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We propose a general and highly efficient method for solving and estimating general
equilibrium heterogeneous-agent models with aggregate shocks in discrete time. Our
approach relies on the rapid computation of sequence-space Jacobians—the derivatives
of perfect-foresight equilibrium mappings between aggregate sequences around the
steady state. Our main contribution is a fast algorithm for calculating Jacobians for a
large class of heterogeneous-agent problems. We combine this algorithm with a system-
atic approach to composing and inverting Jacobians to solve for general equilibrium
impulse responses. We obtain a rapid procedure for likelihood-based estimation and
computation of nonlinear perfect-foresight transitions. We apply our methods to three
canonical heterogeneous-agent models: a neoclassical model, a New Keynesian model
with one asset, and a New Keynesian model with two assets.

KEYWORDS: Computational methods, general equilibrium, heterogeneous agents,
linearization.

1. INTRODUCTION

A RAPIDLY EXPANDING LITERATURE in macroeconomics incorporates rich heterogeneity
into dynamic general equilibrium models. A central challenge in this literature is that
equilibrium involves the time-varying, high-dimensional distribution of agents over their
state variables.

In this paper, we propose a general, systematic, and highly efficient method to deal with
this challenge. Our method follows Reiter (2009) by perturbing the model to first order
in aggregates. But, while the Reiter method writes equilibrium as a system of linear equa-
tions in the state space, we instead write it as a system of linear equations in the space
of perfect-foresight sequences—the sequence space. Since the size of this system is inde-
pendent of the size of the state space, it becomes feasible to solve and estimate models
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that feature very rich heterogeneity. Our sequence-space approach builds on Boppart,
Krusell, and Mitman (2018), who solved for nonlinear impulse responses to small shocks,
but we obtain a much faster solution by directly exploiting linearity.

We demonstrate the power of our method by solving and estimating three models, with
increasing degrees of complexity, at unparalleled speed. A code repository accompanies
this paper and provides general-purpose routines that automate the new algorithms we
introduce.1

The central objects in our method are sequence-space Jacobians: the derivatives of equi-
librium mappings between aggregate sequences around the steady state. These Jacobians
summarize every aspect of the model that is relevant for general equilibrium. For exam-
ple, consider a standard incomplete markets model. That model features a Jacobian J C�r

that maps, to first order, changes in the sequence of real interest rates {rt} to changes in
the sequence of aggregate consumption {Ct}. Under the hood, this mapping includes the
heterogeneous responses of households to changes in r, as well as the evolution of the
distribution of agents over time that it induces. But to know the aggregate effect of r on
C, all we need to know is J C�r : it is a sufficient statistic. Our method exploits this property.
We compute all relevant sequence-space Jacobians, and then compose and invert these
Jacobians to obtain the model’s full set of impulse responses.

Our main contribution is a fast algorithm for computing Jacobians for a large class of
heterogeneous-agent problems, truncated to a horizon of T × T . A direct approach to
calculating these Jacobians is quite costly. For instance, calculating column s of J C�r , the
response to a shock to rs, requires iterating backward to obtain the consumption policy at
each date, then iterating forward to obtain the distribution at each date. The direct ap-
proach repeats this procedure for each column s = 0� � � � �T −1. Our method, by contrast,
exploits the structure of the linearized heterogeneous-agent problem around the steady
state, which we capture formally in Proposition 1. It requires only a single backward it-
eration from T − 1 to obtain the consumption policy and impulses to the distribution.
These objects are then efficiently combined with information from the steady-state so-
lution to form the full Jacobian, lowering the cost by a factor of about T relative to the
direct approach. Our algorithm therefore provides a dramatic speed improvement, since
T is typically equal to at least 300 in practice, and sometimes as large as 1000.

We combine this algorithm with a systematic approach to composing and inverting Ja-
cobians to solve for general equilibrium impulse responses. Equilibrium in the sequence
space can always be expressed as a solution to a nonlinear system

F(X�Z)= 0� (1)

where X represents the time path of endogenous variables (usually aggregate prices and
quantities) and Z represents the time path of exogenous shocks. Obtaining the impulse
responses of unknowns to shocks, dX = −F−1

X FZ dZ, requires computing the Jacobians
FX and FZ, which are formed by combining Jacobians from different parts of the model.
Starting from the heterogeneous-agent Jacobians computed using our fast algorithm, this
can be achieved by any method that systematically applies the chain rule. We propose one
such method, forward accumulation along a directed acyclic graph (DAG). This proce-
dure can be automated, and it usually only takes a few milliseconds.

1See https://github.com/shade-econ/sequence-jacobian, which provides routines written in Python, as well
as pedagogical notebooks. A separate replication archive (https://github.com/shade-econ/ssj-replication) uses
these routines to produce all figures and tables presented in this paper.

https://github.com/shade-econ/sequence-jacobian
https://github.com/shade-econ/ssj-replication
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We verify that our method is accurate by showing that it delivers exactly the same solu-
tion as the Reiter method, for models where the Reiter method is feasible. Like all per-
turbation methods, both our method and the Reiter method are subject to error in taking
derivatives; to allow for a precise comparison, we therefore use automatic differentiation
to take error-free derivatives in both methods. We then demonstrate accuracy in two ways.
First, we show that in response to specific 1% shocks, impulse responses under the two
methods differ everywhere by less than 10−9%. Second, we provide a method to recover
the state-space law of motion from our sequence-space solution, and show that matrices
in this law of motion differ from the same matrices obtained using the Reiter method
by a maximum of less than 10−8. With accuracy established, we additionally discuss how
varying the truncation horizon T , or replacing automatic with numerical differentiation,
can affect these errors.

In sum, our method enables researchers to obtain model Jacobians and linearized gen-
eral equilibrium impulse responses, accurately and rapidly, in models with heterogeneous
agents that can potentially be very complex. To show how these objects can be used in
practice, we cover two applications that are very common in applied research: estimation
on time-series data, and computation of nonlinear perfect-foresight transitions.

To build toward estimation, we first summarize the Boppart, Krusell, and Mitman
(2018) simulation procedure. As they pointed out, the linearized impulse responses to
shocks truncated to a horizon of T form an MA(T − 1) representation of the model
with aggregate shocks, which yields a straightforward simulation procedure. These sam-
ple paths can be used to calculate approximate time-series moments, which in principle
can then be used for estimation.

We next provide an alternative route, which is to use analytical formulas to calculate
the model’s time-series moments directly from impulse responses. From here, we can di-
rectly compute the likelihood function of any empirical time series. Given a prior over
parameters, we can then find the posterior mode and trace out the posterior distribution
via Markov chain Monte Carlo methods. Here, a critical benefit of our sequence-space
method is that it makes it easy to reuse Jacobians, especially heterogeneous-agent Jaco-
bians, across multiple computations of the likelihood function. This dramatically speeds
up estimation, especially for the parameters of shock processes, and also for model pa-
rameters that do not affect the steady state.

Finally, we demonstrate how to solve equation (1) nonlinearly by using our sequence-
space Jacobians in a quasi-Newton method. We consider two types of nonlinear transi-
tions: large temporary shocks, and transitions to a new steady state. We show how, for
the examples we consider, sequence-space Jacobians allow convergence to the nonlinear
solution in just a few iterations.

Throughout the paper, we apply our methods to three canonical heterogeneous-
household models of increasing complexity: a neoclassical model in the spirit of Krusell
and Smith (1998), a one-asset New Keynesian model in the spirit of McKay, Naka-
mura, and Steinsson (2016), and a two-asset New Keynesian model in the spirit of Ka-
plan, Moll, and Violante (2018). Table I illustrates the speeds that our algorithms are
able to achieve on a laptop computer.2 For each of our three models (including a high-
dimensional version of the Krusell–Smith model), it takes less than 11 seconds to com-
pute the heterogeneous-agent Jacobians J . Once these Jacobians are known, it is almost
immediate to calculate impulse responses. Posterior-mode estimation takes less than 9

2All computations were performed on a laptop with a 2.6 GHz Intel Core i7-10750H processor with six
cores.
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TABLE I

SUMMARY OF COMPUTING TIMESa

Computing Times Req. Krusell–Smith HD Krusell–Smith One-Asset HANK Two-Asset HANK

Steady state (s.s.) 0.42 s 52.08 s 1.88 s 16.16 s
Heterogeneous-agent Jacobians (J ) s.s. 0.09 s 10.47 s 0.32 s 3.50 s
One impulse response J 0.0009 s 0.0009 s 0.0136 s 0.0263 s
All impulse responses (G) J 0.0033 s 0.0033 s 0.0506 s 0.1735 s
Simulation (100,000 periods) G 0.0040 s 0.0050 s 0.0219 s 0.1047 s
Bayesian estimation (shocks) G

single likelihood evaluation 0.0007 s 0.0007 s 0.0024 s 0.0140 s
obtaining posterior mode 0.06 s 0.06 s 0.66 s 16.22 s
RWMH (200,000 draws) 132 s 132 s 568 s 2900 s

Bayesian estimation (shocks + model) J
single likelihood evaluation — — 0.056 s 0.227 s
obtaining posterior mode — — 14 s 522 s
RWMH (200,000 draws) — — 11,218 s 42,564 s

Nonlinear impulse responses J 0.32 s 27.85 s 1.17 s 14.63 s

No. of idiosyncratic states 3500 250,000 3500 10,500
Time horizon (T ) 300 300 300 300
No. of shock parameters in estimation 3 3 6 14
No. of model parameters in estimation 0 0 3 5

aThe times given are incremental, with the “Req.” column denoting the prerequisite step for each computation. RWMH refers to
Random Walk Metropolis–Hastings. Our Krusell–Smith model and its “high-dimensional” (HD) version are described in Section 2.
Our one-asset HANK model is described in Appendix B.2. Our two-asset HANK model is described in Appendix B.3. All calculations
in this paper were performed on a laptop with a 2.6 GHz Intel Core i7-10750H processor with six cores.

minutes for every model, and is, for simpler models, a matter of seconds or milliseconds.
A standard Random Walk Metropolis–Hastings algorithm that traces out the posterior
distribution of parameters with 200,000 draws takes less than twelve hours for our most
complex, two-asset HANK model. By contrast, the leading computational techniques ex-
isting today find it challenging to estimate a two-asset HANK model at all.

Related Literature. Since the early breakthroughs of Krusell and Smith (1998) and
den Haan (1997), the literature on solution methods for heterogeneous-agent models has
grown tremendously. Part of the literature has developed nonlinear methods, which are
well-suited to address questions that inherently involve higher-order aggregate moments,
such as the aggregate implications of risk premia or volatility shocks.3 However, when it
comes to the distribution of agents, these methods typically require either limited het-
erogeneity, or “approximate aggregation” (where only a few moments of the distribution
matter for forecasting general equilibrium dynamics).

