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Abstract

In a recent paper we have introduced the class of realised kernel estimators of the increments
of quadratic variation in the presence of noise. We showed this estimator is consistent and
derived its limit distribution under various assumptions on the kernel weights. In this paper we
extend our analysis, looking at the class of subsampled realised kernels and we derive the limit
theory for this class of estimators. We find that subsampling is highly advantages for estimators
based on discontinuous kernels, such as the truncated kernel. For kinked kernels, such as the
Bartlett kernel, we show that subsampling is impotent, in the sense that subsampling has no
effect on the asymptotic distribution. Perhaps surprisingly, for the efficient smooth kernels,
such as the Parzen kernel, we show that subsampling is harmful as it increases the asymptotic
variance. We also study the performance of subsampled realised kernels in simulations and in
empirical work.
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1 Introduction

High frequency financial data allows us to estimate the increments to quadratic variation, the usual
ex-post measure of the variation of asset prices (e.g. Andersen, Bollerslev, Diebold, and Labys
(2001) and Barndorff-Nielsen and Shephard (2002)). Common estimators, such as the realised
variance, can be sensitive to market frictions when applied to returns recorded over shorter time
intervals such as 1 minute, or even more ambitiously, 1 second (e.g. Zhou (1996), Fang (1996) and
Andersen, Bollerslev, Diebold, and Labys (2000)). In response two non-parametric generalisations
have been proposed: subsampling and realised kernels by Zhang, Mykland, and Ait-Sahalia (2005)
and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006), respectively. Here we partially unify
these approaches by studying the properties of subsampled realised kernels.

Our interest is the estimation of the increment to quadratic variation over some arbitrary fixed
time period written as [0, ¢], which could represent a day say, using estimators of the realised kernel
type. For a continuous time log-price process X and time gap § > 0, the flat-top' realised kernels
of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) take on the following form

H

K(X5) =70(Xs) + Yk (27) {va(Xs) + v n(X9)}, H>1.
h=1

Here k(x), z € [0,1], is a weight function with k£(0) = 1, k(1) = 0, while
ns
'yh(X5) :ijxj,h, Zj :X(;j _X(S(j—l)a h = —H,...,—I,O,l,...,H,
j=1

with ns; = [t/d]. Think of § as being small and so z; represents the j-th high frequency return,
while v, (X5) is the realised variance of X. The above authors gave a relatively exhaustive treatment
of K(X;) when X is a Brownian semimartingale plus noise.

It is important to distinguish three classes of kernels functions k(x): smooth, kinked, and discon-
tinuous. Examples are the Parzen, the Bartlett and the truncated kernel, respectively. Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2006) have shown that the smooth class, which satisfy
E'(0) = K'(1) = 0, lead to realised kernels that converges at the efficient rate, n(ls/4. Whereas the
kinked kernels, which do not satisfy £'(0) = £'(1) = 0, lead to realised kernels that convergence at
né/G. The discontinuous kernels lead to inconsistent estimators as we show in Section 3.4.

Realised kernels use returns computed starting at ¢ = 0. There may be efficiency gains by
jittering the initial value S times, illustrated in Figure 1, producing S sets of high frequency
returns z3, s = 1,2,..., 5. Zhang, Mykland, and Ait-Sahalia (2005) made this point for realised
variances. We can then average the resulting S realised kernel estimators

s
1
K(X55) =5 > KS(Xy),
s=1

1t is called a flat-top estimator as it imposes that the weight at lag one is one. The motivation for this is discussed
extensively in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006).
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where

H
K(X5) = v5(Xs) + Dk (B74) {73 (Xs) +95(Xs)
h=1

Th(X5) = Zx L5 ':Xa(j+%) _Xa(j+%f1)'

We call K(Xs; S) the subsampled realised kernel — noting that this form of subsampling is different
from the conventional form of subsampling, as we discuss below.

Here we show that subsampling is very useful for the class of discontinuous kernels, because
subsampling makes these estimators consistent and converge in distribution at rate n'/®, where
n = Sny is the effective sample size. Zhou (1996) used a simple discontinuous kernel and gave a
brief discussion of subsampling that kernel. We will see that his estimator can be made consistent
by allowing S — oo as n — 0o, a result which is implicit in his paper, but one he did not explicitly
draw out. For the class of kinked kernels, we show that subsampling is impotent, in the sense that
the asymptotic distribution is the same whether subsampling is used or not. Finally, we show that
subsampling is harmful when applied to smooth kernels. In fact, if the number of subsamples, S,

increases with the sample size, n, the best rate of convergence is reduced to less than the efficient

one, n'/4,
2l 2L 2}
| 1 1 1 > 1
0 ) 20 36
2 . .
— i 1 1 >t
0 0 (1+4)0 2+1%)0 (3+1%)0
Figure 1: =} are the usual returns. The bottom series are the offset returns a:], s=2,...,85.

