Indebted Demand

 and Economic Policy in a Post-Covid WorldAtif Mian, Princeton
Ludwig Straub, Harvard
Amir Sufi, Chicago Booth

Virtual Macro Seminar
April 2020

Rise in debt and decline in r^{*} - especially relevant post-Covid!

Rising debt ...

... and falling rates

- How did this happen? Do the two plots interact? What are the implications?

Rise in debt and decline in r^{*} - especially relevant post-Covid!

Rising debt ...

... and falling rates

- How did this happen? Do the two plots interact? What are the implications?

Rise in debt driven by households and government

The rich lend to the non-rich

- "Saving glut of the rich and the rise in household debt"
- Dynan Skinner Zeldes (2004): saving rates increase in current income

Why might this matter? - Rich \& wealthy save more

- Straub (2019): consumption has elasticity < 1 w.r.t. average income

Why might this matter? - Rich \& wealthy save more

- Fagereng Holm Moll (2019): saving rate across the wealth distribution

Figure 6: Saving rates across the wealth distribution.

The indebted demand framework

- Introduce non-homothetic consumption-saving behavior into conventional two-agent endowment economy
\rightarrow the rich have a higher saving rate

The indebted demand framework

- Introduce non-homothetic consumption-saving behavior into conventional two-agent endowment economy
\rightarrow the rich have a higher saving rate
- Main insight: "Indebted demand"
\equiv shifts \& policies that stimulate demand today through debt creation, reduce demand in the future by shifting resources from borrowers to savers

The indebted demand framework

- Introduce non-homothetic consumption-saving behavior into conventional two-agent endowment economy
\rightarrow the rich have a higher saving rate
- Main insight: "Indebted demand"
\equiv shifts \& policies that stimulate demand today through debt creation, reduce demand in the future by shifting resources from borrowers to savers
- Implications:
- rising inequality depresses r, amplified by rising debt levels
- monetary + fiscal policy have limited ammunition when they create debt
- economies can fall into a "debt trap" - liquidity trap driven by too much debt
- once in it, debt-financed stimulus deepens recession in the future
- redistributive policies help

At the center of our analysis is a simple diagram

Literature

1. Secular stagnation + theories: Summers (2013), Rachel Summers (2019), Eggertsson Mehrotra Robbins (2019), Auclert Rognlie (2018), Caballero Farhi (2017), Straub (2019)
2. Non-homothetic preferences: Old idea (Böhm-Bawerk, Hobson, Fisher), old models (Schlicht, Bourguignon). New: Uzawa (1968), Carroll (2000), Dynan Skinner Zeldes (2004), De Nardi (2004), Straub (2019), Fagereng Holm Moll Natvik (2019), Benhabib Bisin Luo (2019)
3. Inequality and debt (theory): Kumhof Ranciere Winant (2015), Cairo Sim (2018), Illing Ono Schlegl (2018), Rannenberg (2019)
4. Inequality and debt (empirics): Cynamon Fazzari (2015), Mian Straub Sufi (2019)
5. Debt + demand: Dynan (2012), Mian Sufi (2015), Mian Sufi Verner (2017), Jorda Schularick Taylor (2016), Bhutta and Keys (2016), Di Maggio et al (2017), Beraja Fuster Hurst Vavra (2018), Di Maggio Kermani Palmer (2019), Cloyne Ferreira Surico (2019)
6. Deleveraging: Eggertsson Krugman (2012), Guerrieri Lorenzoni (2017)

Outline

(1) Model
(2) Equilibria \& indebted demand
(3) Inequality \& financial liberalization
(4) Fiscal \& monetary policy
(5) Debt trap
(6) Indebted demand post-Covid
(7) Extensions \& conclusion

Model

Model of indebted demand

- Deterministic ∞-horizon endowment economy with real assets ("trees")
- Populated by two separate dynasties
- Same preferences, but different endowments of trees
- mass 1 of borrowers $i=b$: endowment ω^{b}
- mass 1 of savers $i=s$: endowment $\omega^{s}>\omega^{b}$
- total endowment $\omega^{b}+\omega^{s}=1$
- Trees are nontradable, dynasties trade debt contracts
- Agents within a dynasty die at rate $\delta>0$, wealth inherited by offspring

Preferences

- Dynasty i consumes c_{t}^{i}, owns wealth a_{t}^{i}.