Our paper, by contrast, follows Reiter (2009) by linearizing with respect to aggregates
but preserving nonlinearities with respect to idiosyncratic shocks. The Reiter method
can be used to solve models that do not feature approximate aggregation, and instead
capture the rich interactions between the distribution of agents and macroeconomic
outcomes that are the hallmark of the recent heterogeneous-agent literature (see, e.g.,
Krueger, Mitman, and Perri (2016) and Kaplan and Violante (2018)). Its main limitation

3See the survey by Algan, Allais, Den Haan, and Rendahl (2014) and recent work by Brumm and Scheideg-
ger (2017), Mertens and Judd (2018), Proehl (2019), and Fernández-Villaverde, Hurtado, and Nuño (2019),
among many others.
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is that it involves a linear system that grows with the dimension of the state space of the
heterogeneous-agent model. For many complex models, the Schur (or equivalent) decom-
position required to solve these models becomes too costly. This has led the literature to
turn to “model reduction” methods, which involve approximating the equilibrium distri-
bution, and sometimes also the value function.4 How accurately these methods match the
solution without model reduction varies depending on the application.5 Our method, by
contrast, solves the unreduced model, leaving all heterogeneity intact.

Boppart, Krusell, and Mitman (2018) also proposed a sequence-space method that
solves the unreduced model and avoids the need for a large state-space system. They
solved nonlinearly for impulse responses to one-time, unanticipated aggregate shocks
(“MIT shocks”); when the shocks are small, this gives approximately the model’s lin-
ear impulse responses. This method, however, requires some way to solve for nonlinear
impulse responses in the first place. Boppart, Krusell, and Mitman (2018) followed the
typical approach by iterating over guesses for aggregate sequences, but there is no gen-
eral method for updating these guesses, nor any guarantee of convergence.6 By exploiting
linearity instead, we avoid the need for any iteration, achieving the stability and speed
required for advanced applications such as estimation.7

Layout. The rest of the paper proceeds as follows. Section 2 introduces our computa-
tional method with an example. Section 3 provides our fast algorithm for computing the
Jacobians of heterogeneous-agent problems. Section 4 shows how to efficiently combine
these Jacobians to compute general equilibrium impulse responses. Section 5 provides
our application to estimation, and Section 6 our application to nonlinear transitions. Sec-
tion 7 concludes.

2. THE SEQUENCE-SPACE JACOBIAN: AN EXAMPLE

We introduce our methods by means of an example: Krusell and Smith (1998)’s cel-
ebrated extension of the real business cycle model to heterogeneous households. This
model is a natural starting point, since it is well known and there exist many well-
established methods for solving it.

We set up the model in the sequence space, that is, assuming perfect foresight with
respect to aggregates. We then show how to use the sequence-space Jacobian to solve for
the impulse response of the model to a total factor productivity (TFP) shock in a fraction
of a second.

4See, for instance, Reiter (2010), Ahn, Kaplan, Moll, Winberry, and Wolf (2018), Winberry (2018), and
Bayer and Luetticke (2020).

5For instance, Ahn et al. (2018) showed that their model reduction technique works well for a one-asset
model, but that it is more difficult to achieve a good fit for a two-asset model; they were able to reduce the size
of the state-space system for the latter to 2445-by-2445, but further reduction degrades accuracy.

6In Section 6, we propose such a method for updating guesses using sequence-space Jacobians. It would
be redundant, however, to use this method to obtain linear impulse responses, since we can solve directly for
these responses from the Jacobians.

7We share with all aggregate linearization methods the drawback that the model does not generate risk
premia, portfolio choice is indeterminate, and optimal Ramsey policy is ill-defined. For these applications,
higher-order perturbations or global solution methods are more appropriate (see, e.g., Fernández-Villaverde,
Rubio-Ramírez, and Schorfheide (2016)).
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2.1. Model Description

The economy is populated by a mass 1 of heterogeneous households that maximize the
time-separable utility function E[∑βtu(ct)], where u has the standard constant relative
risk aversion form, u(c) = c1−σ

1−σ
. There exist ne idiosyncratic states, and in any period t,

agents transition between any two such states e and e′ with exogenous probability P(e� e′).
We denote by π the stationary distribution of P and assume that the mass of agents in
each state e is always equal to π(e).8 Agents supply an exogenous number of hours n, and
earn wage income wten, where wt is the wage per efficient hour. Agents can only trade in
capital k, which pays a rental rate rt net of depreciation, and are subject to a no-borrowing
constraint. The value function of an agent entering the period in income state e and with
capital k− at time t is therefore

Vt(e�k−) = max
c�k

u(c)+β
∑
e′

Vt+1

(
e′�k

)
P

(
e� e′)

s.t. c + k= (1 + rt)k− +wten� (2)

k ≥ 0�

Denote by c∗
t (e�k−) and k∗

t (e�k−) the policy functions that solve the Bellman equation
(2). Also denote by Dt(e�K−) ≡ Pr(et = e�kt−1 ∈ K−) the measure of households in state
e that own capital in a set K− at the start of date t. The distribution Dt has law of motion

Dt+1

(
e′�K

) =
∑
e

Dt

(
e�k∗−1

t (e�K)
)
P

(
e� e′)� (3)

where k∗−1
t (e� ·) denotes the inverse of k∗

t (e� ·). We assume that prior to t = 0, the econ-
omy is in a steady state with constant wage wss and net rental rate rss, corresponding to
a steady state of the general equilibrium economy discussed momentarily. In this steady
state, there is a unique value function and decision rule solving (2), and a unique station-
ary distribution Dss solving (3). We suppose that agents start in this stationary distribution
at date 0, so that D0 =Dss.

Equation (2) shows that, for any t, the policy k∗
t (e�k−) is a function of the future path

{rs�ws}s≥t . Given D0 = Dss, through (3), the distribution Dt(e�K) at any t is a function
of the entire path {rs�ws}s≥0.9 It follows that aggregate household capital holdings are
characterized by a capital function Kt({rs�ws}s≥0), where

Kt

({rs�ws}s≥0

) =
∑
e

∫
k−

k∗
t (e�k−)Dt(e�dk−)� (4)

The ability to reduce interactions between heterogeneous agents to functions such as Kt ,
which map aggregate sequences into aggregate sequences, is key to the sequence-space

8In the original Krusell and Smith (1998) model, the transition probabilities depend on the aggregate state,
that is, P takes the form P(e� e′�Zt). Our methods can be applied to this case as well (see the general formu-
lation in Appendix A of the Supplemental Material (Auclert, Bardóczy, Rognlie, and Straub (2021))).

9This can be shown recursively: given D0 = Dss , D1 is a function of {rs�ws}s≥0, and therefore so is D2,
through its dependence on D1. In Section 3, we elicit explicitly the first-order dependence of Dt , k∗

t , and Kt on
the sequence {rs�ws}s≥0.
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Jacobian method. We now combine this Kt function with equations describing produc-
tion and market-clearing conditions to describe the entire Krusell–Smith economy. Pro-
duction is carried out by a competitive representative firm, which has a Cobb–Douglas
technology Yt = ZtK

α
t−1N

1−α
t , rents capital and labor from workers at rates rt + δ and wt ,

and faces the sequence of total factor productivity Zt . The firm’s first-order conditions

rt = αZt

(
Kt−1

Nt

)α−1

− δ� (5)

wt = (1 − α)Zt

(
Kt−1

Nt

)α

(6)

relate the paths of prices {rt�wt} to the exogenous paths {Zt�Nt = ∑
π(e)en} and the

endogenous path for capital {Kt}. Combining (4)–(6), we can express the capital market-
clearing condition at each point in time as a function H,

Ht(K�Z)≡Kt

({
αZs

(
Ks−1∑
π(e)en

)α−1

− δ� (1 − α)Zs

(
Ks−1∑
π(e)en

)α}
s≥0

)
−Kt

= 0� (7)

where K = (K0�K1� � � �)
′. Given initial capital K−1 and the exogenous path for productiv-

ity, Z = (Z0�Z1� � � �)
′, equation (7) pins down the equilibrium path of capital.

2.2. Impulse Responses

Applying the implicit function theorem to (7), the linear impulse response of capital to
a transitory technology shock dZ = (dZ0� dZ1� � � �)

′ is given by

dK = −H−1
K HZ dZ� (8)

where HK and HZ denote the Jacobians of H with respect to K and Z, evaluated at the
steady state. Given dK, the impulse responses of other variables, for example, {Ys� rs�ws},
follow immediately. In practice, (8) is solved up to a given (large) horizon T such that K
and Z have approximately returned to steady state by time T .

We use the chain rule to relate the Jacobians HK and HZ to the derivatives of the K
function defined in equation (4), evaluated at the steady state. For example, differentiat-
ing equation (7) with respect to Ks, we find that the t, s entry of HK is

[HK]t�s = ∂Kt

∂rs+1

∂rs+1

∂Ks

+ ∂Kt

∂ws+1

∂ws+1

∂Ks

− 1{s=t}� (9)

A similar expression applies to HZ. In addition, the derivatives ∂rs+1
∂Ks

, ∂ws+1
∂Ks

, ∂rs+1
∂Zs

, and ∂ws+1
∂Zs

at (Kss�Zss) can all be computed analytically: for example,

∂rs+1

∂Ks

= α(α− 1)Zss

(
Kss

Nss

)α−2 1
Nss

�

Hence, to obtain H−1
K HZ in (8), all we need are the Jacobians of the K function with

respect to its two inputs r and w. The key remaining challenge is to compute these Ja-
cobians. In the next section, we introduce a fast algorithm for doing so. As Table I re-
veals, for a standard calibration of the Krusell–Smith model detailed in Appendix B.1,
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FIGURE 1.—Impulse responses of capital to 1% TFP shocks in the Krusell–Smith model.

this algorithm takes 90 milliseconds to calculate Jacobians of K, truncated to a horizon of
300 × 300.10 In a “high-dimensional” calibration that increases the dimensionality of the
state space from 3500 to 250,000, it still takes less than 11 seconds.

Given these Jacobians, the underlying heterogeneity no longer matters: the Jacobians
tell us everything that we need to know, to first order, about the aggregate behavior of the
model’s heterogeneous agents. This feature of our method is apparent in Table I, where
we see that most other computing times are identical between our two calibrations of
the Krusell–Smith model, despite the large disparity in the size of their underlying state
spaces.

Impulse Responses and News-Shock Interpretation. Once we have the Jacobians of K,
we can immediately calculate −H−1

K HZ. Given (8), applying this matrix to any path for
dZ delivers the impulse response dK of capital with a single matrix-vector multiplication.
Panel (a) of Figure 1 does this for a variety of dZ, representing 1% AR(1) shocks to TFP
with different persistences ρ in our high-dimensional Krusell–Smith model. Note that
the same matrix is applied to all these dZ vectors: once we have computed an impulse
response, it is almost costless to compute others.