J

The intuition for these results follows from Lemma A.l in the appendix. It shows that

s

n(X5;5) = Z Vi (X5) ~ Z kB (&) Ysnis(Xsys), where kp(z) =1— |z,
s=1 s=—S+1

where the approximation is due to subtle end-effects. The implication is that

H
K(X58) =~ Z kB (£)7s(Xsys) + Dk (25 Z kB (§) {vsn+s(Xoys) +7-sn-s(Xs/s) }
s_—S+1 h=1 s=—S

= st (B7) Fsnrs(Xs)9)-



So a subsampled realised kernel is a realised kernel simply operating on a higher frequency (ignoring
end-effects). The implied kernel weights, ks(%), h =1,...,SH, are convex combinations of

neighboring weights of the original kernel,

ks (£%) = 555k (&) + £k (&),  h=0....,H, s=1,....5 (1)
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Figure 2: The effects of subsampling some kernels. The left panels display the original kernel func-
tions and the right panels display their implied kernel functions that are induced by subsampling.
For the truncated (discontinuous) kernel the two are very different. So subsampling makes an
important difference in this case. For the (kinked) Bartlett kernel the two are virtually identical,
which suggests that subsampling has no effect on this kernel. Finally, for the smooth kernel in the
lower panels subsampling has only a small effect by making the kernel function piecewise linear.

In Figure 2 we trace out the implied kernel weights for three subsampled realised kernels.
The left panels display the original kernel functions and right panels display the implied kernel
functions. For the truncated kernel (H = 1) subsampling leads to a substantially different implied
kernel function — the trapezoidal kernel by Politis and Romano (1995). For the kinked Bartlett

kernel subsampling leads to the same kernel function. For a smooth kernel function, the original



and implied kernel functions are fairly similar, however subsampling does impose some piecewise
linearity which is the reason that subsampling of smooth kernels increases the asymptotic variance.

The connection between subsampled realised kernels and realised kernels is perhaps not too sur-
prising, because Bartlett (1950) motivated his kernel with the subsampling idea. The conventional
form of subsampling that is based on subseries that consist of consecutive observations. This is
different from our subsamples that consist of every Sth observation. Such are called subgrids in
Zhang, Mykland, and Ait-Sahalia (2005). While the two types of subsampling are different they
can result in identical estimators. For instance, the sparsely sampled realised variance, v} (X;), is
identical to Carlstein’s subsample estimator (of the variance of a sample mean when the mean is
zero), see Carlstein (1986). Carlstein’s estimator is based on non-overlapping subseries and Kiinsch
(1989) analysed the closely related estimator based on overlapping subseries. Interestingly, the
(overlapping) subsample estimator by Kiinsch (1989) is identical to the average sparsely sampled
realised variance called “second best” in Zhang, Mykland, and Ait-Sahalia (2005), so that the
TSRV and MSRV estimators, by Zhang, Mykland, and Ait-Sahalia (2005), Ait-Sahalia, Mykland,
and Zhang (2006), and Zhang (2006), can be expressed as linear combinations of two or more sub-
sample estimators of the overlapping subseries type by Kiinsch (1989). For additional details on the
relation between Bartlett kernel and various subsample estimators, see Anderson (1971, p. 512),
Priestley (1981, pp. 439-440), and Politis, Romano, and Wolf (1999, pp. 95-98).

This paper has the following structure. We present the basic framework in Section 2 along with
some known results. In Section 3 we present our main results. Here we derive the limit theory for
subsampled realised kernels and show that subsampling cannot improve realised kernels within a
very broad class of estimators. In Section 4, we given some specific recommendations on empirical
implementation of subsampled realised kernels and how to conduct valid inference in this context.
We present results from a small simulation study in Section 5 and an empirical application in

Section 6. We conclude in Section 7 and present all proofs in an appendix.

2 Notation, definitions and background
2.1 Semimartingales and quadratic variation

The fundamental theory of asset prices says that the log-price at time ¢, Y;, must, in a frictionless
arbitrage free market, obey a semimartingale process (written Y € SM) on some filtered probability
space (Q,f, (Ft) > ,P), where T* < 0. Crucial to semimartingales, and to the economics of

financial risk, is the quadratic variation (QV) process of Y € SM. This can be defined as

N
V)= plim Y (v, — ¥, )%, (2)
7=1

(e.g. Protter (2004, p. 66-77) and Jacod and Shiryaev (2003, p. 51)) for any sequence of deter-

ministic partitions 0 = tg < t; < ... < ty =t with supj{tjﬂ —tj} — 0 for N — oo.



The most familiar semimartingales are of Brownian semimartingale type (Y € BSM)

t t
Y; :/ audu—i—/ o, dW,, (3)
0 0

where a is a predictable locally bounded drift, o is a cadlag volatility process and W is a Brownian
motion. If Y € BSM then [Y]; = fUt o2du. In some of our asymptotic theory we also assume, for

simplicity of exposition, that

t t t
at:ag+/ a#du+/ a#quJr/ v#dV,, (4)
0 0 0

where a#, o# and v# are adapted cadlag processes, with a# also being predictable and locally
bounded and V is Brownian motion independent of W. Much of what we do here can be extended

to allow for jumps in o (cf. Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006)).

