itself quasi-Toeplitz, with symbol j(z) · j̃(z) (see
section 3.1 for more details). If we treat the identity matrix as a Toeplitz matrix, its symbol would
simply be a constant, j(z) = 1.

Applied to our context, this means that for any quasi-Toeplitz sequence-space Jacobian J with
symbol j(z), its inverse, which will also be quasi-Toeplitz, must have symbol j(z)−1. This insight
is already quite powerful: We can derive the asymptotic structure of the inverse of J—provided
J is invertible—without doing any complicated math, simply by computing the reciprocal of the
symbol. For j(z)−1 to be well-defined, it must be that j(z) ̸= 0—a first necessary condition for
invertibility of J.

2.4 Winding number

One way to represent a symbol j(z) is to draw its image j(T) in the complex plane. Given that T

is the unit circle and j is continuous, j(T) is a closed curve in C. If j(z) never attains zero, we can
define the following object.

Definition 3. The winding number wind(j) of a continuous function j : T → C \ {0} defined on
the unit circle T = {z ∈ C : |z| = 1} is the number of times the graph of j (z) rotates counterclock-
wise around zero as z goes counterclockwise around T. Mathematically, for each z = eiθ ∈ T,
θ ∈ [0, 2π), we can write j(z) as the product of the absolute value |j(eiθ)| and eiα(θ), with some
continuous function α : [0, 2π) → R characterizing the angle of the complex number j(eiθ). The
winding number is given by the integer

wind(j) =
1

2π

[
lim
ϵ→0

α (2π − ϵ)− α(0)
]

In words, the winding number of a closed complex curve j(z) counts how many times the
curve loops around zero, with counterclockwise loops counting +1 and clockwise loops count-
ing −1.
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To see how this works, consider the lag and forward matrices

L =


0 0 0 · · ·
1 0 0 · · ·
0 1 0

. . .
...

...
. . . . . .

 F =


0 1 0 · · ·
0 0 1 · · ·
0 0 0

. . .
...

...
. . . . . .

 (3)

Both matrices are clearly quasi-Toeplitz; in fact, they are exactly Toeplitz with a zero correction
matrix. The symbol of the lag matrix is j(z) = z. Its curve in the complex plane simply moves
along a counterclockwise circle, so its winding number is 1. The symbol of the forward matrix
is j(z) = z−1, describing a clockwise circle in the complex plane, with winding number −1. The
identity matrix has a winding number of 0.

Imagine the Jacobian in the linear system (2) is the lag matrix L. That is, the equation we would
like to solve reads

L · x = y (4)

or, written without vector notation, xt = yt+1 for t ≥ 0. Clearly, this pins down a unique candidate
solution for x. Mathematically, this means that L is clearly injective. Is x always a solution to (4),
however? Unfortunately not, as any y with a nonzero first entry y0 ̸= 0 can never be in the range
of L. Mathematically, L is not surjective. Hence, L is not invertible.

Now imagine the Jacobian in the linear system (2) is the forward matrix F. In that case,
xt+1 = yt for t ≥ 0. This fails to pin down a unique candidate solution, as x0 is not determined.
However, for any y, we can find a solution x. F is not injective, but surjective, and therefore also
not invertible.4

We next show that the injectivity and surjectivity properties of the lag matrix L, the forward
matrix F, and the identity matrix I are directly related to the winding numbers of L, F, and I.
In fact, any quasi-Toeplitz matrix with a positive winding number will (generically) be injective
but never surjective, just like L; any quasi-Toeplitz matrix with a negative winding number will
(generically) be surjective but never injective, just like F; any quasi-Toeplitz matrix with a zero
winding number will (generically) be both surjective and injective, and thus generically invertible,
like I.

2.5 Main result: Winding number criterion

Before we state our main result, we need to describe what we mean by the word “generic”: We say
that a property holds for generic correction matrices E if it holds on an open and dense subset of
compact E’s in the operator norm. This implies that a) whenever that the property does not hold,
there exists an arbitrarily small perturbation of E such that it does hold, and b) whenever it does
hold, then it also holds for all other operators in some neighborhood of E. Similarly, we say that

4Note that F is not the inverse of L (or vice versa). F is only a “pseudo-inverse” because while FL = I, the converse
is not true, LF ̸= I.
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a property holds for a generic quasi-Toeplitz matrix J if it holds for J + E with generic correction
matrix E. This is a common notion of genericity in mathematics and economics (see, e.g., Onatski
2006).

Our main result is then the following proposition, which provides us with a general relation-
ship between the invertibility properties of quasi-Toeplitz matrices and the winding numbers of
their symbols.

Proposition 1. Consider a quasi-Toeplitz matrix J with symbol j (z) = ∑∞
k=−∞ jkzk, that is nonzero along

the unit circle, j(z) ̸= 0 for z ∈ T. Then:

a) If wind (j) > 0, J is not surjective but generically injective: A solution x ∈ ℓ2 to (2) does not exist
for some y ∈ ℓ2; if it exists, however, it is unique for generic J.

b) If wind (j) < 0, J is not injective but generically surjective: A solution x ∈ ℓ2 to (2) exists for any
y ∈ ℓ2 and generic J, but is never unique.

c) If wind (j) = 0, J is generically invertible5: A unique solution x ∈ ℓ2 to (2) exists for any y ∈ ℓ2 for
generic J.

Proposition 1 directly generalizes the ideas we developed in section 2.4. The winding number
exactly determines whether the system (2) has a solution; and if it does, how many solutions there
are.

As we will show below, in common applications, it turns out that the threshold between a
winding number of zero and a winding number of −1 is determined by the symbol j(z) evaluated
at z = 1. In those cases, checking the sign of the simple sum of the far-out column, j(1) = ∑∞

k=−∞ jk,
is already indicative of determinacy and invertibility.

We prove proposition 1 in the following subsection.6

2.6 Proof of proposition 1

We establish three helpful lemmas in appendix A. We build on them to prove each of the three
parts of proposition 1 in turn.

Proof of part (c). We begin with the proof of part (c) of proposition 1. Suppose J is a quasi-
Toeplitz matrix with symbol j(z) with zero winding number. Decompose J as J = T(j) + E. We
know from, e.g., Böttcher and Grudsky (2000, Theorem 1.12) that T(j) is exactly invertible if j(z)
has a zero winding number. Thus,

J = T(j)
(

I + T(j)−1E
)

5In line with the terminology in mathematics, a bounded operator is invertible if it is bijective and its inverse is
bounded, too.