It is, in particular, immediate to obtain the effect of the “news” at date 0 that TFP will
be higher by 1% at time s, as in panel (b) of Figure 1. By definition, the impulse responses
to s-period-ahead news are equal to the sth column of the matrix −H−1

K HZ. This “news-
shock” interpretation of the columns provides a useful way of understanding their role
in the computation of generic impulse responses. For example, the impulse responses to
AR(1) TFP paths of persistence ρ in panel (a) can be reinterpreted as the effect of the
simultaneous news, at date 0, of an increase of ρs in TFP at times s = 0�1� � � � .

3. COMPUTING JACOBIANS FOR HETEROGENEOUS-AGENT PROBLEMS

In the previous section, we established the usefulness of knowing the Jacobians ∂K/∂r
and ∂K/∂w for computing the impulse responses of the Krusell–Smith model. In this
section, we generalize the K function, to encompass the mapping from inputs to outputs

10This is long enough to accurately compute the solution given the shocks considered in Figure 1. We discuss
how to choose an appropriate truncation horizon in Section 4.2.
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in a broad class of heterogeneous-agent problems. In this general case, inputs are the
aggregates relevant to the decision-making of individual agents, such as interest rates or
wages, while outputs can describe aggregate savings, consumption, investment, or other
decisions by heterogeneous households or firms. We introduce a fast algorithm, which we
call the fake news algorithm, for computing the Jacobian of any output with respect to any
input.

3.1. General Model Representation

We begin by introducing a generic representation of a heterogeneous-agent problem
as a mapping between a time path of aggregate inputs Xt and a time path of aggregate
outputs Yt . Assume that there are nx inputs and ny outputs, and that the distribution is
discretized on ng grid points. Let Dt be the ng × 1 vector representing the distribution of
agents at time t, and suppose that the aggregate outputs of interest are the averages of
individual “outcomes” against the distribution, that is, Yt = y′

tDt , with yt denoting the ng ×
ny matrix of individual outcomes (an outcome can be an agent’s policy, e.g., consumption,
or any other variable of interest defined at the individual level).11 We assume that there
exist three functions v, Λ, and y such that, for a given initial distribution D0, Yt is the
solution to the system of equations:

vt = v(vt+1�Xt)� (10)

Dt+1 = Λ(vt+1�Xt)
′Dt � (11)

Yt = y(vt+1�Xt)
′Dt � (12)

Here, Xt is the nx × 1 vector of aggregate inputs. Equation (10) expresses how the vector
representing the value function, vt , relates to Xt and to its own value in the next period.
Equation (11) updates the distribution, with Λ(vt+1�Xt) an ng × ng transition matrix rep-
resenting the discretized law of motion for this distribution. Finally, equation (12) defines
the ny ×1 vector of aggregate outputs Yt , with the ng ×ny matrix of individual outcomes yt
defined by y(vt+1�Xt). Later, we will argue that many heterogeneous-agent models indeed
take this form.

For given Xss, the steady state of the model is the fixed point (Yss� vss�Dss) of (10)–(12)
that obtains when Xt = Xss at all times. For convenience, we write Λss ≡ Λ(vss�Xss) and
yss ≡ y(vss�Xss). We consider transitions of length T that end at this steady state, so that
the terminal values are XT−1 = Xss, and vT = vss. The initial distribution D0 is given, and
our main result assumes that it is also equal to Dss. Hence, this setting allows us to study
transitory shocks around a steady state.12

Given this setup, (10)–(12) define a mapping from the T × nx stacked vector of inputs
X, to the T × ny stacked vector of outputs Y, and we write this as

Y = h(X)� (13)

We assume that the functions v, Λ, and y are differentiable around (vss�Xss), so that the
function h is also differentiable around Xss. Our goal is to characterize the Jacobian J

11As we show in Appendix A, it is straightforward to extend our method to include higher-order moments,
such as the variance of consumption, among the outputs of interest.

12Section 6 discusses how to solve for nonlinear transition dynamics with arbitrary initial distributions D0,
including the effects of permanent shocks that change the steady state.
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of h evaluated at X = Xss. J represents the aggregate response of heterogeneous agents
to perturbations to their environment at different dates. This Jacobian can be of inter-
est in its own right. But, critically, it is the key object required to compute the general
equilibrium solution.

Example: Krusell and Smith. In the model of Section 2, the inputs are Xt = (rt�wt),
and one natural choice for outputs is Yt = (Kt�Ct). The model can be solved with value
function iteration. In this case, vt is the value function Vt in equation (2) at each point
on the grid for states (e�k−), and Dt is the fraction of agents at time t at each point
on this grid. Given vt+1 and Xt , the solution to (2) involves a maximized value function
vt—equation (10)—and a policy function kt . We use the Young (2010) lottery method to
convert this policy into a transition matrix on the grid, and compose this with the process
for e to obtain the full transition matrix Λ′

t from current states (e�k−) to next-period
states (e′�k)—equation (11). Finally, aggregate capital and consumption are obtained by
taking the dot product of the policies kt and ct with the distribution Dt : this is equation
(12), with yt ≡ (kt � ct).

An alternative approach, which is typically faster and more accurate in practice, is to use
the Euler equation, as in Carroll (2006). In this approach, vt is the derivative of the value
function ∂Vt

∂k− at each point on the grid for (e�k−). The Euler equation maps vt+1 and Xt

to optimal capital and consumption policies kt and ct , and the envelope theorem implies
vt = (1 + rt)u

′(ct). Combining these, we obtain equation (10). Again, combining kt with
the exogenous law of motion for the state e delivers Λ in equation (11), and yt ≡ (kt � ct)
aggregates individual policies into Kt and Ct in equation (12).

Beyond this example, many other heterogeneous-agent problems can also be cast into
the framework of equations (10)–(12). The scope and limitations of our framework will
become clearer after we have presented our algorithm, so we postpone this discussion to
the end of the next section.

3.2. Fake News Algorithm

In this section, we provide a fast algorithm for computing J , which we call the “fake
news” algorithm. We start with two preliminaries: notational conventions, and a direct
method for computing J that will serve as a benchmark for our algorithm.

Notation. To present our algorithm in an intuitive manner, we start by assuming that
there is only one input and one output, nx = ny = 1, and later generalize to any nx and ny .
Define the T × 1 vector es to have 0’s everywhere except at the sth entry, where it has a 1.
For a given dx, we say there is a “shock at time s” when the T × 1 input vector is given
by Xs ≡ Xss + es dx. Let vs

t , Ds
t , and Ys

t denote the solution to equations (10)–(12) given
Xs. Also, let Λs

t ≡ Λ(vs
t+1�X

s
t ) denote the transition matrix between states at time t, and

yst ≡ y(vs
t+1�X

s
t ) denote the outcome function at time t, in response to the shock at time s.

Finally, denote with a d the difference of all objects relative to their steady-state level, so
that dY s

t ≡ Ys
t − Yss, dyst ≡ yst − yss, dΛs

t ≡ Λs
t − Λss, and dDs

t ≡ Ds
t − Dss. The sth column

of the Jacobian J is then the limit of dYs

dx
as dx→ 0.

Direct Method. A direct method for computing the sth column of the Jacobian us-
ing one-sided numerical differentiation is as follows. First, starting with a small shock
dx at time s, iterate (10) backward, starting with vT = vss, and compute the value func-
tion vs

t , the transition matrix Λs
t , and individual policies yst , for t = T − 1� � � � �0. Second,
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iterate (11) forward, starting with D0 = Dss, to solve recursively for the distributions Ds
t

for t = 1� � � � � T − 1, by applying the transition matrices Λs
t . Next, for each t, take the

distribution-weighted sum (yst )
′Ds

t of individual policies to obtain Ys
t in (12). Finally, form

Jt�s = dY s
t /dx = (Y s

t − Yss)/dx. To obtain the entire Jacobian J , repeat this process T
times, once for each s. This is costly in practical applications, since T is typically at least
equal to 300.

Structure of Jacobian J . We now turn to our algorithm, which relies on several results
about the structure of the Jacobian J . The key is to recognize that the columns of J are
closely related. Using our s superscript notation, equation (12) defines the output at time
t in response to the shock at time s as

Ys
t = (

yst
)′

Ds
t � (14)

and (11) defines the distribution at time t + 1 given the shock at time s as

Ds
t+1 = (

Λs
t

)′
Ds

t � (15)

We first show how to efficiently obtain the policy functions yst and transition matrices
Λs

t . This makes use of the following implication of dynamic programming.

LEMMA 1: For any s ≥ 1, t ≥ 1, we have

yst =
{

yss� s < t�

yT−1
T−1−(s−t)� s ≥ t�

and Λs
t =

{
Λss� s < t�

ΛT−1
T−1−(s−t)� s ≥ t�

(16)

Lemma 1 follows immediately from the recursive structure of equation (10) and the
definition of yst and Λs

t . The intuition is that agents only care about the distance to the
shock s − t, rather than calendar time t and s separately, when deciding on their own
behavior. For instance, the response of their consumption policy at time t to any shock at
time t + 1 is the same as the response of their consumption policy at time 0 to the same
shock at time 1.

By implication, we can compute all policies yst from a single perturbation of the input
at date s = T − 1. The same argument applies to the transition matrices Λs

t . Lemma 1
therefore suggests an immediate improvement to the direct algorithm for computing the
Jacobian: replace the T backward iterations by a single backward iteration starting from
a shock at date T − 1. This is enough to deliver all policy functions yst and Λs

t for all shock
dates s and all t. Observe that this result is true nonlinearly, that is, irrespective of the size
of dx.

Our next result speeds up the algorithm even further, for the case in which the transition
begins and ends at the same steady state (D0 = Dss) and the shock dx is infinitesimal. The
result concerns aggregate outcomes Ys

t . For any s ≥ 1, t ≥ 1, we define

Ft�s · dx≡ dY s
t − dY s−1

t−1 (17)

as the difference between the aggregate response of the output at t to a shock at date
s, and its response at t − 1 to a shock at date s − 1. Since equation (16) implies that
dyst = dys−1

t−1 for all s� t ≥ 1, one might conjecture that Ft�s is identically zero. But this
conjecture is not quite right, since the distribution in equation (14) is also changing over
time. The next lemma characterizes Ft�s.
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LEMMA 2: Assume that D0 = Dss. For infinitesimal dx, and any s ≥ 1, t ≥ 1, we have

Ft�s · dx= y′
ss

(
Λ′

ss

)t−1
dDs

1� (18)

PROOF: First, since D0 = Dss, in the absence of any shock (dx = 0) we have Yt = Yss,
yst = yss, and Ds

t = Dss for all t. Since y and Λ are differentiable, in the limit as dx → 0,
equation (14) implies

dY s
t = y′

ss dDs
t + (

dyst
)′

Dss� (19)

Subtracting dY s
t and dY s−1

t−1 and using the fact that equation (16) implies dyst = dys−1
t−1, we

obtain

Ft�s · dx= y′
ss

(
dDs

t − dDs−1
t−1

)
� (20)

Next, in the limit as dx→ 0, equation (15) implies both

dDs
t = Λ′

ss dDs
t−1 + (

dΛs
t−1

)′
Dss (21)

and

dDs−1
t−1 =Λ′

ss dDs−1
t−2 + (

dΛs−1
t−2

)′
Dss�

Subtracting and using the fact that equation (16) implies dΛs
t−1 = dΛs−1

t−2, we therefore
finally have simply

dDs
t − dDs−1

t−1 = Λ′
ss

(
dDs

t−1 − dDs−1
t−2

)
= (

Λ′
ss

)2(
dDs

t−2 − dDs−1
t−3

)
���

= (
Λ′

ss

)t−1
dDs

1� (22)

where the last line follows because, given that D0 = Dss, we have dDs−1
0 = 0 for all s ≥ 1.