2.2 Assumptions about noise

We write the effects of market frictions as U, so that we observe the process
X=Y+4+U (5)

Our scientific interest will be in estimating [Y];. In the main part of our work we will assume
that Y 1L U where, in general, A Il B denotes that A and B are independent. From a market
microstructure theory viewpoint this is a strong assumption as one may expect U to be correlated
with increments in Y. However, the empirical work of Hansen and Lunde (2006) suggests this
independence assumption is not too damaging statistically when we analyse data in thickly traded
stocks recorded approximately every minute (see also Kalnina and Linton (2006)).

We make a white noise assumption about the U process (U € WN):
E(U;) =0, Var(U;) =w?, Var(U?) = Nw!, U, 1L U, (6)

for any t # s, where A € R". This white noise assumption is unsatisfactory but is a useful starting
point if we think of the market frictions as operating in tick time (e.g. Bandi and Russell (2005),
Zhang, Mykland, and Ait-Sahalia (2005) and Hansen and Lunde (2006)).

Analogous to the realised autocovariances we define

ngs
Y0 (Y5.Us) = D ystjn, 5 =Ysj —Ya1) and uj=Usj — Us; 1.
j=1

From (5) we have that

Yo (Xs) = 7, (Ys) + v, (Y5, Us) + v, (Us, Ys) + v, (Us).

It will be useful to have the following notation 7(Xs) = {v¢(Xs),¥1(Xs), .., 7 (Xs)}T, where
Y (Xs) = v,(X5)+v_1,(Xs), and introduce the analogous definitions of ¥(Y;s), 7(Us), and (Y5, Us).



3 Subsampled realised kernel

Here we study subsampled realised kernels based on smooth and kinked kernel functions. Specif-
ically, we require that k(s) is continuous and twice differentiable on [0, 1] and that £(0) = 1 and

k(z)—k(0)

k(1) = 0. Naturally, the derivatives at the end points are defined by £'(0) = lim,|g and

K'(1) = limgy, 2=E@)

-z

Without subsampling, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) showed that
E'(0)=0 and K'(1)=0, (7)

is a necessary condition for a realised kernel to have the best rate of convergence, and this property
is also key for subsampled realised kernels — see also the work of Zhang (2006) on using subsampling
of realised variance to obtain the same rate of convergence. We shall refer to continuous kernels
that satisfy (7) as smooth, otherwise they are called kinked.

In some of our proofs it is convenient to extend the support of the kernel functions beyond the
unit interval, using the conventions: k(z) =0 for z > 1 and k(—x) = k(z).

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) showed that kernel functions of the
type can be used to produce consistent estimators with mixed Gaussian asymptotic distributions.
It is therefore interesting to analyze whether there are any gain from subsampling realised kernels
or not. Perhaps surprisingly we find that subsampling is harmful or, at best, impotent, for realised
kernels that are based on smooth or kinked kernel functions.

Below we formulate limit results for subsampled realised kernels using the notation

1 1 1
/ k(z)%dz, k}’lz/ K (z)*dz, k%?:/ E'(z)%dz,
0 0 0
¢ = wZ/\/tféaidu, p:féazdu/ tff]afldu,

and we define K (X;; S) = K (X5; S)+A% ,, where A7 =S~ 527 So L {k(5H) — k("4 } Ry .,
R} = 5 (Ui Uss yno + Uss Uss s — Uss, Uss o — U Urg 1), 1 = 550, and £, = ¢ + 2516, So AF

is related to end-effects.

kO

Theorem 1 For large H and n the asymptotic distributions of
t
K(Yg,S)—/ Uzdua K(Y57U555)+K(U5aY555)7 and K(U555)+AH77,7
0

are mized Gaussian, uncorrelated with mean zero and asymptotic variances given by

H t
4—1&%/ otdu, (8)
ns 0
t
8w2/ aiduk}’lHl/S (9)
0
dwng [{K'(0)* + K (1)*} H 2 + k2?H?]/ S. (10)



respectively, and the asymptotic variance of A}q{’n is 4w4k}’1/(HS). Furthermore, K(X5;8) —

t L : . .
I o2du is mized Gaussian with a zero mean and variance

co o, 2R H T 0 (K02 4 K2 H 2 RH
4t | o, du —k" + . (11)
0 ns S

Subsampling has no impact on the first term, (8). This is despite the fact that subsampling
lowers the variance of the individual realised autocovariances, 7, (Y5). This is because subsampling
introduces positive correlation between ¥, (Ys; S) and 7,1 (Y5; S) that exactly offsets the reduction
in the variance of the realised autocovariances. Subsampling does reduce the variances of the terms
effected by noise, (9) and (10), by a factor of S.

The auxiliary quantity, K (Xs; S), is introduced to simplify the exposition of our results. K (Xj; S)
and K (Xj; S) are often asymptotically equivalent because their difference, A%jn, vanishes at a suf-

ficiently fast rate. This is made precise in the following Lemma.

