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Positive Long-Run Capital Taxation:  
Chamley-Judd Revisited†

By Ludwig Straub and Iván Werning*

According to the Chamley-Judd result, capital should not be taxed 
in the long run. In this paper, we overturn this conclusion, showing 
that it does not follow from the very models used to derive it. For the 
main model in Judd (1985), we prove that the long-run tax on capital 
is positive and significant, whenever the intertemporal elasticity of 
substitution is below one. For higher elasticities, the tax converges 
to zero but may do so at a slow rate, after centuries of high tax rates. 
The main model in Chamley (1986) imposes an upper bound on cap-
ital taxes. We provide conditions under which these constraints bind 
forever, implying positive long-run taxes. When this is not the case, 
the long-run tax may be zero. However, if preferences are recursive 
and discounting is locally nonconstant (e.g., not additively separable 
over time), a zero long-run capital tax limit must be accompanied by 
zero private wealth (zero tax base) or by zero labor taxes (first-best). 
Finally, we explain why the equivalence of a positive capital tax with 
ever-increasing consumption taxes does not provide a firm rationale 
against capital taxation. (JEL H21, H25)

One of the most startling results in optimal tax theory is the famous finding by 
Chamley (1986) and Judd (1985). Although working in somewhat different settings, 
their conclusions were strikingly similar: capital should go untaxed in any steady 
state. This implication, dubbed the Chamley-Judd result, is commonly interpreted 
as applying in the long run, taking convergence to a steady state for granted.1 The 
takeaway is that taxes on capital should be zero, at least eventually.

1 To quote from a few examples, Judd (2002, p. 418): “[ … ] setting   τ k    equal to zero in the long run [ … ] various 
results arguing for zero long-run taxation of capital; see Judd (1985, 1999) for formal statements and analyses.” 
Atkeson, Chari, and Kehoe (1999): “By formally describing and extending Chamley’s (1986) result [ … ] This 
approach has produced a substantive lesson for policymakers: In the long run, in a broad class of environments, the 
optimal tax on capital income is zero.” Phelan and Stacchetti (2001): “A celebrated result of Chamley (1986) and 
Judd (1985) states that with full commitment, the optimal capital tax rate converges to zero in the steady state.” 
Saez (2013): “The influential studies by Chamley (1986) and Judd (1985) show that, in the long-run, optimal linear 
capital income tax should be zero.”
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Economic reasoning sometimes holds its surprises. The Chamley-Judd result was 
not anticipated by economists’ intuitions, despite a large body of work at the time on 
the incidence of capital taxation and on optimal tax theory more generally. It repre-
sented a major watershed from a theoretical standpoint. One may even say that the 
result is puzzling, as witnessed by the fact that economists have continued to take 
turns putting forth various intuitions to interpret it, none definitive nor universally 
accepted.

Interpretation aside, a crucial issue is the result’s applicability. Many have ques-
tioned the model’s assumptions, especially that of infinitely-lived agents (e.g., 
Golosov, Tsyvinski, and  Werning 2006; Banks and  Diamond 2010). Still others 
have set up alternative models, searching for different conclusions. These efforts 
notwithstanding, opponents and proponents alike acknowledge Chamley-Judd as 
one of the most important benchmarks in the optimal tax literature.

In this paper, we do not propose a new model or seek to take a stand on the 
appropriate model. Instead, we question the Chamley-Judd results by arguing that a 
zero long-run tax result does not follow even within the logic of these models. For 
both the models in Chamley (1986) and Judd (1985), we provide results showing a 
positive long-run tax when the intertemporal elasticity of substitution is less than or 
equal to 1. We conclude that these models do not actually provide an unambiguous 
argument against long-run capital taxation. We discuss what went wrong with the 
original results, their interpretations, and proofs.

Before summarizing our results in greater detail, it is useful to briefly recall the 
setups in Chamley (1986) and Judd (1985), where in the latter case we will specifi-
cally focus on the model in Judd (1985, Section 3).2

Start with the similarities. Both papers assume infinitely-lived agents and take as 
given an initial stock of capital. Taxes are basically restricted to proportional taxes 
on capital and labor: lump-sum taxes are either ruled out or severely limited. To pre-
vent expropriatory capital levies, the tax rate on capital is constrained by an upper 
bound.3 Turning to differences, Chamley (1986) focused on a representative agent 
and assumed perfect financial markets, with unconstrained government debt. Judd 
(1985) emphasizes heterogeneity and redistribution in a two-class economy, with 
workers and capitalists. In addition, the model in Judd (1985) features financial mar-
ket imperfections: workers do not save and the government balances its budget, i.e., 
debt is restricted to zero. As emphasized by Judd (1985), it is most remarkable that a 
zero long-run tax result obtains despite the restriction to budget balance.4 Although 
extreme, imperfections of this kind may capture relevant aspects of reality, such as 

2 Judd (1985) also provides extensions to the model in Judd (1985, Section 3) that generally bring the setup 
somewhat closer to that in Chamley (1986). In particular, Judd (1985, Sections 4–5) allows workers to save, cap-
italists to work, and considers nonconstant discounting à la Uzawa (1968). However, throughout the formal anal-
ysis in Judd (1985) the government is assumed to run a balanced budget, i.e., no government bonds are allowed. 
Interpolating our results for Judd (1985, Section 3) and Chamley (1986), we believe similar conclusions apply for 
these variant models in Judd (1985, Sections 4–5).

3 Consumption taxes (Chamley 1980, Coleman 2000) and dividend taxes with capital expenditure (investment) 
deductions (Abel 2007) can mimic initial wealth expropriation. Both are disallowed.

4 Because of the presence of financial restrictions and imperfections, the model in Judd (1985) does not fit the 
standard Arrow-Debreu framework, nor the optimal tax theory developed around it such as Diamond and Mirrlees 
(1971).
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the limited participation in financial markets, the skewed distributions of wealth, 
and a host of difficulties governments may face managing their debts or assets.5

We begin with the model in Judd (1985) and focus on situations where desired 
redistribution runs from capitalists to workers. Working with an isoelastic utility 
over consumption for capitalists,  U (C)  =  C   1−σ /(1 − σ) , we establish that when 
the intertemporal elasticity of substitution (IES) is below 1,  σ > 1 , taxes rise and 
converge toward a positive limit tax, instead of declining toward zero. This limit 
tax is significant, driving capital to its lowest feasible level. Indeed, with zero gov-
ernment spending the lowest feasible capital stock is zero and the limit tax rate on 
wealth goes to 100 percent. The long-run tax is not only not zero, it is far from that.

The economic intuition we provide for this result is based on the anticipatory sav-
ings effects of future tax rates. When the IES is less than 1, any anticipated increase 
in taxes leads to higher savings today, since the substitution effect is relatively small 
and dominated by the income effect. When the day comes, higher tax rates do even-
tually lower capital, but if the tax increase is sufficiently far off in the future, then 
the increased savings generate a higher capital stock over a lengthy transition. This 
is desirable, since it increases wages and tax revenue. To exploit such anticipatory 
effects, the optimum involves an increasing path for capital tax rates. This explains 
why we find positive tax rates that rise over time and converge to a positive value, 
rather than falling toward zero.

When the IES is above 1,  σ < 1 , we verify numerically that the solution con-
verges to the zero-tax steady state.6 This also relies on anticipatory savings effects, 
working in reverse. However, we show that this convergence may be very slow, 
potentially taking centuries for wealth taxes to drop below 1 percent. Indeed, the 
speed of convergence is not bounded away from zero in the neighborhood of a uni-
tary IES,  σ = 1 . Thus, even for those cases where the long-run tax on capital is 
zero, this property provides a misleading summary of the model’s tax prescriptions.

We confirm our intuition based on anticipatory effects by generalizing our results 
for the Judd (1985) economy to a setting with arbitrary savings behavior of cap-
italists. Within this more general environment we also derive an inverse elastic-
ity formula for the steady-state tax rate, closely related to one in Piketty and Saez 
(2013). However, our derivation stresses that the validity of this formula requires 
sufficiently fast convergence to an interior steady state, a condition that we show 
fails in important cases.

We then turn to the representative agent Ramsey model studied by Chamley 
(1986). As is well appreciated, in this setting upper bounds on the capital tax rate are 
imposed to prevent expropriatory levels of taxation. We provide two sets of results.

Our first set of results show that in cases where the tax rate does converge to 
zero, there are other implications of the model, hitherto unnoticed. These implica-
tions undermine the usual interpretation against capital taxation. Specifically, if the 
optimum converges to a steady state where the bounds on tax rates are slack, we 

5 Another issue may arise on the other end. Without constraints on debt, capitalists may become highly 
indebted or not own the capital they manage. The idea that investment requires “skin in the game” is popular in the 
finance literature and macroeconomic models with financial frictions (for surveys, see Brunnermeier, Eisenbach, 
and Sannikov 2013 and Gertler and Kiyotaki 2010).

6 We complement these numerical results by proving a local convergence result around the zero-tax steady state 
when  σ < 1 . 
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show that the tax is indeed zero. However, for recursive non-additive utility, we also 
show that this zero-tax steady state is necessarily accompanied by either zero private 
wealth, in which case the tax base is zero, or a zero tax on labor income, in which 
case the first-best is achieved. This suggests that zero taxes on capital are attained 
only after taxes have obliterated private wealth or allowed the government to pro-
ceed without any distortionary taxation. Needless to say, these are not the scenarios 
typically envisioned when interpreting zero long-run tax results. Away from additive 
utility, the model simply does not justify a steady state with a positive tax on labor, 
a zero tax on capital, and positive private wealth.

Returning to the case with additive utility, our second set of results shows that 
the tax rate may not converge to zero. In particular, we show that the upper bounds 
imposed on the tax rate may bind forever, implying a positive long-run tax on cap-
ital. We prove that this is guaranteed if the IES is below 1 and debt is high enough. 
Importantly, the debt level required is below the peak of the Laffer curve, so this 
result is not driven by budgetary necessity: the planner chooses to tax capital indef-
initely, but is not compelled to do so. Intuitively, higher debt leads to higher labor 
taxes, making capital taxation attractive to ease the labor tax burden. However, 
because the tax rate on capital is capped, the only way to expand capital taxation is 
to prolong the time spent at the bound. At some point, for high enough debt, indefi-
nite taxation becomes optimal.

All of these results run counter to established wisdom, cemented by a significant 
follow-up literature, extending and interpreting long-run zero tax results. In par-
ticular, Judd (1999) presents an argument against positive capital taxation without 
requiring convergence to a steady state, using a representative agent model without 
financial market imperfections, similar in this regard to Chamley (1986). However, 
as we explain, these arguments invoke assumptions on endogenous multipliers that 
may be violated at the optimum. We also explain why the intuition offered in that 
paper, based on the observation that a positive capital tax is equivalent to a rising 
tax on consumption, does not provide a rationale against indefinite capital taxation.

To conclude, we present a hybrid model that combines heterogeneity and redis-
tribution as in Judd (1985), but allows for government debt as in Chamley (1986). 
Capital taxation turns out to be especially potent in this setting: whenever the IES 
is less than 1, the optimal policy sets the tax rate at the upper bound forever. This 
suggests that positive long-run capital taxation should be expected for a wide range 
of models that are descendants of Chamley (1986) and Judd (1985).