6Readers not interested in the details of the proof should feel free to skip this subsection.
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is generically invertible exactly when I + T(j)−1E is generically invertible. But by Rudin (1991,
Theorem 4.18(f)), T(j)−1E is a compact operator. Denote by C̃ the set of compact operators E for
which I + E is invertible. Then, the set of compact operators E for which I + T(j)−1E is invertible
must be given by T(j) · C̃, which, using lemma 2, is a dense and open subset of the space of all
compact operators C. Thus, J = T(j) + E is invertible for generic E. This concludes our proof of
part (c).

Proof of part (a). Next, consider part (a). We first show that if the winding number of j(z) is
positive, J cannot be surjective. To see this, note that any quasi-Toeplitz operator J with a sym-
bol j(z) that is nonzero along the unit circle is also a Fredholm operator (Böttcher and Grudsky
2000, Theorem 1.9). The Fredholm index is equal to the negative winding number of the symbol
(Böttcher and Grudsky 2000, Theorem 1.9)

ind(J) = −wind(j) (5)

The Fredholm index is exactly equal to the dimensionality of the kernel of J minus the dimension-
ality of its cokernel (Böttcher and Grudsky 2000, Section 1.4)

ind(J) = dim kerJ − dim cokerJ (6)

If the winding number is positive, wind (j) > 0, we have that

dim cokerJ > dim kerJ

implying that the cokernel of J must have at least dimensionality 1. J cannot be surjective.
To show that J is generically injective, consider the operator J · Fwind(j) where F is the forward

matrix defined in (3). Recall that F has a winding number of −1, and that the winding number of a
product of quasi-Toeplitz matrices is simply the sum of the winding numbers (see also section 3.1
for more on this point). J · Fwind(j) has a winding number of zero and is therefore generically
invertible; that is, the set of E for which J · Fwind(j) + E is invertible is open and dense in C. With L
denoting the lag matrix (3) and using the fact that F · L = I, we have(

J · Fwind(j) + E
)

Lwind(j) = J + ELwind(j)

is injective for generic E in C. By lemma 4, since powers of L are injective and have a closed range,
this is equivalent to

J + E

being injective for generic E in C.
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Proof of part (b). We proceed analogously for part (b). First, note that if the winding number
of j(z) is negative, J cannot be injective. This follows from combining (5) and (6): If wind(j) < 0,
then

dim kerJ > dim cokerJ

and so the kernel of J is nontrivial. J cannot be injective.
To show that J is generically surjective, consider the operator L|wind(j)| · J. Recall that L has

a winding number of +1, so that L|wind(j)| · J has a winding number of zero and is thus generi-
cally invertible. That is, L|wind(j)| · J + E is invertible for generic compact operators E. Since F is
surjective, so is F|wind(j)|. This means

F|wind(j)|
(

L|wind(j)| · J + E
)
= J + F|wind(j)|E

is surjective for generic E. By lemma 4, J + E must be surjective for generic E. This proves propo-
sition 1.

2.7 Intuition and relationship to Blanchard-Kahn

We next show how to relate the winding number criterion to standard state-space invertibility
criteria. We do so by focusing on the special case where the symbol j has finitely many nonzero
elements. Thus, assume that all elements of j other than {j−r, . . . , js}, with j−r ̸= 0 and js ̸= 0 are
zero. This implies that we can write the t-th row of (2) as

s

∑
k=−r

jkxt−k = yt (7)

This is a standard difference equation. Its characteristic polynomial is exactly given by j(z),

j(z) =
s

∑
k=−r

jkzk

Given that j(z) is assumed to have no zeros on the unit circle, it can be factorized as

j (z) = jsz−r
N

∏
n=1

(z − δn)
M

∏
m=1

(z − µm) (8)

where the N roots δn lie inside the unit circle, |δn| < 1, and the M roots µm lie outside the unit
circle, |µm| > 1. We count roots as many times as their multiplicity, so that

M + N = r + s (9)

When does the difference equation (7) possess a unique solution? According to the standard
Blanchard-Kahn condition, precisely when the number of backward looking terms r in (7) equals
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the number of stable roots N; and the number of forward looking terms s in (7) equals the number
of unstable roots M. Both conditions, N = r and M = s are equivalent given (9).

The Blanchard-Kahn condition is closely related to the winding number criterion. To reveal
the connection, consider the Cauchy integral formula for the winding number,

wind(j) =
1

2πi

∮
j

dz
z

=
1

2πi

∫
T

j′(z)
j(z)

dz

The Cauchy integral formula shows that we can evaluate the winding number simply with the
complex path integral, evaluated along the curve j(z). This is useful in our context, because the
path integral can be rewritten using the argument principle as7

wind(j) = # of zeros of j inside T − # of poles of j inside T (10)

With j(z) of the form (8), this exactly shows that

wind(j) = N − r

The condition for invertibility in proposition 1, wind(j) = N − r = 0, is thus exactly the same as
the condition implied by Blanchard-Kahn. We summarize this in the following corollary.

Corollary 1. If the number of zeros the symbol j(z) has inside the unit circle T ...

a) ... strictly exceeds the number of poles inside T, J is generically injective but not surjective.

b) ... is strictly less than the number of poles inside T, J is generically surjective but not injective.

c) ... is equal to the number of poles inside T, J is generically invertible.

The main difference between our winding number criterion and Blanchard-Kahn is that our
criterion is robust to infinitely many non-zero elements in the symbol j. Blanchard-Kahn can no
longer be used in this case.

3 Emergence of Quasi-Toeplitz Sequence-Space Jacobians

So far, we have taken the equation (2) with a quasi-Toeplitz matrix J as given. Now we ask: When
is J, in fact, quasi-Toeplitz?

When analyzing macroeconomic models in the sequence space, one often ends up with an
equation like (2) as an equilibrium condition. The “total” sequence-space Jacobians J that en-
ter the equilibrium conditions are often compositions and additions of the “partial” Jacobians of
individual model blocks (see Auclert et al. 2021 for details). These blocks are commonly either
analytical “simple blocks” or more complex “heterogeneous-agent blocks”.

7This holds because j in (8) is meromorphic.
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In subsection 3.1, we first argue that if the “partial” Jacobians of individual model blocks
are quasi-Toeplitz, then so are the “total” Jacobians J. Next, we show that partial Jacobians of
simple blocks (subsection 3.2) and heterogeneous-agent blocks (subsection 3.3) are indeed quasi-
Toeplitz. Together, these results imply that macroeconomic models that consist of simple and
heterogeneous-agent blocks necessarily give rise to sequence-space Jacobians J in equilibrium con-
ditions a la (2) that are quasi-Toeplitz.