Q.E.D.

The intuition for equation (18) is as follows. Suppose that we know the path of the
aggregate output Yt at all dates t = 0� � � � �T − 1 in response to a shock at date s − 1.
How does this compare to the path of Yt in response to a shock at date s, from date
t = 1 onwards? From Lemma 1, the behavior of agents at all dates is identical in both
cases. Therefore, the only difference is that the initial distribution in the second case is
Ds

1 rather than Dss. To first order, this difference in initial distribution affects aggregates
at all dates as if agents followed their steady-state behavior, which is what equation (18)
expresses.

For a given s, Ft�s can be interpreted as the impulse response to a “date-s fake news
shock”: a shock to date s announced at date 0, and retracted at date 1.13 At date 0, agents
react to the announcement, which leads to the distribution Ds

1. After the announcement

13This information structure is the same as that used by Christiano et al. (2010) to generate a boom-bust
episode in response a shock to productivity that later turns out not to happen. In our case, the “fake news”
shock for date s is unlearned at date 1. It is also related, though not formally equivalent, to the “noise shocks”
considered in the belief-driven business cycle literature literature (e.g., Lorenzoni (2009)).
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is retracted, they revert to steady-state policies, so the effect on output at all dates t ≥ 1 is
y′
ss · (Λ′

ss)
t−1 dDs

1. This expression can usefully be rewritten with the help of the following
definition.

DEFINITION 1: The expectation vector for outcome y at time t is defined by

Et ≡ (Λss)
tyss� (23)

For each grid point, the time path of Et represents the expected time path of outcome
y , in the steady state, for an agent starting at that grid point.14 Equation (18) then reads
Ft�s · dx= E ′

t−1 dDs
1.

We can now use Lemmas 1 and 2 to arrive at the following proposition.

PROPOSITION 1: Assume that D0 = Dss. For infinitesimal dx, define the (t� s)th element
of the fake news matrix F as

Ft�s · dx≡
{
dY s

0 � t = 0�
E ′
t−1 dDs

1� t ≥ 1�
(24)

where dY s
0 = (dys0)

′Dss and dDs
1 = (dΛs

0)
′Dss. Then, the Jacobian J of h satisfies the recur-

sion Jt�s =Jt−1�s−1 +Ft�s for t� s ≥ 1, with Jt�s =Ft�s for t = 0 or s = 0, and is therefore given
by

Jt�s =
min{s�t}∑
k=0

Ft−k�s−k� (25)

PROOF: When t� s ≥ 1, the recursion immediately follows from Lemma 1. When t = 0,
Jt�s · dx=Ft�s · dx= dY s

0 by definition.
Finally, when s = 0 and t ≥ 1, Lemma 1 implies that dy0

t = 0, and by equation (19),
we have Jt�0 · dx = dY 0

t = y′
ss dD0

t . Since dΛ0
t = 0 for all t ≥ 1, using (21) we can write

Jt�0 · dx = y′
ss dD0

t = y′
ssΛ

′
ss dD0

t−1 = · · · = y′
ss(Λ

′
ss)

t−1 dD0
1 = E ′

t−1 dD0
1, which is Ft�0 · dx in

(24). Q.E.D.

Proposition 1 characterizes the first-order aggregate response of heterogeneous agents
to changes in their environment at any date s, as a function of only dY s

0 (the aggregate ini-
tial response to shocks at date s), dDs

1 (the response of the distribution at date 1 to shocks
at date s), and the expectation vectors Et which can be obtained from the stationary solu-
tion. The intuition goes back to Lemmas 1 and 2: since policy functions only depend on
the distance to the shock, and since the steady-state expectation vectors Et give informa-
tion about the behavior of aggregates after shocks to the initial distribution, it is possible
to project the effect at any date t from knowledge of the effects of future shocks on ag-
gregates and distributions at date 0. The expectation vectors, in turn, are easy to compute
thanks to the following observation.

LEMMA 3: The expectation vectors defined in (23) solve the recursion Et = ΛssEt−1, with
E0 = yss.

14In the literature on control theory, the matrix with rows E ′
0�E ′

1� � � � is sometimes called the observability
matrix. This concept was also used by Reiter (2010) and Ahn et al. (2018).
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Algorithm for a Single Input and Output. Proposition 1 and Lemma 3 inspire our fast
“fake news” algorithm. When implemented with one-sided numerical differentiation,
given a small dx > 0, the algorithm consists of four steps:

1. Calculate ys0 and Λs
0 for each s using a single backward iteration from time T −

1. Combining these with the initial steady-state distribution, form two key objects:
the T scalars Ys defined by Ys dx ≡ dY s

0 = (dys0)
′Dss, representing the effect on the

output at date 0 from the shock to the input at date s; and the T ng × 1-vectors
Ds dx ≡ dDs

1 = (dΛs
0)

′Dss, giving the change in the distribution at date 1 from the
shock at date s.15

2. Calculate the T −1 ng ×1 expectation vectors Et ≡ (Λss)
tyss, using the recursion from

Lemma 3.
3. Combine results from the previous two steps to form the fake news matrix F from

Proposition 1. The first row (t = 0) of this matrix contains the Y ’s from step 1, and
other rows (t ≥ 1) contain the product E ′

t−1Ds from steps 1 and 2:

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y0 Y1 Y2 · · · YT−1

E ′
0D0 E ′

0D1 E ′
0D2 E ′

0DT−1

E ′
1D0 E ′

1D1 E ′
1D2 E ′

1DT−1

���
���

���
���

E ′
T−2D0 E ′

T−2D1 E ′
T−2D2 · · · E ′

T−2DT−1

⎤
⎥⎥⎥⎥⎥⎥⎦
� (26)

4. Using Proposition 1, build up the Jacobian Jt�s = Jt−1�s−1 +Ft�s recursively from its
first row and first column. By equation (25), the element (t� s) of the Jacobian J is
the sum of the (t� s) element of the F matrix and of all the elements on the diagonal
to its immediate upper left in (26). For instance, we have J2�2 = E ′

1D2 + E ′
0D1 +Y0.

At this stage, it is clear why this algorithm achieves significantly higher speed than the
direct method for computing the Jacobian: it requires only the computation of the prim-
itive objects Yt and Dt , which can be obtained with one backward iteration starting from
a shock at T − 1, and of Et , which can be obtained by recursive application of the steady-
state transition matrix, starting with the vector yss of steady-state outcomes.

Example: Krusell and Smith. Panel (a) of Figure 2 displays several columns of the Ja-
cobian J K�r for the Krusell–Smith model of Section 2. By the news-shock interpreta-
tion, these columns represent the time path of aggregate capital accumulation {Kt} when
households learn at date 0 about an increase in the rental rate rs at various dates s.

When the shock takes place at date 0, households are surprised by a higher return
on existing assets. They save some of this additional return (a standard wealth effect),
accumulating assets that they later progressively decumulate. When the shock takes place
at later dates s > 0, households also have an intertemporal substitution response, which
leads them to save in anticipation of the increase in r. This generates a “tent” pattern in
the Jacobian J .

Proposition 1 shows that the columns of J reflect the accumulation of terms from the
fake news matrix F . The columns of that matrix are depicted in panels (b) and (c). The

15In practice, it is usually more accurate to compute the differences dys0 and dΛs
0 by subtracting “ghost runs”

rather than steady states. That is, compute ys0 as described for some small dx > 0. Repeat the same procedure
with dx = 0 to get ỹs0. Set dys0 = ys0 − ỹs0. This procedure is more accurate than subtracting steady-state values
whenever those have not fully converged, that is, whenever ỹs0 �= yss . Do the same for dΛs

0. See Appendix C.1
of the Supplemental Material for more details on this and other ways to manage numerical error.
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FIGURE 2.—Jacobian JK�r and fake news matrix FK�r in the Krusell–Smith model.

first column of J is the same as that of F . By contrast, the other columns of J are a
combination of a shifted-down version of the first column of F and of its other columns
F·s for s > 0. By the “fake news” interpretation, these columns represent the behavior of
aggregate assets when households first save at date 0 in anticipation of an increase in r at
date s, and then dissave after the announcement is retracted at date 1.

One striking feature of the columns of the Jacobian J is that they converge to a regular
pattern around the main diagonal: the s = 50 impulse response around t = 50 is almost
the same as the s = 75 and s = 100 impulse responses around t = 75 and t = 100. In other
words, if the shock is anticipated far enough in advance, all impulse responses are just
shifted versions of each other. This reflects the fact that Ft�s goes to zero both for high
t (the effect of date-0 behavior through the distribution dies away) and for high s (the
effect of far-out shocks on date-0 behavior dies away), so that Jt�s ≈ Jt−1�s−1 for high t
and s.16

Generalization to Many Inputs and Outputs. In the general case in which the h function
has multiple inputs i and outputs o, the algorithm above is straightforward to apply sep-
arately for each i and o. However, some further speed gain can be achieved by observing
that certain objects can be reused several times. Specifically, the Ds depend only on the
input shock dXi, so they only need to be computed once per input and can be written as
Di

s. Moreover, the Et defined in step 2 depend only on the output of interest dYo, so they
only need to be computed once per output and can be written as Eo

t . By contrast, the Ys

defined in step 1 depend on both the input shock dXi and the output of interest dYo.
They are computed by doing a backward iteration in response to each input shock i, and
then taking the aggregate response of each o for each s. This delivers a Yo�i

s for each o
and i. The Fo�i matrix can then be computed as in equation (26), but with Yo�i in the first
row, and the products (Eo

t )
′Di

s in the other rows t, s.

Implementation and Accuracy. We suggested implementing our algorithm with one-
sided numerical differentiation. This is simple in practice, but introduces small errors
from the differentiation procedure. In Appendix C.1, we discuss alternatives, including
two-sided numerical differentiation, which reduces error, and automatic differentiation,
which eliminates it.

16This “asymptotic time invariance” property is a general feature of the Jacobians of heterogeneous-agent
problems. A previous version of this paper (Auclert, Bardóczy, Rognlie, and Straub (2019)) provided a formal
proof.
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In Appendix D.1, we evaluate the errors when computing the Jacobian J K�r in Figure 2.
We use as a benchmark the Jacobian that results from the direct method with automatic
differentiation.