Related Literature.—Aside from a long literature finding different kinds of zero 
capital tax results,7 our paper is part of a strand of papers that find positive or nega-
tive long-run capital taxes can be optimal.8 Almost all of these papers obtain  positive 

7 For papers with exogenous growth, see, e.g., Chamley (1980, 1986); Judd (1985, 1999); Atkeson, Chari, 
and Kehoe (1999); Chari and Kehoe (1999). For papers with endogenous growth, see, e.g., Lucas (1990); Jones, 
Manuelli, and Rossi (1993, 1997). For results with uncertainty, see, e.g., Zhu (1992); Judd (1993); Chari, Christiano, 
and Kehoe (1994). For results with heterogeneous agents, see, e.g., Werning (2007); Greulich, Laczó, and Marcet 
(2016).

8 For results on capital taxation in overlapping generations (OLG) models, see, e.g., Erosa and Gervais (2002). 
For models with social weights on future periods/generations, see, e.g., Farhi and  Werning (2010, 2013). For 
results with limited commitment, see, e.g., Chari and Kehoe (1990), Stokey (1991), Farhi et al. (2012). For models 
with incomplete markets and idiosyncratic risk, see, e.g., Aiyagari (1995); Conesa, Kitao, and Krueger (2009).
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long-run taxation by modifying the environment, moving away from the setups in 
Chamley (1986) and Judd (1985).

One exception is Lansing (1999), which considered a special case of the setup in 
Judd (1985, Section 3) with  σ = 1  and found that positive long-run capital taxes 
are possible (see our discussion in Section  I); Reinhorn (2019) further clarified 
the nature of this discrepancy with Judd (1985, Section 3). Bassetto and Benhabib 
(2006) studies capital taxation in a political economy model where agents are het-
erogeneous with respect to initial wealth. Their main result provides a median-voter 
theorem and a “bang-bang property” for capital taxes. For a case with linear  AK  
technology and  σ > 1 , they also provide a condition for the median voter to prefer 
indefinite capital taxation. The example in Lansing (1999) was viewed as a knife-
edged case, applying only to  σ = 1 , while the example in Bassetto and Benhabib 
(2006) was obtained for a hybrid model that is not a special case of any economy 
explicitly treated in Judd (1985) or Chamley (1986).9 However, our results show 
that these previous examples were indicative of an unnoticed and more general 
problem with the zero long-run capital taxation prediction in the precise models of 
Judd (1985) and Chamley (1986).

Finally, several authors study a variant of the Chamley (1986) economy where 
capital tax bounds are only imposed in the initial period, to limit expropriation, 
but not imposed in later periods, see, e.g., Chari, Christiano, and Kehoe (1994); 
Chari and Kehoe (1999); Sargent and Ljungqvist (2004); and Werning (2007). Our 
analysis does not apply in these cases. Indeed, as these studies correctly show, with 
additively separable and isoelastic preferences over consumption, the capital tax is 
zero after the second period.

I. Capitalists and Workers

We start with the two-class economy without government debt laid out in Judd 
(1985). Time is indefinite and discrete, with periods labeled by  t = 0, 1, 2, … .10 
There are two types of agents: workers and capitalists. Capitalists save and derive 
all their income from the returns to capital. Workers supply one unit of labor inelas-
tically and live hand-to-mouth, consuming their entire wage income plus transfers. 
The government taxes the returns to capital to pay for transfers targeted to workers.

Preferences.—Both capitalists and workers discount the future with a common 
discount factor  β < 1 . Workers have a constant labor endowment  n = 1 ; capitalists 
do not work. Consumption by workers will be denoted by lowercase  c ,  consumption 
by capitalists by uppercase  C . Capitalists have utility

    ∑ 
t=0

  
∞

     β   t U ( C t  )  with U (C)  =    C   1−σ  _ 
1 − σ   

9 Unlike Chamley (1986), their model features heterogeneity and inelastic labor supply; unlike Judd (1985), 
their model features no financial frictions, so there is no hand-to-mouth worker and the government can issue bonds.

10 Judd (1985) formulates the model in continuous time, but this difference is immaterial. As usual, the contin-
uous-time model can be thought of as a limit of the discrete time one as the length of each period shrinks to zero.
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for  σ > 0  and  σ ≠ 1 , and  U (C)  = log C  for  σ = 1 . Here  1 / σ  denotes the (con-
stant) intertemporal elasticity of substitution (IES). Workers have utility

    ∑ 
t=0

  
∞

     β   t  u ( c t  )  ,

where  u  is increasing, concave, continuously differentiable and   lim c→0    u ′   (c)  = ∞ .

Technology.—Output is obtained from capital and labor using a neoclassical con-
stant returns production function  F ( k t  ,  n t  )   satisfying standard conditions.11 Capital 
depreciates at rate  δ > 0 . In equilibrium   n t   = 1 , so define  f  (k)  = F (k, 1)  . The 
government consumes a constant flow of goods  g > 0 . We normalize both popula-
tions to unity and abstract from technological progress and population growth. The 
resource constraint in period  t  is then

   c t   +  C t   + g +  k t+1   ≤ f  ( k t  )  +  (1 − δ)   k t  . 

There is some given positive level of initial capital,   k 0   > 0 .

Markets and Taxes.—Markets are perfectly competitive, with labor being paid 
wage   w  t  ⁎  =  F n   ( k t  ,  n t  )   and the before-tax return on capital being given by

   R  t  ⁎  =  f  ′   ( k t  )  + 1 − δ. 

The after-tax return equals   R t    and can be parameterized as either

   R t   =  (1 −  τ t  )  ( R  t  ⁎  − 1)  + 1 or  R t   =  (1 −   t  )   R  t  ⁎ , 

where   τ t    is the tax rate on the net return to wealth and    t    the tax rate on the gross 
return to wealth, or wealth tax for short. Whether we consider a tax on net returns or 
on gross returns is irrelevant and a matter of convention. We say that capital is taxed 
whenever   R t   <  R  t  ⁎   and subsidized whenever   R t   >  R  t  ⁎  .

Capitalist and Worker Behavior.—Capitalists solve

    max  
 { C t  , a t+1  } 

      ∑ 
t=0

  
∞

     β     t  U ( C t  ) , 

subject to

  C t   +  a t+1   =  R t    a t   and   a t+1   ≥ 0, 

11 We assume that  F  is increasing and strictly concave in each argument, continuously differentiable, and satis-
fying the standard Inada conditions   F k   (k, 1)  → ∞  as  k → 0  and   F k   (k, 1)  → 0  as  k → ∞ . Moreover, we assume 
that capital is essential for production, that is,  F (0, n)  = 0  for all  n .
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for some given initial wealth   a 0   . The associated Euler equation and transversality 
conditions,

   U ′   ( C t  )  = β R t+1   U ′   ( C t+1  )  and  β     t  U ′   ( C t  )   a t+1   → 0, 

are necessary and sufficient for optimality.
Workers live hand-to-mouth, their consumption equals their disposable income

   c t   =  w  t  ⁎  +  T t   = f  ( k t  )  −  f  ′   ( k t  )   k t   +  T t  , 

which uses the fact that   F n   = F −  F k   k . Here   T t   ∈ ℝ  represent government lump-
sum transfers (when positive) or taxes (when negative) to workers.12

Government Budget Constraint.—As in Judd (1985), the government cannot 
issue bonds and runs a balanced budget. This implies that total wealth equals the 
capital stock   a t   =  k t    and that the government budget constraint is

  g +  T t   =  ( R  t  ⁎  −  R t  )   k t  . 

Planning Problem.—Using the Euler equation to substitute out   R t   , the planning 
problem can be written as13

(1a)    max  
 C −1  , { c t  , C t  , k t+1  } 

     ∑ 
t=0

  
∞

     β   t  (u ( c t  )  + γU ( C t  ) ) , 

subject to

(1b)   c t    +   C t    + g +   k t+1    = f (  k t   ) + (1 − δ)  k t   ,

(1c) βU′(  C t   )(  C t    +   k t+1   ) = U′(  C t−1   )  k t   ,

(1d)   β   t  U′(  C t   )  k t+1    → 0.

The government maximizes a weighted sum of utilities with weight  γ  on capital-
ists. By varying  γ  one can trace out points on the constrained Pareto frontier and 
characterize their associated policies. We often focus on the case with no weight on 
capitalists,  γ = 0 , to ensure that desired redistribution runs from capitalists toward 
workers. Equation (1b) is the resource constraint. Equation (1c) combines the 
capitalists’ first-order condition and budget constraint and (1d) imposes the trans-
versality condition; together conditions (1c) and (1d) ensure the optimality of the 
capitalists’ saving decision.

12 Equivalently, one can set up the model without lump-sum transfers/taxes to workers, but allowing for a pro-
portional tax or subsidy on labor income. Such a tax perfectly targets workers without creating any distortions, since 
labor supply is perfectly inelastic in the model.

13 Judd (1985) includes upper bounds on the taxation of capital, which we have omitted because they do not play 
any important role. As we shall see, positive long-run taxation is possible even without these constraints; adding 
them would only reinforce this conclusion. Upper bounds on taxation play a more crucial role in Chamley (1986).
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The necessary first-order conditions are

(2a)   μ 0    = 0,

(2b)   λ t    = u′(  c t   ),

(2c)   μ t+1    =   μ t     (  σ − 1 _____ σ κ t+1     + 1)   +    1 ________ βσ κ t+1   υ t  
    (1 − γ    υ t   ),

(2d)    u′( c t+1  ) ______ 
u′( c t  )

     ( f ′( k t+1  ) + 1 − δ)   =    1 __ β    +   υ t   (  μ t+1    −   μ t   ),

where   κ t   ≡  k t   /  C t−1   ,   υ t   ≡  U ′   ( C t  )  /  u ′   ( c t  )   and the multipliers on constraints (1b) and 
(1c) are   β     t  λ t    and   β     t  μ t   , respectively.14 Here, (2a) follows from the first-order condi-
tion with respect to   C −1   .

A. Previous Steady-State Results

Judd (1985, p. 72, Theorem 2) provided a zero-tax result, which we adjust in 
the following statement to stress the need for the steady state to be interior and for 
multipliers to converge.

THEOREM 1 (Judd 1985): Suppose quantities and multipliers converge to an inte-
rior steady state, i.e.,   c t  ,  C t  ,  k t+1    converge to positive values, and   μ t    converges. Then 
the tax on capital is zero in the limit:    t   = 1 −  R t   /  R  t  ⁎  → 0 .

The proof is immediate: from equation (2d) we obtain   R  t  ∗  → 1 / β , while the cap-
italists’ Euler equation requires that   R t   → 1 / β . The simplicity of the argument fol-
lows from strong assumptions placed on endogenous outcomes. This raises obvious 
concerns. By adopting assumptions that are close relatives of the conclusions, one 
may wonder if anything of use has been shown, rather than assumed. We elaborate 
on a similar point in Section IIC.

In our rendering of Theorem 1, the requirement that the steady state be interior is 
important: otherwise, if   c t   → 0  one cannot guarantee that   u ′   ( c t+1  )  /  u ′   ( c t  )  → 1  in 
equation (2d). Likewise, even if the allocation converges to an interior steady state 
but   μ t    does not converge, then   υ t   ( μ t+1   −  μ t  )   may not vanish in equation (2d). Thus, 
the two situations that prevent the theorem’s application are (i) nonconvergence to 
an interior steady state; or (ii) nonconvergence of   μ t+1   −  μ t    to zero. In general, one 
expects that (i) implies (ii). The literature has provided an example of (ii) where the 
allocation does converge to an interior steady state.