Preferences

- Dynasty i consumes c_{t}^{i}, owns wealth a_{t}^{i}. Preferences:

$$
\int_{0}^{\infty} e^{-(\rho+\delta) t}\left\{\log c_{t}^{i}+\frac{\delta}{\rho} \cdot v\left(a_{t}^{i}\right)\right\} d t
$$

- Budget constraint

$$
c_{t}^{i}+\dot{a}_{t}^{i} \leq r_{t} a_{t}^{i}
$$

Preferences

- Dynasty i consumes c_{t}^{i}, owns wealth a_{t}^{i}. Preferences:

$$
\int_{0}^{\infty} e^{-(\rho+\delta) t}\left\{\log c_{t}^{i}+\frac{\delta}{\rho} \cdot v\left(a_{t}^{i}\right)\right\} d t
$$

- Budget constraint

$$
c_{t}^{i}+\dot{a}_{t}^{i} \leq r_{t} a_{t}^{i}
$$

- $v(a)=$ utility from bequest [future consumption, "status" benefits from wealth, artwork, gifts (to relatives or charities), adjustment frictions in illiquid accounts]
- Key object: $\eta(a) \equiv a v^{\prime}(a)$ - marginal utility of $v(a)$ relative to log
- homothetic model: $\eta(a)=$ const $\Rightarrow v(a) \propto \log a$
- non-homothetic model: $\eta(a)$ increases in a

Borrowing constraint \& asset market

- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

Borrowing constraint \& asset market

- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

- Agents can pledge ℓ trees each to borrow d_{t}^{i}

$$
d_{t}^{i} \leq p_{t} \ell
$$

Borrowing constraint \& asset market

- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

- Agents can pledge ℓ trees each to borrow $d_{t}^{i}(\lambda \equiv$ bond "decay rate")

$$
\underbrace{\dot{d}_{t}^{i}+\lambda d_{t}^{i}}_{\text {new debt issuance }} \leq \lambda p_{t} \ell
$$

Borrowing constraint \& asset market

- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

- Agents can pledge ℓ trees each to borrow $d_{t}^{i}(\lambda \equiv$ bond "decay rate")

$$
\underbrace{\dot{d}_{t}^{i}+\lambda d_{t}^{i}}_{\text {new debt issuance }} \leq \lambda p_{t} \ell
$$

- steady state: $d^{i} \leq p \ell \quad$ [paper: generalize to $\left.\ell=\ell\left(\left\{r_{s}\right\}_{s \geq t}\right)\right]$

Borrowing constraint \& asset market

- Total wealth = real asset wealth net of debt

$$
a_{t}^{i}=\omega^{i} p_{t}-d_{t}^{i}
$$

where $p_{t}=$ price of a Lucas tree: $r_{t} p_{t}=1+\dot{p}_{t}$

- Agents can pledge ℓ trees each to borrow $d_{t}^{i}(\lambda \equiv$ bond "decay rate")

$$
\underbrace{\dot{d}_{t}^{i}+\lambda d_{t}^{i}}_{\text {new debt issuance }} \leq \lambda p_{t} \ell
$$

- steady state: $d^{i} \leq p \ell \quad$ [paper: generalize to $\ell=\ell\left(\left\{r_{s}\right\}_{s \geq t}\right)$]
- Market clearing $d_{t}^{s}+d_{t}^{b}=0$ pins down interest rate r_{t}
- Focus on debt of borrowers: $d_{t} \equiv d_{t}^{b}$ (state variable)

Scale invariance

- Non-homothetic model is typically not scale invariant in aggregate
- economic growth $\Rightarrow \$ 28$ '000 today is like $\$ 200$ '000 around 1900
- so ... someone with $\$ 28$ '000 today should save a ton?!