3.1 Composition of sequence-space Jacobians

Consider two quasi-Toeplitz matrices J, J̃ with symbols j(z), j̃(z) and corrections E, Ẽ. Then, J + J̃
is quasi-Toeplitz with symbol j(z) + j̃(z) and correction E + Ẽ. It turns out that a similar result
holds for multiplication (Böttcher and Grudsky 2005b, Proposition 1.3): J · J̃ is quasi-Toeplitz with
symbol j(z) · j̃(z).

This result is very useful in characterizing the “total” Jacobians J that typically emerge equi-
librium conditions of the form (2). This is because, as Auclert et al. (2021) show, these Jacobians
are often composed of sums and products of “partial” Jacobians of individual model blocks.

To see how this works, imagine the total Jacobian J that enters (2) is the Jacobian of aggregate
asset demand with respect to aggregate output in a model with a Phillips curve and a standard
Taylor rule. This total Jacobian then typically depends on five partial Jacobians:

• Aggregate output influences inflation through a Phillips curve block [one partial Jacobian].

• Inflation and output influence real interest rates via a monetary policy block [two partial
Jacobians].

• Real interest rates and output influence asset demand via the household block [two partial
Jacobians].

Auclert et al. (2021) show how J can be computed using additions and products of these partial
Jacobians. To ensure that J is quasi-Toeplitz, each partial Jacobian needs to be quasi-Toeplitz, too.
This is what we prove next.

3.2 Jacobians of simple blocks

As in Auclert et al. (2021), we define a simple block as a mapping between an input x = {x0, x1, x2, . . .}
and an output y = {y0, y1, y2, . . .} that is given by a time invariant function h,

yt = h (xt−k, . . . , xt+l)
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for some k, l ∈ N.8 The (“partial”) Jacobian of y with respect to x of this block around some steady
state value xt = xss is then given by

Jt,s =
∂h

∂xs−t
(x−k = xss, . . . , x+l = xss)

Since the t, s entry of the Jacobian here only depends on s − t, Jt+k,t only depends on k. J is exactly
Toeplitz.9

3.3 Jacobians of stationary heterogeneous-agent blocks

We define a heterogeneous-agent block as in Auclert et al. (2021). Given the path of an input
x = {x0, x1, x2, . . .}, a heterogeneous-agent block computes the output path y = {y0, y1, y2, . . .} as
the combination of three equations,

vt = v (vt+1, xt) (11)

Dt+1 = Λ (vt+1, xt)
′ Dt (12)

yt = Y(vt+1, xt)
′Dt (13)

This system of equations encapsulates three conceptually distinct steps in evaluating a heterogeneous-
agent block:

• Equation (11) is a backward iteration: it captures how vt— typically the marginal value func-
tion or the policy function—is determined by future vt+1 as well as the current input xt.

• Equation (12) is a forward iteration: it captures how the transition matrix Λ between today’s
distribution Dt and tomorrow’s distribution Dt+1 is determined by next period’s marginal
value (or policy) function vt+1 as well as the current input xt.

• Equation (13) is the measurement equation: it captures how vt+1 and Dt, together with today’s
input xt, determine the output yt.

We assume that the model is discretized, so that vt and Dt are n-dimensional for some finite n.
We comment below on what happens in infinite dimensions. For a given value xss, the steady state
of the model is the fixed point (yss, vss, Dss) of (11)–(13) that obtains when xt = xss at all times.
For convenience, we write Λss ≡ Λ(vss, xss) and Yss ≡ Y(vss, xss). We assume that v(·), Λ(·), Y(·)
are all continuously differentiable in a neighborhood around the steady state. We denote the
derivatives of v(·) at the steady state by vv ∈ Rn×n and vx ∈ Rn×1; the derivatives of Λ(·)′Dss at
the steady state by ΛDv ∈ Rn×n and ΛDx ∈ Rn×1; and the derivatives of Y(·) at the steady state
by Yv ∈ Rn×n and Yx ∈ Rn×1.

8One can easily allow there to be multiple inputs and multiple outputs. See Auclert et al. (2021).
9It is straightforward to show that J is also a well-defined linear and bounded operator on ℓ2 in this case as Jt+k,t is

only nonzero for finitely many k.
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Our goal is to characterize the sequence-space Jacobian J of y = {y0, y1, y2, . . .} with respect
to x = {x0, x1, x2, . . .} around the steady state xt = xss. For this to be well-defined, we make the
following assumption.

Definition 4. The heterogeneous-agent block consisting of equations (11)–(13) is stationary if (i)
the Jacobian of vt with respect to vt+1, denoted by vv, has all eigenvalues inside the unit circle; (ii)
the steady-state transition matrix Λss has all eigenvalues in the unit circle.

Definition 4 captures the very intuitive notion that a heterogeneous-agent model ought to be
stationary before we can analyze it. Stationarity requires both that the steady state Markov chain
for the distribution is stationary, ensuring a unique steady state distribution Dss; and that the
backward iteration is (at least locally) stationary, ensuring a locally unique steady state marginal
value (or policy) function vss.10

Fake-news matrix. One way to think about the Jacobian J of y to x is that it is a matrix of news
shocks: J·,s can be regarded as the impulse response of outcome y to a news shock to x that hits
the economy s periods in the future, but is learned about at date 0 already. We next introduce an
auxiliary matrix F which contains all the same information as J, but in a somewhat more tractable
format. We call F the “fake news” matrix (see also Auclert et al. 2021).

Definition 5. Assume the heterogeneous-agent model (11)–(13) is stationary. The fake-news matrix
F of y to x is defined as follows: The first column is given by

Ft,0 =

Y′
xDss t = 0

Y′
ss (Λ′

ss)
t−1 ΛDx t > 0

and all other columns s > 0 are defined by

Ft,s =

v′
x (v′

v)
s−1 Y′

vDss t = 0

Y′
ss (Λ′

ss)
t−1 ΛDv (vv)

s−1 vx t > 0

The fake news matrix has two separate formulas for the first column s = 0 and all other
columns s > 0. The first column corresponds to the response of outcome y to a one-time unantici-
pated shock to x at date t = 0, that is Ft,0 = ∂yt/∂x0.