14 We chose the sign of   λ t    in the conventional way and the sign of   μ t    such that the term in the current value 
Lagrangian is given by   μ t   (β U ′   ( C t  )  ( C t   +  k t+1  )  −  U ′   ( C t−1  )   k t  )  .
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THEOREM 2 (Lansing 1999, Reinhorn 2019): Assume  σ = 1 . Suppose the alloca-
tion converges to an interior steady state, so that   c t   ,   C t   , and   k t+1    converge to strictly 
positive values. Then,

    t   →   1 − β _____________  
1 + γυβ /  (1 − γυ)   , 

where  υ = lim  υ t    and the multiplier   μ t    in the system of first-order conditions (2c) 
does not converge. This implies a positive long-run tax on capital if redistribution 
toward workers is desirable,  1 − γυ > 0 .

The result follows easily by combining (2c) and (2d) for the case with  σ = 1  
and comparing it to the capitalist’s Euler equation, which requires   R t   = 1/β  at a 
steady state. Lansing (1999) first presented the logarithmic case as a counterexam-
ple to Judd (1985). Reinhorn (2019) correctly clarified that in the logarithmic case 
the Lagrange multipliers explode, explaining the difference in results.15

Lansing (1999) depicts the result for  σ = 1  as a knife-edge case: “the standard 
approach to solving the dynamic optimal tax problem yields the wrong answer in 
this (knife-edge) case [ … ]” (p. 423) and “The counterexample turns out to be a 
knife-edge result. Any small change in the capitalists’ intertemporal elasticity of 
substitution away from one (the log case) will create anticipation effects [ … ] As 
capitalists’ intertemporal elasticity of substitution in consumption crosses one, the 
trajectory of the optimal capital tax in this model undergoes an abrupt change” (p. 
427). Lansing (1999) suggests that whenever  σ ≠ 1  the long-run tax on capital is 
zero. We shall show that this is not the case.

B. Main Result: Positive Long-Run Taxation

Logarithmic Utility.—Before studying  σ > 1 , our main case of interest, it is use-
ful to review the special case with logarithmic utility,  σ = 1 . We assume  γ = 0  to 
guarantee that desired redistribution runs from capitalists to workers.

When  U (C)  = log C  capitalists save at a constant rate  s > 0 ,

   C t   =  (1 − s)   R t    k t   and  k t+1   = s R t    k t  . 

Although  s = β  with logarithmic preferences, nothing we will derive depends 
on this fact, so we can interpret  s  as a free parameter that is potentially divorced 
from  β .16

15 Lansing (1999) suggests a technical difficulty with the argument in Judd (1985) that is specific to  σ = 1 . 
Indeed, at  σ = 1  one degree of freedom is lost in the planning problem, since   C t−1    must be proportional to   k t   . 
However, since equations (2a)–(2d) are still satisfied by the optimal allocation for some sequence of multipliers, 
we believe the issue can be framed exactly as Reinhorn (2019) did, emphasizing the nonconvergence of multipliers.

16 This could capture different discount factors between capitalists and workers or an ad hoc behavioral assump-
tion of constant savings, as in the standard Solow growth model. We pursue this line of thought in Section IC.
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The planning problem becomes

    max  
 { c t  ,  k t+1  } 

      ∑ 
t=0

  
∞

     β     t  u ( c t  ) ,

subject to

  c t   +   1 _ s    k t+1   + g = f  ( k t  )  +  (1 − δ)   k t  , 

with   k 0    given. This amounts to an optimal neoclassical growth problem, where the 
price of capital equals  1/s > 1  instead of the actual unit cost. The difference arises 
from the fact that capitalists consume a fraction  1 − s . The government and workers 
must save indirectly through capitalists, entrusting them with resources today by 
holding back on current taxation, so as to extract more tomorrow. From their per-
spective, technology appears less productive because capitalists feed off a fraction 
of the investment. Lower saving rates  s  increase this inefficiency.17

Since the planning problem is equivalent to a standard optimal growth prob-
lem, we know that there exists a unique interior steady state and that it is glob-
ally stable. The modified golden rule at this steady state is  βs R   ⁎  = 1.  A steady 
state also requires  sRk = k , or simply  sR = 1 . Putting these conditions together 
gives  R /  R   ⁎  = β < 1. 

PROPOSITION 1: Suppose  γ = 0  and that capitalists have logarithmic utility, 
 U (C)  = log C . Then the solution to the planning problem converges monotonically 
to a unique steady state with a positive tax on capital given by   = 1 − β .

This proposition echoes the result in Lansing (1999), as summarized by 
Theorem 2, but also establishes the convergence to the steady state. Interestingly, the 
long-run tax rate depends only on  β , not on the savings rate  s  or other parameters.

Although Lansing (1999) and the subsequent literature interpreted this result as 
a knife-edge counterexample, we will argue that this is not the case, that positive 
long-run taxes are not special to logarithmic utility. One way to proceed would be to 
exploit continuity of the planning problem with respect to  σ  to establish that for any 
fixed time  t , the tax rate    t   (σ)   converges as  σ → 1  to the tax rate obtained in the 
logarithmic case (which we know is positive for large  t ). While this is enough to dis-
pel the notion that the logarithmic utility case is irrelevant for  σ ≠ 1 , it has its lim-
itations. As we shall see, the convergence is not uniform and one cannot invert the 
order of limits:   lim t→∞    lim σ→1     t   (σ)   does not equal   lim σ→1    lim t→∞     t   (σ) .  Therefore, 
arguing by continuity does not help characterize the long-run tax rate   lim t→∞     t   (σ)   
as a function of  σ . We proceed by tackling the problem with  σ ≠ 1  directly.

17 This kind of wedge in rates of return is similar to that found in countless models where there are financial 
frictions between “experts” able to produce capital investments and “savers.” Often, these models are set up with 
a moral hazard problem, whereby some fraction of the investment returns must be kept by experts, as “skin in the 
game” to ensure good behavior.



96 THE AMERICAN ECONOMIC REVIEW JANUARY 2020

Positive Long-Run Taxation: IES < 1.—We now consider the case with  σ > 1  
so that the intertemporal elasticity of substitution  1/σ  is below unity. We continue to 
focus on the situation where no weight is placed on capitalists,  γ = 0 . Section ID 
shows that the same results apply for other values of  γ , as long as redistribution from 
capitalists to workers is desired.

Toward a contradiction, suppose there existed an optimal allocation that con-
verges to an interior steady state   k t   → k,    C t   → C,    c t   → c  with  k, C, c > 0 . This 
implies that   κ t    and   υ t    also converge to positive values,  κ  and  υ . Moreover, the entire 
path   { k t  ,  C t−1  ,  c t  }   must also be interior, such that the first-order conditions (2a)–(2d) 
necessarily hold at the optimum.18 Combining equations (2c) and (2d) and taking 
the limit for the allocation, we obtain

   f  ′   (k)  + 1 − δ =   1 _ β   + υ ( μ t   −  μ t−1  )  =   1 _ β   +  μ t     σ − 1 _ σκ   υ +   1 _ βσκ  . 

Since  σ > 1 , this means that   μ t    must converge to

(3)  μ = −   1 _ 
 (σ − 1) βυ

   < 0. 

Now consider whether   μ t   → μ < 0  is possible. From the first-order condition (2a) 
we have   μ 0   = 0 . Also, from equation (2c), whenever   μ t   ≥ 0  then   μ t+1   ≥ 0 . It 
follows that   μ t   ≥ 0  for all  t = 0, 1, … , a contradiction to   μ t   → μ < 0 .19 This 
proves that the solution cannot converge to any interior steady state, including the 
zero-tax steady state.

PROPOSITION 2: If  σ > 1  and  γ = 0 , no solution to the planning problem con-
verges to the zero-tax steady state, or any other interior steady state.

It follows that if the optimal allocation converges, then either   k t   → 0 ,   C t   → 0 , 
or   c t   → 0 . With positive spending  g > 0 ,   k t   → 0  is not feasible; this also rules 
out   C t   → 0 , since capitalists cannot be starved while owning positive wealth.

Thus, provided the solution converges,   c t   → 0 . This in turn implies that 
either   k t   →  k g    or   k t   →  k   g   where   k g   <  k   g   are the two solutions to   (1/β) k + g  
= f  (k)  +  (1 − δ) k , using the fact that (1c) implies  C =  ((1 − β)/β) k  at any steady 
state.20 We next show that the solution does indeed converge, and that it does so 
toward the lowest sustainable value of capital,   k g   , so that the long-run tax on capital 
is strictly positive. The proof uses the fact that   μ t   → ∞  and   c t   → 0 , as argued 
above, but requires many other steps detailed in the online Appendix.21

18 If at any date  t  one of   k t  ,  C t−1    or   c t    were zero, then that same variable must remain equal to zero thereafter: 
for  k , see (1b); for  C , see (1c); for  c , see (2d). This contradicts the assumed convergence to an interior steady state.

19 This argument did not require convexity of the planning problem (1a). It relied, instead, on the fact that the 
first-order conditions (2a)–(2d) are necessary for an interior allocation   { k t  ,  C t−1  ,  c t  }  . 

20 Here we assume that government spending  g  is feasible, that is,  g <  max k   {f  (k)  +  (1 − δ) k −  (1/β) k}  .
21 This result also does not rely on convexity of the planning problem (1a). In the online Appendix, after dealing 

with boundaries explicitly, we only rely on the necessity of the first-order conditions (2a)–(2d).
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PROPOSITION 3: If  σ > 1  and  γ = 0 , any solution to the planning problem 
converges to   c t   → 0,    k t   →  k g   ,   C t   →  ((1 − β)/β)  k g   , with a positive limit tax on 
wealth:    t   = 1 −  R t  / R  t  ⁎  →      g  > 0 . The limit tax       g   is decreasing in spending  g , 
with         g  → 1  as  g → 0 .

The zero-tax interpretation of Judd (1985) is invalidated here because the allo-
cation does not converge to an interior steady state and multipliers do not converge. 
According to our result, the tax rate not only does not converge to zero, it reaches a 
sizable level. Perhaps counterintuitively, the long-run tax on capital,         g  , is inversely 
related to the level of government spending, since   k g    is increasing with spending  g . 
This underscores that long-run capital taxation is not driven by budgetary necessity.

As the proposition shows, optimal taxes may reach very high levels. Up to this 
point, we have placed no limits on tax rates. It may be of interest to consider a sit-
uation where the planner is further constrained by an upper bound on the tax rate 
for net returns ( τ ) or gross wealth (    ), perhaps due to evasion or political economy 
considerations. If these bounds are sufficiently tight to be binding, it is natural to 
conjecture that the optimum converges to these bounds, and to an interior steady-
state allocation with a positive limit for worker consumption,   lim t→∞    c t   > 0 .

Solution for IES Near 1.—Figure 1 displays the time path for the capital stock 
and the tax rate on wealth,    t   = 1 −  R t   /  R  t  ⁎  , for a range of  σ  that straddles the log-
arithmic  σ = 1  case. We set  β = 0.95 ,  δ = 0.1 ,  f  (k)  =  k   α   with  α = 0.3  and 
 u (c)  = U (c)  . Spending  g  is chosen so that  g/f  (k)  = 20%  at the zero-tax steady 
state. The initial value of capital,   k 0   , is set at the zero-tax steady state. Our numerical 
method is based on a recursive formulation of the problem described in the online 
Appendix.