Scale invariance

- Non-homothetic model is typically not scale invariant in aggregate
- economic growth $\Rightarrow \$ 28$ '000 today is like $\$ 200$ '000 around 1900
- so ... someone with $\$ 28$ '000 today should save a ton?!
- In reality, savings preferences probably closer to $v(a / A)$ or $v(a / Y)$
- We work with $v(a / Y)$, where so far $Y=1$ (total endowment =1)

Equilibria \& indebted demand

Saving supply curves

- Savers' Euler equation

$$
\frac{\dot{\dot{c}}_{t}^{s}}{c_{t}^{s}}=r_{t}-\rho-\delta+\delta \frac{c_{t}^{s}}{\rho a_{t}^{s}} \cdot \eta\left(a_{t}^{s}\right)
$$

Saving supply curves

- Savers' Euler equation

$$
\frac{\dot{\dot{t}}_{t}^{s}}{c_{t}^{s}}=r_{t}-\rho-\delta+\delta \frac{c_{t}^{s}}{\rho a_{t}^{s}} \cdot \eta\left(a_{t}^{s}\right)
$$

- Setting $\dot{c}=0$ in Euler and use $c^{s}=r a^{s} \Rightarrow$

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(a^{s}\right)}
$$

Saving supply curves

- Savers' Euler equation

$$
\frac{\dot{\dot{t}}_{t}^{s}}{c_{t}^{s}}=r_{t}-\rho-\delta+\delta \frac{c_{t}^{s}}{\rho a_{t}^{s}} \cdot \eta\left(a_{t}^{s}\right)
$$

- Setting $\dot{c}=0$ in Euler and use $c^{s}=r a^{s} \Rightarrow$

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(a^{s}\right)}
$$

- This is a long-run saving supply curve:
- r necessary for which saver keeps wealth constant at a^{s}
- $\eta\left(a^{s}\right)$ determines the shape of the saving supply curve

Long-run saving supply curves

Long-run saving supply curves

- If $\eta\left(a^{s}\right)$ increasing: larger wealth a^{5} requires lower return on wealth r for saver to be indifferent about saving!

Steady state equilibria

- Steady state: intersect long-run supply curve with debt demand curve

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(\omega^{s} / r+d\right)} \quad d=\frac{\ell}{r}
$$

Steady state equilibria

- Steady state: intersect long-run supply curve with debt demand curve

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(\omega^{s} / r+d\right)} \quad d=\frac{\ell}{r}
$$

Steady state equilibria

- Steady state: intersect long-run supply curve with debt demand curve

$$
r=\rho \cdot \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(\omega^{s} / r+d\right)} \quad d=\frac{\ell}{r}
$$

- Start from a steady state \& raise debt service costs by some $d x$
- What is response of aggregate spending? (partial equilibrium, r fixed)
- Start from a steady state \& raise debt service costs by some $d x$
- What is response of aggregate spending? (partial equilibrium, r fixed)

$$
d C=d c^{s}+d c^{b}=-\frac{\rho+\delta}{r} \frac{1}{2}\left(1-\sqrt{1-4\left(1-\frac{r}{\rho+\delta}\right) \frac{\eta^{\prime}(a) a}{\eta(a)}}\right) d x
$$

\Rightarrow Thus increase in debt service costs weighs on aggregate demand

- $d C<0$ if $\eta^{\prime}>0$
- Start from a steady state \& raise debt service costs by some $d x$
- What is response of aggregate spending? (partial equilibrium, r fixed)

$$
d C=d c^{s}+d c^{b}=-\frac{\rho+\delta}{r} \frac{1}{2}\left(1-\sqrt{1-4\left(1-\frac{r}{\rho+\delta}\right) \frac{\eta^{\prime}(a) a}{\eta(a)}}\right) d x
$$

\Rightarrow Thus increase in debt service costs weighs on aggregate demand

- $d C<0$ if $\eta^{\prime}>0$
- Call this phenomenon "indebted demand"

Equilibrium transitions

The indebted demand diagram

- Saving supply curve = how low does r have to be given \% resources controlled by savers
- Debt demand = how much do borrowers want to borrow given r

The indebted demand diagram

- Saving supply curve = how low does r have to be given \% resources controlled by savers
- Debt demand = how much do borrowers want to borrow given r

Inequality \& financial liberalization

Rising inequality $\omega^{s} \uparrow$: lowers r and raises debt

Homothetic model

Rising inequality $\omega^{s} \uparrow$: lowers r and raises debt

Rising inequality $\omega^{s} \uparrow$: lowers r and raises debt

Homothetic model
Non-homothetic model

- Effects of rising inequality $\omega^{\boldsymbol{s}} \uparrow$ in non-homothetic model:

1. inequality $\uparrow \Rightarrow$ more saving by the rich $\Rightarrow r \downarrow \Rightarrow$ debt \uparrow
2. debt \uparrow first raises demand, pushing against decline in r
3. high debt eventually lowers demand, aggravating decline in r

Inequality and debt across 14 advanced economies

Financial liberalization: raising pledgability ℓ

Homothetic model

Financial liberalization: raising pledgability ℓ

Financial liberalization: raising pledgability ℓ

Homothetic model
Non-homothetic model

- Mechanism in non-homothetic model:

1. raises debt \& demand, pushing r up (short-run saving supply slopes up)
2. ultimately high debt weighs on demand, lowering r, stimulating further debt!
\rightarrow resolves puzzle in literature [e.g. Justiniano Primiceri Tambalotti]

Fiscal \& monetary policy

Fiscal policy implications

- Gov't spends G_{t}, has debt B_{t}, raises income taxes $\tau_{t}^{s}, \tau_{t}^{b}$, subject to

$$
G_{t}+r_{t} B_{t} \leq \dot{B}_{t}+\tau_{t}^{s} \omega^{s}+\tau_{t}^{b} \omega^{b}
$$

- Total demand for debt now $d_{t}+B_{t}$

Fiscal policy implications

- Gov't spends G_{t}, has debt B_{t}, raises income taxes $\tau_{t}^{s}, \tau_{t}^{b}$, subject to

$$
G_{t}+r_{t} B_{t} \leq \dot{B}_{t}+\tau_{t}^{s} \omega^{s}+\tau_{t}^{b} \omega^{b}
$$

- Total demand for debt now $d_{t}+B_{t}$
- Result: In the long run

1. larger gov't debt $B \uparrow$: depresses interest rate $r \downarrow$, crowds in household debt $d \uparrow$
2. tax-financed spending $G \uparrow$: raises $r \uparrow$, crowds out $d \downarrow$
3. fiscal redistribution $\tau^{s} \uparrow, \tau^{b} \downarrow$: raises $r \uparrow$, crowds out $d \downarrow$

- With homothetic preferences none of these policies change r or d !

- Caveat: this assumed gov't pays same interest rate r
- In many advanced economies, gov't actually pays a lower rate
- e.g. when investors derive other benefits from their debt (safety, convenience)

- Caveat: this assumed gov't pays same interest rate r
- In many advanced economies, gov't actually pays a lower rate
- e.g. when investors derive other benefits from their debt (safety, convenience)
- In that case, what matters is how those benefits affect savers' investments
\rightarrow paper: natural case where things are unchanged

Imagine inequality falls exogenously. How much does the interest rate rise?
Low B
High B

Imagine inequality falls exogenously. How much does the interest rate rise?

Low B

Strong recovery of r with low gov't debt
B

High B

Imagine inequality falls exogenously. How much does the interest rate rise?

Low B

High B

Imagine inequality falls exogenously. How much does the interest rate rise?

Low B

High B

With higher B, any given increase in r weighs down more on aggregate demand

Monetary policy has limited ammunition when it raises debt

- Can extend our setup to include nominal rigidities (see paper)
- Monetary policy sets path of interest rates $\left\{r_{t}\right\}$, output is endogenous

Main result:

Debt trap

Introducing the lower bound

- Consider lower bound \underline{r} on interest rate r
- $r>0$ if r is return on wealth (e.g. $r \approx 3.5 \%$ during recent US ZLB)

Introducing the lower bound

- Consider lower bound r on interest rate r
- $\underline{r}>0$ if r is return on wealth (e.g. $r \approx 3.5 \%$ during recent US ZLB)
- What happens if the steady state natural rate falls below \underline{r} ?

The debt trap (= a debt-driven liquidity trap)

- Result: if natural rate $<\underline{r}$, get stable liquidity trap steady state: "debt trap"
\rightarrow Output persistently below potential

$$
\hat{Y}=Y \frac{\underline{r}}{\left(1-\tau^{s}\right) \omega^{s}+\ell} \cdot\left[\eta^{-1}\left(\frac{\rho}{\underline{r}}(1+\rho / \delta)-\rho / \delta\right)-B\right]<Y
$$

- Liquidity trap more likely if
- income inequality ω^{s} is high, low taxes on savers τ^{s}
- pledgability ℓ high, gov. debt B high

How does an economy fall into the debt trap? (i) Rising inequality

Household debt / GDP

Interest rate

Output gap

--- Without ZLB —— ZLB at $r=3.5 \%$

- Anticipation of the liquidity trap pulls the economy in even faster

How does an economy fall into the debt trap? (ii) Credit boom-bust cycle

Borrowing capacity (\% of s.s.)