Lemma 1 If k'(0)% 4+ k'(1)> # 0 or § — oo, then avar{K (X;s) — K(X;)}/avar{K (X5)} = o(1). If
E'(0)2 + k'(1)2 = 0 then avar{K (X;s) — K(X;)}/avar{K (X5)} < ¢/ {2 + QW}

We shall state several asymptotic results for n? {IN((X,g) - fota%du} . An implication of Lemma
1 is that K (Xj) can be substituted for K(X;) whenever y < 1/4. When v = 1/4 the difference
between K (X;) and K (Xj) is not trivial in an asymptotic sense, but for all practical purposes their
difference is negligible. The reason being that a realistic empirical value for £, is £ < 0.01. With the
original Tukey-Hanning kernel the relative variance in Lemma 1 is no larger than 1/{200(1++/3)} ~
0.00183.

The most obvious generalisation of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) is
to think of the case where S is fixed and we allow H to increase with ns. When (7) holds, we
can follow Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) and set H = ¢(éng)'/?. Then
we obtain the result that, where Ls denotes convergence in law stably (e.g. Barndorff-Nielsen,
Graversen, Jacod, and Shephard (2006)),

t t 3/4 —1 41,1 3722
) . 2¢=" 2
ni/* {K(X(;; S) — / aidu} Ls MN {0,4w <t/ a;ﬁdu> (ck?’o 2P S+ ‘ )} .
0 0

Whether or not (7) holds, when we set H = ¢(¢éns)%/? we have

N t t 2/3 102 171\2
ny/® {K(X(;; S) — / azdu} LS MN [0,4w4/3 <t/ a;ﬁdu> {ck?’o + %}] :
0 0

Here S plays a relatively simple role, reducing the impact of noise — by in effect reducing the noise

variance from w? to w?/v/S. If (7) does hold then we get

] . ¢ 2/3
n;/G{K(X(;;S)—/OUidu} £S>MN{0,4ck9a0w4/3 (t/o o;tdu> }

which implies no asymptotic gains at all from subsampling.




3.1 Effective Sample Size

The effectiveness of subsampling can be assessed in terms of the effective sample size, n = nsS. It
makes explicit that a larger S reduces the sample size, ng, that is available for each of the realised

kernels. Then we ask if it is better to increase ng or S for a given n. In terms of n (11) becomes

t
4t/ ol du
0

Here HS appears in the variance expression in a way that is almost identical to H when there is

HS oo 2%pket 5 [FO?2+K(1)? k7’
A T g{ (H9)? +S(HS)3 : (12)

no subsampling (S = 1). The only difference is the impact on the last term. This term vanishes
when £'(0) = £'(1) = 0 does not hold, because the second last term is then O (n/(SH)?) whereas
the last term is only O (H ') O (n/(SH)?) . This feature of the asymptotic variance holds the key

to the different results we derive for smooth and kinked kernels.

3.2 Kinked Kernels: When £'(0) = £'(1) = 0 does not hold

When (7) does not hold the asymptotic variance of K (X5, S) is given by

t HS 2 pka’’ K'(0)% + K'(1)?
4 4 0,0 o 2 )
t/o o,du {—n ke + S + né (HS)

While this expression depends on the product H S, it is invariant to the particular values of H and

S, though we do need H — oo to justify the terms, k[.]’o, k}’l, etc. We have the following result.

Theorem 2 (i) If SH = ¢(én)?*/® we have

t t 2/3 ()2 1(1\2
n'/6 <K(X5;S) - / aidu> B MN (0,4w4/3 (t/ aidu> {ck?’o + MD . (13)
0 0

C

as n — oo, so long as H increase with n. (ii) The asymptotic variance is minimised by
o212 ) 1/3 t 2/3
c= {27]c (O)sz,ff (L) } , and  6ckdPw?/? (t/o aidu>

is the lower bound for the asymptotic variance.

Thus (13) is not influenced by S, not even the rate of growth in S. All that matters is that
H grows and that HS grows at the right rate. The implication is that there are no gains from
subsampling when £’(0)2 + £'(1)? # 0. So we might as well set S = 1 and use the realised kernel

that does not require any subsampling. The second part of Theorem 2 shows that

k20 = 6 [2 (K0)* {(0)% + K (1)*}] v

controls the asymptotic efficiency of estimators in this class.

Example 1 The Bartlett kernel, k(z) = 1 — z, has ki = 1/3 and k'(0)2 + k'(1)2 = 2, so that
6ckd’ =2.121/3 ~ 4.58, whereas the quadratic kernel, k(z) = 1 — 2z + 2, is more efficient, because

it has k3° = 1/5 and k' (0)2 4+ k'(1)2 = 4, so that 6¢cke® = 12 - 5-2/3 ~ 4.10.



3.3 Smooth Kernels: When £'(0) = £'(1) = 0 holds

In this Section we consider smooth kernel functions. Some examples of smooth kernel functions are

given in Table 1, where kry, (z) is the Tukey-Hanning kernel.

Table 1: Some smooth kernel functions.

