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1 Introdu
tionHigh frequen
y �nan
ial data allows us to estimate the in
rements to quadrati
 variation, the usualex-post measure of the variation of asset pri
es (e.g. Andersen, Bollerslev, Diebold, and Labys(2001) and Barndor�-Nielsen and Shephard (2002)). Common estimators, su
h as the realisedvarian
e, 
an be sensitive to market fri
tions when applied to returns re
orded over shorter timeintervals su
h as 1 minute, or even more ambitiously, 1 se
ond (e.g. Zhou (1996), Fang (1996) andAndersen, Bollerslev, Diebold, and Labys (2000)). In response two non-parametri
 generalisationshave been proposed: subsampling and realised kernels by Zhang, Mykland, and A��t-Sahalia (2005)and Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006), respe
tively. Here we partially unifythese approa
hes by studying the properties of subsampled realised kernels.Our interest is the estimation of the in
rement to quadrati
 variation over some arbitrary �xedtime period written as [0; t℄, whi
h 
ould represent a day say, using estimators of the realised kerneltype. For a 
ontinuous time log-pri
e pro
ess X and time gap Æ > 0, the 
at-top1 realised kernelsof Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) take on the following formK(XÆ) = 
0(XÆ) + HXh=1 k �h�1H � �
h(XÆ) + 
�h(XÆ)	 ; H � 1:Here k(x), x 2 [0; 1℄, is a weight fun
tion with k(0) = 1, k(1) = 0, while
h(XÆ) = nÆXj=1 xjxj�h; xj = XÆj �XÆ(j�1); h = �H; :::;�1; 0; 1; :::;H;with nÆ = bt=Æ
. Think of Æ as being small and so xj represents the j-th high frequen
y return,while 
0(XÆ) is the realised varian
e ofX. The above authors gave a relatively exhaustive treatmentof K(XÆ) when X is a Brownian semimartingale plus noise.It is important to distinguish three 
lasses of kernels fun
tions k(x): smooth, kinked, and dis
on-tinuous. Examples are the Parzen, the Bartlett and the trun
ated kernel, respe
tively. Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) have shown that the smooth 
lass, whi
h satisfyk0(0) = k0(1) = 0, lead to realised kernels that 
onverges at the eÆ
ient rate, n1=4Æ . Whereas thekinked kernels, whi
h do not satisfy k0(0) = k0(1) = 0, lead to realised kernels that 
onvergen
e atn1=6Æ : The dis
ontinuous kernels lead to in
onsistent estimators as we show in Se
tion 3.4.Realised kernels use returns 
omputed starting at t = 0. There may be eÆ
ien
y gains byjittering the initial value S times, illustrated in Figure 1, produ
ing S sets of high frequen
yreturns xsj , s = 1; 2; :::; S. Zhang, Mykland, and A��t-Sahalia (2005) made this point for realisedvarian
es. We 
an then average the resulting S realised kernel estimatorsK(XÆ;S) = 1S SXs=1Ks(XÆ);1It is 
alled a 
at-top estimator as it imposes that the weight at lag one is one. The motivation for this is dis
ussedextensively in Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006).2



where Ks(XÆ) = 
s0(XÆ) + HXh=1 k �h�1H � �
sh(XÆ) + 
s�h(XÆ)	 ;
sh(XÆ) = nÆXj=1 xsjxsj�h; xsj = XÆ�j+ (s�1)S � �XÆ�j+ (s�1)S �1�:We 
allK(XÆ ;S) the subsampled realised kernel | noting that this form of subsampling is di�erentfrom the 
onventional form of subsampling, as we dis
uss below.Here we show that subsampling is very useful for the 
lass of dis
ontinuous kernels, be
ausesubsampling makes these estimators 
onsistent and 
onverge in distribution at rate n1=6, wheren = SnÆ is the e�e
tive sample size. Zhou (1996) used a simple dis
ontinuous kernel and gave abrief dis
ussion of subsampling that kernel. We will see that his estimator 
an be made 
onsistentby allowing S !1 as n!1; a result whi
h is impli
it in his paper, but one he did not expli
itlydraw out. For the 
lass of kinked kernels, we show that subsampling is impotent, in the sense thatthe asymptoti
 distribution is the same whether subsampling is used or not. Finally, we show thatsubsampling is harmful when applied to smooth kernels. In fa
t, if the number of subsamples, S;in
reases with the sample size, n; the best rate of 
onvergen
e is redu
ed to less than the eÆ
ientone, n1=4.
t

t

0 Æ 2Æ 3Æ
0 1S Æ �1 + 1S � Æ �2 + 1S � Æ �3 + 1S � Æ
9 > > > > > > > = > > > > > > > ;x11 9 > > > > > > > = > > > > > > > ;x12 9 > > > > > > > = > > > > > > > ;x13

9 > > > > > > > = > > > > > > > ;x21 9 > > > > > > > = > > > > > > > ;x22 9 > > > > > > > = > > > > > > > ;x23
Figure 1: x1j are the usual returns. The bottom series are the o�set returns xsj, s = 2; : : : ; S:The intuition for these results follows from Lemma A.1 in the appendix. It shows that
h(XÆ ;S) = 1S SXs=1 
sh(XÆ) ' S�1Xs=�S+1 kB � sS � 
Sh+s(XÆ=S); where kB(x) = 1� jxj ;where the approximation is due to subtle end-e�e
ts. The impli
ation is thatK(XÆ;S) ' S�1Xs=�S+1 kB � sS � 
s(XÆ=S) + HXh=1 k �h�1H � SXs=�S kB � sS � �
Sh+s(XÆ=S) + 
�Sh�s(XÆ=S)	= HSXh=0 kS �h�1HS � ~
Sh+s(XÆ=S): 3



So a subsampled realised kernel is a realised kernel simply operating on a higher frequen
y (ignoringend-e�e
ts). The implied kernel weights, kS( hHS ); h = 1; : : : ; SH; are 
onvex 
ombinations ofneighboring weights of the original kernel,kS � hsHS � = S�sS k �hS �+ sSk �h+1S � ; h = 0; : : : ;H; s = 1; : : : ; S: (1)
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ts of subsampling some kernels. The left panels display the original kernel fun
-tions and the right panels display their implied kernel fun
tions that are indu
ed by subsampling.For the trun
ated (dis
ontinuous) kernel the two are very di�erent. So subsampling makes animportant di�eren
e in this 
ase. For the (kinked) Bartlett kernel the two are virtually identi
al,whi
h suggests that subsampling has no e�e
t on this kernel. Finally, for the smooth kernel in thelower panels subsampling has only a small e�e
t by making the kernel fun
tion pie
ewise linear.In Figure 2 we tra
e out the implied kernel weights for three subsampled realised kernels.The left panels display the original kernel fun
tions and right panels display the implied kernelfun
tions. For the trun
ated kernel (H = 1) subsampling leads to a substantially di�erent impliedkernel fun
tion { the trapezoidal kernel by Politis and Romano (1995). For the kinked Bartlettkernel subsampling leads to the same kernel fun
tion. For a smooth kernel fun
tion, the original4



and implied kernel fun
tions are fairly similar, however subsampling does impose some pie
ewiselinearity whi
h is the reason that subsampling of smooth kernels in
reases the asymptoti
 varian
e.The 
onne
tion between subsampled realised kernels and realised kernels is perhaps not too sur-prising, be
ause Bartlett (1950) motivated his kernel with the subsampling idea. The 
onventionalform of subsampling that is based on subseries that 
onsist of 
onse
utive observations. This isdi�erent from our subsamples that 
onsist of every Sth observation. Su
h are 
alled subgrids inZhang, Mykland, and A��t-Sahalia (2005). While the two types of subsampling are di�erent they
an result in identi
al estimators. For instan
e, the sparsely sampled realised varian
e, 
10(XÆ); isidenti
al to Carlstein's subsample estimator (of the varian
e of a sample mean when the mean iszero), see Carlstein (1986). Carlstein's estimator is based on non-overlapping subseries and K�uns
h(1989) analysed the 
losely related estimator based on overlapping subseries. Interestingly, the(overlapping) subsample estimator by K�uns
h (1989) is identi
al to the average sparsely sampledrealised varian
e 
alled \se
ond best" in Zhang, Mykland, and A��t-Sahalia (2005), so that theTSRV and MSRV estimators, by Zhang, Mykland, and A��t-Sahalia (2005), A��t-Sahalia, Mykland,and Zhang (2006), and Zhang (2006), 
an be expressed as linear 
ombinations of two or more sub-sample estimators of the overlapping subseries type by K�uns
h (1989). For additional details on therelation between Bartlett kernel and various subsample estimators, see Anderson (1971, p. 512),Priestley (1981, pp. 439{440), and Politis, Romano, and Wolf (1999, pp. 95{98).This paper has the following stru
ture. We present the basi
 framework in Se
tion 2 along withsome known results. In Se
tion 3 we present our main results. Here we derive the limit theory forsubsampled realised kernels and show that subsampling 
annot improve realised kernels within avery broad 
lass of estimators. In Se
tion 4, we given some spe
i�
 re
ommendations on empiri
alimplementation of subsampled realised kernels and how to 
ondu
t valid inferen
e in this 
ontext.We present results from a small simulation study in Se
tion 5 and an empiri
al appli
ation inSe
tion 6. We 
on
lude in Se
tion 7 and present all proofs in an appendix.2 Notation, de�nitions and ba
kground2.1 Semimartingales and quadrati
 variationThe fundamental theory of asset pri
es says that the log-pri
e at time t, Yt, must, in a fri
tionlessarbitrage free market, obey a semimartingale pro
ess (written Y 2 SM) on some �ltered probabilityspa
e �
;F ; (Ft)t�T � ; P�, where T � � 0. Cru
ial to semimartingales, and to the e
onomi
s of�nan
ial risk, is the quadrati
 variation (QV) pro
ess of Y 2 SM. This 
an be de�ned as[Y ℄t = plimN!1 NXj=1 �Ytj � Ytj�1�2 ; (2)(e.g. Protter (2004, p. 66{77) and Ja
od and Shiryaev (2003, p. 51)) for any sequen
e of deter-ministi
 partitions 0 = t0 < t1 < ::: < tN = t with supjftj+1 � tjg ! 0 for N !1.5