The conclusions from this exercise are as follows. First, under automatic differentiation,
the direct and the fake news method deliver exactly the same Jacobian, to near-machine
precision. This verifies Proposition 1. Second, two-sided numerical differentiation is al-
ways more accurate than one-sided numerical differentiation, closing the gap with the
automatic differentiation solution by one to two orders of magnitude. Third, when imple-
mented with numerical differentiation, the fake news method is typically more accurate
than the direct method. In all cases, the errors are small, less than 0.01% of the peak
response.

Efficiency. Table II displays the time it takes to compute J ’s for the heterogeneous-
agent block of each of our three benchmark models: the Krusell–Smith model already
introduced, a one-asset HANK model with endogenous labor described in Appendix B.2,
and a two-asset HANK model described in Appendix B.3. We report the times with one-
sided numerical differentiation. The speed-up from using the fake news rather than the
direct algorithm is very large in all cases: a factor of over 200 for all models.

What is the source of the large efficiency gain? When there are nx inputs and ny outputs,
the direct algorithm discussed at the top of this section requires nxT

2 backward “steps”
and nxT

2 forward “steps.” By contrast, the fake news algorithm requires nxT backward
steps and ny(T − 1) applications of the matrix Λss to construct the expectation vectors
Et , reducing computational effort in steps 1 and 2 by a factor of around T , which in our
application is T = 300.17,18

TABLE II

DIRECT AND FAKE NEWS ALGORITHMS TO COMPUTE 300 × 300 JACOBIANS J

Krusell–Smith HD Krusell–Smith One-Asset HANK Two-Asset HANK

Direct 21 s 2102 s 156 s 956 s
step 1 (backward) 13 s 1302 s 132 s 846 s
step 2 (forward) 8 s 800 s 24 s 111 s

Fake news 0.086 s 10.467 s 0.317 s 3.498 s
step 1 0.060 s 8.654 s 0.236 s 3.159 s
step 2 0.011 s 1.061 s 0.022 s 0.119 s
step 3 0.011 s 0.758 s 0.045 s 0.201 s
step 4 0.003 s 0.003 s 0.014 s 0.018 s

Grid points ng 3500 250,000 3500 10,500
Inputs nx 2 2 4 5
Outputs ny 2 2 4 4
Jacobians nx × ny 4 4 16 20

17The computation of expectation vectors in step 2 takes far less time than the backward iteration in step 1,
especially for the more complex models, because it only requires repeatedly multiplying by Λss—which can
be split into multiplication by a small transition matrix for the exogenous state, and multiplication by a highly
sparse matrix with policies for endogenous states, both of which we implement efficiently.

18There are two additional steps required for the fast algorithm, steps 3 and 4. Step 3 involves the multipli-
cation of T × ng and ng × T matrices, which has a cost proportional to ngT

2 for each input-output pair—but
since matrix multiplication is implemented extremely efficiently by standard numerical libraries, this is less of a
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Jacobians as Sufficient Statistics for the Heterogeneous-Agent Problem. Since the Jaco-
bians J locally describe the mapping Y = h(X), they are all that is needed to capture
the local behavior of the heterogeneous-agent problem. This observation implies that all
of the complexity introduced by heterogeneity in any given model boils down entirely to
the Jacobian of the resulting heterogeneous-agent problem. This facilitates the analysis of
the importance of heterogeneity for general equilibrium, and the connection of models to
the data. For example, in simple general equilibrium models, the Jacobian of aggregate
consumption with respect to income J C�y is all that is needed for general equilibrium
(Auclert, Rognlie, and Straub (2018)).

Scope and Limitations. In addition to the Krusell–Smith model, the two other models
we consider in this paper fit into the framework of equations (10)–(12), so that the fake
news algorithm applies to them directly. Our one-asset HANK model features a multidi-
mensional choice over both labor and asset policies. Our two-asset HANK model features
two endogenous states, a liquid and an illiquid asset.

A number of other models can also be directly cast into the framework of equations
(10)–(12). This includes models where the inputs X matter directly for the transition rate
between employment states (as in Gornemann, Kuester, and Nakajima (2016)), and mod-
els where higher-order moments of the distribution of agents are relevant as an output Y
(such as the variance of consumption or a CES price index). It also includes models where
some non-grid-based representation of the value function, such as Chebyshev polynomi-
als, is used. Appendix A.1 covers these direct applications.

Other models require a slightly more general framework than (10)–(12). This includes
models where the distribution of agents features entry and exit (e.g., Hopenhayn (1992)
and simple overlapping generations models), or models where a nonlinear function of the
distribution, such as the uth quantile function, is relevant. It also includes models where
the distribution is represented parametrically, as in Algan, Allais, and Den Haan (2010).
Appendix A.2 covers these more complex applications, which require a modification of
Proposition 1, after which the fake news algorithm continues to apply.

Appendix A also covers how to approach models featuring discrete choice: for example,
over the extensive margin of labor supply (e.g., Chang and Kim (2007)), or over resetting
a price or investing in the presence of fixed costs (Golosov and Lucas (2007), Khan and
Thomas (2008)). These fit into our original framework when taste shocks smooth out the
discrete choice (Appendix A.1), and into our extended framework in other cases (Ap-
pendix A.2). Since these decision problems are often naturally posed in multiple stages,
in Appendix A.3 we further extend our framework to accommodate multiple stages within
each period.

Our extended framework in Appendix A allows for very general equations governing
the distribution Dt and aggregate outputs Yt . An important limitation, however, is that it
does not change the structure of equation (10); in particular, the value function vt is not al-
lowed to depend on Dt . This prevents us from applying the fake news algorithm when the
behavior of heterogeneous agents depends on the anticipated future distribution through
the value function, in a way that cannot be intermediated via aggregates Xt in general
equilibrium. This includes, for instance, OLG models with an endogenous distribution of
bequests that are received in mid-life (e.g., de Nardi (2004), Straub (2017)), labor-search
models with wage posting or individual bargaining (e.g., Burdett and Mortensen (1998),

bottleneck overall than the backward iteration in step 1, especially for models like the two-asset HANK where
backward iteration is especially complex. Step 4 is even faster, since it is a simple recursion on T ×T matrices.
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Postel-Vinay and Robin (2002)), and money-search models where the anticipated distri-
bution of cash balances matters directly for agent decisions (e.g., Molico (2006)).19

4. GENERAL EQUILIBRIUM IMPULSE RESPONSES

A typical general equilibrium heterogeneous-agent model consists of one or more
heterogeneous-agent problems of the type described above, as well as additional sets of
equations that govern production, market clearing, and so on. In this section, we explain
how to solve for general equilibrium impulse responses once the Jacobians of the under-
lying heterogeneous-agent problem(s) are known.

4.1. General Equilibrium in the Sequence Space

A general equilibrium model in the sequence space is characterized by a system of
nonlinear equations

F(X�Z)= 0� (27)

where Z denotes the path of exogenous “shocks,” with Zt an nz × 1 vector at each t,
and X denotes the path of endogenous variables, with Xt an nx × 1 vector at each t.
We assume that the model has as many equations as endogenous variables, and that it
is locally determinate, that is, that F is invertible near the steady state (Xss�Zss). Then,
equation (27) truncated to a horizon of T is a nonlinear system of nx × T equations in
nx ×T endogenous variables, which delivers the general equilibrium impulse response to
any change dZ in the path of Z relative to Zss.

We solve for the impulse responses of the model to first order around the steady state.
By the implicit function theorem, the response of endogenous variables dX to the shock
dZ is given by

dX = −F−1
X FZ dZ ≡ GdZ� (28)

where the Jacobians FX and FZ are evaluated at (Xss�Zss), and we define G as the linear
map from shocks dZ to general equilibrium impulse responses dX.

Reducing Dimensionality With Variable Substitution. One difficulty with writing models
in the form (27) is that the dimensionality can grow large enough that solving the linear
system becomes a bottleneck. Quantitative DSGE models often have dozens of endoge-
nous variables, which with T = 500 implies that F and X can have dimension 10,000 or
higher.

In applications, it is common to reduce dimensionality by explicitly solving for some
variables in terms of others. Suppose that F is separated into F1 and F2, and that
F2(X�Z) = 0 can be solved in closed form to obtain X as a function of some smaller
vector U of nu < nx unknowns: X = M(U�Z). Substituting M into F1, and defining
H(U�Z)≡ F1(M(U�Z)�Z), we can rewrite (27) as the reduced system

H(U�Z)= 0� (29)

For instance, for the Krusell–Smith model from Section 2, Xt includes capital Kt , returns
rt , and wages wt , and F includes asset market equilibrium and the factor demand equa-
tions. But we solve out the factor demand equations to write rt and wt in terms of Kt−1

19Sequence-space Jacobians may nevertheless be useful in solving some versions of these models, as recently
demonstrated by Fukui (2020) (in a wage-posting model) and Alves (2020) (in a sequential auction framework).
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and Zt in (5) and (6), and writing this solution as the function M, we are left with Ut =Kt ,
and an H that includes only asset market equilibrium.

We use the implicit function theorem to solve for dX in two steps:

dU = −H−1
U HZ dZ� (30)

dX = MU dU + MZ dZ = GdZ� (31)

When the number of unknowns nu is much smaller than the number of endogenous vari-
ables nx, this is much more efficient than applying the implicit function theorem directly
to F.

Calculating Jacobians of H and M. To implement (30) and (31), we need the Jacobians
of H and M. In a heterogeneous-agent model, these functions will include the aggregate
actions of agents, for which we can compute the relevant Jacobians using the fake news
algorithm from Section 3. We can then combine these Jacobians with the rest of the model
using the chain rule.

In models where H and M are sufficiently complex, it is helpful to obtain their Jaco-
bians with a more automated approach, rather than applying the chain rule manually as
we did in Section 2. In Appendix C.2, we describe how to build up H and M as the directed
acyclical graph (DAG) of smaller blocks, and in Appendix C.3, we show how to compose
the Jacobians of these blocks to efficiently obtain the Jacobians of the model. This mod-
ular approach allows us to efficiently handle models with a large number of aggregate
equilibrium conditions, such as the two-asset model in Appendix B.3, and we use it to
solve all the models in this paper. For instance, Figure 3 shows the DAG representation
of the Krusell–Smith model.

Another possibility is to use an off-the-shelf automatic differentiation package. How-
ever, directly using such a package on the entire functions H and M, including the parts
that deal with heterogeneous agents, fails to take advantage of the special structure of
heterogeneous-agent Jacobians, and can therefore be quite costly.20 It is far more effi-
cient to use the fake news algorithm to compute Jacobians for the heterogeneous-agent
part of the problem, and then supply these Jacobians to the package.