To clarify the magnitudes of the tax on wealth,    t   , consider an example: 
if   R   ⁎  = 1.04  so that the before-tax net return is 4 percent, then a tax on wealth of 
1 percent represents a 25 percent tax on the net return; a wealth tax of 4 percent 
represents a tax rate of 100 percent on net returns, and so on.
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Figure 1. Optimal Time Paths for Capital (Panel A) and Wealth Taxes (Panel B)

Note: This figure shows the optimal time paths of capital   k t    (panel A) and wealth taxes    t    (panel B) for various val-
ues of the inverse IES  σ .
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A few things stand out in Figure 1. First, the results confirm what we showed the-
oretically in Proposition 3, that for  σ > 1  capital converges to   k g   = 0.0126 . In the 
figure this convergence is monotone22, taking around 200 years for  σ = 1.25 . The 
asymptotic tax rate is very high, approximately       g  = 1 − R /  R   ⁎  = 85% , lying 
outside the figure’s range, and, since the after-tax return equals  R = 1 / β  in the 
long run, this implies that the before-tax return   R   ⁎  =  f  ′   ( k g  )  + 1 − δ  is exorbitant.

Second, for  σ < 1 , the path for capital is nonmonotonic23 and eventually con-
verges to the zero-tax steady state. However, the convergence is relatively slow, espe-
cially for values of  σ  near  1 . This makes sense, since, by continuity, for any period  t , 
the solution should converge to that of the logarithmic utility case as  σ → 1 , with 
positive taxation as described in Proposition 1. By implication, for  σ < 1  the rate 
of convergence to the zero-tax steady state must be zero as   σ ↑ 1  . To further punc-
tuate this point, Figure 2 shows the number of years it takes for the tax on wealth to 
drop below 1 percent as a function of  σ ∈  (1/2, 1)  . As  σ  rises, it takes longer and 
longer and as   σ ↑ 1   it takes an eternity.

The logarithmic case leaves other imprints on the solutions for  σ ≠ 1 . Returning 
to Figure 1, for both  σ < 1  and  σ > 1  we see that over the first 20–30 years, the 
path approaches the steady state of the logarithmic utility case, associated with a 
tax rate around   = 1 − β = 5% . The speed at which this takes place is relatively 
quick, which is explained by the fact that for  σ = 1  it is driven by the standard rate 
of convergence in the neoclassical growth model. The solution path then  transitions 

22 This depends on the level of initial capital. For lower levels of capital the path first rises then falls.
23 This is possible because the state variable has two dimensions,   ( k t  ,  C t−1  )  . At the optimum, for the same capi-

tal  k , consumption  C  is initially higher on the way down than it is on the way up.

Figure 2. Slow Speed of Convergence to 0 Taxes for  σ  Close to, but Below 1

Note: This plot shows the time it takes until the wealth tax    t    falls below  1 percent  for an inverse IES  σ ∈  (1/2, 1)  .
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much more slowly either upward or downward, depending on whether  σ > 1  
or  σ < 1 .

Intuition: Anticipatory Effects of Future Taxes on Current Savings.—Why does 
the optimal tax eventually rise for  σ > 1  and fall for  σ < 1 ? Why are the dynam-
ics relatively slow for  σ  near  1 ?

To address these normative questions it helps to back up and review the follow-
ing positive exercise. Start from a constant tax on wealth and imagine an unex-
pected announcement of higher future taxes on capital. How do capitalists react 
today? There are substitution and income effects pulling in opposite directions. 
When  σ > 1 , the substitution effect is muted compared to the income effect, and 
capitalists lower their consumption to match the drop in future consumption. As a 
result, capital rises in the short run and falls in the long run.24 When instead  σ < 1 , 
the substitution effect is stronger and capitalists increase current consumption. In 
the logarithmic case,  σ = 1 , the two effects cancel out, so that current consumption 
and savings are unaffected.

Returning to the normative questions, lowering capitalists’ consumption and 
increasing capital is desirable for workers. When  σ < 1 , this can be accomplished 
by promising lower tax rates in the future. This explains why a declining path for 
taxes is optimal. In contrast, when  σ > 1 , the same is accomplished by promising 
higher tax rates in the future, explaining the increasing path for taxes. These incen-
tives are absent in the logarithmic case, when  σ = 1 , explaining why the tax rate 
converges to a constant.

When  σ < 1  the rate of convergence to the zero-tax steady state is also driven 
by these anticipatory effects. With  σ  near 1, the potency of these effects is small, 
explaining why the rate of convergence is low and indeed becomes vanishingly 
small as   σ ↑ 1  .

In contrast to previous intuitions offered for zero long-run tax results, the intu-
ition we provide for our results, zero and nonzero long-run taxes alike, depending 
on  σ , is not about the desired level for the tax. Instead, we provide a rationale for the 
desired slope in the path for the tax: an upward path when  σ > 1  and a downward 
path when  σ < 1 . The conclusions for the optimal long-run tax then follow from 
these desired slopes, rather than the other way around.

Our intuition based on slopes has an interesting implication for the effects of lim-
ited commitment in this economy. Since the planner promises higher future taxation 
when  σ > 1 , renegotiation by the planner might lead to lower rather than higher 
capital taxes. This is the polar opposite of the conventional wisdom, according to 
which limited commitment leads to higher capital taxation.

24 It is important to note that  σ > 1  does not imply that the supply for savings “bends backward.” Indeed, as 
a positive exercise, if taxes are raised permanently within the model, then capital falls over time to a lower steady 
state for any value of  σ , including  σ > 1 . Higher values of  σ  imply a less elastic response over any finite time 
horizon, and thus a slower convergence to the lower capital stock. The case with  σ > 1  is widely considered more 
plausible empirically.
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C. General Savings Functions and Inverse Elasticity Formula

The intuition suggests that the essential ingredient for positive long-run capital 
taxation in the model of Judd (1985, Section 3) is that capitalists’ savings decrease 
in future interest rates. To make this point even more transparently, we now modify 
the model and assume capitalists behave according to a general “ad hoc” savings 
rule,

   k t+1   = S ( R t    k t  ;  R t+1  ,  R t+2  , …) , 

where  S ( I t  ;  R t+1  ,  R t+2  , …)  ∈  [0,  I t  ]   is a continuously differentiable function 
taking as arguments current wealth   I t   =  R t    k t   ≥ 0  and future interest rates   
{ R t+1  ,  R t+2  , …}  ∈  ℝ  +  ℕ   . We assume that savings increase with income,   S I   > 0 . This 
savings function encompasses the case where capitalists maximize an additively 
separable utility function, as in Judd (1985), but is more general. For example, the 
savings function can be derived from the maximization of a recursive utility func-
tion, or even represent behavior that cannot be captured by optimization, such as 
hyperbolic discounting or self-control and temptation.

Again, we focus on the case  γ = 0 . The planning problem is then

    max  
 { c t  , R t  , k t+1  } 

     ∑ 
t=0

  
∞

     β   t  u ( c t  ) , 

subject to

   c t   +  R t    k t   + g = f  ( k t  )  +  (1 − δ)   k t  , 

   k t+1   = S ( R t    k t  ;  R t+1  ,  R t+2  , …) , 

with   k 0    given.
We can show that, consistent with the intuition spelled out above, long-run capital 

taxes are positive whenever savings decrease in future interest rates.

PROPOSITION 4: Suppose  γ = 0  and assume the savings function is decreasing 
in future rates, so that   S  R t     (I;  R 1  ,  R 2  , …)  ≤ 0  for all  t = 1, 2, …  and all arguments   
{I,  R 1  ,  R 2  , …}  . If the optimum converges to an interior steady state in  c, k,  and  R , 
and at the steady state  βR S I   ≠ 1 , then the limit tax rate is positive and  β R S I   < 1 .

This generalizes Proposition 2, since the case with isoelastic utility and IES less 
than 1 is a special case satisfying the hypothesis of the proposition. Once again, the 
intuition here is that the planner exploits anticipatory effects by raising tax rates over 
time to increase present savings.

The result requires  βR S I   < 1  at the steady state, which is satisfied when savings 
are linear in income, since then   S I   R = 1  at a steady state. Note that savings are lin-
ear in income in the isoelastic utility case. More generally,  R S I   < 1  is natural, as it 
ensures local stability for capital given a fixed steady-state return, i.e., the dynamics 
implied by the recursion   k t+1   = S (R k t  , R, R,…)   for fixed  R .
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Inverse Elasticity Formula.—There is a long tradition relating optimal tax rates to 
elasticities. In the context of our general savings model, spelled out above, we derive 
the following inverse elasticity rule,

(4)   = 1 −   R _  R   ⁎    =   1 − βR S I    _____________  
1 +  ∑ t=1  ∞    β   −t+1   ϵ S,t   

  , 

where   ϵ S,t   ≡ ( R t  /S) (∂ S/∂  R t  ) ( R 0    k 0  ;  R 1  ,  R 2  , …)   denotes the elasticity of savings 
with respect to future interest rates evaluated at the steady state in  c, k,  and  R . 
Although the right hand side is endogenous, equation (4) is often interpreted as a 
formula for the tax rate. Our inverse elasticity formula is closely related to a condi-
tion derived by Piketty and Saez (2013, Section 3.3, equation (16)).25

We wish to make two points about our formula. First, note that the relevant elas-
ticity in this formula is not related to the response of savings to current, transi-
tory or permanent, changes in interest rates. Instead, the formula involves a sum 
of elasticities of savings with respect to future changes in interest rates. Thus, it 
involves the anticipatory effects discussed above. Indeed, the variation behind our 
formula changes the after-tax interest rate at a single future date  T , and then takes 
the limit as  T → ∞ . For any finite  T , the term   ∑ t=1  T    β   −t+1   ϵ S,t     represents the sum 
of the anticipatory effects on capitalists’ savings behavior in periods 0 up to  T − 1 ; 
while   ∑ t=1  ∞    β   −t+1   ϵ S,t     captures the limit as  T → ∞ . It is important to keep in mind 
that, precisely because it is anticipatory effects that matter, the relevant elasticities 
are negative in standard cases, e.g., with additive utility and IES below 1.

Second, the derivation we provide in the online Appendix requires conver-
gence to an interior steady state as well as additional conditions (somewhat cum-
bersome to state) to allow a change in the order of limits and obtain the simple 
expression   ∑ t=1  ∞    β   −t+1   ϵ S,t    . These latter conditions seem especially hard to guarantee 
ex ante, with assumptions on primitives, since they may involve the endogenous 
speed of convergence to the presumed interior steady state.26 As we have shown, 
in this model one cannot take these properties for granted, neither the convergence 
to an interior steady state (Proposition 3) nor the additional conditions. Indeed, 
Proposition 4 already supplies counterexamples to the applicability of the inverse 
elasticity formula.

COROLLARY 1: Under the conditions of Proposition 4, the inverse elasticity for-
mula (4) cannot hold if  1 +  ∑ t=1  ∞    β   −t+1   ϵ S,t    < 0 .

This result provides conditions under which the formula (4) cannot characterize the 
long-run tax rate. Whenever the discounted sum of elasticities with respect to future 
rates,   ∑ t=1  ∞    β   −t+1   ϵ S,t    , is negative and less than  − 1 , the formula implies a  negative limit 

25 Their formula is derived under the special assumptions of additively separable utility, an exogenously fixed 
international interest rate and an exogenous wage. None of this is important, however. The two formulas remain dif-
ferent because of slightly different elasticity definitions; ours is based on partial derivatives of the primitive savings 
function  S  with respect to a single interest rate change, while theirs is based on the implicit total derivative of the 
capital stock sequence with respect to a permanent change in the interest rate.