The most familiar semimartingales are of Brownian semimartingale type (Y 2 BSM)Yt = Z t0 audu+ Z t0 �udWu; (3)where a is a predi
table lo
ally bounded drift, � is a 
�adl�ag volatility pro
ess and W is a Brownianmotion. If Y 2 BSM then [Y ℄t = R t0 �2udu. In some of our asymptoti
 theory we also assume, forsimpli
ity of exposition, that�t = �0 + Z t0 a#u du+ Z t0 �#u dWu + Z t0 v#u dVu; (4)where a#, �# and v# are adapted 
�adl�ag pro
esses, with a# also being predi
table and lo
allybounded and V is Brownian motion independent of W . Mu
h of what we do here 
an be extendedto allow for jumps in � (
f. Barndor�-Nielsen, Graversen, Ja
od, and Shephard (2006)).2.2 Assumptions about noiseWe write the e�e
ts of market fri
tions as U , so that we observe the pro
essX = Y + U: (5)Our s
ienti�
 interest will be in estimating [Y ℄t. In the main part of our work we will assumethat Y ?? U where, in general, A ?? B denotes that A and B are independent. From a marketmi
rostru
ture theory viewpoint this is a strong assumption as one may expe
t U to be 
orrelatedwith in
rements in Y . However, the empiri
al work of Hansen and Lunde (2006) suggests thisindependen
e assumption is not too damaging statisti
ally when we analyse data in thi
kly tradedsto
ks re
orded approximately every minute (see also Kalnina and Linton (2006)).We make a white noise assumption about the U pro
ess (U 2 WN ):E(Ut) = 0; Var(Ut) = !2; Var(U2t ) = �2!4; Ut ?? Us (6)for any t 6= s; where � 2 R+ : This white noise assumption is unsatisfa
tory but is a useful startingpoint if we think of the market fri
tions as operating in ti
k time (e.g. Bandi and Russell (2005),Zhang, Mykland, and A��t-Sahalia (2005) and Hansen and Lunde (2006)).Analogous to the realised auto
ovarian
es we de�ne
h(YÆ; UÆ) = nÆXj=1 yjuj�h; yj = YÆj � YÆ(j�1) and uj = UÆj � UÆ(j�1):From (5) we have that
h(XÆ) = 
h(YÆ) + 
h(YÆ; UÆ) + 
h(UÆ ; YÆ) + 
h(UÆ):It will be useful to have the following notation e
(XÆ) = f
0(XÆ); e
1(XÆ); :::; e
H(XÆ)g| ; wheree
h(XÆ) = 
h(XÆ)+
�h(XÆ); and introdu
e the analogous de�nitions of e
(YÆ); e
(UÆ); and e
(YÆ; UÆ):6



3 Subsampled realised kernelHere we study subsampled realised kernels based on smooth and kinked kernel fun
tions. Spe
if-i
ally, we require that k(s) is 
ontinuous and twi
e di�erentiable on [0; 1℄ and that k(0) = 1 andk(1) = 0: Naturally, the derivatives at the end points are de�ned by k0(0) = limx#0 k(x)�k(0)x andk0(1) = limx"1 k(1)�k(x)1�x :Without subsampling, Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) showed thatk0(0) = 0 and k0(1) = 0; (7)is a ne
essary 
ondition for a realised kernel to have the best rate of 
onvergen
e, and this propertyis also key for subsampled realised kernels | see also the work of Zhang (2006) on using subsamplingof realised varian
e to obtain the same rate of 
onvergen
e. We shall refer to 
ontinuous kernelsthat satisfy (7) as smooth, otherwise they are 
alled kinked.In some of our proofs it is 
onvenient to extend the support of the kernel fun
tions beyond theunit interval, using the 
onventions: k(x) = 0 for x > 1 and k(�x) = k(x):Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) showed that kernel fun
tions of thetype 
an be used to produ
e 
onsistent estimators with mixed Gaussian asymptoti
 distributions.It is therefore interesting to analyze whether there are any gain from subsampling realised kernelsor not. Perhaps surprisingly we �nd that subsampling is harmful or, at best, impotent, for realisedkernels that are based on smooth or kinked kernel fun
tions.Below we formulate limit results for subsampled realised kernels using the notationk0;0� = Z 10 k(x)2dx; k1;1� = Z 10 k0(x)2dx; k2;2� = Z 10 k00(x)2dx;� = !2=qtR t0 �4udu; � = R t0 �2udu=qtR t0 �4udu;and we de�ne ~K(XÆ;S) = K(XÆ;S)+�SH;n; where �SH;n = S�1PSs=1PHh=1 �k(h+1H )� k(h�1H )	Rsh;n;Rsh;n = 12 (UtsnUtsn+hÆ + Uts0Uts0�hÆ � UtsnUtsn�hÆ � Uts0Uts0+hÆ); ts0 = s�1S Æ; and tsn = t+ s�1S Æ. So �SH;nis related to end-e�e
ts.Theorem 1 For large H and n the asymptoti
 distributions ofK(YÆ;S)� Z t0 �2udu; K(YÆ; UÆ;S) +K(UÆ; YÆ;S); and K(UÆ;S) + �SH;n;are mixed Gaussian, un
orrelated with mean zero and asymptoti
 varian
es given by4HnÆ k0;0� tZ t0 �4udu; (8)8!2 Z t0 �2uduk1;1� H�1�S (9)4!4nÆ ��k0(0)2 + k0(1)2	H�2 + k2;2� H�3�ÆS: (10)7



respe
tively, and the asymptoti
 varian
e of �SH;n is 4!4k1;1� =(HS): Furthermore, ~K(XÆ;S) �R t0 �2udu is mixed Gaussian with a zero mean and varian
e4tZ t0 �4udu8<:HnÆ k0;0� + 2��k1;1� H�1 + �2nÆ h�k0(0)2 + k0(1)2	H�2 + k2;2� H�3iS 9=; : (11)Subsampling has no impa
t on the �rst term, (8). This is despite the fa
t that subsamplinglowers the varian
e of the individual realised auto
ovarian
es, ~
h(YÆ). This is be
ause subsamplingintrodu
es positive 
orrelation between ~
h(YÆ;S) and ~
h+1(YÆ;S) that exa
tly o�sets the redu
tionin the varian
e of the realised auto
ovarian
es. Subsampling does redu
e the varian
es of the termse�e
ted by noise, (9) and (10), by a fa
tor of S:The auxiliary quantity, ~K(XÆ;S); is introdu
ed to simplify the exposition of our results. ~K(XÆ;S)and K(XÆ;S) are often asymptoti
ally equivalent be
ause their di�eren
e, �SH;n; vanishes at a suf-�
iently fast rate. This is made pre
ise in the following Lemma.Lemma 1 If k0(0)2 + k0(1)2 6= 0 or S !1; then avarfK(XÆ)� ~K(XÆ)g=avarf ~K(XÆ)g = o(1): Ifk0(0)2 + k0(1)2 = 0 then avarfK(XÆ)� ~K(XÆ)g=avarf ~K(XÆ)g � �=�2 + 2qk2;2� k0;0� =(k1;1� )2� :We shall state several asymptoti
 results for n
 n ~K(XÆ)� R t0�2uduo : An impli
ation of Lemma1 is that K(XÆ) 
an be substituted for ~K(XÆ) whenever 
 < 1=4: When 
 = 1=4 the di�eren
ebetween K(XÆ) and ~K(XÆ) is not trivial in an asymptoti
 sense, but for all pra
ti
al purposes theirdi�eren
e is negligible. The reason being that a realisti
 empiri
al value for �; is � � 0:01: With theoriginal Tukey-Hanning kernel the relative varian
e in Lemma 1 is no larger than 1=f200(1+p3)g �0:00183:The most obvious generalisation of Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) isto think of the 
ase where S is �xed and we allow H to in
rease with nÆ: When (7) holds, we
an follow Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) and set H = 
(�nÆ)1=2. Thenwe obtain the result that, where Ls denotes 
onvergen
e in law stably (e.g. Barndor�-Nielsen,Graversen, Ja
od, and Shephard (2006)),n1=4Æ � ~K(XÆ;S)� Z t0 �2udu� Ls!MN (0; 4!�tZ t0 �4udu�3=4 
k0;0� + 2
�1�k1;1� + 
�3k2;2�S !) :Whether or not (7) holds, when we set H = 
(�nÆ)2=3 we haven1=6Æ � ~K(XÆ;S)� Z t0 �2udu� Ls!MN "0; 4!4=3�tZ t0 �4udu�2=3�
k0;0� + k0(0)2 + k0(1)2
2S �# :Here S plays a relatively simple role, redu
ing the impa
t of noise | by in e�e
t redu
ing the noisevarian
e from !2 to !2=pS. If (7) does hold then we getn1=6Æ � ~K(XÆ;S)� Z t0 �2udu� Ls!MN (0; 4
k0;0� !4=3�tZ t0 �4udu�2=3) ;whi
h implies no asymptoti
 gains at all from subsampling.8