Finally, a simple (but less accurate) option is to numerically differentiate H and M. As
with automatic differentiation, a direct application of numerical differentiation is ineffi-

FIGURE 3.—DAG representation of Krusell–Smith economy.

20See Ahn, Moll, and Schaab (2018) for an example of directly applying automatic differentiation to the
entire H and M. Effectively, the computer then follows an approach resembling the direct method discussed
in Section 3.1. See also Childers (2018) for an application of automatic differentiation to heterogeneous-agent
models.
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cient, but can be made much faster by replacing the heterogeneous-agent parts of these
functions with linearized counterparts obtained using the fake news algorithm.21

4.2. Numerical Accuracy: Equivalence to the Reiter Method

We now establish that our implementation of the sequence-space Jacobian (“SSJ”)
method is accurate by comparing the solution it produces to that obtained using the Re-
iter method.

In principle, the two methods should give the same solution, that is, the first-order
solution of the model in aggregates. Indeed, they are both intended to solve to first or-
der the same system of equations, which includes (10)–(12) and additional equations in
(27). There are, however, two potential concerns to rule out. First, both our method and
Reiter—like all first-order perturbation methods—are subject to error when computing
derivatives. Second, rather than solving the true infinite-dimensional system in sequence
space, our method truncates sequence-space Jacobians at some high T .22

To verify accuracy, we choose as our benchmark the Reiter method with automatic
differentiation. Automatic differentiation, unlike numerical differentiation, ensures that
there is no approximation error when computing derivatives. We then show that the SSJ
method—with the same parameterization on the same grid and T = 300, and the fake
news algorithm implemented using automatic differentiation—delivers identical impulse
responses to Reiter, and that its state-space law of motion is also identical.23 We find that
the SSJ method with numerical differentiation delivers larger but still relatively minor
errors. We finally discuss practical considerations in choosing T .

As is well known, the main bottleneck of the Reiter method is that it cannot be used
directly with large idiosyncratic state spaces without model reduction (the method scales
in the cube of the size of the idiosyncratic state space). For this reason, we restrict our
comparison to the Krusell–Smith model and the one-asset HANK model, each computed
on a small grid of ng = 300 points (100 asset grid points and 3 income states). We describe
our implementation of the Reiter method in Appendix C.6.

Preliminaries: Benchmark Representative-Agent Models. Before proceeding, we first
check that our implementation of the SSJ method is accurate for models without hetero-
geneity. We verify that the linear impulse responses of output to all shocks in the Smets
and Wouters (2007) model and in the Herbst and Schorfheide (2015) model—two bench-
mark models used extensively for estimation in the literature—are identical, to within 5
and 14 digits respectively, to those obtained using the first-order solution from Dynare,
which uses standard state-space methods for computation.24

21For instance, in the Krusell–Smith model, one would rewrite household asset demand as K−Kss = J K�w ·
(w −wss)+J K�r · (r − rss), using the Jacobians J K�w and J K�r calculated with the fake news algorithm.

22Recall from equations (10)–(12) that we take as given a discretized model, which we take to be the “true”
model. We compare the solution to the Reiter method applied to the same discretized model. If the “true”
model is continuous instead, getting to the discretized model in the first place involves some error, but this
does not affect the comparison here.

23Note that this usage of automatic differentiation in the backward iteration of the fake news algorithm,
which is discussed in Section 3.2, is distinct from the usage of automatic differentiation discussed in Section 4.1:
the former is to obtain error-free derivatives of v, Λ, and y in (10)–(12), while the latter is to obtain derivatives
of H .

24Impulse responses and numerical errors are plotted in Appendix E.5.



SEQUENCE-SPACE JACOBIAN 2395

FIGURE 4.—Equivalence between the SSJ and the Reiter (2009) methods.

Accuracy of Impulse Responses. Figure 4 compares the impulse responses from the
Reiter method with automatic differentiation, and the impulse responses produced by
our SSJ method using the three types of differentiation discussed in Section 3.2. All pan-
els compute impulse responses to a 1% TFP shock with persistence ρ = 0�9, and the SSJ
truncation horizon is chosen at T = 300. The top panels show the impulse response of
capital in the Krusell–Smith model. The bottom panels show the impulse response of
output in the one-asset HANK model. Panels (a) and (c) plot the impulse responses in
levels using all four methods. The impulse responses look visually identical. To get a sense
of the differences, panels (b) and (d) plot the absolute value of the differences between
the lines in the left panel and the Reiter solution at each t. When solved with automatic
differentiation, our method yields essentially the same result as the Reiter solution with
automatic differentiation, up to ten digits of accuracy. Applying our method with numeri-
cal differentiation predictably introduces a small error, comparable to the errors typically
found when implementing the Reiter method with numerical differentiation. Despite this
error already being small, one can reduce it significantly at just twice the computational
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cost by using two-sided numerical differentiation. This is important because two-sided
numerical differentiation is often easier to implement than automatic differentiation in
practice.

Accuracy of the State-Space Law of Motion. While comparison of individual impulse
responses is a useful proof of accuracy, a more definitive test is to verify that the state-
space laws of motion are identical. In Appendix C.7, we show how to recover the state-
space law of motion from our sequence-space solution, by using some of the intermediate
outputs of the fake news algorithm. Using this method, we compute the matrices describ-
ing the state-space law of motion in the Krusell–Smith model and the one-asset HANK
model (with automatic differentiation), and we compare these matrices to those from the
Reiter method. We find that the sup norm of the difference between these matrices is
below 10−8 for both models.

Choice of Truncation Horizon T . We have established that our method, for large
enough T , delivers the same solution as the Reiter method. In practice, however, a sepa-
rate computation via the Reiter method is usually not available as a benchmark. In these
cases, how can one ensure that T is, in fact, high enough? To answer this question, we
now examine the sensitivity of the sequence-space solution to T .

We take as our benchmark the sequence space solution with a very large T (T = 1000),
well above the horizon required to achieve agreement with the Reiter method in our
previous exercise. We then see how the impulse response in the first 100 periods differs
from this benchmark as we reduce T . Throughout, we compute Jacobians with one-sided
numerical differentiation, since it is the easiest and most commonly used in practice.

Figure 5 performs this exercise for our three models, each in response to a 1% shock to
TFP with persistence ρ. In the left panel, ρ= 0�9. We see that even for truncation horizons
T far shorter than the T = 300 used in this paper, the RMSE of the output impulse
response dY/Yss is near zero in both the Krusell–Smith and one-asset HANK models.
The two-asset HANK model, on the other hand, only achieves five digits of accuracy by
T = 300. This is because that model has much greater internal persistence: the magnitude
of the underlying output impulse response at t = 300 is above 10−4%, while it is below
10−9% for the two other models. (By that point, the shock itself is below 10−13%.)

FIGURE 5.—Impulse response error (relative to T = 1000) as a function of the truncation horizon T .
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The right panel looks at a more extreme case, with ρ= 0�99. Here, the shock at t = 300
remains at 5% of its level on impact. Now the two-asset HANK model achieves less than
three digits of accuracy even with T = 300, and about five digits of accuracy with T = 500.
This indicates the importance of a high T when dealing with highly persistent shocks,
especially in models with high internal persistence.25

Overall, to be sure that the truncation horizon is long enough, it is most important
to ensure that both the shock itself and the endogenous impulse response—which may
feature some internal persistence—are near zero by T . An additional check is to make
sure that changing T to a higher value does not change the impulse response: as Figure 5
indicates, when T is not yet high enough to deliver accuracy, the results are sensitive to
changes in T . These two simple checks ensure that one has minimized truncation error,
leaving numerical differentiation as the only possible remaining source of error relative
to the true first-order solution of the model in aggregates.

5. APPLICATION TO ESTIMATION

We now discuss how to use the sequence-space Jacobian method to estimate models
on time-series data. This application uses the equivalence of impulse responses with the
moving-average (MA) representation of the model with aggregate shocks. This equiva-
lence, in turn, follows immediately from the certainty equivalence property of first-order
perturbation methods such as ours (see, e.g., Simon (1956), Theil (1957), Judd and Guu
(1993), and Boppart, Krusell, and Mitman (2018)).

We assume that the exogenous shocks follow independent moving-average processes,
that is, the vector-valued stochastic process dZ̃ is given by

dZ̃t =
∞∑
s=0

dZsεt−s� (32)

where εt is an nz vector of mutually i.i.d. standard normally distributed innovations, and
{dZt+s}s are the impulse responses to a unit innovation to εt .

Equation (28) tells us that the impulse responses of endogenous variables dX can be
obtained by simple matrix multiplication of the impulse of shocks dZ with the general
equilibrium Jacobian G. Certainty equivalence then implies that the stochastic process
dX̃ follows the moving-average process

dX̃t =
T−1∑
s=0

dXsεt−s� (33)

The rapid computation of this MA(T − 1) representation is the foundation of our ap-
plications in this section, which will build up to likelihood-based estimation of our three
models.

25Interestingly, the error in the first 100 periods in the other two models is below 10−9 with T = 300, in spite
of the shock’s persistence. Of course, there is still error near t = 300, as is inevitable when the shock has not
died out by the truncation horizon, but this error does not propagate backward in these models to nearly the
same extent. This lack of backward propagation is related to the weaker internal persistence in these models
relative to the two-asset HANK model.
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FIGURE 6.—Simulations and second moments of the Krusell and Smith (1998) model for AR(1) TFP,
ρ= 0�9.

5.1. Simulation

As pointed out by Boppart, Krusell, and Mitman (2018), the formulation in equation
(33) is useful to simulate sample paths for aggregate variables generated by any model,
including a heterogeneous-agent model. Assume impulse responses dX have been com-
puted with truncation horizon T . Then, a procedure to simulate a random sample path of
dX̃ is as follows: first, draw paths for the shock innovations, that is, a sequence {εt} up to
a large horizon T. Second, evaluate (33) for each t. Finally, discard the first T elements.
This procedure generates a random sample path of length T− T .26 Panel (a) of Figure 6
presents an example of such simulations for the Krusell–Smith model with AR(1) TFP
shocks.27

Table I shows that, given the G matrices, this simulation procedure is extremely fast in
practice: to draw sample paths of length 100,000 for the observables used in the estimation
of our four main models at their posterior modes in Section 5.4, we only need 5 ms for the
Krusell–Smith model (one observable, one shock), 22 ms for the one-asset HANK model
(three observables, three shocks), and 105 ms for the two-asset HANK model (seven
observables, seven shocks).

One use of these simulated sample paths, as Boppart, Krusell, and Mitman (2018)
showed, is to compute the second moments of outcomes—their variances and covari-
ances, at various lags and leads. In the next section, however, we will instead discuss a
more efficient, analytical way of computing these moments, based directly on the impulse
responses dX.