The later columns s > 0 of F correspond to the impulse responses of outcome y to “fake” news
shocks in x. To illustrate, fix a column s > 0, F·,s. Consider the following experiment. At date
t = 0, the news shock that xs increases marginally is announced. This affects the current marginal
value function (or policy) v0 at date 0, by (vv)s−1vx. Through this change, the average outcome y0

at date 0 is affected by v′
x (v′

v)
s−1 Y′

vDss.

10One can analogously state the three equations (11)–(13) of the heterogeneous-agent block with an infinite-
dimensional state space. In this case, stationarity can be defined in a similar fashion, with eigenvalues of the two
operators inside the unit circle with absolute values bounded away from 1. The results below follow analogously.

15



At date 1, however, the announced shock is nullified, explaining the “fake” in “fake news”.
Policies at date 1 and thereafter thus remain unchanged relative to the steady state. This does
not mean the shock will have no impact beyond date 0, however. Policies did change in period 0
by (vv)

s−1 vx, and that has an effect on average outcomes t periods into the future via the law of
motion of the distribution, captured by term Y′

ss (Λ′
ss)

t−1.
A useful property of the fake news matrix of a stationary heterogeneous-agent block is that its

entries decay exponentially in both rows and columns.

Lemma 1. For a stationary heterogeneous-agent block, we have

|Ft,s| ≤ C∆s+t (14)

for some ∆ ∈ (0, 1), C > 0.

Proof. Let δ be the largest eigenvalue of vv and δ′ the largest eigenvalue of Λss. Define ∆ =

max{δ, δ′}. Notice that this implies that the matrix norms of vv and Λss are bounded by ∆. For
s, t > 0 we then have

|Ft,s| ≤ C1∥Λss∥t−1∥vv∥s−1 ≤ C2∆s+t

for constants C1, C2 > 0. Similar inequalities bound Ft,0 and F0,s,

|Ft,0| ≤ C3∆t |F0,s| ≤ C4∆s

with C3, C4 > 0. Defining C = max{C1, C2, C3, C4}, we obtain (14).

The Jacobian we are ultimately after captures the dependence of y on x, that is,

Jt,s =
∂yt

∂xs

Auclert et al. (2021) show that this Jacobian can be computed quite straightforwardly from the
fake news matrix:

Jt,s =
min(t,s)

∑
u=0

Ft−u,s−u (15)

We are ready to state our main result in this subsection.

Proposition 2. The sequence-space Jacobian J of a stationary heterogeneous-agent block is quasi-Toeplitz

J = T(j) + E (16)

with two-sided sequence j = {jk}∞
k=−∞ and correction matrix E = (Et,s)

jk ≡
∞

∑
v=max{0,−k}

Fk+v,v and Et,s ≡ −
∞

∑
u=1

Ft+u,s+u (17)
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Proof. We proceed in two steps. First, we show that J can indeed be decomposed as in (16). Second,
we show that the correction E is indeed compact.

To show (16), consider entry Js+k,s of the Jacobian J. Applying equation (15), we have

Js+k,s =
min{s,s+k}

∑
u=0

Fs+k−u,s−u =
s

∑
v=max{0,−k}

Fk+v,v

where we have used the change of variables v = s − u. Given bound (14), this series converges as
s → ∞, so that we can write Js+k,s as

Js+k,s =
∞

∑
v=max{0,−k}

Fk+v,v −
∞

∑
v=s+1

Fk+v,v (18)

The first term in (18) is exactly equal to jk. The second term can be recast as

−
∞

∑
v=s+1

Fk+v,v = −
∞

∑
u=1

Fs+k+u,s+u = Es+k,s

This proves that J can be decomposed as in (16), with j and E defined as in (17).
To show that E is compact, notice that we can use (14) to bound the entries of E by

|Et,s| ≤
∞

∑
u=1

|Ft+u,s+u| =
C∆2

1 − ∆2 · ∆s+t ≤ C̃ · ∆s+t

for some C̃ > 0. Any operator E whose entries are bounded in this form are compact. To see
this, denote by E(T) the truncated version of E, that is, an operator on ℓ2 with the same entries Et,s

for t, s ≤ T but with zeros elsewhere. E(T) is clearly compact as it is only non-zero on a finite-
dimensional subspace of ℓ2. We can bound the operator norm difference between E and E(T) by

∥E − E(T)∥ ≤ C̃ ∑
s≥T+1

∑
t≥0

∆s+t + C̃ ∑
t≥T+1

∑
s≥0

∆s+t ≤ 2∆
1 − ∆

C̃ · ∆T

Thus, E(T) → E in operator norm. Since the set of compact operators is closed, E must be compact
as well.

3.4 Steady state shifts

Below it will sometimes useful to compute the sum of the two-sided sequence of a quasi-Toeplitz
matrix, that is,

∞

∑
k=−∞

jk = j(1)

which is simply the symbol evaluated at value z = 1. As it turns out, for both simple and
heterogeneous-agent blocks, this is exactly the steady state sensitivity of yss to xss.
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Proposition 3. For any simple block or stationary heterogenous-agent block, the derivative of the steady
state outcome yss with respect to the steady state input xss is given by

∂yss

∂xss
=

∞

∑
k=−∞

jk = j(1) (19)

Proof. For a simple block,
yss = h (x−k = xss, . . . , x+l = xss)

and so
∂yss

∂xss
=

l

∑
u=−k

ju =
∞

∑
u=−∞

jk = j(1)

For a stationary heterogenous-agent block,

vss = v (vss, xss)

Dss = Λ (vss, xss)
′ Dss

yss = Y(vss, xss)
′Dss

After a few lines of algebra, we find

∂yss

∂xss
= Y′

xDss + Y′
ss
(
I − Λ′

ss
)−1 ΛDx

+v′
x
(
I − v′

v
)−1 Y′

vDss + Y′
ss
(
I − Λ′

ss
)−1 ΛDv (I − vv)

−1 vx

=
∞

∑
t=0

∞

∑
s=0

Ft,s

We arrive at the same double sum starting from ∑∞
k=−∞ jk and substituting in (17),