3.1 E�e
tive Sample SizeThe e�e
tiveness of subsampling 
an be assessed in terms of the e�e
tive sample size, n = nÆS: Itmakes expli
it that a larger S redu
es the sample size, nÆ, that is available for ea
h of the realisedkernels. Then we ask if it is better to in
rease nÆ or S for a given n. In terms of n (11) be
omes4tZ t0 �4udu"HSn k0;0� + 2��k1;1�HS + n�2(k0(0)2 + k0(1)2(HS)2 + S k2;2�(HS)3)# : (12)Here HS appears in the varian
e expression in a way that is almost identi
al to H when there isno subsampling (S = 1): The only di�eren
e is the impa
t on the last term. This term vanisheswhen k0(0) = k0(1) = 0 does not hold, be
ause the se
ond last term is then O �n=(SH)2� whereasthe last term is only O �H�1�O �n=(SH)2� : This feature of the asymptoti
 varian
e holds the keyto the di�erent results we derive for smooth and kinked kernels.3.2 Kinked Kernels: When k0(0) = k0(1) = 0 does not holdWhen (7) does not hold the asymptoti
 varian
e of ~K(XÆ ; S) is given by4tZ t0 �4udu(HSn k0;0� + 2��k1;1�HS + n�2 k0(0)2 + k0(1)2(HS)2 ) :While this expression depends on the produ
t HS; it is invariant to the parti
ular values of H andS; though we do need H !1 to justify the terms, k0;0� , k1;1� ; et
. We have the following result.Theorem 2 (i) If SH = 
(�n)2=3 we haven1=6� ~K(XÆ;S)� Z t0 �2udu� Ls!MN  0; 4!4=3�tZ t0 �4udu�2=3�
k0;0� + k0(0)2 + k0(1)2
2 �! ; (13)as n!1; so long as H in
rease with n: (ii) The asymptoti
 varian
e is minimised by
 = n2k0(0)2+k0(1)2k0;0� o1=3 ; and 6
k0;0� !4=3 �tZ t0 �4udu�2=3is the lower bound for the asymptoti
 varian
e.Thus (13) is not in
uen
ed by S; not even the rate of growth in S. All that matters is thatH grows and that HS grows at the right rate. The impli
ation is that there are no gains fromsubsampling when k0(0)2 + k0(1)2 6= 0. So we might as well set S = 1 and use the realised kernelthat does not require any subsampling. The se
ond part of Theorem 2 shows that
k0;0� = 6 h2 �k0;0� �2 �k0(0)2 + k0(1)2	i1=3
ontrols the asymptoti
 eÆ
ien
y of estimators in this 
lass.Example 1 The Bartlett kernel, k(x) = 1 � x; has k0;0� = 1=3 and k0(0)2 + k0(1)2 = 2, so that6
k0;0� = 2 �121=3 ' 4:58; whereas the quadrati
 kernel, k(x) = 1�2x+x2; is more eÆ
ient, be
auseit has k0;0� = 1=5 and k0(0)2 + k0(1)2 = 4; so that 6
k0;0� = 12 � 5�2=3 ' 4:10:9



3.3 Smooth Kernels: When k0(0) = k0(1) = 0 holdsIn this Se
tion we 
onsider smooth kernel fun
tions. Some examples of smooth kernel fun
tions aregiven in Table 1, where kth1(x) is the Tukey-Hanning kernel.Table 1: Some smooth kernel fun
tions.Cubi
 kernel kC(x) = 1� 3x2 + 2x3Parzen kernel kP (x) = (1� 6x2 + 6x3 0 � x � 1=22(1� x)3 1=2 � x � 1THp kTHp(x) = sin2f�=2 (1� x)pgWe know from Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) that the rate of 
on-vergen
e of realised kernels improves when k0(0) = k0(1) = 0: This smoothness 
ondition will alsoimprove the rate of 
onvergen
e for subsampled realised kernels. For smooth kernel fun
tions, theasymptoti
 varian
e is given by4tZ t0 �4udu(HSn k0;0� + 2��k1;1�HS + �2nS k2;2�(HS)3) : (14)Be
ause the last term is multiplied with S it is evident that the asymptoti
 distribution will dependon whether S is 
onstant or in
reases with n: This is made pre
ise in the following Theorem.Theorem 3 (i:a) When S is �xed we set HS = 
(�n)1=2 and haven1=4� ~K(XÆ)� Z t0 �2udu� Ls!MN "0; 4!�tZ t0 �4udu�3=4�
k0;0� + 2�
 k1;1� + S
3 k2;2� �# : (15)(i:b) When S = an� for some 0 < � < 2=3; we set HS = 
(�n)1=2n�=4 and haven 1��=24 � ~K(XÆ;S)� Z t0 �2udu� Ls!MN "0; 4!�tZ t0 �4udu�3=4 n
k0;0� + a
3 k2;2� o# :(ii) Whether S is 
onstant or not, the asymptoti
 varian
e is minimized byHS = (�n)1=2s�k1;1�k0;0� �1 +r1 + 3S k0;0� k2;2�(�k1;1� )2�;and the lower bound is n�1=2!�tZ t0 �4udu�3=4 g(S); (16)where g(S) = 163 q�k1;1� k0;0� 8>>><>>>: 1vuut1+s1+3S k0;0� k2;2�(�k1;1� )2 +vuut1 +s1 + 3S k0;0� k2;2�(�k1;1� )29>>>=>>>; : (17)10



Remark. In (i:b) we impose � < 2=3: The reason is that H _ n1=2+�=4�� = n(1� 32�)=2 and weneed (1� 32�)=2 > 0 to ensure that H grows with n:The relative eÆ
ien
y in this 
lass of estimators is given from g(S); and we have the followingimportant result for subsampling of smooth kernelsCorollary 1 The asymptoti
 varian
e of ~K(XÆ;S) is stri
tly in
reasing in S:The impli
ation is that subsampling is always harmful for smooth kernels. Furthermore, (i:b)shows that there is an eÆ
ien
y loss from allowing S to grow with n: See Table 2 for the values ofg(S) for some sele
ted kernel fun
tions.Another impli
ation of Theorem 3 
on
erns the best way to sample high frequen
y returns.This result is formulated in the next 
orollary and will require some explanation.Corollary 2 The asymptoti
 varian
e, (16), as a fun
tion of �; is minimized for � = 1:The Corollary is interesting be
ause � = R t0 �2udu=qtR t0 �4du depends on the sampling s
hemeby whi
h intraday returns are obtained. So � 
an be interpreted as an asymptoti
 measure ofheteroskedasti
ity in the intraday returns, where � = 1 
orresponds to homoskedasti
 intradayreturns. Rather than equidistant sampling in 
alendar time we 
an generate the sampling timesby, tj = t� � � jn� ; j = 0; 1; : : : ; n;where � is a time 
hange (�(0) = 0, �(1) = 1, and � is monotoni
ally in
reasing, so that 0 = t0 �t1 � � � � � tn = t). A 
hange of time does not a�e
t R t0�2udu but does in
uen
e the integratedquarti
ity R t0�4udu; see e.g. Mykland and Zhang (2006). A parti
ularly interesting sampling s
hemeis business time sampling (BTS), see e.g. Oomen (2005, 2006), whi
h is the sampling s
heme thatminimises the integrated quarti
ity, see Hansen and Lunde (2006, p. 135). It is easy to see that thetime 
hange asso
iated with BTS, �(�), �bts(�) say, must solve R t��(s)0 �2udu = s� R t0 �2udu; and bythe impli
it fun
tion theorem we have � 0bts(s) _ 1/ �2(~s); where ~s = t� �bts(s): The impli
ation isthat returns are sampled more frequently when the volatility is high and less frequently when thevolatility is low under BTS. In general we have � � 1 and Corollary 2 shows that BTS (� = 1) isthe ideal sample s
heme. Naturally, sampling in business time is infeasible be
ause �bts dependson the unknown volatility path. Still, Corollary 2 
an be used as argument in favor of samplings
hemes that results in less heteroskedasti
 intraday returns than does CTS.Given S and � the optimal H is H = 
S(�n)1=2 for this 
lass of kernels where
S = S�1s�k1;1�k0;0� �1 +r1 + 3S k0;0� k2;2�(�k1;1� )2�: (18)In Table 2 we present key quantities for some smooth kernels. Perhaps the most interestingquantity is g(S) of (17), as it enable us to 
ompare the relative eÆ
ien
y a
ross estimators. InTable 2 we have 
omputed g(S) for the 
ase where � = 1. So g(S) 
an be 
ompared to 8 whi
h11