26 Unfortunately, one cannot ignore transitions by choice of a suitable initial condition. For example, even in the 
additive utility case with  σ < 1  and even if we start at the zero capital tax steady state, capital does not stay at this 
level forever. Instead, capital first falls and then rises back up at a potentially slow rate.
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tax rate. Yet, under the same conditions as in Proposition 4, this is not possible since 
this result shows that if convergence takes place, the tax rate is positive.

The case with additive and isoelastic utility is an extreme example 
where the sum of elasticities   ∑ t=1  ∞    β   −t+1   ϵ S,t     diverges. As it turns out, in this 
case   β   −t   ϵ S,t   = − ((σ − 1)/σ)((1 − β)/β ) at a steady state and the sum of elastici-
ties diverges. It equals  + ∞  if the IES is greater than 1, or  − ∞  if the IES is less than 
1.27 In both cases, formula (4) suggests a zero steady-state tax rate. Piketty and Saez 
(2013) use this to argue that this explains the Chamley-Judd result of a zero long-
run tax. However, as we have shown, when the IES is less than 1 the limit tax rate is 
not zero. This counterexample to the applicability of the inverse elasticity formula 
(4) assumes additive utility and, thus, an infinite sum of elasticities. However, the 
problem may also arise for non-additive preferences or with ad hoc savings func-
tion. Indeed, the conditions for the corollary may be met in cases where the sum of 
elasticities is finite, as long as its value is sufficiently negative.

It should be noted that our corollary provides sufficient conditions for the formula 
to fail, but other counterexamples may exist outside its realm. Suggestive of this is 
the fact that when the denominator is positive but small the formula may yield tax 
rates above 100 percent, which seems nonsensical, requiring  R < 0 . More gener-
ally, very large tax rates may be inconsistent with the fact that steady-state capital 
must remain above   k g   > 0 .

To summarize, the inverse elasticity formula (4) fails in important cases, pro-
viding misleading answers for the long-run tax rate. This highlights the need for 
caution in the application of steady-state inverse elasticity rules.

D. Redistribution toward Capitalists

In the present model, a desire to redistribute toward workers, away from capital-
ists, is a prerequisite to create a motive for positive wealth taxation. Proposition 3 
assumes no weight on capitalists,  γ = 0 , to ensure that desired redistribution runs 
in this direction. When  γ > 0  the same results obtain as long as the desire for 
redistribution continues to run from capitalists toward workers. In contrast, when  γ  
is high enough the desired redistribution flips from workers to capitalists. When this 
occurs, the optimum naturally involves negative tax rates, to benefit capitalists.

We verify these points numerically. Figure 3 illustrates the situation by fix-
ing  σ = 1.25  and varying the weight  γ . Since initial capital is set at the zero-
tax steady state,   k   ⁎  , the direction of desired redistribution flips exactly at 
  γ   ⁎  =  u ′   ( c   ⁎ )  /  U ′   ( C   ⁎ )  . At this value of  γ , the planner is indifferent between redis-
tributing toward workers or capitalists at the zero-tax steady state   ( k   ⁎ ,  c   ⁎ ,  C   ⁎ )  .28 
When  σ > 1  and  γ >  γ   ⁎   the solution converges to the highest sustainable 

27 Proposition 12 in the online Appendix shows that the infinite sum   ∑ t=1  ∞    β   −t+1   ϵ S,t     also diverges for general 
recursive, non-additive preferences.

28 Rather than displaying  γ  in the legend for Figure 3, we perform a transformation that makes it more easily 
interpretable: we report the proportional change in consumption for capitalists that would be desired at the steady 
state, e.g.,  − 0.4  represents that the planner’s ideal allocation of the zero-tax output would feature a 40 percent 
reduction in the consumption of capitalists, relative to the steady-state value  C = ((1 − β)/β)k . The case  γ =  γ   ⁎   
corresponds to 0 in this transformation.
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 capital   k   g  , the highest solution to ( 1/β)k + g = f  (k)  +  (1 − δ) k , rather than   k g   , the 
lowest solution to the same equation.

A deeper understanding of the dynamics can be grasped by noting that the plan-
ning problem is recursive in the state variable   ( k t  ,  C t−1  )  . It is then possible to study 
the dynamics for this state variable locally, around the zero-tax steady state, by 
linearizing the first-order conditions (2a)–(2d). We do so for a continuous-time 
version of the model, to ensure that our results are comparable to Kemp, Long, 
and Shimomura (1993). The details are contained in the online Appendix. We obtain 
the following characterization.

PROPOSITION 5: For a continuous-time version of the model,

 (i) if  σ > 1 , the zero-tax steady state is locally saddle-path stable;

 (ii) if  σ < 1  and  γ ≤  γ   ⁎  , the zero-tax steady state is locally stable;

 (iii) if  σ < 1  and  γ >  γ   ⁎  , the zero-tax steady state may be locally stable or 
unstable and the dynamics may feature cycles.

The first two points confirm our theoretical and numerical observations. For  σ > 1  
the solution is saddle-path stable, explaining why it does not converge to the zero-
tax steady state, except for the knife-edged cases where there is no desire for redis-
tribution, in which case the tax rate is zero throughout. For  σ < 1  the solution 
converges to the zero-tax steady state whenever redistribution toward workers is 
desirable. This lends theoretical support to our numerical findings for  σ < 1 , dis-
cussed earlier and illustrated in Figure 1.

The third point raises a distinct possibility which is not our focus: the system may 
become unstable or feature cyclical dynamics. This is consistent with Kemp, Long, 
and Shimomura (1993), which also studied the linearized system around the zero-
tax steady state. They reported the potential for local instability and cycles, applying 
the Hopf Bifurcation Theorem. Proposition 5 clarifies that a necessary condition for 
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Figure 3. Wealth Taxes Diverge as Long as the Planner Has a Desire for Redistribution
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this dynamic behavior is  σ < 1  and  γ >  γ   ⁎  . The latter condition is equivalent to a 
desire to redistribute away from workers toward capitalists. We have instead focused 
on low values of  γ  that ensure that desired redistribution runs from capitalists to 
workers. For this reason, our results are completely distinct to those in Kemp, Long, 
and Shimomura (1993).

II. Representative Agent Ramsey

In the previous section we worked with the two-class model without government 
debt in Judd (1985, Section 3). Chamley (1986), in contrast, studied a representative 
agent Ramsey model with unconstrained government debt; Judd (1999) adopted 
the same assumptions. This section presents results for such representative agent 
frameworks.

We first consider situations where the upper bounds on capital taxation do not 
bind in the long run (Section  IIA). We then prove, for additively separable pref-
erences, that these bounds may, in fact, bind indefinitely (Section  IIB). Readers 
mainly interested in the latter result may skip Section IIA.

A. First-Best or Zero Taxation of Zero Wealth?

In this subsection, we first review the discrete-time model and zero capital tax 
steady-state result in Chamley (1986, Section 1) and then present a new result. 
We show that if the economy settles down to a steady state where the bounds on 
the capital tax are not binding, then the tax on capital must be zero. This result 
holds for general recursive preferences that, unlike time-additive utility, allow the 
rate of impatience to vary. Non-additive utility constituted an important element in 
Chamley (1986, Section 1), to ensure that zero-tax results were not driven by an 
“infinite long-run elasticity of savings.”29 However, we also show that other impli-
cations emerge away from additive utility. In particular, if the economy converges 
to a zero-tax steady state there are two possibilities. Either private wealth has been 
wiped out, in which case nothing remains to be taxed, or the tax on labor also falls 
to zero, in which case capital income and labor income are treated symmetrically. 
These implications paint a very different picture, one that is not favorable to the 
usual interpretation of zero capital tax results.

Preferences.—We write the representative agent’s utility as   ( U 0  ,  U 1  , …)   with 
per-period utility   U t   = U ( c t  ,  n t  )   depending on consumption   c t    and labor supply   n t   . 
Assume that utility    is increasing in every argument and satisfies a Koopmans (1960) 
recursion

(5a)   V t    = W(  U t   ,   V t+1   ),

(5b)   V t    = (  U t   ,   U t+1   , …),

29 At any steady state with additive utility one must have  R = 1 / β  for a fixed parameter  β ∈  (0, 1) .  This is 
true regardless of the wealth or consumption level. In this sense, the supply of savings is infinitely elastic at this 
rate of interest.
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(5c)   U t    = U(  c t   ,   n t   ).

Here  W (U, V′)   is an aggregator function. We assume that both  U (c, n)   and 
 W (U, V′)   are twice continuously differentiable, with   W U  ,  W V  ,  U c   > 0 , and   U n   < 0 . 
Consumption and leisure are taken to be normal goods,

     U cc   _  U c  
   −    U nc   _  U n  

   ≤ 0 and    U cn   _  U c  
   −    U nn   _  U n  

   ≤ 0, 

with at least one strict inequality.
Regarding the aggregator function, the additively separable utility case amounts 

to the particular linear choice  W (U, V′)  = U + βV ′ with  β ∈  (0, 1)  . Nonlinear 
aggregators allow local discounting to vary with  U  and  V ′, as in Koopmans (1960), 
Uzawa (1968), and Lucas and Stokey (1984). Of particular interest is how the dis-
count factor varies across potential steady states. Define   U ¯   (V)   as the solution to 
 V = W ( U ¯   (V) , V)   and let   β ¯   (V)  ≡  W V   ( U ¯   (V) , V)   denote the steady-state discount 
factor. It will prove useful below to note that the strict monotonicity of    immedi-
ately implies that   β ¯   (V)  ∈  (0, 1)   at any steady state with utility  V .30

Technology.—The economy is subject to the sequence of resource constraints

(6)   c t   +  k t+1   +  g t   ≤ F ( k t  ,  n t  )  +  (1 − δ)   k t  , t = 0, 1, …  ,

where  F  is a concave, differentiable, and constant returns to scale production func-
tion taking as inputs labor   n t    and capital   k t   , and the parameter  δ ∈  [0, 1]   is the depre-
ciation rate of capital. The sequence for government consumption,   { g t  }  , is given 
exogenously.

Markets and Taxes.—Labor and capital markets are perfectly competi-
tive, yielding before-tax wages and rates of return given by   w  t  ⁎  =  F n   ( k t  ,  n t  )   and 
  R  t  ⁎  =  F k   ( k t  ,  n t  )  + 1 − δ .

The agent maximizes utility subject to the sequence of budget constraints

   c 0   +  a 1   ≤  w 0    n 0   +  R 0    k 0   +  R  0  b   b 0  , 

   c t   +  a t+1   ≤  w t    n t   +  R t    a t   ,  t = 1, 2, … , 

and the No Ponzi condition   a t+1  /( R 1    R 2   ⋯  R t  ) → 0 . The agent takes as given the 
after-tax wage   w t    and the after-tax gross rates of return,   R t   . Total assets   a t   =  k t   +  b t    
are composed of capital   k t    and government debt   b t   ; with perfect foresight, both must 
yield the same return in equilibrium for all  t = 1, 2, …  , so only total wealth mat-
ters for the agent; this is not true for the initial period, where we allow possibly 
different returns on capital and debt. The after-tax wage and return relate to their 

30 A positive marginal change  dU  in the constant per-period utility stream increases steady-state utility by some 
constant  d . By virtue of (5a) this implies  d =  W U   dU +  W V   d , which yields a contradiction unless   W V   < 1 .