Cubic kernel ko(z) =1 — 322 + 22°
Parzen kernel ( 1—-62>+62° 0<z<1/2
xTr) =
r 21 — 2)? 1/2<z <1
TH, kru,(z) = sin®{r/2 (1 — z)"}

We know from Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) that the rate of con-
vergence of realised kernels improves when k'(0) = £’(1) = 0. This smoothness condition will also
improve the rate of convergence for subsampled realised kernels. For smooth kernel functions, the

asymptotic variance is given by

t HS 2 pka’t k22
4 4 ~+~40,0 . 2 e . 14
t/oaudu{ SR S S s (14)

Because the last term is multiplied with S it is evident that the asymptotic distribution will depend

on whether S is constant or increases with n. This is made precise in the following Theorem.

Theorem 3 (i.a) When S is fized we set HS = ¢(én)Y/? and have

~ t . t 3/4 2 S
nt/4 {K(X(;) —/ aidu} X MN |0, 4w (t/ a;ﬁdu> {ck?’o + gt 4 —31&2} . (15)
0 0 C C

(i.b) When S = an® for some 0 < o < 2/3, we set HS = c(én)'/?*n®/* and have

—a - t t
L <K(X5;S) — / Uidu) B MmN [0,4w <t/ Uidu) {ck(.)aﬂ + %kfﬂ}] .
0 0 ¢

(i1) Whether S is constant or not, the asymptotic variance is minimized by

3/4

HS = (£n)1/2\/”k’% {1 + /1 + 35tk }

. (pko't)?

and the lower bound is
3/4

n~ 2y <t/0ta;ﬁdu> 9(9), (16)

where

1,1,0,0 1 kOky?
g(S) = —\/pke’ ko’ + 4114+ 1+35711 5
3 \Jl+ 1435 ke lke” (pke’)

T
(pkg' )2

10



1/24a/4—a 1—%04)/2

Remark. In (i.b) we impose a < 2/3. The reason is that H o n = n! and we
need (1 — 2a)/2 > 0 to ensure that H grows with n.
The relative efficiency in this class of estimators is given from g¢(S), and we have the following

important result for subsampling of smooth kernels

Corollary 1 The asymptotic variance off((X(;; S) is strictly increasing in S.

The implication is that subsampling is always harmful for smooth kernels. Furthermore, (i.b)
shows that there is an efficiency loss from allowing S to grow with n. See Table 2 for the values of
g(S) for some selected kernel functions.

Another implication of Theorem 3 concerns the best way to sample high frequency returns.

This result is formulated in the next corollary and will require some explanation.

Corollary 2 The asymptotic variance, (16), as a function of p, is minimized for p = 1.

The Corollary is interesting because p = f(f a%du/\/tfot o*du depends on the sampling scheme
by which intraday returns are obtained. So p can be interpreted as an asymptotic measure of
heteroskedasticity in the intraday returns, where p = 1 corresponds to homoskedastic intraday
returns. Rather than equidistant sampling in calendar time we can generate the sampling times
by,

tj:tm(%), i=01,...,n,

where 7 is a time change (7(0) = 0, 7(1) = 1, and 7 is monotonically increasing, so that 0 = 5 <
t1 < -+ <t, =t). A change of time does not affect fgazdu but does influence the integrated
quarticity f(f otdu, see e.g. Mykland and Zhang (2006). A particularly interesting sampling scheme
is business time sampling (BTS), see e.g. Oomen (2005, 2006), which is the sampling scheme that
minimises the integrated quarticity, see Hansen and Lunde (2006, p. 135). It is easy to see that the

Vo2dy = s x fot o2du, and by

time change associated with BTS, 7(-), 7prs(-) say, must solve f(fXT(
the implicit function theorem we have 74 (s) oc 1/ 02(3), where 5 = t X Tgrs(s). The implication is
that returns are sampled more frequently when the volatility is high and less frequently when the
volatility is low under BTS. In general we have p < 1 and Corollary 2 shows that BTS (p = 1) is
the ideal sample scheme. Naturally, sampling in business time is infeasible because Tgrs depends
on the unknown volatility path. Still, Corollary 2 can be used as argument in favor of sampling
schemes that results in less heteroskedastic intraday returns than does CTS.

Given S and p the optimal H is H = cg(én)'/2 for this class of kernels where

1,1 0,0,2,2
cs = slwk’“g:o {1 1+ 35 et } (18)

In Table 2 we present key quantities for some smooth kernels. Perhaps the most interesting
quantity is g(S) of (17), as it enable us to compare the relative efficiency across estimators. In

Table 2 we have computed g(S) for the case where p = 1. So ¢g(S) can be compared to 8 which

11



Table 2: Key quantities for some smooth-continuous kernels.

‘ 0,0,2,2
ROOORYRT VRTRT Bres o 9(5)

S=1 S§=2 S§=3 S§=10
Cubic  0.371  1.20 12.0 0.67 3.09 3.68 9.03 9.81 10.39 12.72
Parzen 0.269 1.50 24.0 0.64 2.87 4.77 8.53 9.25 9.78 11.94
TH; 0.375  1.23 12.2 0.68 3.00 3.70 9.18 9.96 10.55 12.89
TH> 0.218 1.71 41.8 0.61 3.11 5.75 8.27 8.99 9.51 11.65
TH;5 0.097  3.50 489.0 0.58 3.85 8.07 8.07 8.82 10.19 11.57
THio 0.050  6.57  3610.6 0.57 4.19 2479  8.04 8.80 10.19 11.59
THis 0.032 10.26  14374.0 0.57 4.33 39.16  8.02 8.80 10.20 11.60