Table 2: Key quantities for some smooth-
ontinuous kernels.k0;0� k1;1� k2;2� pk0;0� k1;1� k0;0� k2;2�(k1;1� )2 
1 g(S)S = 1 S = 2 S = 3 S = 10Cubi
 0:371 1:20 12:0 0:67 3:09 3:68 9:03 9:81 10:39 12:72Parzen 0:269 1:50 24:0 0:64 2:87 4:77 8:53 9:25 9:78 11:94TH1 0:375 1:23 12:2 0:68 3:00 3:70 9:18 9:96 10:55 12:89TH2 0:218 1:71 41:8 0:61 3:11 5:75 8:27 8:99 9:51 11:65TH5 0:097 3:50 489:0 0:58 3:85 8:07 8:07 8:82 10:19 11:57TH10 0:050 6:57 3610:6 0:57 4:19 24:79 8:04 8:80 10:19 11:59TH16 0:032 10:26 14374:0 0:57 4:33 39:16 8:02 8:80 10:20 11:60Key is g(S) that measures the relative eÆ
ien
y in this 
lass of estimators. Here 
omputed for the
ase with 
onstant volatility (� = 1) su
h that these numbers are 
omparable with the maximumlikelihood estimator that has g = 8:00: No subsampling (S = 1) produ
es the best estimator andkernels with a relative large k0;0� k2;2� =(k1;1� )2 tend to be more sensitive to subsampling.is the 
orresponding 
onstant for the maximum likelihood estimator in the Gaussian parametri
version of the problem. We see that most kernels are only slightly less eÆ
ient than the maximumlikelihood estimator, TH16 almost rea
hing this lower bound. Comparing g(S) for di�erent degreesof subsampling, reminds us that S = 1 (no subsampling) yields the most eÆ
ient estimator. Thelarger the value of k0;0� k2;2� =(k1;1� )2 the more sensitive is the kernel to subsampling.
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Figure 3: Some smooth kernels, k(x=
1); using their respe
tive optimal value of 
 when S = 1:Figure 3 plots some smooth kernel fun
tions, k(x=
1) using their respe
tive optimal value for 
1;see Table 2. We see that the TH1 kernel is almost identi
al to the 
ubi
 kernel. The TH16 kernel issomewhat 
atter, putting less weight on realised auto
ovarian
es of lower order and higher weighton realised auto
ovarian
es of higher order. The Parzen kernel is typi
ally between TH1 and TH16.While the smooth kernels improve the rate of 
onvergen
e over the kinked kernels, the improve-ments may be modest in �nite samples. The reason is the following. When the noise is smallthe optimal H is small, and H may a
tually be quite similar for kinked and smooth kernels. Forinstan
e with � = 0:01 and n = 780, the Bartlett kernel has 
Bartlett(�n)2=3 = 9:00 whereas the
ubi
 kernel has 
Cubi
(�n)1=2 = 10:78. So in this 
ase the two types of estimators are rather similarand despite the fa
t that HBartlett grows at the faster rate n2=3; the 
ubi
 kernels in
ludes more12



lags in this situation.3.4 Dis
ontinuous kernel fun
tionsIn this se
tion we 
onsider the kernel fun
tions we have labelled as dis
ontinuous kernels. Su
hkernels lead to estimators with poor asymptoti
 properties. We shall see that subsampling 
ansubstantially improve su
h estimators, making them 
onsistent with mixed Gaussian distributions.So for su
h kernels, subsampling is a saviour.Lemma 2 Let Kw(XÆ) = PHh=0wh~
h(XÆ); where H = o(n) (possibly 
onstant). Then w0 =1 + o(1) and w0 � w1 = o(n�1), are ne
essary 
onditions for E�Kw(XÆ)� R t0�2udu�! 0; andHXh=0 (wh+1 � 2wh + wh�1)2 = o(n�1); (19)is a ne
essary 
ondition for Var�Kw(XÆ)� R t0�2udu�! 0, where we set wH+1 = 0 and w�1 = w0:The lemma shows that realised kernels using a �xed H 
annot 
onverge to R t0�2udu in meansquares, be
ause su
h estimators will not satisfy (19).Consider the 
ase where we 
onstru
t wh from a kernel fun
tion and let H ! 1. In thissituation it is 
lear that any dis
ontinuous kernel will violate (19), be
ausen HXh=0 (wh+1 � 2wh + wh�1)2 ' n� Xxj2Dk� limx"xj k(x)� limx#xj k(x)�2 :Here Dk is the set of dis
ontinuity points for k(x):Next, we 
onsider the trun
ated kernel whi
h does not satis�es (19). We will see that subsam-pling this kernel produ
es an estimator that is 
onsistent and mixed Gaussian. This is true whetherH is �nite or is allowed to grow with the sample size.3.4.1 Zhou (1996) estimatorFirst we will look at estimators whi
h are thought of as having H �xed and allowing the degreeof subsampling to in
rease. This is outside the spirit of the realised kernels of Barndor�-Nielsen,Hansen, Lunde, and Shephard (2006) whi
h need H to get large with nÆ for 
onsisten
y, howeverit is 
lose to the important early work of Zhou (1996) and is strongly intelle
tually 
onne
ted tothe two s
ale estimators by Zhang, Mykland, and A��t-Sahalia (2005).The Zhou (1996) estimator 
an be written as 
0(XÆ;S) + e
1(XÆ ;S) whi
h is the subsampledrealised kernel based on the trun
ated kernel fun
tion using H = 1. Zhou (1996) noti
ed that thevarian
e of his estimator was of order O( SnÆ ) +O( 1S ) +O(nÆS2 ), but did not realize that by allowingS to in
rease with nÆ his estimator is 
onsistent. In fa
t, in a subsequent paper Zhou stated thathis subsampled realised kernels was in
onsistent, see Zhou (1998, p. 114). The following Theoremgives its asymptoti
 distribution. 13



Theorem 4 Suppose S = 
3n2Æ, then as nÆ !1n1=2Æ �
0(XÆ ;S) + e
1(XÆ ;S)� Z t0 �2udu� Ls!MN �0; 163 tZ t0 �4udu+ 8!4=
3� :This asymptoti
s is not parti
ularly attra
tive for its seeming n1=2Æ rate of 
onvergen
e hidesthe fa
t that it assumes massive databases in order to allow S to in
rease rapidly with nÆ. A moreinteresting way of thinking about this estimator is in terms of the e�e
tive sample size n = S�nÆ.Again we ask if it is better to in
rease nÆ or S for a given n. This leads to the following result.Lemma 3 If S = 
(�n)2=3 then the Zhou estimator hasn1=6�
0(XÆ ;S) + e
1(XÆ ;S)� Z t0 �2udu� Ls!MN  0; !4=3�tZ t0 �4udu�2=3 �163 
+ 8
2 �! :The minimum asymptoti
 varian
e is8 3p3|{z}'11:54!4=3�tZ t0 �4udu�2=3 ; with 
 = 3p3:The Zhou estimator's asymptoti
 varian
e is thus of the form obtained by the kinked non-subsampled realised kernels, i.e. ones whi
h do not satisfy the k0(0) = k0(1) = 0 
ondition.Example 2 Suppose n 
orresponds to using pri
es every 1 se
ond on the NYSE, so n = 23; 400.If !2 = 0:001 and tR t0 �4udu = 1, whi
h is roughly right in empiri
al work from 2004, then for theZhou estimator the optimal S ' 25 so that nÆ ' 920. Hen
e the degree of subsampling is rathermodest. In 2000, !2 = 0:01 and tR t0 �4udu = 1 would be more reasonable, in whi
h 
ase S = 118and nÆ = 198; whi
h 
orresponds to returns measured every roughly 2 minutes.3.4.2 2-lag 
at-top Bartlett estimatorA natural extension of Zhou (1996) is to allow H to be larger than one but �xed.Lemma 4 Let w0 = w1 = 1 and w2 = 1=2: With S = 
(�n)2=3 we haven1=6�
0(XÆ ;S) + e
1(XÆ ;S) + 12e
2(XÆ;S)� Z t0 �2udu� Ls!MN  0; !4=3�tZ t0 �4udu�2=3�203 
+ 2
2�! ;and the minimum varian
e is10 3p3=5| {z }'8:43 !4=3�tZ t0 �4udu�2=3 ; with 
 = 3p3=5:The 
onstant in the asymptoti
 varian
e is here redu
ed from about 11:54 to 8:43. Now we pro-
eed by adding additional realised auto
ovarian
es to Zhou's estimator, using the Bartlett weights,wh = k(h�1H ); h = 2; : : : ;H. An interesting question is what happens as we in
rease H further?14



For moderately large H we have that n1=6 nK(XÆ)� R t0 �2uduo has an asymptoti
 varian
e of ap-proximately 43 f2 + (H + 1)g 
tR t0 �4udu+ 8!4
2H2 . This suggests 
3 = 12!4=�H3tR t0 �4udu�+ o(1); sothe asymptoti
 varian
e (using 43121=3 + 8=122=3 = 2 3p12) is2 3p12| {z }'4:58 !4=3�tZ t0 �4udu�2=3 + o(1):So we a
hieve an additional redu
tion of the asymptoti
 varian
e. Not surprisingly, this is theasymptoti
 varian
e of the Bartlett realised kernel applied to a sample of size n when H _ n2=3,see Example 1. Here, by allowing H to grow we approa
h the situation with kinked kernels so weobserve the eventual impoten
e of subsampling { a property we have shown holds for all kinkedkernels. Hen
e as H gets large the optimal degree of subsampling rapidly falls and the best thingto do is simply to run a Bartlett realised kernel on the data without subsampling, i.e. take nÆ = n.
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Figure 4: The implied kernels that arise from subsampling some simple kernels. H = 1 
orrespondsto the subsampled version of Zhou's estimator; H = 2 is that for Zhou's estimator after adding1=2~
2(XÆ); and H = 1 (here approximated by H = 18) illustrates the implied kernel for Zhou'sestimator that is enhan
ed by an in
reasing number of Bartlett-weighted realised auto
ovarian
es.Figure 4 shows the implied kernel fun
tions that are generated by subsampling Zhou's estimator(H = 1) and the two estimators that have been enhan
ed by adding Bartlett weights. The relativeasymptoti
 eÆ
ien
y for these estimators are simply given by k0;0� of the implied kernel, where theimplied kernel for H = 1 
orresponds to the trapezoidal kernel by Politis and Romano (1995). FromFigure 4 it is evident that k0;0� is de
reasing in H whi
h explains that the asymptoti
 varian
e ofthis estimator is de
reasing in H:3.4.3 Relationship to two s
ale estimatorThe two s
ale estimator of Zhang, Mykland, and A��t-Sahalia (2005) bias 
orre
ts 
0(XÆ;S) using!̂2 = 
0(XÆ=S)=2n. Their results are reproved here, exploiting our previous results to make theproofs very short. We set S = 
(�n)2=3, whi
h imposes the optimal rate for S:
15