∞

∑
k=−∞

jk =
∞

∑
k=−∞

∞

∑
v=max{0,−k}

Fk+v,v =
−1

∑
k=−∞

∞

∑
v=−k

Fk+v,v +
∞

∑
k=0

∞

∑
v=0

Fk+v,v

=
∞

∑
k=1

∞

∑
v=k

Fv−k,v +
∞

∑
k=0

∞

∑
v=0

Fk+v,v =
∞

∑
v=1

v−1

∑
u=0

Fu,v +
∞

∑
v=0

∞

∑
u=v

Fu,v =
∞

∑
t=0

∞

∑
s=0

Ft,s

proving that, indeed,

j(1) =
∞

∑
k=−∞

jk =
∂yss

∂xss

4 Application to HANK

We now consider two types of heterogeneous-agent New-Keynesian models as applications of
proposition 1. Both models are introduced in detail in Auclert et al. (2023). With a constant real
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interest rate, that paper shows that the equilibrium output response dY to fiscal policy satisfies
two equations. The first, in the goods space, is the intertemporal Keynesian cross,

dY = dG − MdT + MdY

The second, in the asset space, is given by

AdY = dB + AdT (20)

Here dT = {dT0, dT1, . . .} is the path of tax increases; dB is the path of changes in government
debt; dG is the path of changes in government spending; M is the sequence space Jacobian of
consumption C with respect to after-tax income Z; and A is the sequence space Jacobian of asset
demand A with respect to after-tax income Z among households in the model. In this paper, we
focus on the asset-space equation (20).11

The two models we consider are the two-agent bond-in-the-utility (“TABU”) model; and sec-
ond the one-account heterogeneous-agent model (“HA-one”). We discuss the solutions to (20) in
each of the models in turn and then consider deviations from constant real interest rates to study
the Taylor principle in the heterogeneous-agent economy.

4.1 TABU model at constant r

The TABU model consists of two types of households. A share 1 − µ of households is forward-
looking with discount factor β, unconstrained, and derives utility from consumption and holdings
of government bonds (“BU” for bond-in-the-utility). We denote the MPC out of a one-time transfer
of that household by 1 − λ

1+r with λ ∈ (0, 1 + r) a parameter that is implicitly pinned down by
the preferences of the unconstrained household. The remaining share µ of households is hand-to-
mouth.

Auclert et al. (2023) derive the following closed-form expression for the asset jacobian A of the
TABU model,

ATABU = (1 − µ)


1 0 0 · · ·
λ 1 0 · · ·
λ2 λ 1 · · ·
...

...
...

. . .




λ
1+r −

(
1 − λ

1+r

)
· βλ −

(
1 − λ

1+r

)
· (βλ)2 · · ·

0 λ
1+r −

(
1 − λ

1+r

)
· βλ · · ·

0 0 λ
1+r · · ·

...
...

...
. . .

 (21)

To derive results on existence and determinacy of dY in (20) using proposition 1, we need to
compute the symbol aTABU(z) of ATABU . As we explained in section 3.1, the symbol of a product
of quasi-Toeplitz matrices is the product of the matrices’ symbols. Thus, the symbol of ATABU is

11In the language of Auclert et al. (2023), A = K (I − M) where K = −∑∞
t=1 (1 + r)−t F.
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Figure 3: Determinacy and the response to fiscal policy in the TABU model
Note. Both parameterizations use λ = 0.75, µ = 0.32, r = 0.05. The green solid uses β = 0.87, the gray dashed uses
β = 0.97.

exactly equal to the product of the symbols of the two matrices in (21) (and 1 − µ),

aTABU(z) = (1 − µ)

(
∞

∑
t=0

λtzt

)
·
(

1 −
(

1 − λ

1 + r

) ∞

∑
t=0

(βλ)t z−t

)

which we can further simplify to

aTABU(z) = (1 − µ)
1

1 − λz
·
(

1 −
(

1 − λ

1 + r

)
1

1 − βλz−1

)
(22)

Panel (a) of figure 3 plots the graph of aTABU(z) in the complex plane for two sets of parame-
ters. Both assume λ = 0.75, µ = 0.32, r = 0.05, as in Auclert et al. (2023). For the discount factor,
the first parameterization assumes β = 0.87 (green solid line) as in Auclert et al. (2023), while the
second assumes β = 0.97 (gray dashed line). We see that the graph does not wrap around zero
with the first parameterization, indicating a winding number of zero. Applying proposition 1, this
proves (generic) existence and determinacy of the solution to (20). With the second parametriza-
tion, the graph does wrap around zero, exactly once in a clockwise fashion, indicating a winding
number of -1. According to proposition 1, we therefore generally have existence of a solution, but
indeterminacy.

Panel (b) of figure 3 shows the unique output response dY = {dY0, dY1, . . .} ∈ ℓ2 to a simple
fiscal policy shock in the first, determinate parameterization.12 Panel (c) of figure 3 shows the
range of output responses in the second, indeterminate parameterization. As we can see, multiple
bounded solutions exist, just as predicted by the winding number criterion.

For the TABU model, we can directly infer the winding number from (22). We do this using
formula (10) describing the winding number as the difference between the symbol’s number of

12The shock is an AR(1) increase in government spending, dGt = ρt
GdG0 where dG0 is chosen to be 1% of output, and

taxes are chosen to ensure an AR(1) path of government debt, dBt = ρt
BdB0. The persistences are ρG = ρB = 0.9.
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zeros minus its number of poles inside the unit circle. We can rewrite aTABU(z) as

aTABU(z) = (1 − µ)
λ

1 + r
1

1 − λz
·
(

z − β (1 + r)
z − βλ

)
This is a rational function with two poles, one at z = λ−1 > 1 and one at z = βλ ∈ (0, 1). It has
one zero, at z = β (1 + r). It immediately follows that

wind
(

aTABU
)
=

0 if β (1 + r) < 1

−1 if β (1 + r) > 1

The TABU model is therefore generically determinate under a constant real interest rate rule if
β (1 + r) < 1, and indeterminate otherwise.

4.2 Heterogeneous-agent model at constant r

Next we study a one-account heterogeneous-agent (HA) model in which households are subject to
uninsurable idiosyncratic income risk. We describe the details of the model in Auclert et al. (2023).
We use a version of the model that allows for arbitrary cyclicality of income risk, parameterized
by γ. Specifically, we use the formalization in Auclert and Rognlie (2020), and assume that labor
supply nit of agent i at date t depends on aggregate labor demand Nt according to

nit = Nt
(eit)

γ log Nt

Ei

[
(eit)

γ log Nt
]

This formulation recovers the equal-rationing case in Auclert et al. (2023) with acyclical income
risk if γ = 0. If γ > 0, income risk is procyclical. If γ < 0, income risk is countercyclical.