5.2. Analytical Second Moments

The autocovariances of the vector-valued stochastic process dX̃t with MA coefficients
dX are given by the standard expression (see, for instance, Box and Jenkins (1970) and

26In Appendix E.3, we explain how to extend this procedure to simulate panels of individuals.
27For this simulation, we assume an AR(1) process for TFP with persistence ρ = 0�9, and innovations with

standard deviation of σ = 0�02. We set T = 300 and T = 500, so there are 200 periods of observation.
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Hamilton (1994)):

Cov(dX̃t � dX̃t′)=
T−1−(t′−t)∑

s=0

(dXs)(dXs+t′−t)
′� (34)

The covariance in (34) only depends on the distance t ′ − t, not on t and t ′ separately.
In panel (b) of Figure 6, we provide an illustration of these second moments for the pa-

rameterization of the stochastic Krusell–Smith model simulated in panel (a). The figure
shows the correlations of productivity, output, consumption, and capital with the underly-
ing productivity process, at various lags. The figure shows that capital and consumption—
and to a much lesser extent, output—tend to lag productivity. This reflects the typical
transmission mechanism of TFP shocks in RBC models.

As Table III reveals, it is very fast to calculate autocovariances in this way: for our esti-
mation exercises of Section 5.4, moving from the MA(T − 1) representation to a full set
of autocovariances, which are stacked in constructing the matrix V, only takes between 0.4
and 0.7 milliseconds.28 These autocovariances can be used directly to calibrate or estimate
a model—as in the simulated method of moments, but without the need for explicit sim-
ulation.29 Alternatively, they can be used to evaluate the likelihood function, as an input
to likelihood-based estimation on time-series data. This is where we turn next.

5.3. Evaluating the Likelihood Function

The typical approach to likelihood-based estimation in the DSGE literature is to com-
pute the likelihood by applying the Kalman filter to the model’s state-space represen-
tation (see, e.g., Smets and Wouters (2007), An and Schorfheide (2007), Herbst and
Schorfheide (2015), and Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016)).
This approach is appropriate for models with small state spaces. With the large state
spaces that characterize heterogeneous-agent models, however, evaluating the likelihood
in this fashion can be prohibitively slow.

We now suggest an alternative approach: to use the MA representation provided by the
sequence-space Jacobian method to rapidly compute (and recompute) the likelihood. The
idea of using the MA representation of a DSGE model directly to calculate the likelihood
goes back to at least Hansen and Sargent (1981). There are multiple ways to perform this
calculation. The approach we employ in our application builds directly on the analytical
moments from the previous section.30 Let

dX̃obs
t = BdX̃t + ut (35)

denote the vector of nobs observables whose likelihood we would like to determine.31 Here
{ut} is i.i.d. normal with mean 0 and covariance matrix Σu, and B is an nobs × nx matrix.

28This is facilitated by using the fast Fourier transform to calculate (34) in a highly efficient way, a process
that we describe in Appendix E.4.

29For recent examples of this approach to estimation, see Auclert and Mitman (2020) and Bardóczy (2020).
For a previous instance of an analytical approach to calculating second moments from a heterogeneous-agent
model, see Harmenberg and Sievertsen (2017).

30Recent papers in the DSGE literature that use the same approach include Mankiw, Gregory, and Reis
(2007) and Schmitt-Grohé and Uribe (2010).

31These may include moments of micro data (if we interpret ut as sampling error), since we can construct
model impulse responses for such moments using our extended methods from Appendices A.1 and A.2. More
comprehensively integrating micro data into time-series estimation requires other methods. For promising
work along these lines, see Chang, Chen, and Schorfheide (2018) and Plagborg-Møller and Liu (2019).
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Since dX̃obs
t is a linear combination of the εt and ut terms, it has a multivariate normal

distribution. Moreover, its second moments are a simple linear transformation of those
of dX̃t :

Cov
(
dX̃obs

t � dX̃obs
t′

) = 1t=t′ ·Σu +BCov(dX̃t � dX̃t′)B
′� (36)

We stack these covariances into a large symmetric nobsTobs × nobsTobs matrix V, where Tobs

is the number of time periods in our data.32 The log-likelihood function is then the con-
ventional log multivariate density. Dropping the constant term, it can be expressed as a
function of the observed data dX̃obs = (dX̃obs

t ) (stacked as an nobsTobs-dimensional vector)
as

L= −1
2

log det V − 1
2
[
dX̃obs

]′
V−1

[
dX̃obs

]
� (37)

We evaluate this expression by performing a Cholesky decomposition of V, from which
we can quickly calculate both the log determinant log det V and the quadratic form
[dX̃obs]′V−1[dX̃obs].33 Table III reveals that this is quite efficient in our applications: cal-
culating L takes about 2 milliseconds or less in all except the two-asset HANK, where it
takes about 12 milliseconds.

A weakness of this approach is that the Cholesky decomposition of V requires time
proportional to n3

obsT
3
obs. As the number of time-series observations Tobs grows, this can

become quite costly.34 An alternative that scales better with Tobs is to use the Whittle
approximation to the likelihood, as in Hansen and Sargent (1981) and Plagborg-Møller
(2019), which can be efficiently calculated using the Fast Fourier Transform.

Another approach is to construct a state-space system from the MA representation,
including the most recent T realizations of the innovations εt , and then apply the Kalman
filter. This system is distinct from the usual state-space one, and does not scale with the
underlying heterogeneity—but since its size is proportional to the truncation horizon T ,
it is often large enough in our applications that applying the Kalman filter is costly. Still,
this approach has a number of advantages: for instance, its cost only scales linearly in Tobs,
and if desired we can apply the Kalman smoother to do inference on shocks.

5.4. Bayesian Estimation

In this section, we perform a Bayesian estimation of macro parameters for our three
example economies. Our primary objective is to illustrate that, by reusing Jacobians, this
can be done very efficiently with the SSJ method. We first estimate the posterior mode,
and then use a standard Markov chain Monte Carlo method (Random Walk Metropolis–
Hastings, RWMH) to trace out the shape of the posterior distribution, as described in
Herbst and Schorfheide (2015). We leave a detailed understanding of the economics be-
hind the estimation results to future research.

32Missing or mixed-frequency data can be easily accommodated by replacing the B in (35) with a time-
specific Bt , which can have a time-varying number of rows. The second term on the right in (36) then becomes
Bt Cov(dX̃t � dX̃t′)B

′
t′ .

33We provide an accuracy check of our implementation of (37) by using it to find the posterior modes of
the Herbst and Schorfheide (2015) and the Smets and Wouters (2007) models, on their original data sets.
Table F.1 in Appendix F.1 shows that the modes are numerically identical to those obtained in Dynare given
the state-space formulations of these models.

34One relatively minor modification, which exploits the block Toeplitz structure of V, is to use Levinson
recursion instead of the Cholesky decomposition (e.g., Meyer-Gohde (2010)). Asymptotically, this scales with
T 2

obs instead, although for our applications it did not deliver a major improvement.
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Reusing Jacobians. Likelihood-based estimation involves computing the likelihood
function many times for different parameters. In our case, given equation (37), this re-
quires computing the covariance matrix of model observations V for each parameter draw,
which in turn requires computing the impulse responses dX. Our key innovation is to
make the repeated computation of dX very efficient by reusing Jacobians. The benefits of
this procedure, however, depend on which parameters we are estimating.

Consider first the estimation of the parameters of shock processes. In this case, the ma-
trix G in equation (31) is unchanged across parameter draws, since these parameters only
change the vector dZ. Hence, it is sufficient to compute G once, and then for each param-
eter draw form dX, V, and L without re-solving the model. This separation constitutes
a clear advantage of our sequence-space approach relative to a state-space approach to
estimation.

Next, consider the estimation of parameters that do not change the steady state of the
heterogeneous-agent problem. This includes parameters that govern price stickiness, cap-
ital adjustment costs, or monetary policy rules. These parameters also do not affect the
Jacobian of the heterogeneous-agent problem. Hence, in the construction of the total
model Jacobian in equation (56), these Jacobians can be held fixed at their initial value.35

Since heterogeneous-agent Jacobians are by far the most time-consuming step in obtain-
ing G (see Table I), this is still very fast.

Finally, consider estimating parameters that do change the steady state of the
heterogeneous-agent problem. There, the Jacobian of that problem needs to be recom-
puted for each new draw of parameters, together with the steady state. While the fake
news algorithm speeds up Jacobian computation considerably, the additional time cost
of re-evaluating the steady state on each draw remains substantial, and we do not pursue
this type of estimation here.36

Priors, Data, and Estimation. We now proceed to our main estimation exercise. Across
all models, we assume the following prior distributions. We assume that the priors for
the standard deviations of all shocks are Inverse-Gamma distributed with mean 0�4 and
standard deviation 4. We assume that the priors for persistence parameters are Beta dis-
tributed with mean 0�5 and standard deviation 0�2. We also assume no measurement er-
ror, Σu = 0. We describe the priors of model-specific parameters below. We search for the
posterior mode using a standard optimization routine, starting with the prior mode as our
initial guess.37 We run a standard RWMH in which the proposal distribution is a multi-
variate normal with variance equal to the inverse Hessian at the posterior mode, scaled
by a factor c that is adjusted to get an acceptance rate around 25%.38 We simulate the
Markov chain for 100,000 draws, discarding the first 50,000.

35This statement is true, more generally, of the Jacobian of any block in the DAG whose parameters do not
change.

36In the literature, Winberry (2018), Auclert, Rognlie, and Straub (2020), and Bayer, Born, and Luetticke
(2020) all calibrated the steady-state micro parameters governing the heterogeneous-agent problem, and used
time-series data only to estimate macro parameters, as we do here. In recent work, Acharya, Cai, Del Negro,
Dogra, Matlin, and Sarfati (2020) used time-series data to also estimate micro parameters, with sequential
Monte Carlo methods to speed up estimation. Also see Plagborg-Møller and Liu (2019), who estimated micro
parameters using a mix of micro and macro data.

37Specifically, we use the SciPy implementation of L-BFGS-B, imposing some non-binding bounds to guide
the routine away from poorly-behaved regions of the parameter space.

38One simple improvement, which we do not attempt, might be to use a proposal distribution where a
positive probability of draws only changes the parameters of shock processes, not other parameters. Since we
can re-use G, calculating the likelihood for these draws would be much faster.
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For each model, we use the same U.S. data series as those used in Smets and Wouters
(2007), over the same sample period (1966:1–2004:4). We linearly de-trend the logs of
all growing variables (output, consumption, investment, wages, hours) and take out the
sample means of inflation and nominal interest rates. The individual models are then
estimated as follows.

Krusell–Smith Model. We estimate our Krusell and Smith (1998) model with a single
shock, TFP, and a single time series {dXobs

t }, output. We assume that TFP shocks follow
an ARMA(1�1) process, (1 − ρL)dZ̃t = (1 − θL)σεt , where L denotes the lag operator.
We estimate the roots ρ, θ as well as the standard deviation σ . Table F.2 in Appendix F
shows the estimates, finding a persistent AR root ρ≈ 0�9, as well as a relatively small MA
component θ ≈ 0�03. Recursive means and univariate plots of the posterior distribution
sampled with the RWMH algorithm suggest that the Markov chain has converged and the
posterior distribution is well behaved.