Household debt / GDP

Output gap

Fighting debt with debt? Deficit financing in the liquidity trap

Gov. spending

Interest rate

Output gap

Fighting debt with debt? Deficit financing in the liquidity trap

- Here, deficit financing is only temporary remedy against a chronic disease
- lessons for Covid crisis?

Indebted demand post-Covid

Covid shock set to further raise debt

Rising debt ...

... and falling rates

Modeling Covid in our framework

- Assume agents work in two sectors, "social" and "distant"
- Assume borrowers are over-represented in "social"
[Dingel-Neiman, Mongey-Weinberg, Leibovici et al]
- Shock:
- potential output falls $Y \downarrow$ and inequality rises $\omega^{s} \uparrow, \omega^{b} \downarrow$
- assume this induces negative demand shock in "distant" sectors
[Guerrieri-Lorenzoni-Straub-Werning]

Covid in the indebted demand diagram

Three "archetypes" of policies in response to Covid shock

(A) Stimulating (non-productive) private debt to buffer the shock

- e.g. Fed's lending facilities via SPV's
\rightarrow model as increase in credit limit
(B) Government funds transfers using public debt, paid for by all taxpayers
- e.g. stimulus checks, UI, grants to businesses
\rightarrow model as increase in government debt
(C) Government funds transfers by taxing (now or later) very progressively
- e.g. Landais-Saez-Zucman, Greenwood-Thesmar
\rightarrow model as saver-financed increase in government debt

Three "archetypes" of policies in response to Covid shock

(A) Stimulating (non-productive) private debt to buffer the shock

- e.g. Fed's lending facilities via SPV's
\rightarrow model as increase in credit limit
(B) Government funds transfers using public debt, paid for by all taxpayers
- e.g. stimulus checks, UI, grants to businesses
\rightarrow model as increase in government debt
(C) Government funds transfers by taxing (now or later) very progressively
- e.g. Landais-Saez-Zucman, Greenwood-Thesmar
\rightarrow model as saver-financed increase in government debt

Policies in the indebted demand diagram

Policies in the indebted demand diagram

Policy (A) - Stagnation post-Covid

Policies in the indebted demand diagram

Policy (B) - Softer stagnation post-Covid

Policies in the indebted demand diagram

Policy (C) - No stagnation!

Policies in the indebted demand diagram

(long term \rightarrow address any structural problems leading to greater inequality)

Extensions \& conclusion

Extensions

- Redistribution (e.g. wealth tax) = Pareto improvement in debt trap
- Investment can help, especially if it complements borrowers' labor
- Similar results when there is gov't bond pay lower rate
- Intergenerational mobility helps ©
- Sufficient statistic exercise

In paper:

- Open economy model
- Uzawa preferences, relative wealth preferences

Takeaway

Indebted Demand:

Demand decreases in $r \times$ debt
 Particularly relevant post-Covid!

Takeaway

Indebted Demand:

Demand decreases in $r \times$ debt
Particularly relevant post-Covid!

Extra slides

-- Homothetic model — Non-homothetic model

Deficit spending causes indebted (government) demand

Household debt / GDP

- Our r is return on wealth so always $r>g$. But what if gov't pays $r^{B}<g$?
- Our r is return on wealth so always $r>g$. But what if gov't pays $r^{B}<g$?
- Our model points to two objects that matter (see paper for details)
- Our r is return on wealth so always $r>g$. But what if gov't pays $r^{B}<g$?
- Our model points to two objects that matter (see paper for details)

1. Derivative of debt service cost of $\left(r^{B}-g\right) B$ w.r.t. B

$$
\frac{\partial\left(r^{B}-g\right) B}{\partial B}=\underbrace{r^{B}-g}_{<0}+\underbrace{\frac{\partial r^{B}}{\partial B}}_{>0} \stackrel{?}{\gtrless} 0
$$

- Our r is return on wealth so always $r>g$. But what if gov't pays $r^{B}<g$?
- Our model points to two objects that matter (see paper for details)