Theorem 5 With S = 
(�n)2=3 we haven1=6�
0(XÆ ;S)� nÆ2!2 � Z t0 �2udu� Ls!MN (0; !4=3�tZ t0 �4udu�2=3�43
+ 41 + �2
2 �) ; (20)n1=6( 1S PSnÆj=1 �UjÆ=S � U(j�S)Æ=S�2 � nÆ2!21S PSnÆj=1 �UjÆ=S � U(j�1)Æ=S�2 � nÆ2!2 ) Ls! N �0; 4!4
2�4=3 � 1 + �2 �2�2 1 + �2 �� :This allows us to understand that repla
ing 
0(UÆ;S)�nÆ2!2 by 
0(UÆ ;S)� nÆ2!̂2, yielding afeasible estimator with a smaller varian
e than the infeasible estimator.Theorem 6 With S = 
(�n)2=3 we haven1=6�
0(XÆ;S)� 2nÆ!̂2 � Z t0 �2udu� Ls!MN (0; !4=3�tZ t0 �4udu�2=3�43
+ 8
2�) :The minimum asymptoti
 varian
e is2 3p12| {z }'4:58 !4=3�tZ t0 �4udu�2=3 ; with 
 = 3p12:Thus the two s
ale estimator is signi�
antly more eÆ
ient than the Zhou estimator and is aseÆ
ient as the Bartlett realised kernel.Example 3 (
ontinued from Example 2). If !2 = 0:001 and tR t0 �4udu = 1, then S ' 40 andnÆ ' 580. Hen
e the degree of subsampling is larger than that used by Zhou.4 Some Empiri
al Re
ommendationsWe have worked under the assumption that the noise is of the independent type de�ned in (6).This assumption seems reasonable for equity returns when pri
es are sampled at moderate highfrequen
ies, e.g. for the liquid sto
ks on the New York sto
k ex
hange this assumption seemsreasonable when applied to 1 minute returns (Hansen and Lunde (2006)). In this 
ontext the bestapproa
h to estimation is to use a smooth realised kernel without any subsampling. A short
omingof this approa
h is that this estimator does not make use of all available observations. For example,transa
tions on the most liquid sto
ks now take pla
e every few se
onds, but for U 2 WN to bereasonable we 
an only sample every, say, 15th observation.In this Se
tion we dis
uss how to 
onstru
t subsampled realised estimators that make use ofall available data. We also dis
uss how valid inferen
e 
an be made about su
h estimators underrealisti
 assumptions about the noise in ti
k-by-ti
k data.Here we use a subsampled realised kernel, where S is 
hosen to be suÆ
iently large so that (6)is reasonable for a sample that only 
onsists of every Sth observation. The asymptoti
 varian
e
an be estimated from the 
oarsely sampled data, using the methods by Barndor�-Nielsen, Hansen,16



Lunde, and Shephard (2006), and this leads to valid inferen
e that is robust to both time-dependentand endogenous noise in the ti
k-by-ti
k data.Spe
i�
ally we re
ommend the following pro
edure.1. Choose S suÆ
iently large for (6) to be a plausible assumption for a sample that only 
onsistsof every Sth observation.2. Constru
t S distin
t subsamples, ea
h having approximately nÆ = n=S observations.3. For ea
h of the S subsamples, obtain estimates of !2 and IQ = tR t0 �4udu; and an initialestimate of IV = R t0 �2udu: See Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) forways to do this. Average ea
h of these estimators to 
onstru
t the subsampled estimators,!̂2 = S�1PSs=1 !̂2s and 
IVinitial = S�1PSs=1 
IVinitial;s and 
IQ = S�1PSs=1 
IQs:4. Obtain an estimate, Ĥ; for the optimal H; by plugging the subsampled estimates into theexpression for the optimal H: Use this Ĥ to 
ompute the S realised kernels, Ks(Xskip-S);using a smooth kernel and the weights w0 = w1 = 1 and wh = k �h�1Ĥ � ; for h = 2; : : : ; Ĥ:Form their average to obtain the a
tual estimator, 
IV�nal = K(Xskip-S ;S):5. Finally, 
ompute the 
onservative estimate for avar fK(Xskip-S ;S)g using the �nite sampleexpressions, where w = (w0; w1; : : : ; wĤ)|,dVar fK(Xskip-S ;S)g = 
IQ (w|Aw)� 1nÆ + 8!̂2
IV�nal (w|Bw) + 4!̂4 (w|Cw)� nÆ: (21)The varian
e estimate in (21) is the sum of the �nite sample versions of (8-10) with S = 1:So this expression 
ompletely ignores subsampling, and the expression is really an estimator ofVar(Ks(Xskip-S)): The reason is that subsampling does not redu
e the noise-varian
e by a fa
torof S; unless the noise is un
orrelated a
ross subsamples. This is unrealisti
 when the subsamplesexploit all the ti
k-by-ti
k data. However, we still have avar fK(Xskip-S ;S)g � avar(Ks(Xskip-S)),even if Ut ?? Us is violated for some s 6= t: So (21) is simply a robust estimator that is expe
tedto yield a 
onservative estimate of the varian
e. It is interesting to have some notion of how
onservative this estimator is.Re
all our result in Theorem 1 that avar fK(Yskip-S ;S)g = avar(Ks(Yskip-S)), see (8). So sub-sampling 
annot redu
e the 
ontribution to the asymptoti
 varian
e from this term, while the
ontributions from the two other terms (9) and (10), potentially 
an be driven all the way to zero.Example 4 With � = 1; the asymptoti
 varian
e of the realised TH2 kernel is proportional to
1 + 2k1;1�k0;0� 
�11 + k2;2�k0;0� 
�31 = 5:75 + 1:710:218 25:75 + 41:80:218 (5:75)�3 ' 9:50:Subsampling this estimator with S = 10; say, redu
es this fa
tor to no less than5:75 + 110 1:710:218 25:75 + 110 41:80:218 (5:75)�3 ' 6:12;17



see (11). So the varian
e redu
tion is less than 36% and even with S ! 1 the redu
tion isless than 40%: In pra
ti
e, the redu
tion is likely to be mu
h smaller, be
ause the noise is notindependent a
ross subsamples. So even though (21) is a 
onservative estimator { it is not perversely
onservative.5 Simulation study5.1 Simulated model and designIn this se
tion we analyse the �nite sample properties of K(XÆ;S); using both a smooth TH2 kerneland a kinked Bartlett kernel. We 
onsider the following SV model,dYt = �dt+ �tdWt; �t = exp (�0 + �1� t) ; d� t = �� tdt+ dBt; 
orr(dWt;dBt) = �;where � is a leverage parameter. This model is frequently used for simulation is this 
ontext, seee.g. Huang and Tau
hen (2005) and Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006).In our simulated model, we set � = 0:03, �1 = 0:125, � = �0:025 and � = �0:3. Further, we set�0 = �21=(2�) in order to standardize E ��2t � = 1: With this 
on�guration the varian
e of R t0 �2udu is
omparable to the empiri
al results found in Hansen and Lunde (2005). For the varian
e of marketmi
rostru
ture noise we set !2 = 0:1:The pro
ess is generated using an Euler s
heme based on N = 23; 400 intervals, where ea
hinterval is thought to 
orrespond to one se
ond so that the entire interval 
orresponds to 6.5 hours,whi
h is the length of a typi
al trading day. The volatility pro
ess is restarted at its mean value�0 = 1 every day by setting �0 = 5=2: This keeps the noise-to-signal ratio, � = !2=qR 10 �4udu;
omparable a
ross simulations. In our Monte Carlo designs we let the e�e
tive sample size, n; beeither 1; 560, 4; 680, or 23; 400, whi
h 
orrespond to sampling every 15, 5, or 1 se
onds, respe
tively.So a sample with 4; 680 observations, say, is obtained by in
luding every �fth observation of theN = 23; 401 simulated data points over the [0; t℄ interval.5.2 Implementation of realised kernels and subsampled realised kernelsFrom the simulated data, X0; : : : ;Xn; we de�ne the \skip-S returns" �SXj = Xj � Xj�S: Thesubsampled realised auto
ovarian
es are 
omputed by,
̂sh = nÆXj=1�SXjS+s�1�SX(j�h)S+s�1; s = 1; : : : ; S; h = �H; : : : ; 0; : : : ;H;where nÆ = n=S: The subsampled realised kernel is de�ned by\K(X;S) = 1S SXs=1 \Ks(X); where \KsH(X) = 
̂s0 + HXh=1 k(h�1H ) �
̂sh + 
̂s�h� :When S = 1 we use H�TH2;1 = 5:75(�n)1=2 for the smooth TH2 kernel andH�Bartlett;1 = 3p12(�n)2for the kinked Bartlett kernel. The \noise-to-signal" parameter, � = !2=qR 10 �4udu need not18
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onsistent withTheorems 2 and 3.be estimated in our simulations, be
ause !2 is known and the integrated quarti
ity, R 10 �4udu 'NPNj=1 �4j=N ; 
an be 
omputed from the simulated data. The parameter � = R 10 �2udu=qR 10 �4udu
an be 
omputed from the simulated volatility path. When S � 2 the optimal H for the Bartlettkernel is simply given by H�Bartlett;S = S�1 3p12(�n)2; and the TH2 kernel has H�TH2;S = 
1=2S (�n);where 
S = S�1q7:84� �1 +p1 + 9:33S�, as de�ned in (18).5.3 Simulation ResultsFigures 5 and 6 shows the Monte Carlo results with the number of subsamples, S, in
reasing alongthe horizontal axis and the MSE on the verti
al axis. The lines represent di�erent sample sizes.Consider �rst the results based on the Bartlett kernel. Our theoreti
al results in Theorem2 di
tate that these lines should be horizontal. This result is 
on�rmed. Still, a small in
reasein the MSE as S in
reases is observed for the smaller sample sizes. The reason is that the laglength of the implied kernel, Himplied; 
an only attain values that are divisible by S: While theBartlett kernel without subsampling has H�Bartlett;1 = l 3p12(�n)2m ; the implied Bartlett kernel hasHimplied = S � lS�1 3p12(�n)2m : So as S in
reases the implied kernels' Himplied is more likely todeviate from H�Bartlett;1; whi
h 
auses an in
rease in the mean squared error. The smaller is thesample size, n; the smaller is the optimal value for H: So it is not surprising that the impa
t on MSEis seen earlier when n is small. In this design, the optimal lag length, H�Bartlett;1; is about 67, 140,and 403, for n = 1; 560; n = 4; 680; and n = 23; 400; respe
tively. Though there is some variationin the optimal H a
ross simulations be
ause it through �; depends on the simulated volatility path.The lower panels present the results for the smooth TH2 kernel. Here, our theoreti
al results inTheorem 3 state that the MSE is in
reasing in S; and this phenomenon is evident for all sample19
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reasing in S: These �ndingsare fully 
onsistent Theorems 2 and 3.sizes. The results when !2 = 0:01 and !2 = 0:001 (not reported) are similar. Here the optimal His smaller and this 
auses subsampling to have a larger impa
t on the MSE. Naturally, the impliedkernels must have Himplied � S; so that Himplied = S whenever S � H�: This 
onstraint is relevantfor our simulations with small levels of noise be
ause subsampling takes Himplied further away fromits optimal value, as S in
reases beyond the optimal H:6 Empiri
al study of General Ele
tri
 tradesHere we 
ompare subsampled realised kernels with other estimators. We estimate the daily in
re-ments of [Y ℄ for the log-pri
e of General Ele
tri
 (GE) shares in 2000 and in 2004. The reason thatwe analyse data from both periods is that the varian
e of the noise was around 10 times higher in2000 than in 2004. A more detailed analysis on 29 other major sto
ks is provided in a Web Ap-pendix to this paper available from www.hha.dk/�alunde/bnhls/bnhls.htm. This appendix alsodes
ribes the exa
t implementation of our estimators. Pre
ise details on the 
leaning we 
arriedout on the raw data before it was analysed are des
ribed in the web appendix to Barndor�-Nielsen,Hansen, Lunde, and Shephard (2006).Table 3 shows Summary statisti
s for seven estimators. The �rst estimator is the realised TH2kernel using approximate 1 minute returns. The approximate 1 minute returns are obtained byskipping a �xed number of transa
tions, su
h that the average time between observations is oneminute. In 2000 we had to skip every 9.7 observations on average to 
onstru
t the approximate1 minute returns, and in 2004 we had to skip every 13.7 observations on average. The se
ondestimator is the subsampled realised TH2 kernel. So in 2000 we have S ' 9:7 and in 2004 we haveS ' 13:7: The third estimator is the realised TH2 kernel that is based on ti
k-by-ti
k data (i.e. allavailable trades) and an H that is S times larger than that used by the �rst estimator.20