Like the TABU model, equation (20) characterizes the general equilibrium output response dY,
where A = AHA is now the sequence-space Jacobian of the heterogeneous-agent model’s asset
demand to after-tax income. AHA can no longer be computed in closed form and needs to be
computed numerically (e.g. using the algorithm in Auclert et al. 2021). Figure 4 shows various
columns of AHA for two values of γ.

To check the existence and determinacy properties of the solution dY to (20), we plot the sym-
bol aHA(z) in figure 5, for two different parameterizations of the cyclicality of income risk. The
acyclical income risk specification clearly leads to a winding number of zero, indicating generic
determinacy and uniqueness. By contrast, the countercyclical income risk specification leads to a
winding number of −1, indicating indeterminacy.13

Interestingly, as we vary γ from procyclical to countercyclical income risk, the first point on
the graph of aHA(z) that crosses zero and causes the winding number to flip from 0 to −1 is the

13See Ravn and Sterk (2017), Bilbiie (2019), Acharya and Dogra (2020) for studies of income risk and indeterminacy
in tractable heterogeneous-agent models.
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Figure 4: Columns of the het.-agent asset Jacobian, by income risk cyclicality γ

point associated with z = 1. Since aHA(1) is exactly the response of steady state asset demand
to after-tax income, in practice, for this class of heterogeneous-agent models, we have found that
determinacy is ensured exactly when steady state assets increase in response to a permanent, steady
state, upward shift in after-tax income. Very naturally, this is more likely for higher γ (acyclical
or even procyclical income risk), as greater after-tax income then goes hand in hand with greater
risk, leading to greater asset accumulation. Vice versa, if γ is more negative, greater after-tax in-
come reduces income risk, reducing the incentive to accumulate assets and thus reducing aHA(1),
making indeterminacy more likely.

With acyclical income risk, γ = 0, we can use homotheticity of the household side of the
heterogeneous-agent model to express aHA(1) directly as function of steady state objects,

aHA(1) =
Bss

Yss − Tss
(23)

This follows because a one percent increase in after-tax income Yss − Tss in each state of the world
in the steady state translates into a one percent higher steady state asset position Bss. Since Bss > 0
in the steady state of the model here, this shows that aHA(1) > 0, suggesting determinacy of the
heterogeneous-agent model with acyclical income risk under a constant real interest rate rule.

4.3 Taylor rules

One way to achieve determinacy in New-Keynesian (NK) models is via a Taylor rule. To allow for
a Taylor rule, we need to specify three additional equations in vector form. The first equation is a
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New-Keynesian Phillips curve (NK-PC). To make our lives simple here, we postulate a relatively
simple NK-PC, which relates inflation at date t, πt, to future output changes dYt+s,

πt = κ
∞

∑
s=0

βsdYt+s

In vector form (see Auclert, Rigato, Rognlie and Straub 2022 for details), this can be written as

π = κ


1 β β2 . . .

0 1 β
. . .

0 0 1
. . .

. . . . . . . . . . . .


︸ ︷︷ ︸

K

dY (24)

where K is known as the Generalized Phillips curve matrix.
The second is the sequence-space Jacobian of asset demand to real interest rates, which we

denote by Ar. To distinguish it from the Jacobian of asset demand to income, we denote the latter
by AY. The response of asset demand dA is then

dA = AY (dY − dT) + Ardr (25)

Finally, the third equation combines the Fisher equation with a Taylor rule, requiring that the
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Figure 6: Winding number in the HA model as function of Taylor coefficient ϕπ and Phillips curve
slope κ

nominal interest rate drt + πt+1 moves with current inflation πt,

drt + πt+1 = ϕππt

In vector notation, this equation can be reformulated using the forward matrix F as

dr = (ϕπI − F)π (26)

Combining asset market clearing dA = dB with (24), (25), and (26) then allows us to generalize
(20) to apply to an economy with a Taylor rule,(

AY + Ar (ϕπI − F)K
)

︸ ︷︷ ︸
≡ATaylor

dY = dB + AYdT (27)

To check whether a Taylor rule with Taylor coefficient ϕπ induces determinacy, we simply compute
the winding number of ATaylor = AY + Ar (ϕπI − F)K.

Figure 6 does this for arbitrary combinations of ϕπ and κ, in the case of acyclical income risk
(γ = 0). As in the textbook three-equation NK model, greater Taylor rule coefficients make deter-
minacy unambiguously more likely. Different from the textbook NK model, however, the Phillips
curve slope parameter κ matters for determinacy even absent an output gap term in the Taylor
rule. In fact, for small Phillips curve slope parameters κ, determinacy emerges even if the Taylor
coefficient is zero, ϕπ = 0, indicating a nominal interest rate peg.
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To investigate why the winding number switches from 0 to −1 for high κ and low ϕπ, we fix
κ at 0.05, and vary ϕπ in figure 7. For each value of ϕπ, we plot the graph of the symbol aTaylor(z)
of ATaylor. We see that, once more, the decisive point that turns the winding number negative is
aTaylor(1).

We can use this observation to derive an explicit formula for the Taylor principle in our HA
economy. Using the fact that the symbol preserves multiplication and addition of quasi-Toeplitz
matrices (see section 3.1), we find that

aTaylor(1) = aY(1) + ar(1) (ϕπ − 1)
κ

1 − β

Here, aY(1) is the steady state sensitivity of asset demand to after tax income. ar(1) is the steady
state sensitivity of asset demand to real interest rates. As figure 7 suggests, determinacy is ensured
precisely when the symbol evaluated at z = 1 is positive, that is, aTaylor(1) > 0. Rearranging, we
find

ϕπ > 1 − 1 − β

κ

aY(1)
ar(1)

Substituting in (23), this further simplifies to

ϕπ > 1 − 1 − β

κ

Bss

Yss − Tss

1
ar(1)

(28)

This heterogeneous-agent version of the Taylor principle exactly illustrates under which con-
ditions the economy is determinate. Crucially, as either the Phillips curve slope parameter κ or the
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steady state sensitivity of asset demand to interest rates ar(1) becomes large, the heterogeneous-
agent Taylor principle (28) converges back to the regular one, ϕπ > 1. For small κ and ar(1),
however, the condition (28) can deviate from ϕπ > 1 considerably (see figure 6).

Note that, while it is clear that the winding number falls by 1 when ϕπ falls below the right
hand side in this condition, we cannot show that the formula (28) is always the correct Taylor
principle. We have been unsuccessful in finding a parameterization of the HA model where the
formula does not hold, however.