1. Derivative of debt service cost of $\left(r^{B}-g\right) B$ w.r.t. B

$$
\frac{\partial\left(r^{B}-g\right) B}{\partial B}=\underbrace{r^{B}-g}_{<0}+\underbrace{\frac{\partial r^{B}}{\partial B}}_{>0} \stackrel{?}{\gtrless} 0
$$

2. Where does the spread $r-r^{B}$ come from? Investors really like B !

- B is not negative for savers just because $\left(r^{B}-g\right) B<0$
- $B \uparrow$ still makes savers wealthier, $a^{s} \uparrow$, lowering required return on wealth r
- What policy mitigates a debt trap? \rightarrow redistribution
- Example: wealth tax of $\tau^{a}>0$ on saver's wealth, redistributed to borrowers
- Saver's budget constraint becomes

$$
c_{t}^{s}+\dot{a}_{t}^{s}=\left(r_{t}-\tau^{a}\right) a_{t}^{s}
$$

\rightarrow Wealth tax reduces return on wealth at ZLB to $\underline{r}-\tau^{a}$, raising \hat{Y}

- What about welfare?
- borrower clearly benefits: lower r + wealth tax transfers + higher incomes
- saver also benefits: greater incomes (\& asset prices) more than compensate for tax!
- Thus: Redistribution mitigates debt trap, at no welfare cost!
- Assume goods are now produced from capital and both agents' labor

$$
Y=F\left(K, L^{b}, L^{s}\right)
$$

- F is net-of-depreciation production, K pinned down by $F_{K}=r$
- $\sigma \equiv$ (Allen) elasticity of substitution between K and L^{b}
- Assume goods are now produced from capital and both agents' labor

$$
Y=F\left(K, L^{b}, L^{s}\right)
$$

- F is net-of-depreciation production, K pinned down by $F_{K}=r$
- $\sigma \equiv$ (Allen) elasticity of substitution between K and L^{b}
- Key: savers' income share $\omega^{s}=\omega^{s}(r)$ now a function of r !

$$
\omega^{s}(r) \equiv \frac{F_{K} K}{F}+\frac{F_{L^{s} L^{s}}}{F}=1-\frac{F_{L^{b} L^{b}}}{F}
$$

- Assume goods are now produced from capital and both agents' labor

$$
Y=F\left(K, L^{b}, L^{s}\right)
$$

- F is net-of-depreciation production, K pinned down by $F_{K}=r$
- $\sigma \equiv$ (Allen) elasticity of substitution between K and L^{b}
- Key: savers' income share $\omega^{s}=\omega^{s}(r)$ now a function of r !

$$
\omega^{s}(r) \equiv \frac{F_{K} K}{F}+\frac{F_{L s} L^{s}}{F}=1-\frac{F_{L b} L^{b}}{F}
$$

- $\omega^{s}(r)$ independent of r if $\sigma=1$ [e.g. Cobb-Douglas]
- $\omega^{s}(r) \uparrow$ as $r \downarrow$ iff $\sigma>1$ [e.g. capital-skill complementarity, robots]
- Main result: Our results are unchanged if $\sigma=1$. Amplified if $\sigma>1$.

- Main result: Our results are unchanged if $\sigma=1$. Amplified if $\sigma>1$.

- Related Q: Can corporate debt also cause indebted demand?
- yes, if $\sigma>1$! but always weaker indebted demand than household debt
- why? corporate debt productive, raising Y, easier to repay
- Allow for benefits from gov't bonds [cf Krishnamurthy Vissing-Jorgensen (2012)]

$$
\log \left(c_{t}^{s}+\xi B_{t}\right)+\frac{\delta}{\rho} \cdot v\left(a_{t}^{s}+\xi B_{t} / r\right)
$$

- Implies fixed spread $\xi>0$

$$
r^{B}=r-\xi
$$

- Allow for benefits from gov't bonds [cf Krishnamurthy Vissing-Jorgensen (2012)]

$$
\log \left(c_{t}^{s}+\xi B_{t}\right)+\frac{\delta}{\rho} \cdot v\left(a_{t}^{s}+\xi B_{t} / r\right)
$$