106 THE AMERICAN ECONOMIC REVIEW JANUARY 2020

before-tax counterparts by   w t   =  (1 −  τ   t  n )   w  t  ⁎   and   R t   =  (1 −  τ t  )  ( R  t  ⁎  − 1)  + 1  (here 
it is more convenient to work with a tax rate on net returns than on gross returns).

Importantly, we follow Chamley (1986) and allow for an indirect constraint on 
the capital tax rate given by   R t   ≥ 1 . For positive before-tax interest rates   R   ⁎  − 1  
this is precisely equivalent to assuming   τ t   ≤ 1 .31 As is well understood, without 
constraints on capital taxation the solution involves extraordinarily high initial cap-
ital taxation, typically complete expropriation, unless the first-best is achieved first. 
Taxing initial capital mimics the missing lump-sum tax, which has no distortionary 
effects. We note that our main result in this section, Proposition 6, does not depend 
on the specific form of the capital tax constraint.

Planning Problem.—The implementability condition for this economy is

(7)    ∑ 
t=0

  
∞

     (  ct    c t   +   nt    n t  )  =   c0   ( R 0    k 0   +  R  0  b   b 0  ) , 

whose derivation is standard. In the additive separable utility case    ct   =  β     t   U ct    
and    nt   =  β     t   U nt    and expression (7) reduces to the standard implementability con-
dition popularized by Lucas and Stokey (1983) and Chari, Christiano, and Kehoe 
(1994). Given   R 0    and   R  0  b  , any allocation satisfying the implementability condition 
and the resource constraint (6) can be sustained as a competitive equilibrium for 
some sequence of prices and taxes.32

To enforce the constraints on the taxation of capital in periods  t = 1, 2, …  we 
impose

(8a)    ct      =     R t+1      ct+1   ,

(8b)   R t      ≥   1. 

The planning problem maximizes    ( U 0  ,  U 1  , …)   subject to (6), (7), and (8). In addi-
tion, we take   R  0  b   as given. The constraint   R t   ≥ 1  may or may not bind forever. In 
this subsection we are interested in situations where the constraint does not bind 
asymptotically, i.e., it is slack after some date  T < ∞ . In the next subsection we 
discuss the possibility of the constraint binding forever.

Chamley (1986) provided the following result, slightly adjusted here to make 
explicit the need for the steady state to be interior, for multipliers to converge and 
for the bounds on taxation to be asymptotically slack.

THEOREM 3 (Chamley 1986, Theorem 1): Suppose the optimum converges to an 
interior steady state where the constraints on capital taxation are asymptotically 
slack. Let    Λ ̃   t   =   ct    Λ t    denote the multiplier on the resource constraint (6) in period  t . 
Suppose further that the multiplier   Λ t    converges to an interior point   Λ t   → Λ > 0 . 
Then the tax on capital converges to zero,   R t  / R  t  ⁎  → 1 .

31 When   R   ⁎  − 1  is negative, however, an upper bound directly imposed on taxes   τ t    allows arbitrarily low after-
tax interest rates   R t   .

32 The argument is identical to that in Lucas and Stokey (1983) and Chari, Christiano, and Kehoe (1994).
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The proof is straightforward. Consider a sufficiently late period  t , so that the 
bounds on the capital tax rate are no longer binding. Then the first-order condi-
tion for   k t+1    includes only terms from the resource constraint (6) and is sim-
ply    Λ ̃   t   =   Λ ̃   t+1    R  t+1  ⁎  .  Equivalently, using that    Λ ̃   t   =   ct    Λ t    we have

    ct    Λ t   =   ct+1    Λ t+1    R  t+1  ⁎  . 

On the other hand the representative agent’s Euler equation (8a) is

    ct   =   ct+1    R t+1  . 

The result follows from combining these last two equations.
With the specific constraint   R t   ≥ 1  on capital taxation assumed here and in 

Chamley (1986), there would be no need to require the constraints on capital tax-
ation not to bind. The reason is that in this case the constraints imposed by (8) do 
not involve   k t+1   , so the argument above goes through unchanged. In fact, this is 
essentially the form that Theorem 1 in Chamley (1986) takes, although the assump-
tion of converging multipliers is not stated explicitly, but imposed within the proof. 
We chose to explicitly assume the capital tax constraints to be no longer binding to 
allow a broader applicability of the theorem to situations without the specific con-
straints in (8).33

The main result of this subsection is stated in the next proposition. Relative to 
Theorem 3, we make no assumptions on multipliers and prove that the steady-state 
tax rate is zero. More importantly, we derive new implications of reaching an inte-
rior steady state.

PROPOSITION 6: Suppose the optimal allocation converges to an interior steady 
state and assume the bounds on capital tax rates are asymptotically slack. Then the 
tax on capital is asymptotically zero. In addition, if the discount factor is locally 
nonconstant at the steady state, so that    β ¯   ′   (V)  ≠ 0 , then either

 (i) private wealth converges to zero,   a t   → 0 ; or

 (ii) the allocation converges to the first-best, with a zero tax rate on labor.

This result shows that at any interior steady state where the bounds on capital taxes 
do not bind, the tax on capital is zero; this much basically echoes Chamley (1986), 
or our rendering in Theorem 3. However, as long as the rate of impatience is not 
locally constant, so that    β ¯   ′   (V)  ≠ 0 , the proposition also shows that this zero tax 
result comes with other implications. There are two possibilities. In the first pos-
sibility, the capital income tax base has been driven to zero, perhaps as a result of 
heavy taxation along the transition. In the second possibility, the government has 
accumulated enough wealth, perhaps aided by heavy taxation of wealth along the 

33 Note that as long as the multiplier   Λ t    converges, one does not even need to assume the allocation converges 
to arrive at the zero-tax conclusion. This is essentially the argument used by Judd (1999). However, the problem is 
that one cannot guarantee that the multiplier converges. We shall discuss this in Section IIC.
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transition, to finance itself without taxes, so the economy attains the first-best. Thus, 
capital taxes are zero, but the same is true for labor taxes.

To sum up, if the economy converges to an interior steady state, then either both 
labor and capital are treated symmetrically or there remains no wealth to be taxed. 
Both of these implications do not sit well with the usual interpretation of the zero 
capital tax result. To be sure, in the special (but commonly adopted) case of addi-
tive separable utility one can justify the usual interpretation where private wealth is 
spared from taxation and labor bears the entire burden. However, this is no longer 
possible when the rate of impatience is not constant. In this sense, the usual inter-
pretation describes a knife-edge situation.

B. Long-Run Capital Taxes Binding at Upper Bound

We now show that the bounds on capital tax rates may bind forever, contradicting 
a claim by Chamley (1986). This claim has been echoed throughout the literature, 
e.g., by Judd (1999); Atkeson, Chari, and Kehoe (1999); and others.

For our present purposes, and following Chamley (1986) and Judd (1999), it is 
convenient to work with a continuous-time version of the model and restrict atten-
tion to additively separable preferences,34

(9a)   ∫ 
0
  
∞

   e   −ρt  U ( c t  ,  n t  )  dt ,

(9b)   U (c, n)  = u (c)  − v (n)   with  u (c)  =    c   
1−σ  _ 

1 − σ  , v (n)  =    n   1+ζ  _ 
1 + ζ  , 

where  σ, ζ > 0 . Following Chamley (1986), we adopt an isoelastic utility function 
over consumption; this is important to ensure the bang-bang nature of the solution. 
We also assume isoelastic disutility from labor, but we believe similar results to ours 
can be shown for arbitrary convex disutility functions  v (n)  . The resource constraint 
is

(10)   c t   +   k ̇   t   + g = f  ( k t  ,  n t  )  − δ  k t  , 

where  f  has constant returns to scale with  f  (0, n)  = f  (k, 0)  = 0 , is differentiable 
and strictly concave in each argument, and satisfies the usual Inada conditions. For 
simplicity, government consumption is taken to be constant at  g > 0 . We denote 
the before-tax net interest rate by   r  t  ⁎  =  f k   ( k t  ,  n t  )  − δ . The implementability condi-
tion is now

(11)   ∫ 
0
  
∞

   e   −ρt  ( u ′   ( c t  )   c t   −  v ′   ( n t  )   n t  )  =  u ′   ( c 0  )   a 0  , 

34 Continuous time allowed Chamley (1986) to exploit the bang-bang nature of the optimal solution. Since we 
focus on cases where this is not the case it is less crucial for our results. However, we prefer to keep the analyses 
comparable.
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where   a 0   =  k 0   +  b 0    denotes initial private wealth, consisting of capital   k 0    and gov-
ernment bonds   b 0   . Since unrestricted subsidies to capital act as lump-sum tax when 
initial private wealth is negative, we focus on the case where initial private wealth 
is positive,   a 0   > 0 .35 To enforce bounds on capital taxation we follow Chamley 
(1986) and impose

(12a)    θ ̇   t      =     θ t   (ρ −   r t   ),

(12b)   r t      ≥   0,

where   θ t   =  u ′   ( c t  )   denotes the marginal utility of consumption, and   r t    denotes the 
after-tax interest rate. Whenever the before-tax return on capital   r  t  ⁎  ≡  f k   ( k t  ,  n t  )  − δ   
is positive, constraint (12b) corresponds to a capital tax constraint   τ t   = 1 −  r t   /  r  t  ⁎  
≤  τ ¯    with   τ ¯   ≡ 1 . The planning problem maximizes (9a) subject to (10), (11), 
and (12).

Chamley (1986, Theorem 2, p. 615) formulated the following claim regarding the 
path for capital tax rates.36

CLAIM 1: There exists a time  T  with the following three properties:

 (i) For  t < T , the constraint (12b) is binding, that is,   r t   = 0  and   τ t   = 1 ;

 (ii) For  t > T  capital income is untaxed, that is,   r t   =  r  t  ⁎   and   τ t   = 0 ;

 (iii)  T < ∞ .

At a crucial juncture in the proof of this claim, Chamley (1986, p. 616) states 
in support of part (iii) that “The constraint   r t   ≥ 0  cannot be binding forever (the 
marginal utility of private consumption [ … ] would grow to infinity [ … ] which 
is absurd).”37 Our next result shows that there is nothing absurd about this within 
the logic of the model and that, quite to the contrary, part (iii) of the above claim is 
incorrect: indefinite taxation,  T = ∞ , may be optimal.

Before presenting our result, some definitions are in order. Given a path for 
government spending, the tax burden the government must impose varies with ini-
tial government debt   b 0   . As with a regular, static Laffer curve there exists a maxi-
mum burden of taxes agents can finance, here given by a threshold level for initial 
government debt,    ̄  b   . When   b 0   >   ̄  b   , no feasible allocation exists, while there are 
always feasible allocations if   b 0   <   ̄  b   . Naturally, at the peak of this Laffer curve 
when   b 0   =   ̄  b    the tax on capital must be set to its upper bound indefinitely. Crucially, 
however, it may be optimal to set the tax on capital at its upper bound indefinitely 
when   b 0   <   ̄  b   , even though not doing so is feasible.

35 Observe that, in Proposition 7,   a 0   > 0  is always satisfied if   b 0   ∈  [  b ¯  ,   ̄  b  ]   for  σ > 1 , so the focus on   a 0   > 0  
does not affect our main result.