Table 3: Summary statisti
s for subsampled [Y ℄ estimators.Mean Std. (HAC) H Corr a
f(1) a
f(2) a
f(5) a
f(10)Sample period: 2000Realised kernel (TH2, H� = 
�n1=2)Kth2(Xap. 1 min) 4.747 3.216 (6.133) 6.558 1.000 0.43 0.25 0.03 0.15Subsampled realised kernel (TH2, H = 
�n1=2)Kth2(Xap. 1 min;S) 4.709 3.220 (6.170) 6.558 0.997 0.43 0.25 0.03 0.16Realised kernel (TH2, H = S �H�)Kth2(X1 ti
k) 4.702 2.946 (5.793) 62.44 0.986 0.46 0.27 0.05 0.13Subsampled realised varian
es[X20 minutes; 1200℄ 4.417 3.650 (6.046) 0.894 0.26 0.17 -0.01 0.17[X5 minutes; 300℄ 4.908 3.018 (5.611) 0.984 0.44 0.23 0.01 0.14[X1 minutes; 60℄ 5.545 2.376 (5.167) 0.787 0.55 0.36 0.10 0.18AMZ (2005)TSRV (K; J) 4.514 3.657 (6.766) 0.941 0.36 0.21 0.01 0.23Sample period: 2004Realised kernel (TH2, H� = 
�n1=2)Kth2(Xap. 1 min) 0.962 0.568 (1.195) 5.723 1.000 0.34 0.32 0.28 0.08Subsampled realised kernel (TH2, H = 
�n1=2)Kth2(Xap. 1 min;S) 0.954 0.561 (1.202) 5.723 0.995 0.37 0.32 0.28 0.09Realised kernel (TH2, H = S �H�)Kth2(X1 ti
k) 0.947 0.522 (1.130) 78.27 0.990 0.37 0.31 0.30 0.08Subsampled realised varian
es[X20 minutes; 1200℄ 0.885 0.516 (1.036) 0.933 0.27 0.27 0.27 0.08[X5 minutes; 300℄ 0.943 0.503 (1.088) 0.984 0.37 0.32 0.30 0.08[X1 minutes; 60℄ 0.942 0.376 (0.921) 0.899 0.46 0.43 0.38 0.12AMZ (2005)TSRV (K; J) 0.946 0.560 (1.194) 0.944 0.33 0.35 0.28 0.11Summary statisti
s for seven estimators. First the realised kernel using approximate 1 minute returns withH� and its subsampled version, followed by the realised kernel using ti
k-by-ti
k data with H = S �H�. Thenthree subsampled realised varian
es based on 20, 5 and 1 minute returns. For instan
e, [X5 minutes; 300℄ isthe average of 300 realised varian
es based on 5 minutes returns, obtained by shifting the time pri
es arere
orded by 1 se
ond. Finally, TSRV (K; J) is the two-s
ale estimator that is robust to deviations from i.i.d.noise. For both 2000 and 2004 we report the average of daily estimates with standard deviations. Corris the 
orrelation between ea
h of estimators and the �rst realised kernel. Finally we report four sampleauto
ovarian
es.The following three estimators are subsampled realised varian
es. These are based on returnsthat are sampled in 
alendar time, where ea
h intraday return spans 20 minutes, 5 minutes, or 1minute, as indi
ated in the subs
ript of these estimators. To exhaust data sampled every se
ond, thenumber of subsamples are S = 1200; S = 300; and S = 60; respe
tively. For instan
e, the estimator[X5 minutes; 300℄ is the average of 300 realised varian
es, where ea
h of the realised varian
es arebased on 5 minute intraday returns, simply 
hanging the initial pla
e that pri
es are re
orded by21



one se
ond. The last estimator, TSRV (K;J), by Zhang, Mykland, and A��t-Sahalia (2005), is thetwo-s
ale estimator that is designed to be robust to deviations from i.i.d. noise. Here we use theirarea adjusted estimator, whi
h involves a bias 
orre
tion.
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Figure 7: Three estimators for the daily in
rements to [Y ℄ for General Ele
tri
s in November2000 and 2004. Triangles are the estimates of the realised kernel using roughly 1 minute returns.Diamonds are the estimates produ
ed by the subsampled realised kernel. Cir
les are the estimatesof the realised kernel that uses ti
k-by-ti
k returns and an H that is S times larger than that usedby the �rst realised kernel. The intervals are the 95% 
on�den
e intervals for KTH2(Xap. 1min ).From Table 3 we see that the estimators are very tightly 
orrelated. The two realised kernelsand the subsampled realised kernel are almost perfe
tly 
orrelated, and all reported statisti
s arequite similar for these estimators. The two s
ale estimator is also quite similar to the realised22