- Implies fixed spread $\xi>0$

$$
r^{B}=r-\xi
$$

- Define effective wealth as including benefits ξB_{t} from bonds. In steady state:

$$
a^{\mathrm{eff}} \equiv \frac{\omega^{s}}{r}+d+\underbrace{\frac{r^{B} B}{r}+\frac{\xi B}{r}}_{=B}
$$

- Savings supply curve unchanged in effective wealth

$$
r=\rho \frac{1+\rho / \delta}{1+\rho / \delta \cdot \eta\left(a^{\text {eff }}\right)}
$$

- With probability $q>0$, savers turn into borrowers and vice versa
- Saver-turned-borrowers consume down their wealth instantly
- Borrower-turned-savers get transfer from other savers to raise wealth
- With probability $q>0$, savers turn into borrowers and vice versa
- Saver-turned-borrowers consume down their wealth instantly
- Borrower-turned-savers get transfer from other savers to raise wealth
- Saving supply curve becomes flatter with q

$$
r=\rho \frac{1+\delta / \rho}{1+\delta / \rho \cdot \eta(a)}+\underbrace{q \gamma \delta \frac{\delta / \rho \cdot \eta(a)}{1+\delta / \rho \cdot \eta(a)}}_{\text {contribution of mobility }}
$$

- $q \uparrow$ thus mitigates indebted demand, especially if high income inequality γ

$$
\gamma \equiv 1-\frac{\omega^{b}-\ell}{\omega^{s}+\ell}
$$

- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a
$$

- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \underbrace{\frac{c_{r}}{c}}_{\text {semi-elast. } \epsilon_{r} \text { wrt } r} \frac{c}{a} \frac{d r}{d \log a}+\underbrace{c_{a}}_{M P C^{\text {cap. gains }}}=\frac{d r}{d \log a}+r
$$

- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \frac{d r}{d \log a}=\frac{M P C^{\text {cap. gains }}-r}{1-\epsilon_{r} \frac{c}{a}}
$$

- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \frac{d r}{d \log a}=\frac{M P C^{\text {cap. gains }}-r}{1-\epsilon_{r} \frac{c}{a}}
$$

- Standard PIH model: $M P C^{\text {cap. gains }}=r \quad \log$ preferences: $\epsilon_{r}=0$
- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \frac{d r}{d \log a}=\frac{M P C^{\text {cap. gains }}-r}{1-\epsilon_{r} \frac{c}{a}}
$$

- Standard PIH model: MPC ${ }^{\text {cap. gains }}=r \quad \log$ preferences: $\epsilon_{r}=0$
- Assume $\epsilon_{r}=0, r \approx 0.06$, MPC ${ }^{\text {cap. gains }} \approx 0.025$
[Farhi-Gourio, Di Maggio-Kermani-Majluf, Baker-Nagel-Wurgler, Chodorow-Reich Nenov Simsek]
- Consumption function of rich $c(r, a)$. Along curve:

$$
c(r(a), a)=r(a) a \Rightarrow \frac{d r}{d \log a}=\frac{M P C^{\text {cap. gains }}-r}{1-\epsilon_{r} \frac{c}{a}}
$$

- Standard PIH model: $M P C^{\text {cap. gains }}=r \quad \log$ preferences: $\epsilon_{r}=0$
- Assume $\epsilon_{r}=0, r \approx 0.06$, MPC $^{\text {cap. gains }} \approx 0.025$
[Farhi-Gourio, Di Maggio-Kermani-Majluf, Baker-Nagel-Wurgler, Chodorow-Reich Nenov Simsek]

$$
\frac{d r}{d \log a}=-0.035
$$

- In words: if wealth \uparrow by 10%, required $r \downarrow$ by 35 bps

Bottom 90\% did not accumulate assets

Bottom 90\% reduced saving

- Thought experiment: How large is dC implied by current levels of household \& government debt, had interest rates not come down?
- Thought experiment: How large is dC implied by current levels of household \& government debt, had interest rates not come down?
- Counterfactual debt service burden, holding r constant:

- Thought experiment: How large is dC implied by current levels of household \& government debt, had interest rates not come down?
- Counterfactual debt service burden, holding r constant:

$$
d C \approx \underbrace{-15 \%}_{\text {borrower debt service }}+\underbrace{\frac{M P C^{\text {cap. gains }}}{r} \cdot 15 \%}_{\text {partial offset by savers }}=-8 \%
$$