Key is g(S) that measures the relative efficiency in this class of estimators. Here computed for the
case with constant volatility (p = 1) such that these numbers are comparable with the mazimum
likelihood estimator that has g = 8.00. No subsampling (S = 1) produces the best estimator and
kernels with a relative large k9’0k2’2/(k}’1)2 tend to be more sensitive to subsampling.

is the corresponding constant for the maximum likelihood estimator in the Gaussian parametric
version of the problem. We see that most kernels are only slightly less efficient than the maximum
likelihood estimator, THyg almost reaching this lower bound. Comparing g(S) for different degrees
of subsampling, reminds us that S = 1 (no subsampling) yields the most efficient estimator. The

larger the value of k9’0k2’2/(k}’1)2 the more sensitive is the kernel to subsampling.

1.0

0-87 —_—— Cubic

Parzen
0.6 - TH1

_— TH16

0.4

0.2 7

0.0

Figure 3: Some smooth kernels, k(z/c1), using their respective optimal value of ¢ when S = 1.

Figure 3 plots some smooth kernel functions, k(z/c1) using their respective optimal value for ¢y,
see Table 2. We see that the TH; kernel is almost identical to the cubic kernel. The THy¢ kernel is
somewhat flatter, putting less weight on realised autocovariances of lower order and higher weight
on realised autocovariances of higher order. The Parzen kernel is typically between TH; and THjyg.

While the smooth kernels improve the rate of convergence over the kinked kernels, the improve-
ments may be modest in finite samples. The reason is the following. When the noise is small
the optimal H is small, and H may actually be quite similar for kinked and smooth kernels. For
instance with £ = 0.01 and n = 780, the Bartlett kernel has cBARTLETT(fn)2/3 = 9.00 whereas the

1/2

cubic kernel has ccygic(€n)'/° = 10.78. So in this case the two types of estimators are rather similar

and despite the fact that Hpaprierr grows at the faster rate n?/ 3 the cubic kernels includes more

12



lags in this situation.

3.4 Discontinuous kernel functions

In this section we consider the kernel functions we have labelled as discontinuous kernels. Such
kernels lead to estimators with poor asymptotic properties. We shall see that subsampling can
substantially improve such estimators, making them consistent with mixed Gaussian distributions.

So for such kernels, subsampling is a saviour.

Lemma 2 Let K, (X;) = Ztho wpYy(Xs), where H = o(n) (possibly constant). Then wy =
1+ o0(1) and wy — wy = o(n~1), are necessary conditions for E(Kw(X(;) - féa%du) — 0; and

H

> (whi1 — 2wp +wh1)® = o(n™"), (19)
h=0

s a necessary condition for Var (Kw(X5) — f(fazdu> — 0, where we set w41 =0 and w_1 = wy.

The lemma shows that realised kernels using a fixed H cannot converge to fg o2du in mean
squares, because such estimators will not satisfy (19).
Consider the case where we construct wy, from a kernel function and let H — oo. In this

situation it is clear that any discontinuous kernel will violate (19), because

H 2
n Z (Wha1 — 2wp, + wp—1)* ~n x Z {lim k(z) — lim k(m)} .
h=0 z; €Dy, ' /
Here Dy is the set of discontinuity points for k(z).
Next, we consider the truncated kernel which does not satisfies (19). We will see that subsam-
pling this kernel produces an estimator that is consistent and mixed Gaussian. This is true whether

H is finite or is allowed to grow with the sample size.

3.4.1 Zhou (1996) estimator

First we will look at estimators which are thought of as having H fixed and allowing the degree
of subsampling to increase. This is outside the spirit of the realised kernels of Barndorff-Nielsen,
Hansen, Lunde, and Shephard (2006) which need H to get large with ns for consistency, however
it is close to the important early work of Zhou (1996) and is strongly intellectually connected to
the two scale estimators by Zhang, Mykland, and Ait-Sahalia (2005).

The Zhou (1996) estimator can be written as vy(Xs;.S) + ¥, (Xs; S) which is the subsampled
realised kernel based on the truncated kernel function using H = 1. Zhou (1996) noticed that the
variance of his estimator was of order O(%) +O(%) + O(%), but did not realize that by allowing
S to increase with ng his estimator is consistent. In fact, in a subsequent paper Zhou stated that
his subsampled realised kernels was inconsistent, see Zhou (1998, p. 114). The following Theorem

gives its asymptotic distribution.
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Theorem 4 Suppose S = c3n§, then as ng — oo

t t
n}/? {%(Xé; S) +7,(Xs;5) — /0 aidu} LS MN <0, 13—6t/0 oldu + 8w4/03> :

1/2

This asymptotics is not particularly attractive for its seeming n;’" rate of convergence hides

the fact that it assumes massive databases in order to allow S to increase rapidly with ng. A more
interesting way of thinking about this estimator is in terms of the effective sample size n = S X ngs.

Again we ask if it is better to increase ng or S for a given n. This leads to the following result.