kernels. Interestingly, amongst the subsampled realised varian
es, it is that based on 5 minutereturns that is most similar to the realised kernels. This suggest that 20 minute returns leads totoo mu
h sampling error, whereas 1 minute returns are being in
uen
ed by the bias due to marketmi
rostru
ture noise.Time series for some of these estimators are drawn in Figure 7, where we plot daily pointestimates for November 2000 and November 2004. We also in
lude the 
on�den
e intervals forKTH2(Xap. 1 min) using the method of Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006).The three estimators are virtually almost identi
al. While the subsampled realised kernel maybe slightly more pre
ise than the moderately sampled realised kernel, KTH2(Xap. 1 min); Figure 7does not suggest there is a big di�eren
e between these two. The realised kernel that is based onti
k-by-ti
k data is slightly di�erent from the other estimators, but always inside the 
on�den
einterval for KTH2(Xap. 1 min).7 Con
lusionsWe have studied the properties of subsampled realised kernels. Subsampling is a very naturaladdition to realised kernels, for it 
an be viewed as averaging over realised kernels with slightlydi�erent starts of the day. We have provided a �rst asymptoti
 study of these statisti
s, allowingthe degree of subsampling or the number of lags to go to in�nity or being �xed. In
luded in ouranalysis is the asymptoti
 distribution of the estimator proposed by Zhou (1996).Subsampling leads to few gains in our analysis. In fa
t, we found that subsampling is harmfulfor the best 
lass of realised kernel estimators. The main advantage of subsampling is that it 
anover
ome the ineÆ
ien
y that results from a poor 
hoi
e of kernel weights in the �rst pla
e. Forexample, when the trun
ated kernel is used to design estimators, the resulting estimator has poorasymptoti
 properties, whereas the subsampled estimator is 
onsistent and 
onverges at rate n1=6:In the realisti
 situation where the noise is endogenous and time dependent, subsampled realisedkernels do provide a simple way to make use of all the available data. We have dis
ussed how tomake valid inferen
e about su
h estimators.Referen
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h(XÆ;S) =PSs=�S S�jsjS 
Sh+s(X ÆS ) +RxS=S:The remainder RxS=S is a relatively small term, due to end e�e
ts. The term is de�ned expli
itlyin the proof, and the expression shows that RxS 
an be made zero by tweaking the �rst S � 1 andlast S � 1 intraday returns.Proof. De�ne the intraday returns xj = X ÆS j �X ÆS j� ÆS ; and writeXÆ(j+ s�1S ) �XÆ(j�1+ s�1S ) = X ÆS (jS+s�1) �X ÆS (jS�S+s�1) = xjS+s�1 + � � �+ xjS�S+s:So xj are intraday returns over short intervals, ea
h having length Æ=S. The 
1h(XÆ) equalsnÆXj=1 �XÆj �XÆ(j�1)� �XÆ(j�h) �XÆ(j�h�1)�= nÆXj=1 �x(j�1)S+1 + � � �+ xjS� �x(j�h�1)S+1 + � � �+ x(j�h)S�= nXj=1 xjxj�Sh + nXj=1jmodS 6=0xjxj�Sh+1 + nXj=1jmodS=2f0;S�1g xjxj�Sh+2 + � � � + nXj=1jmodS=1xjxj�Sh+S�1+ nXj=1jmodS 6=1xjxj�Sh�1 + nXj=1jmodS=2f1;2gxjxj�Sh�2 + � � �+ nXj=1jmodS=0xjxj�Sh�S+1:Similarly for s > 1 we havenÆXj=1 �XÆj+ s�1S �XÆ(j�1)+ s�1S ��XÆ(j�h)+ s�1S �XÆ(j�h�1)+ s�1S � = n+s�1Xj=s xjxj�Sh+ n+s�1Xj=sjmodS 6=s�1xjxj�Sh+1 + n+s�1Xj=sjmodS =2fs�1;s�2gxjxj�Sh+2 + � � � + n+s�1Xj=sjmodS=sxjxj�Sh+S�1+ n+s�1Xj=sjmodS 6=sxjxj�Sh�1 + n+s�1Xj=sjmodS =2fs;1gxjxj�Sh�2 + � � � + n+s�1Xj=sjmodS=s�1xjxj�Sh�S+1:By adding up the terms, 
h(XÆ ;S) =PS�1s=�S+1 S�sS 
Sh+s(X ÆS ) +RxS=S; whereRxS = � SXS=2 0�s�1Xj=1 xjxj�Sh + s�2Xj=1 xjxj�Sh+1 + � � �+ 1Xj=1 xjxj�Sh+S�225



+ s�1Xj=1 xjxj�Sh�1 + s�1Xj=2 xjxj�Sh�2 + � � �+ s�1Xj=s�1xjxj�Sh�S+11A+ SXS=2 0�n+s�1Xj=n+1xjxj�Sh + n+s�2Xj=n+1xjxj�Sh+1 + � � �+ n+1Xj=n+1xjxj�Sh+S�2+ n+s�1Xj=n+1xjxj�Sh�1 + n+s�1Xj=n+2xjxj�Sh�2 + � � � + n+s�1Xj=n+s�1xjxj�Sh�h+11A :The term, RxS ; is due to end e�e
ts and involves mu
h fewer 
ross produ
ts, xixj ; than doesPSs=1 
sh(XÆ): So that RxS=S is typi
ally negligible. In fa
t, RxS 
an be made zero by assumingx1 = � � � = xS�1 = xn+1 = � � � = xn+S�1 = 0. �In the non-subsampling 
ase Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) derivedthe following helpful results.Theorem A.1 We study properties as Æ # 0: Suppose that Y 2 BSM and (4) holds, thenn1=2Æ 0BBB� 
0(YÆ)� R t0 �2udu~
1(YÆ)...~
H(YÆ) 1CCCA Ls!MN �0; A1 � tZ t0 �4udu� ; A1 = 0BBB� 2 0 � � � 00 4 � � � 0... ... . . . ...0 0 � � � 4 1CCCA : (A.1)If, in addition, for nÆ � H, U 2 WN and Y ?? U then e
(YÆ; UÆ) Ls!MN �0; 2!2[Y ℄B�, whereB = � B11 B12B21 B22 � ; B22 = 0BBBB� 2 �1 0 � � ��1 2 . . . . . .. . . . . . . . . �1� � � 0 �1 2
1CCCCA ; B11 = � 1 ��1 2 � ; B21 = 0BBB� 0 �10 0... ...0 0 1CCCA ;E fe
(UÆ)g = 2!2nÆ (1;�1; 0; 0; :::; 0)| ; and Cov fe
(UÆ)g = 4!4nÆC +O(1);C = � C11 C12C21 C22 � ; C11 = � 1 + �2 �2� �2�2� �2 5 + �2 � ;C21 = 0BBBBB� 1 �40 10 0... ...0 0

1CCCCCA ; C22 = 0BBBBB� 6 � � � ��4 6 � � �1 �4 6 � �0 1 �4 6 �... . . . . . . . . . . . .
1CCCCCA :Theorem A.2 Suppose that Y 2 BSM and (4) holds, then as Æ # 0n1=2Æ 0BBB� 
0(YÆ;S)� R t0 �2udu;e
1(YÆ;S)...e
H(YÆ;S) 1CCCA Ls!MN �0; AS � tZ t0 �4udu� ;
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AS = 23 0BBBBB� 2 + S�2 � 0 � � �1� S�2 4 + 2S�2 � . . .0 1� S�2 4 + 2S�2 . . .... . . . . . . . . .
1CCCCCA! 23 0BBBBB� 2 1 0 � � �1 4 1 . . .0 1 4 . . .... . . . . . . . . .

1CCCCCA = A1; (A.2)and as Æ # 0 and S !1n1=2Æ 0BBB� 
0(YÆ;S)� R t0 �2udu;e
1(YÆ;S)...e
H(YÆ;S) 1CCCA Ls!MN �0; A1 � tZ t0 �4udu� :Proof of Theorem A.2. By Lemma A.1 we have ~
h(YÆ;S) ' PSs=�S S�jsjS ~
Sh+s(Y ÆS ); andthe asymptoti
 properties of 
h(Y ÆS ); h = �SH; : : : ; SH; using the small time gaps, Æ=S; followsstraightforwardly from (A.1). WriteV0;S = 1S  1 + 2 SXs=1 �S�sS �2! = 23 �1 + S�22 �! 23 V1;S = 1S  0 + SXs=1 sS S�sS ! = 16 �1� S�2�! 16 :then for h � 1 we haveVar f~
h(YÆ;S)g = Var( SXs=�S S�jsjS ~
Sh+s(YÆS ))! 4V0;SnÆ tZ t0 �4udu;and similarly for h = 0 we �nd Var f~
0(YÆ;S)g = 2V0;SnÆ tR t0�4udu. For h � 0 we �ndCov �~
h(YÆ;S); ~
h+1(YÆ;S)	 = CovnPSs=�S S�jsjS ~
Sh+s(YÆS);PSs=�S S�jsjS ~
Sh+S+s(YÆS )o= VarnPSs=1 S�sS sS ~
Sh+s(YÆS)o =PSs=1 S�sS sS � 1n4t tR0�4udu= 4V1;S � 1nÆ t tR0�4udu:Covarian
es between ~
h(YÆ;S) and ~
i(YÆ;S) are zero for jh� ij � 2; as they do not \share" any ofthe realised auto
ovarian
es ~
Sh+s(YÆS ). �Proof of Theorem 1. For the subsampled realised kernel on YÆ we haveS (V0;S + 2V1;S) = 1 + 2XSs=1 �S�sS �2 + 2XSs=1 sS S�sS + S(S�1)S = S;so that V0;S + 2V1;S = 1; where V0;S and V1;S are de�ned in the proof of Theorem A.2. From thestru
ture of AS we have1H PHi;j=0 k( iH )k( jH )[AS ℄i;j = 4V0;SH PHh=0 k( hH )2 + 8V1;SH PHh=1 k( hH )k(h�1H ) +O( 1H )= 4(V0;S+2V1;S)H PHh=0 k( hH )2 � 8V1;SH2 PHh=1 k( hH )k( hH )�k(h�1H )1=H +O( 1H ) = 4Z 10 k(u)2dx+O( 1H ):From Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) we havee
(YÆ; UÆ;S) Ls!MN �0; 2!2S [Y ℄B� ; (A.3)27