36 Similar claims are made in Atkeson, Chari, and Kehoe (1999), Judd (1999), and many other papers.
37 It is worth pointing out, however, that although Chamley (1986, p. 619) claims  T < ∞  it never states that  T  is 

small. Indeed, it cautions to the possibility that it is quite large saying “the length of the period with capital income 
taxation at the 100 per cent rate can be significant.”
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PROPOSITION 7: Suppose preferences are given by (9). Fix any initial capital 
stock   k 0   > 0  and assume initial private wealth   k 0   +  b 0    is positive.

Then, the bang-bang property holds, so that at any optimum of the planning prob-
lem there exists a time  T ∈  [0, ∞]  , such that capital taxes   τ t    are set at their upper 
bound   τ ¯   = 1  before  T  and set to zero thereafter. Whenever the economy is not at its 
first-best,  T  is strictly positive. Moreover:

 (i) For  σ > 1 , there exists a lower bound on debt    b ¯   <   ̄  b   , such that:
  •  If   b 0   =   ̄  b   , the unique optimum has  T = ∞  and there is no feasible allo-

cation with  T < ∞ .
  •  If   b 0   ∈  [  b ¯  ,   ̄  b  )  , the unique optimum has  T = ∞  but there exist feasible 

allocations with  T < ∞ .
  •  If   b 0   <   b ¯   , any optimum has  T < ∞ .

 (ii) For  σ = 1 :
  •  If   b 0   =   ̄  b   , the unique optimum has  T = ∞  and there is no feasible allo-

cation with  T < ∞ .
  •  If   b 0   <   ̄  b   , any optimum has  T < ∞ .

 (iii) For  σ < 1 : Any optimum has  T < ∞ .

Proposition 7 offers a full characterization of the optimal capital tax policy in this 
economy. First, we prove a bang-bang property of capital taxes, according to which 
capital taxes are binding at their upper bound,   τ t   = 1 , until some time  T  and drop 
to zero thereafter. It turns out that previous proofs of the bang-bang property (see, 
e.g., Chamley 1986 or Atkeson, Chari, and Kehoe 1999) heavily relied on the false 
premise that capital taxes cannot be positive forever. We provide a new proof that 
avoids this issue.

Using the bang-bang property of capital taxes, we then characterize optimal cap-
ital taxes, distinguishing by the position of  σ  relative to 1. For  σ > 1 , we prove 
that it is optimal to tax capital indefinitely for a positive-measure interval of   b 0   . 
Crucially, for   b 0   <   ̄  b    indefinite taxation is not driven by budgetary need: there are 
feasible plans with  T < ∞ ; however, the plan with  T = ∞  is simply better. This 
is illustrated in Figure 4 with a qualitative plot of the set of states   ( k 0  ,  b 0  )   for which 
indefinite capital taxation is optimal if  σ > 1 . By contrast, for  σ < 1  we show 
that at any optimum,  T < ∞ , so  T = ∞  is never optimal. The case  σ = 1  lies in 
between, in that  T = ∞  is optimal only if   b 0   =   ̄  b   .

The basic idea behind our proof of part (i) of Proposition 7 is simple. To illustrate 
it, let   λ t    denote the multiplier on the resource constraint (10) at time  t  and  μ  be the 
multiplier on the IC constraint (11). Both can be proven to be nonnegative. Using 
this notation, if the period  T  of positive capital taxation is finite, the first-order con-
dition for consumption   c t    after time  T  reads

   λ t   =  (1 − μ (σ − 1) )  u ′   ( c t  ) , 

which requires  μ ≤ 1 /  (σ − 1)  . Yet, as initial government debt   b 0    becomes 
large,   b 0   >   b ¯   , so does  μ , to the point where it crosses  1 /  (σ − 1)  , making it 
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 impossible for finite capital taxation to be optimal. Therefore, a sufficiently large 
burden of taxation due to high   b 0   , coupled with an intertemporal elasticity   σ   −1   less 
than 1 points to indefinite capital taxation. To make this approach watertight, we spe-
cifically construct allocations with  T = ∞  and show that they satisfy the first-or-
der conditions whenever   b 0   ≥   b ¯   . Since, as we show, the planning problem can be 
recast into a concave maximization problem, the first-order conditions (together 
with transversality conditions) are sufficient for an optimum.

Our next result assumes  g = 0  and constructs the solution for a set of initial 
conditions that allow us to guess and verify its form.

PROPOSITION 8: Suppose that preferences are given by (9) with  σ > 1 , and 
that  g = 0 . There exist    k ¯   <  k ¯    and   b 0   ( k 0  )   such that: for any   k 0   ∈  (  k ¯  ,  k ¯  ]   and initial 
debt   b 0   ( k 0  )   the optimum satisfies   τ t   = 1  for all  t ≥ 0  and   c t  ,  k t  ,  n t   → 0  exponen-
tially with constant   n t   /  k t    and   c t   /  k t   .

Under the conditions stated in the proposition the solution converges to zero in 
a homogeneous, constant growth rate fashion. This explicit example illustrates that 
convergence takes place, but not to an interior steady state. It turns out that this 
latter property is more general: at least with additively separable utility, whenever 
indefinite taxation of capital is optimal,  T = ∞ , no interior steady state exists, 
even if capital taxes are constrained by tax bounds   τ ¯   < 1 , that is, if we impose 
  r t   ≥  r  t  ⁎  (1 −  τ ¯  )  .

To see why this is the case consider first the case with   τ ¯   = 1 . Then the after-tax 
interest rate is zero whenever the bound is binding. Since the agent discounts the 
future positively this prevents a steady state. In contrast, when   τ ¯   < 1  the before-tax 
interest rate may be positive and the after-tax interest rate equal to the discount rate,   
(1 −  τ ¯  )   r   ⁎  = ρ , the condition for constant consumption. This suggests the possibility 
of a steady state. However, we must also verify whether labor, in addition to consump-
tion, remains constant. This, in turn, requires a constant labor tax. Yet, one can show 
that under the assumptions of Proposition 7, but allowing   τ ¯   < 1 , we must have

   ∂ t    τ   t  n  =  (1 −  τ   t  n )   τ t    r  t  ⁎ , 

T = ∞

T < ∞

k0

b0

Figure 4. Graphical Representation of the Case  σ > 1  in Proposition 7



112 THE AMERICAN ECONOMIC REVIEW JANUARY 2020

implying that the labor tax strictly rises over time whenever the capital tax is pos-
itive,   τ t   > 0 . This rules out an interior steady state. Intuitively, the capital tax 
inevitably distorts the path for consumption, but the optimum attempts to undo the 
intertemporal distortion in labor by varying the tax on labor. We conjecture that 
the imposition of an upper bound on labor taxes solves the problem of an ever-in-
creasing path for labor taxes, leading to the existence of interior steady states with 
positive capital taxation.

C. Revisiting Judd (1999)

Up to this point we have focused on the Chamley-Judd zero-tax results. A fol-
low-up literature has offered both extensions and interpretations. One notable case 
doing both is Judd (1999). This paper is related to Chamley (1986) in that it studies 
a representative agent economy with perfect financial markets and unrestricted gov-
ernment bonds. It also allows for other state variables, such as human capital, and in 
that sense builds on Judd (1985, Section 5) and Jones, Manuelli, and Rossi (1993). 
At its core, Judd (1999) provides a zero capital tax result without requiring the 
allocation to converge to a steady state. The paper also offers a connection between 
capital taxation and rising consumption taxes to provide an intuition for zero-tax 
results. Let us consider each of these two points in turn.

Bounded Multipliers and Zero Average Capital Taxes.—Abstracting away from 
some of the additional ingredients in Judd (1999), the essence of the main result in 
Judd (1999) can be restated using our continuous-time setup from Section IIB. With   
τ ¯   = 1 , the planning problem maximizes (9a) subject to (10), (11), (12a), and (12b). 
Let    Λ ˆ   t   =  θ t    Λ t    denote the costate for capital, that is, the current value multiplier 
on equation (10), satisfying     Λ ˆ   ˙   t   = ρ   Λ ˆ   t   −  r  t  ⁎    Λ ˆ   t   . Using that     Λ ˆ   ˙   t   /   Λ ˆ   t   =   θ ˙   t   /  θ t   +   Λ ˙   t   / Λ t    
and    θ ˙   t   /  θ t   = ρ −  r t    we obtain

      Λ ˙   t   _  Λ t  
   =  r t   −  r  t  ⁎ . 

If   Λ t    converges then   r t   −  r  t  ⁎  → 0 . Thus, the Chamley (1986) steady-state result 
actually follows by postulating the convergence of   Λ t   , without assuming conver-
gence of the allocation. Judd (1999, p. 13, Theorem 6) goes down this route, but 
assumes that the endogenous multiplier   Λ t    remains in a bounded interval, instead of 
assuming that it converges.

THEOREM 4 (Judd 1999): Let   θ t    Λ t    denote the (current value) costate for capital in 
equation (10) and assume

   Λ t   ∈  [ Λ ¯  ,  Λ ¯  ] , 

for  0 <  Λ ¯   ≤  Λ ¯   < ∞ . Then the cumulative distortion up to  t  is bounded,

  log (   Λ 0   _ 
 Λ ¯  

  )  ≤  ∫ 
0
  
t
    ( r s   −  r  s  ⁎ )  ds ≤ log (   Λ 0   _  Λ ¯    ) , 
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and the average distortion converges to zero,

    1 _ t    ∫ 
0
  
t
   ( r s   −  r  s  ⁎ )  ds → 0. 

In particular, under the conditions of this theorem, the optimum cannot converge to 
a steady state with a positive tax on capital.38 More generally, the condition requires 
departures of   r t    from   r  t  ⁎   to average zero.

Note that our proof proceeded without any optimality condition except the one 
for capital   k t   .39 In particular, we did not invoke first-order conditions for the interest 
rate   r t    nor for the tax rate on capital   τ t   . Naturally, this poses two questions. Do the 
bounds on   Λ t    essentially assume the result? And are the bounds on   Λ t    consistent 
with an optimum?

Regarding the first question, we can say the following. The multiplier   e   −ρt    Λ ˆ   t    
represents the planner’s (time  0 ) social marginal value of resources at time  t . Thus,

   MRS  t,t+s  Social  =  e   −ρs      Λ ˆ   t+s   _ 
  Λ ˆ   t  

   =  e   − ∫ 0  
s   r  t+ s ̃    ⁎   d s ̃    

represents the marginal rate of substitution between  t  and  t + s , which, given the 
assumption   τ ¯   = 1 , is equated to the marginal rate of transformation. The private 
agent’s marginal rate of substitution is

   MRS  t,t+s  Private  =  e   −ρs     θ t+s   _  θ t  
   =  e   − ∫ 0  

s   r t+ s ̃     d s ̃   , 

where   θ t    represents marginal utility. It follows, by definition, that

   MRS  t,t+s  Social  =    Λ t+s   _  Λ t  
   ⋅  MRS  t,t+s  Private . 

This expression shows that the rate of growth in   Λ t    is, by definition, equal 
to the wedge between social and private marginal rates of substitution. 
Thus, the wedge   Λ t+s  / Λ t   =  e    ∫ 0  

s   ( r t+ s ̃    − r  t+ s ̃    ⁎  )  d s ̃     is the only source of nonzero  
taxes. Whenever   Λ t    is constant, social and private marginal rate of substitution (MRS) 
values coincide and the intertemporal wedge is zero,   r t   =  r  t  ⁎  ; if   Λ t    is enclosed in a 
bounded interval, the same conclusion holds on average.