5 Practical Considerations

We end by discussing several practical considerations. Subsection 5.1 explains how the winding
number can be computed in practice; we lay out a method to check the “genericity” in propo-
sition 1 in subsection 5.2; and finally in subsections 5.3 and 5.4, we explore how the regions of
indeterminacy and feasibility can be computed should the winding number of J in (2) not be
equal to 0.

5.1 Computing the winding number

Suppose that we have a truncated version j = {jk}τ
k=−τ of the two-sided sequence {jk}∞

−∞ for some
quasi-Toeplitz Jacobian J. Using this truncated j, we have the symbol

j(z) =
τ

∑
k=−τ

jkzk (29)

and then evaluate the winding number from definition 3: how many times the graph of j(z) rotates
counterclockwise around zero as z goes counterclockwise around T = {z ∈ C : |z| = 1}.

To do so in practice, we evaluate j(z) using (29) for a very large, even number N of roots of
unity z = ωn, n = 0, . . . , N − 1, where ω ≡ e−2πi/N . This can be done efficiently using the fast
Fourier transform as follows.14 Define the sequence {xl}N−1

l=0 by xl ≡ jl−N/2 for |l − N/2| ≤ τ and
xl ≡ 0 otherwise. This sequence has the entries of {jk} at its center, padded with zeros on both
sides. Then write:

j(ωn) =
τ

∑
k=−τ

jke−
2πi
N kn =

τ

∑
k=−τ

xk+N/2e−
2πi
N kn

=
N−1

∑
l=0

xle
− 2πi

N (l+ N
2 )n = (−1)n

N−1

∑
l=0

xle−
2πi
N ln (30)

The rightmost sum in (29) is simply the nth output of the discrete Fourier transform of {xl}; all N
outputs can be rapidly calculated using the fast Fourier transform, in O(N log N) time. Hence, to

14The following method requires at least N > 2τ, although typically we want a much larger N.

26



obtain all j(ωn), all we need is to form the padded sequence {xl}, take the fast Fourier transform,
and multiply the results by (−1)n.

The points z = 1, ωN−1, . . . , ω move counterclockwise around the unit circle T, and for high N,
the piecewise linear curve formed by connecting the points j(1), j(ωN−1), . . . , j(ω) closely approx-
imates the graph of j(z) as z goes counterclockwise around T. We can calculate how many times
it rotates counterclockwise around zero by counting the number of counterclockwise crossings of
the right real axis {(x, 0) : x ≥ 0} (counting negatively any clockwise crossings).15

To test the accuracy of this calculation, one can vary N to make sure it is insensitive (we usually
start with N = 213). Another useful diagnostic is to plot the graph of j(1), j(ωN−1), . . . , j(ω), as
we have done in many figures above, and to see whether there are any near-crossings, in which
case a higher N is appropriate.

Obtaining j. Above, we saw how to compute the winding number from j = {jk}τ
k=−τ, a trun-

cated version of the two-sided sequence underlying a quasi-Toeplitz Jacobian. How can we ob-
tain j?

In general, supposing that we have a large truncated T × T version of J, calculated using the
methods from Auclert et al. (2021), we can choose some τ such that τ ≫ 0 and τ ≪ T, and then
write:

jk =

Jτ+k,τ −τ ≤ k ≤ 0

Jτ,τ−k 0 ≤ k ≤ τ

This extracts {jk} from the final row and column of the leading (τ + 1)× (τ + 1) submatrix of J.
It is accurate to the extent that the compact correction E is approximately zero in the τth row and
column.16 One way to test this is to evaluate whether Jt,s ≈ Jt−1,s−1 for all t. One should also test
whether τ is high enough by seeing that jk is close to zero near k = −τ and k = τ.

We can sometimes achieve greater accuracy by using the structure of the model. For instance,
if J is the Jacobian of a heterogeneous-agent block as in section 3.3, we can calculate {jk} directly
using (17). If it is the Jacobian of a simple block as in section 3.2, {jk} is immediate. Finally, if it
is calculated by adding and multiplying Jacobians, we can evaluate the symbol j(z) at any point
z by calculating the symbols at z for the underlying Jacobians, then adding and multiplying the
results—since, as discussed in section 3.1, the symbol of a sum (or product) is the sum (or product)
of the symbols.

15To determine whether a line segment from (xj−1, yj−1) to (xj, yj) crosses the right real axis, we first test whether the
signs of yj−1 and yj are different (counting 0 as positive). Then if xj−1 and xj are both positive, there is an unambiguous
crossing; if they are both negative, there is not a crossing. If xj−1 and xj have different signs, then the line segment

crosses the right real axis if xi−1yi−xiyi−1
yi−yi−1

> 0. A crossing is counterclockwise if yj > yj−1 and clockwise otherwise.
16In principle, if J is a truncated version of the true quasi-Toeplitz operator, then E is likely to be smallest when

τ = T − 1, so that we use the last row and column. But when J is formed in part by composing or inverting truncated
matrices, as in the general method of Auclert et al. (2021), artifacts will appear near the point of truncation, and to avoid
these artifacts it is best to choose τ ≪ T.
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Figure 8: Winding number vs smallest singular value
Note. For the SVD we use the asset Jacobian AHA truncated to be of size 1001 × 1001.

5.2 Checking genericity with zero winding number

Our main result is that a quasi-Toeplitz operator J with zero winding number is generically in-
vertible. What happens in the non-generic case, where J is not invertible? Given (5), (6) and the
fact that it has a zero winding number, J must be neither surjective nor injective in this case.

Writing
J = T(j) + E = T(j)

(
I + T(j)−1E

)
we still have that the exactly Toeplitz component T(j) is invertible (see the proof of proposition 1).
This means I + T(j)−1E is no longer invertible. Mathematically, T(j)−1E must have an eigenvalue
of −1. This gives a simple approach to check genericity: Compute a truncated version of T(j)−1E
and see if it has an eigenvalue that is close to −1 and moves closer to −1 as the truncation horizon
is increased.

A second, more general approach one can take is that one can compute a singular value de-
composition (SVD) of a truncated version of the jacobian J and see if the smallest singular value is
close to zero. In practice, we recommend computing the ratio of the smallest singular value to the
second smallest and then checking whether that is below some small threshold.

We illustrate this in figure 8. We compute the ratio of the smallest singular value to the second
smallest as well as the winding number of the heterogeneous-agent asset Jacobian AHA as function
of the cyclicality of income risk γ. The figure clearly shows that they both line up well.