One-Asset HANK Model. We estimate our one-asset HANK model both with only
shock parameters, and with shock and model parameters together. In both cases, we use
three shocks (monetary policy shocks, government spending shocks, and price markup
shocks) and three time series (output, inflation, and nominal interest rates). Each shock
is modeled as an AR(1) with its own standard deviation and persistence. Thus, there
are six shock parameters for this model. The first four posterior columns in Table F.3 in
Appendix F show our estimates when only estimating those shock parameters; we find
persistent government spending shock and price markup shocks, while monetary policy
shocks are less so. The last four posterior columns in this table report the estimated shock
and model parameters in the joint estimation. We find a Taylor coefficient φ of around
1.3, a modest responsiveness of the Taylor rule to output φy ≈ 0�13, and a Phillips curve
slope parameter κ around 0�14. These are standard values in the literature. Again, recur-
sive means and posterior distribution plots suggest good convergence properties for the
RWMH algorithm.

Two-Asset HANK Model. We add all seven shocks from Smets and Wouters (2007) to
the two-asset model: shocks to TFP, government spending, monetary policy, price and
wage markups. The two exceptions are that we use discount factor shocks rather than
“risk premium” shocks (both shock the Euler equation and are thus very similar), and we
shock firms’ first-order conditions for capital instead of using investment-specific tech-
nology shocks.39 We estimate the parameters of these seven shock processes using time-
series data on output, consumption, investment, hours, wages, nominal interest rates and
price inflation. As with the one-asset model, we estimate two versions of the model, one
with only shock parameters and one with shock and model parameters (Table F.4 in Ap-
pendix F). Compared to the one-asset model, we find here somewhat less responsive coef-
ficients of the Taylor rule on inflation and output at the mode, but also a much wider 90%
credible interval. We also find smaller Phillips curve slope parameters κp, κw. We also
estimate the degree of capital adjustment costs εI and find it to be in line with standard
estimates from the literature. The evolution of the recursive means across the 150,000
non-discarded draws, as well as the estimated posterior distributions, suggest good con-
vergence properties when we only estimate shocks, but less stability when estimating both

39Investment-specific technology shocks are known to have counterfactual implications for the relative price
of investment—see, for instance, Justiniano, Primiceri, and Tambalotti (2011).
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TABLE III

ESTIMATION TIMES

Krusell–Smith One-Asset HANK Two-Asset HANK

Shocks Shocks Model + Shocks Shocks Model + Shocks

Single likelihood evaluation 0.639 ms 2.353 ms 56.001 ms 13.992 ms 227.245 ms
step 1 (MA) 0.015 ms 0.091 ms 53.686 ms 1.139 ms 214.396 ms
step 2 (autocovariances) 0.041 ms 0.144 ms 0.146 ms 0.706 ms 0.712 ms
step 3 (log-likelihood) 0.582 ms 2.117 ms 2.169 ms 12.148 ms 12.137 ms

Posterior mode optimization 0.06 s 0.66 s 13.95 s 16.22 s 522.03 s
no. of evaluations 81 237 580 1094 6560

Random Walk Metropolis–Hastings 132.40 s 568.42 s 11,217.00 s 2899.58 s 42,563.90 s
no. of evaluations 200,000 200,000 200,000 200,000 200,000
acceptance rate 0.253 0.248 0.253 0.255 0.241
scaling factor c 2.50 1.10 0.65 0.40 0.10

No. of shocks 1 3 3 7 7
No. of estimated shock parameters 3 6 6 14 14
No. of estimated model parameters 0 0 3 0 5
Total no. of estimated parameters 3 6 9 14 19

shocks and parameters. This could be due to the fact that the model is not designed ex-
plicitly to fit the hump shapes in the time series; see Auclert, Rognlie, and Straub (2020)
for a model that addresses this shortcoming.

Estimation Times. Table III lists computing times for each of our five estimation exer-
cises, including times for each likelihood evaluation and their breakdown into the three
steps described in Section 5.3.

Once the G matrix is computed (Table C.1), the Krusell–Smith model’s likelihood can
be evaluated in less than one millisecond, and the posterior mode can be found in around
60 milliseconds. The entire RWMH estimation takes just over two minutes. We attain
similar speeds estimating the shock processes for the one-asset HANK model (just under
10 minutes for RWMH). Since we allow for seven shocks when estimating the two-asset
HANK model, estimating the parameters of these shock processes is somewhat slower
than in the other two models; this has nothing to do with the complexity or micro het-
erogeneity of the two-asset model. Still, a single likelihood evaluation only takes a few
milliseconds, the posterior mode is found in a few seconds, and RWMH estimation takes
about 50 minutes.

When model parameters are also estimated, the likelihood takes a bit longer to be
re-evaluated. This is entirely due to step 1—the computation of impulse responses. The
single likelihood evaluation for the two-asset model, for instance, takes 227 ms rather
than 14 ms when model parameters change, and finding the posterior mode takes less
than 9 minutes. Running RWMH with 200,000 evaluations on the two-asset model when
estimating 19 shock processes and model parameters takes less than 12 hours. To the best
of our knowledge, these are much faster speeds for estimation of such models than what
any other method has been able to achieve at a comparable level of accuracy.

Our main contribution in this section, the idea of reusing Jacobians, is essential to
achieving these speeds. To illustrate this, observe that re-evaluating the heterogeneous-
agent Jacobian 200,000 times for the two-asset model would take about 8 full days with
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our fake news algorithm (approximately 3.5 s per evaluation), and about 6 years with the
direct algorithm (approximately 950 s per evaluation).

6. APPLICATION TO NONLINEAR PERFECT-FORESIGHT TRANSITIONS

We now discuss how to use sequence-space Jacobians to obtain nonlinear solutions
to equation (27). These solutions are the nonlinear perfect-foresight impulse responses
to unexpected shocks perturbing the aggregate steady state at date 0 (sometimes called
“MIT shocks”). In the literature, these are used by researchers to explore size depen-
dence and sign asymmetries (see, e.g., Kaplan and Violante (2018) for fiscal policy and
Bayer, Guerrieri, Lorenzoni, and Vavra (2018) for house price changes), and to simulate
transitions between two steady states in applications that involve long-term changes (see,
e.g., Heathcote, Storesletten, and Violante (2010) for rising inequality and Krueger and
Ludwig (2007) for demographic change). Recently, Boppart, Krusell, and Mitman (2018)
have also suggested examining the extent of size dependence in these shocks as a test of
how closely the first-order aggregate perturbation matches the nonlinear solution with
aggregate risk.

To find the U that solves H(U�Z) = 0 for a given Z, truncated to some T , we use the
following iterative procedure. First, starting from j = 0, guess a path U0 (typically, U0 =
Uss). Second, calculate H(Uj�Z). Third, form the j + 1 guess using

Uj+1 = Uj − [
HU(Uss�Zss)

]−1
H

(
Uj�Z

)
� (38)

This algorithm falls in the class of quasi-Newton methods,40 since the steady-state
sequence-space Jacobian HU(Uss�Zss) is used instead of the actual Jacobian HU(Uj�Z).41

Once we obtain U, we can compute the full set of endogenous variables directly from
X = M(U�Z). We illustrate this method using our two-asset HANK model in two ways.

Nonlinear Impulse Responses. Panel (a) of Figure 7 shows three impulse responses of
consumption in the two-asset HANK model in response to monetary policy shock with
quarterly persistence ρ = 0�6. Two are the linear and nonlinear impulse responses to a
−5pp shock to the Taylor rule, and the other is the nonlinear impulse response to a −1pp
shock, scaled up by a factor of 5. The linear and scaled-up nonlinear impulse responses are
almost identical, indicating that linearity is an accurate assumption for −1pp shocks. The
nonlinear impulse response to the −5pp shock is visibly a bit smaller than the other two,
but still similar: 0.81% on impact, rather than 0.86%. This similar response, despite the
extreme size of the monetary shock, suggests that nonlinearities in the household model—
such as large shocks moving households away from their borrowing constraints—do not
play an important role for plausibly-sized shocks.

The algorithm above converges to |H| < 10−8 in 13 iterations for the −5pp shock, and
5 iterations for the −1pp shock. By contrast, methods that rely on ad hoc adjustment
criteria often require hundreds of iterations before convergence.

40This idea of Newton’s method to compute nonlinear impulse responses dates back to Laffargue (1990),
Boucekkine (1995), and Juillard (1996). For heterogeneous-agent models, previous versions of the method
in (38) were implemented by approximating the HU(Uss�Zss) matrix: see, among others, Auclert and Rognlie
(2018), Straub (2017), and Koby and Wolf (2020). For an example using automatic differentiation to obtain
HU(Uss�Zss), see Ahn, Moll, and Schaab (2018).

41One alternative is to build an approximation to HU(Uj�Z) for each new guess Uj , holding heterogeneous-
agent Jacobians constant at their steady-state values but using exact Jacobians elsewhere. This is useful when
there are substantial nonlinearities originating outside the heterogeneous-agent block.
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FIGURE 7.—Nonlinear impulse responses and transitional dynamics for the two-asset HANK model.

In Table I, we use the algorithm to compute nonlinear impulse responses for all four of
our models, and report the time this requires, which ranges from 0.32 s for Krusell–Smith
to 15 s for two-asset HANK. (For comparability, these numbers are for a 1% shock to
TFP, which is available in every model.)

Transition to a New Steady State. We can use this algorithm to compute the response
to a permanent shock. Here, it is important to use the Jacobian HU(Uss�Zss) around the
terminal steady state. For example, panel (b) of Figure 7 reports the nonlinear transi-
tion, starting from the initial steady state of our two-asset HANK model, to a one-time
permanent shock of 1% to TFP. In this example, it takes 7 iterations to reach |H|< 10−8.

7. CONCLUSION

This paper presents a highly efficient method for computing heterogeneous-agent mod-
els. The core idea is that sequence-space Jacobians are sufficient statistics that summarize
all we need to know about the heterogeneity in order to determine general equilibrium
dynamics, to first order with respect to aggregate shocks. Our main contribution is a fast
algorithm for computing the Jacobians of heterogeneous-agent problems. We combine
this algorithm with a systematic method for computing model Jacobians and linearized
impulse responses. We apply these objects to estimate models with high-dimensional state
spaces, and compute their nonlinear transitional dynamics.

Our methods allow us to find the posterior mode of a two-asset HANK model in under
ten minutes and trace its posterior distribution with MCMC in under twelve hours, esti-
mation times that had so far been out of reach for the literature. We hope that they will
prove useful to solve and estimate other heterogeneous-agent models and facilitate new
developments in the field.
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