E fe
(UÆ ;S)g = 2!2nÆ (1;�1; 0; 0; :::; 0)| : (A.4)Furthermore, with U sj = U(j+ s�1S )Æ we have ~
sh(UÆ) = �V sh+1;n + 2V sh;n � V sh�1;n +Rsh+1;n �Rsh�1;n;where V sh;n =Pnj=1 U sj (U sj�h + U sj+h) and Rsh;n = 12(U snU sn+h + U s0U s�h � U snU sn�h � U0U sh). So withw0 = w�1 = 1; wh = k(h�1H ); h = 1; : : : ;H + 1 we have from Barndor�-Nielsen, Hansen, Lunde,and Shephard (2006) thatKs(UÆ) = � HXh=0 (wh+1 � 2wh + wh�1) V sh;n � HXh=1 (wh+1 � wh�1)Rsh;n;where h nH3k2;2� + nH2 fk0(0) + k0(1)gi�1=2PHh=0 (wh+1 � 2wh + wh�1) V sh;n d! N(0; 4!4) andavar(H�1=2PHh=1 (wh+1 �wh�1)Rsh;n) = 4!4k1;1� : Sin
e the noise is independent a
ross subsam-ples, the results for K(XÆ; S) + �SH;n = �PHh=1 (wh+1 � 2wh + wh�1)S�1PSs=1 V sh;n and �SH;n =PHh=1 (wh+1 � wh�1)S�1PSs=1Rsh;n follow. �Proof of Lemma 1. From (12) we haveavarfK(XÆ)� ~K(XÆ)gavarf ~K(XÆ)g = 4!4k1;1� =(HS)4t R t0�4udu hHSn k0;0� + 2��k1;1�HS + n�2 nk0(0)2+k0(1)2(HS)2 + S k2;2�(HS)3oi= �(HS)2n k0;0��k1;1� + 2�+ nHS � k0(0)2+k0(1)2k1;1� + S n(HS)2 � k2;2�k1;1� ;whi
h 
an be seen to vanish when k0(0)2 + k0(1)2 6= 0 or S !1: We need HS _ n1=2 for the rationot to vanish when k0(0)2 + k0(1)2 = 0. With HS = 
�pn we �ndavarfK(XÆ)� ~K(XÆ)gavarf ~K(XÆ)g = �
2� k0;0�k1;1� + 2�+ S�
2 k2;2�k1;1� � �2 1+sk2;2� k0;0�(k1;1� )2 ! ;where we used that �; S � 1 and that x =pb=a minimizes f(x) = ax+ b=x; a; b > 0: �Proof of Theorem 2. (i) The mixed Gaussian result follows from Theorem 1. (ii) The best valuefor 
 is found by solving the �rst order 
ondition k0;0� �2
�3 �k0(0)2 + k0(1)2	 = 0, and substitutingthis 
 into (13) yields !4=3 �tR t0�4udu�2=3 times4
�k0;0� + k0(0)2 + k0(1)2
3 � = 4
�k0;0� + 12k0;0� � = 4
k0;0� (1 + 1=2) = 6
k0;0� :Finally 
k0;0� = n2 �k0(0)2 + k0(1)2� =k0;0� o1=3 k0;0� = �2�k0;0� �2 �k0(0)2 + k0(1)2��1=3 :�Proof of Theorem 3. (i:a) The mixed Gaussian result is straight forward using Theorem 1.(i:b) Substituting HS = �1=2
n1=2+�=4 and S = an� into (14) yields 4! �t R t0�4udu�3=4 times
n1=2+�=4n k0;0� + 2�k1;1�
n1=2+�=4 + nn� k2;2�(
n1=2+�=4)3 = 
k0;0� n�1=2+�=4 + 
�3k2;2� n�1=2+�=4;be
ause the se
ond term is of lower order that the 1st and 3rd term when � > 0:(ii) Minimizing (14) with respe
t to x = HS has the �rst order 
ondition,n�1k0;0� � 2��k1;1� (HS)�2 � 3�2nSk2;2� (HS)�4 = 0:28



The unique positive solution is given by HS = 
S(�n)1=2; where
S =s�k1;1�k0;0� �1 +r1 + 3S k0;0� k2;2�(�k1;1� )2� =s�k1;1�k0;0� +r (�k1;1� )2+3Sk0;0� k2;2�(k0;0� )2 :Now de�ne x = k0;0� =(�k1;1� ); y = �k1;1� =(Sk2;2� ); and z = p1 + 3x=y: Then 
S = p(1 + z)=xand x=y = (z2 � 1)=3 = (1 + z)(z � 1)=3: So the minimum asymptoti
 varian
e is given by4! �tR t0�4udu�3=4 k0;0� (
S + 2
Sx + 1
3Sxy ); whi
h is proportional to
S + 2
Sx + 1
3Sxy =q1+zx + 2q 1x(1+z) + px(1+z)p1+z
3y = 1px 43 � 1p1+z +p1 + z� :Now substitute z =q1 + 3Sk0;0� k2;2� =(�k1;1� )2 and x�1=2 =q�k1;1� =k0;0� and (16) follows. �Lemma A.2 Let g(S) be as de�ned in Theorem 3. Then g0(S) > 0 for all S > 0:Proof. Consider the fun
tion f(x) = 1p1+p1+ax +p1 +p1 + ax, for a > 0. The �rst derivativef 0(x) = a4 �1 +pax+ 1��3=2, is positive for all x > 0. �Proof of Corollary 1. From Lemma A.2 it follows that g0(S) > 0 for all S > 0; if we set x = Sand a = 3k0;0� k2;2� =(�k1;1� )2: So any in
rement in S will in
rease the asymptoti
 varian
e. �Proof of Corollary 2. By substitution for the �rst � in g(S) we �nd that (16) is proportional to!�tZ t0 �4udu�1=2�Z t0 �2udu�1=2( 1q1+p1+3Sk0;0� k2;2� =(�k1;1� )2 +r1 +q1 + 3Sk0;0� k2;2� =(�k1;1� )2) :From Hansen and Lunde (2006, p. 135) it follows that business time sampling minimizes t R t0�4uduand by Lemma A.2 we have that also the se
ond term is minimized for the largest possible valueof �; (set x = 1=�2). Sin
e � � 1 the solution is � = 1. �Proof of Lemma 2. From the proof of 1 we haveKw(UÆ) = Kw(UÆ; 1) = �PHh=0 (wh+1 � 2wh + wh�1)V 1h;n �PHh=1 (wh+1 � wh�1)R1h;n;where Var(V 1h;n) = (4n�2h)!4: V 1h;n is entirely made up of U1j U1j�h terms so that Cov(V 1h;n; V 1k;n) = 0;for h 6= k: Hen
e Varn ~Kw(UÆ)o � 4!4(n�H2 )PHh=0 (wh+1 � 2wh + wh�1)2 ; and the results followssin
e H = o(n): �Proof of Theorem 4. The asymptoti
 distribution of 
0(XÆ;S) + e
1(XÆ;S) � R t0 �2udu is mixedGaussian with varian
e of approximately, for moderate nÆ and S,n�1Æ 163 tR t0 �4udu+ 8!4nÆS : (A.5)The �rst term appears from (A.2), the se
ond from Theorem A.2 of Barndor�-Nielsen, Hansen,Lunde, and Shephard (2006). �Proof of Lemma 3. With S = 
(�n)2=3 we have n�1Æ = S=n = 
�2=3n�1=3 and nÆS = n=S2 =
�2��4=3n1=3; so that (A.5) in the proof of Theorem 4 be
omes n1=3 times163 
�2=3tZ t0 �4udu+ 8!4
�2��4=3 = !4=3 �tZ t0 �4udu�2=3�163 
+ 8
�2� :29



So n1=6 n
0(XÆ;S) + e
1(XÆ;S)� R t0�2uduo 
onverges to a mixed Gaussian distribution with thisvarian
e. We 
an now minimise this asymptoti
 varian
e by sele
ting 
3 = 3. At this value theasymptoti
 varian
e is!4=3�tZ t0 �4udu�2=3 �163 (3)1=3 + 8 (3)�2=3� ' 11:53!4=3�tZ t0 �4udu�2=3 :�Proof of Lemma 4. From Theorems A.2 and 1 we obtain the following upper-left 3�3 submatri
esof A1 and C; [A1;3�3℄ = 23 0� 2 � �1 4 �0 1 4 1A ; [C3�3℄ = 0� �2 + 1 � ���2 � 2 �2 + 5 �1 �4 6 1A :With w = (1; 1; 12)| we have w|[A1;3�3℄w = 203 and w|[C3�3℄w = 12 : The result now follows, as theasymptoti
 varian
e isn1=3�Sn tZ 10 �4udu203 + 4!4 nS2 12� = !4=3�tZ 10 �4udu�2=3 �203 
+ 2
�2� :�Proof of Theorem 5. We have
0(XÆ ;S)� 2nÆ!2 � Z t0 �2udu = 
0(YÆ;S)� tR0�2udu| {z }n�1Æ 43 tR t0�4udu +2
0(UÆ; YÆ ;S)| {z }S�18!2 R t0�2udu + 
0(UÆ;S)� 2nÆ!2| {z }4!4 nÆS (1+�2) ;whi
h has mean zero and a varian
e that is the sum of the three terms given below the bra
kets.The three terms are given from (A.2), (A.3), and Theorem A.1, respe
tively. For large S = 
(�n)2=3(implying large nÆ = n=S = 
�1��2=3n1=3) we haven1=6�
0(XÆ ;S)� 2nÆ!2 � Z t0 �2udu� Ls!MN (0; 4!4=3�tZ t0 �4udu�2=3 � 
3 + 1+�2
2 �) :By the approximations1S Pnj=1 �UjÆ=S � U(j�S)Æ=S�2 ' 2S �Pnj=1 U2jÆ=S +Pnj=1 UjÆ=SU(j�S)Æ=S�1S Pnj=1 �UjÆ=S � U(j�1)Æ=S�2 ' 2S �Pnj=1 U2jÆ=S +Pnj=1 UjÆ=SU(j�1)Æ=S� ;and using 2S = 2n1=2
�2=3n2=3 � n�1=2 = n�1=6q 4
2�4=3 � n�1=2 we see thatn�1=6 n�1=2Pnj=1 �UjÆ=S � U(j�S)Æ=S�2 � 2nÆ!2n�1=2Pnj=1 �UjÆ=S � U(j�1)Æ=S�2 � 2nÆ!2 ! L! N �0; 4!4
2�4=3 � 1 + �2 �2�2 1 + �2 �� :�Proof of Theorem 6. Follows from Theorem 5, and n�1=2
0(XÆ=S) = n�1=2
0(UÆ=S) + op(1) and!4=�4=3 = !4=3 �tR t0�4udu�2=3. � 30