Both the eigenvalue approach an the SVD approach work well for detecting genericity issues
related to the compact correction as they are, one way or another, both based on truncated repre-
sentations of J. The winding number focuses on invertibility more generally, without relying on
the behavior of J on any finite-dimensional subspace.
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5.3 Computing alternative solutions under indeterminacy

If the Jacobian J has a negative winding number, it can be interesting to determine the range of
solutions x to (2) that is possible, i.e. the kernel of J. The singular value decomposition allows
us to do this too. In fact, the right singular vector associated with the smallest singular value of
J exactly characterizes the dimension of indeterminacy of the solution. More precisely, in most
cases we can evaluate a specific solution x to (2) by inverting the truncated Jacobian J(T×T),

x(T) =
(

J(T×T)
)−1

y(T)

Denoting by xr the right singular vector associated with the smallest singular value of J(T×T), the
space of solutions is then given by

x(T) + λx(r) for λ ∈ R

5.4 Computing the feasible region under non-existence

Vice versa, if we are trying to evaluate the infeasible region for y for which there does not exist a
solution to (2), i.e. the cokernel of J, we consider the left singular vector x(l) associated with the
smallest singular value of the truncated Jacobian J(T×T). Then, the subspace of ℓ2 for which (2) has
a solution is the hyperplane orthogonal to x(l), i.e.

{y ∈ ℓ2 :
∞

∑
t=0

ytx
(l)
t = 0}

6 Conclusion

This note develops a determinacy and existence criterion for models in the sequence space. The
criterion is very useful in the budding literature that analyzes heterogeneous-agent models in the
sequence space, including heterogeneous-agent New-Keynesian models. We use the criterion to
derive a general Taylor principle for those models. In future work, we plan on extending our
results to the case where within each time period, the unknown xt is multi-dimensional.
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A Three Helpful Lemmas

Lemma 2. Let C be the space of compact operators on ℓ2 endowed with the operator norm. Let C̃ be the set
of compact operators for which I + E is invertible. Then, C̃ is open and dense in C.

Proof. We first show that C̃ is open. Since C is closed (Rudin 1991, Theorem 4.18(c)), it is sufficient
to show that C\C̃ is closed. Let E(n) ∈ C\C̃ be a convergent sequence of compact operators with
limit E (in the operator norm) for which I + E(n) is not invertible. This means, E(n) has an eigen-
value of −1 for all n. By Dunford and Schwartz (1988, part II, XI-9, Lemma 5), this must mean that
E also has an eigenvalue of −1 and thus that I + E is not invertible either. This establishes that
C\C̃ is closed.

Next, we show that C̃ is dense in C. For this, take an operator E ∈ C\C̃ for which I + E is
not invertible and pick an arbitrary ϵ > 0. We need to show that there exists an operator E′ ∈ C̃
for which I + E′ is invertible and that is close to E, ∥E − E′∥ < ϵ. Since I + E is not invertible,
−1 is an eigenvalue of E. We know from Rudin (1991, Theorem 4.24(b)) that the spectrum of a
compact operator is at most countably infinite. This means that there exists a δ < ϵ

∥E∥+1 such that
− 1

1+δ is not an eigenvalue of E, or in other words, that I + (1 + δ) E is invertible. Clearly then,
E′ ≡ (1 + δ) E ∈ C̃ and also ∥E′ − E∥ = δ∥E∥ < ϵ. This proves that C̃ is dense in C and thus
lemma 2.

Lemma 3. If T is a surjective operator, left multiplication with T is a surjective continuous map from
C to C. If T is an injective operator with a closed range, right multiplication with T is also a surjective
continuous map from C to C.

Proof. Left multiplication with any bounded operator is continuous because for any other bounded
operator E we have

∥TE∥ ≤ ∥T∥ · ∥E∥.

Likewise, right multiplication with any bounded operator is continuous.
Let T now be a surjective (bounded) operator. To show that left multiplication is surjective

as map from C to C, let E ∈ C be a compact operator. By Axler (2020, Theorem 10.31), T is right
invertible, that is, there exists a bounded operator S such that TS = I. Defining E′ ≡ SE we see
that TE′ = E. Thus, left multiplication with T is a surjective continuous map from C to C.

Let T be an injective (bounded) operator with a closed range. To show that right multiplication
is surjective as map from C to C, we let E ∈ C be a compact operator. By Axler (2020, Theorem
10.29), T is left invertible, that is, there exists a bounded operator S such that ST = I. Defin-
ing E′ ≡ ES we immediately obtain E′T = E. Thus, right multiplication with T is a surjective
continuous map from C to C.

Lemma 4. For any open and dense subset Ĉ of C, T · Ĉ ≡ {T · E|E ∈ Ĉ} is also open and dense in C for
any surjective operator T; and Ĉ · T ≡ {E · T|E ∈ Ĉ} is open and dense in C for any injective operator T.
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Proof. Right and left multiplication with any bounded operator T is continuous and preserves
compactness, that is, it maps C into itself (Rudin 1991, Theorem 4.18(f)). Thus, right and left
multiplication map any open subset of C into another open subset of C.

• If T is also surjective, left-multiplication with T maps any dense subset of C into another
dense subset of C. This follows straight from left multiplication being continuous and sur-
jective in this case (lemma 3). Continuous surjective functions map dense subsets into dense
subsets.

• If T is also injective, right-multiplication with T maps any dense subset of C into another
dense subset of C. This follows straight from right multiplication being continuous and
surjective in this case (lemma 3). The rest of the argument is the same.

This proves lemma 4.

A-2


	Introduction
	Generic Existence and Uniqueness Result
	Sequence space
	Quasi-Toeplitz operators
	Symbol 
	Winding number
	Main result: Winding number criterion
	Proof of proposition 1
	Intuition and relationship to Blanchard-Kahn

	Emergence of Quasi-Toeplitz Sequence-Space Jacobians
	Composition of sequence-space Jacobians
	Jacobians of simple blocks
	Jacobians of stationary heterogeneous-agent blocks
	Steady state shifts

	Application to HANK
	TABU model at constant r
	Heterogeneous-agent model at constant r
	Taylor rules

	Practical Considerations
	Computing the winding number
	Checking genericity with zero winding number
	Computing alternative solutions under indeterminacy
	Computing the feasible region under non-existence

	Conclusion
	Three Helpful Lemmas