Lemma 3 If S = c(¢én)?/? then the Zhou estimator has

t ¢ 2/3
n!/6 <7U(X,5;S) +7,(X5: ) —/0 Uidu) LS MN (0,w4/3 <t/00idu> (%c—i— C%)) .

The minimum asymptotic variance is

t 2/3
8V/3 wt/? <t/ Uidu) . with ¢= V3.
~—~— 0

~11.54

The Zhou estimator’s asymptotic variance is thus of the form obtained by the kinked non-

subsampled realised kernels, i.e. ones which do not satisfy the £'(0) = £'(1) = 0 condition.

Example 2 Suppose n corresponds to using prices every 1 second on the NYSE, so n = 23,400.
If w? = 0.001 and tfot otdu = 1, which is roughly right in empirical work from 2004, then for the
Zhou estimator the optimal S ~ 25 so that ng ~ 920. Hence the degree of subsampling is rather
modest. In 2000, w? = 0.01 and tf(;t aﬁdu = 1 would be more reasonable, in which case S = 118

and ng = 198, which corresponds to returns measured every roughly 2 minutes.

3.4.2 2-lag flat-top Bartlett estimator

A natural extension of Zhou (1996) is to allow H to be larger than one but fixed.

Lemma 4 Let wg = w; = 1 and wy = 1/2. With S = ¢(én)*/® we have

1 t L t 28 190 2
nl/6 {70(X5; S) +7,(Xs:8) + §§Q(X5;S) —/ Uidu} = MN 0,@4/3 <t/ aidu) <?c+ —) ,
0 0

c2

and the minimum variance s

t 2/3
109/3/5w%/3 <t/ a;idu) ., with ¢= /3/5.
S—— 0

~8.43

The constant in the asymptotic variance is here reduced from about 11.54 to 8.43. Now we pro-
ceed by adding additional realised autocovariances to Zhou’s estimator, using the Bartlett weights,

wy, = k(%), h = 2,...,H. An interesting question is what happens as we increase H further?

14



For moderately large H we have that n'/¢ {K(X(;) — fot aidu} has an asymptotic variance of ap-
proximately 3 {2 + (H + 1)} ctfg otdu + %. This suggests ¢3 = 12w/ (H?’tfg aidu) + o(1), so
the asymptotic variance (using %121/3 +8/12%/3 = 2¢/12) is

2/3

t
2v/12w*/3 <t/ aidu) +o(1).
N~ 0

~4.58

So we achieve an additional reduction of the asymptotic variance. Not surprisingly, this is the
asymptotic variance of the Bartlett realised kernel applied to a sample of size n when H o n2/3,
see Example 1. Here, by allowing H to grow we approach the situation with kinked kernels so we
observe the eventual impotence of subsampling — a property we have shown holds for all kinked
kernels. Hence as H gets large the optimal degree of subsampling rapidly falls and the best thing

to do is simply to run a Bartlett realised kernel on the data without subsampling, i.e. take ns = n.

1/2

Figure 4: The implied kernels that arise from subsampling some simple kernels. H = 1 corresponds
to the subsampled version of Zhou’s estimator; H = 2 is that for Zhou’s estimator after adding
1/2%,(X5); and H = oo (here approzimated by H = 18) illustrates the implied kernel for Zhou’s
estimator that is enhanced by an increasing number of Bartlett-weighted realised autocovariances.

Figure 4 shows the implied kernel functions that are generated by subsampling Zhou’s estimator
(H = 1) and the two estimators that have been enhanced by adding Bartlett weights. The relative
asymptotic efficiency for these estimators are simply given by EX0 of the implied kernel, where the
implied kernel for H = 1 corresponds to the trapezoidal kernel by Politis and Romano (1995). From
Figure 4 it is evident that kS is decreasing in H which explains that the asymptotic variance of

this estimator is decreasing in H.

3.4.3 Relationship to two scale estimator

The two scale estimator of Zhang, Mykland, and Ait-Sahalia (2005) bias corrects v (Xs;.S) using
W = 'yO(X5/S)/2n. Their results are reproved here, exploiting our previous results to make the

proofs very short. We set S = ¢(¢én)?/3, which imposes the optimal rate for S.
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Theorem 5 With S = ¢(¢n)?/® we have

t . t e 14N
/6 {70(X5; S) — ng2w? — / oidu} LS MN {0, w3 <t/ aidu) <§c +4—7 ) , (20)
0 0 ¢

n 2
) § S (Ussys — U—syays) . — no2w? L, 4ot 1+ XN
n 1 x~Sn; 2 2 N30 5 4/3 A 14N ’
5 2 i1 (Ujsss — Uj—1y5/s)” — ns2w c*¢ +

This allows us to understand that replacing v (Us; S) — ns2w? by v4(Us; S) — ng2a?, yielding a

feasible estimator with a smaller variance than the infeasible estimator.

Theorem 6 With S = ¢(én)%/® we have

! L ! By g
n'/ {’Yo(Xé; S) — 2nsw* — / Uidu} 2 MN{0,w/? (t/ Uidu) (504_ c_2> _
0 0

The minimum asymptotic variance is

t 2/3
2/ 12w/ <t/ aﬁdu> . with ¢=V12.
~4.58 0
Thus the two scale estimator is significantly more efficient than the Zhou estimator and is as

efficient as the Bartlett realised kernel.