These calculations afford an answer to the first question posed above: assuming 
the (average) rate of growth of   Λ t    is zero is tantamount to assuming the (average) 
zero long-run tax conclusion. We already have an answer to the second question, 
whether the bounds are consistent with an optimum, since Proposition 7 showed that 
indefinite taxation may be optimal.

38 The result is somewhat sensitive to the assumption that   τ ¯   = 1 ; when   τ ¯   ≠ 1  and technology is nonlinear, the 
costate equation acquires other terms, associated with the bounds on capital taxation.

39 In this continuous time optimal control formulation, the costate equation for capital is the counterpart to the 
first-order condition with respect to capital in a discrete time formulation. Indeed, the same result can be easily 
formulated in a discrete time setting.
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COROLLARY 2: At the optimum described in Proposition 7 we have that   Λ t   → 0  
as  t → ∞ . Thus, in this case the assumption on the endogenous multiplier   Λ t    
adopted in Judd (1999) is violated.

There is no guarantee that the endogenous object   Λ t    remains bounded away from 
zero, as assumed by Judd (1999), making Theorem 4 inapplicable.

Exploding Consumption Taxes.—Judd (1999) also offers an intuitive interpreta-
tion for the Chamley-Judd result based on the observation that an indefinite tax on 
capital is equivalent to an ever-increasing tax on consumption. This casts indefinite 
taxation of capital as a villain, since rising and unbounded taxes on consumption 
appear to contradict standard commodity tax principles, as enunciated by Diamond 
and Mirrlees (1971), Atkinson and Stiglitz (1972), and others.

The equivalence between capital taxation and a rising path for consumption taxes 
is useful. It explains why prolonging capital taxation comes at an efficiency cost, 
since it distorts the consumption path. If the marginal cost of this distortion were 
increasing in  T  and approached infinity as  T → ∞  this would give a strong eco-
nomic rationale against indefinite taxation of capital. We now show that this is not 
the case: the marginal cost remains bounded, even as  T → ∞ . This explains why a 
corner solution with  T = ∞  may be optimal.

We proceed with a constructive argument and assume, for simplicity, that tech-
nology is linear, so that  f  (k, n)  − δk =  r   ⁎ k +  w   ⁎ n  for fixed parameters   r   ⁎ ,  w   ⁎  > 0 .

PROPOSITION 9: Suppose utility is given by (9), with  σ > 1 . Suppose technology 
is linear. Then the solution to the planning problem can be obtained by solving the 
following static problem:

(13)   max  
T,c,n

    u (c)  − v (n) , 

subject to  

         (1 + ψ (T ) ) c + G =  k 0   + ωn, 

   u ′   (c) c −  v ′   (n) n =  (1 − τ  (T ) )  u ′   (c)   a 0  , 

where  ω > 0  is proportional to   w   ⁎  ;  G  is the present value of government consump-
tion; and  c  and  n  are measures of lifetime consumption and labor supply, respec-
tively. The functions  ψ  and  τ  are increasing with  ψ (0)  = τ  (0)  = 0 ;  ψ  is bounded 
away from infinity and  τ  is bounded away from  1 . Moreover, the marginal trade-off 
between costs ( ψ ) and benefits ( τ ) from extending capital taxation,

    dψ _ 
dτ   =   

 ψ   ′   (T ) 
 _ 

 τ  ′   (T )    ,

is bounded away from infinity.

Given  c,   n , and  T  we can compute the paths for consumption   c t    and labor   n t   . Behind 
the scenes, the static problem solves the dynamic problem. In particular, it optimizes 
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over the path for labor taxes. In this static representation,  1 + ψ (T  )   is akin to a pro-
duction cost of consumption and  τ  (T  )   to a nondistortionary capital levy. On the one 
hand, higher  T  increases the efficiency cost from the consumption path. On the other 
hand, it increases revenue in proportion to the level of initial capital. Prolonging 
capital taxation requires trading off these costs and benefits.

Importantly, despite the connection between capital taxation and an ever increas-
ing, unbounded tax on consumption, the proposition shows that the trade-off between 
costs and benefits is bounded,  dψ/dτ < ∞,  even as  T → ∞ . In other words, 
indefinite taxation does not come at an infinite marginal cost and helps explain why 
this may be optimal.

Should we be surprised that these results contradict commodity tax principles, 
as enunciated by Diamond and  Mirrlees (1971), Atkinson and  Stiglitz (1972), 
and others? No, not at all. As general as these frameworks may be, they do not 
consider upper bounds on taxation, the crucial ingredient in Chamley (1986) and 
Judd (1999). Their guiding principles are, therefore, ill adapted to these settings. 
In particular, formulas based on local elasticities do not apply, without further 
modification.

Effectively, a bound on capital taxation restricts the path for the consumption 
tax to lie below a straight line going through the origin. In the short run, the 
consumption tax is constrained to be near zero; to compensate, it is optimal to 
set higher consumption taxes in the future. As a result, it may be optimal to set 
consumption taxes as high as possible at all times. This is equivalent to indefinite 
capital taxation.

III. A Hybrid: Redistribution and Debt

Throughout this paper we have strived to stay on target and remain faithful to 
the original models supporting the Chamley-Judd result. This is important so that 
our own results are easily comparable to those in Judd (1985) and Chamley (1986). 
However, many contributions since then offer modifications and extensions of the 
original Chamley-Judd models and results. In this section we depart briefly from 
our main focus to show that our results transcend their original boundaries and are 
relevant to this broader literature.

To make this point with a relevant example, we consider a hybrid model, with 
redistribution between capitalists and workers as in Judd (1985), but sharing the 
essential feature in Chamley (1986) of unrestricted government debt. It is very sim-
ple to modify the model in Section I in this way. We add bonds to the wealth of 
capitalists   a t   =  k t   +  b t   , modifying equation (1c) to

  β U ′   ( C t  )  ( C t   +  k t+1   +  b t+1  )  =  U ′   ( C t−1  )  ( k t   +  b t  )  ,

and the transversality condition to   β   t  U ′   ( C t  )  ( k t+1   +  b t+1  )  → 0 . Together, these 
two conditions imply a present value implementability condition, which with 
 U (C)  =  C   1−σ  /  (1 − σ)   and initial returns on capital and bonds of   R 0    and   R  0  b   is given 
by

(14)   (1 − σ)   ∑ 
t=0

  
∞

     β   t  U ( C t  )  =  U ′   ( C 0  )  ( R 0    k 0   +  R  0  b   b 0  ) . 
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Anticipated Confiscatory Taxation.—For  σ > 1  the left-hand side in equa-
tion (14) is decreasing in   C t    and the right-hand side is decreasing in   C 0   . In particular, 
the values of   C t   , for all  t = 0, 1, … , can be set infinitesimally small without violat-
ing (14). Since (14) is strictly speaking not defined for   C t   = 0 , the problem with-
out weight on capitalists ( γ = 0 ) has a supremum that can only be approximated 
as   C t   → 0 . Given  σ > 1 , this limit can be implemented by making   R t    infinitesi-
mally small in some period  t ≥ 1 , or, equivalently, setting the wealth tax (i.e., tax 
on gross returns)    t    in that period arbitrarily close to 100 percent. This same logic 
applies if the tax is temporarily restricted for periods  t ≤ T − 1  for some given  T , 
but is unrestricted in period  T .

PROPOSITION 10: Consider the two-class model from Section I but with unre-
stricted government bonds. Suppose  σ > 1  and  γ = 0 . If capital taxation is unre-
stricted in at least one period, then the optimum (a supremum) features a wealth 
tax    t   → 100%  in some period  t  and   C t   → 0  for all  t = 0, 1, …  .

This result exemplifies how extreme the tax on capital may be without bounds. 
In addition to this result, even when  σ < 1 , if no constraints are imposed on taxa-
tion except at  t = 0 , then in the continuous time limit as the length of time periods 
shrinks to zero, taxation tends to infinity. This point was also raised in Chamley 
(1986) for the representative agent Ramsey model, and served as a motivation for 
imposing a stationary constraint,   R t   ≥ 1 .

Long-Run Taxation with Constraints.—We now impose upper bounds on capital 
taxation and show that these constraints may bind forever, just as in Section IIB.

PROPOSITION 11: Consider the two-class model from Section I but with unre-
stricted government bonds. Suppose  σ > 1  and  γ = 0 . If capital taxation is 
restricted by the constraint   R t   ≥ 1 , then at the optimum   R t   = 1  in all periods  t , 
i.e., capital should be taxed indefinitely.

Intuitively,  σ > 1  is enough to ensure indefinite taxation of capital in this model 
because  γ = 0  makes it optimal to tax capitalists as much as possible. Similar 
results hold for positive but low enough levels of  γ , so that redistribution from cap-
italists to workers is desired. The results also hold for less restrictive constraints 
than   R t   ≥ 1 .

Proposition 11 assumes that transfers are perfectly targeted to workers and cap-
italists do not work. However, indefinite taxation,  T = ∞ , is also possible when 
these assumptions are relaxed, so that capitalists work and receive equal transfers. 
We have also maintained the assumption from Judd (1985) that workers do not save. 
In a political economy context, Bassetto and Benhabib (2006) studies a situation 
where all agents save (in our context, both workers and capitalists) and are taxed 
linearly at the same rate. Indeed, they report the possibility that indefinite taxation is 
optimal for the median voter.

Overall, these results suggest that indefinite taxation can be optimal in a range 
of models that are descendants of Chamley-Judd, with a wide range of assumptions 
regarding the environment, heterogeneity, social objectives, and policy instruments.
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IV. Conclusions

This study revisited two closely related models and results, Chamley (1986) and 
Judd (1985). Our findings contradict well-known results or their standard interpreta-
tions. We showed that, provided the intertemporal elasticity of substitution (IES) is 
less than 1, the long-run tax on capital can actually be positive. Empirically, an IES 
below 1 is considered most plausible.

Why were the proper conclusions missed by Judd (1985), Chamley (1986), and 
many others? Among other things, these papers assume that the endogenous multi-
pliers associated with the planning problem converge. Although this seems natural, 
we have shown that this is not necessarily true at the optimum. In fact, on closer 
examination it is evident that presuming the convergence of multipliers is equiv-
alent to the assumption that the intertemporal rates of substitution of the planner 
and the agent are equal. This then implies that no intertemporal distortion or tax is 
required. Consequently, analyses based on these assumptions amount to little more 
than assuming zero long-run taxes.

In this paper, we have stayed away from evaluating the realism of the existing 
Chamley-Judd models or proposing an alternative model. Instead, we explored the 
implications of their assumptions. Different models offer different prescriptions and 
we should settle the mapping from models to prescriptions, on the one hand, and 
discuss the applicability of one model versus another, on the other hand. The scope 
of this paper has been concerned with the former, not the latter.

Even within the two models, it may well be the case that one finds a zero long-
run tax on capital, e.g., for the model in Judd (1985) one may set  σ < 1 , and in 
Chamley (1986) the bounds may not bind forever if debt is low enough.40 In this 
paper, we refrain from making any such claim, one way or another. We confined our 
attention to the original theoretical zero-tax results, widely perceived as delivering 
ironclad conclusions that are independent of parameter values or initial conditions. 
Based on our results, we have found little basis for such an interpretation.
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