Example 3 (continued from Ezample 2). If w?* = 0.001 and tf(;t oidu = 1, then S ~ 40 and
ng ~ 580. Hence the degree of subsampling is larger than that used by Zhou.

4 Some Empirical Recommendations

We have worked under the assumption that the noise is of the independent type defined in (6).
This assumption seems reasonable for equity returns when prices are sampled at moderate high
frequencies, e.g. for the liquid stocks on the New York stock exchange this assumption seems
reasonable when applied to 1 minute returns (Hansen and Lunde (2006)). In this context the best
approach to estimation is to use a smooth realised kernel without any subsampling. A shortcoming
of this approach is that this estimator does not make use of all available observations. For example,
transactions on the most liquid stocks now take place every few seconds, but for U € WA to be
reasonable we can only sample every, say, 15th observation.

In this Section we discuss how to construct subsampled realised estimators that make use of
all available data. We also discuss how valid inference can be made about such estimators under
realistic assumptions about the noise in tick-by-tick data.

Here we use a subsampled realised kernel, where S is chosen to be sufficiently large so that (6)
is reasonable for a sample that only consists of every Sth observation. The asymptotic variance

can be estimated from the coarsely sampled data, using the methods by Barndorff-Nielsen, Hansen,
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Lunde, and Shephard (2006), and this leads to valid inference that is robust to both time-dependent
and endogenous noise in the tick-by-tick data.

Specifically we recommend the following procedure.

1. Choose S sufficiently large for (6) to be a plausible assumption for a sample that only consists

of every Sth observation.
2. Construct S distinct subsamples, each having approximately ns = n/S observations.

3. For each of the S subsamples, obtain estimates of w? and IQ = tfot otdu, and an initial
estimate of IV = fot o2du. See Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) for
ways to do this. Average each of these estimators to construct the subsampled estimators,
@* =815 &2 and TVinitial = S S I/‘\/initial,s and 1Q = S~ ¥ 1Q,.

4. Obtain an estimate, H, for the optimal H, by plugging the subsampled estimates into the
expression for the optimal H. Use this H to compute the S realised kernels, K*(Xskip-s)s
using a smooth kernel and the weights wg = w; = 1 and w, = k (%) ,for h =2,... ,f].

Form their average to obtain the actual estimator, I/\Vﬁnal = K (Xgkip-s; 5)-

5. Finally, compute the conservative estimate for avar { K (Xgip-g;5)} using the finite sample
expressions, where w = (wo, wy, ..., wg)T,

TVar {K (Xawip.s; S)} = TO (wT Aw) x nié + 862 TVinat (w7 Buw) + 40" (wTCw) x ng. (21)

The variance estimate in (21) is the sum of the finite sample versions of (8-10) with S = 1.

So this expression completely ignores subsampling, and the expression is really an estimator of

Var(K*(Xgip-s)). The reason is that subsampling does not reduce the noise-variance by a factor

of S, unless the noise is uncorrelated across subsamples. This is unrealistic when the subsamples

exploit all the tick-by-tick data. However, we still have avar { K (Xqip-s: S)} < avar(K*(Xskip-s)),

even if U, 1l Us is violated for some s # t. So (21) is simply a robust estimator that is expected

to yield a conservative estimate of the variance. It is interesting to have some notion of how
conservative this estimator is.

Recall our result in Theorem 1 that avar { K (Ysip-s;S)} = avar(K*®(Yekip-s)), see (8). So sub-

sampling cannot reduce the contribution to the asymptotic variance from this term, while the

contributions from the two other terms (9) and (10), potentially can be driven all the way to zero.

Example 4 With p = 1, the asymptotic variance of the realised THy kernel is proportional to

1,1 2,2 _
e+ 25t + e’ = 5.5+ gafysas + gais (5.75) 7 = 9.50.

Subsampling this estimator with S = 10, say, reduces this factor to no less than

1171 _2 1 41.8 -3
575+ {55918 575 T 10091 (0-79) ~ ~6.12,
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see (11). So the variance reduction is less than 36% and even with S — oo the reduction is
less than 40%. In practice, the reduction is likely to be much smaller, because the noise is not
independent across subsamples. So even though (21) is a conservative estimator — it is not perversely

conservative.

5 Simulation study
5.1 Simulated model and design

In this section we analyse the finite sample properties of K (Xy; S), using both a smooth THs kernel
and a kinked Bartlett kernel. We consider the following SV model,

dY; = pdt + 0, dWy, oy = exp (,30 + ﬁth) , dr = arydt + dBy, COI‘I‘(th, dBt) =p,

where p is a leverage parameter. This model is frequently used for simulation is this context, see
e.g. Huang and Tauchen (2005) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006).

In our simulated model, we set 4 = 0.03, 5, = 0.125, « = —0.025 and p = —0.3. Further, we set
By = B3/(2a) in order to standardize E (07) = 1. With this configuration the variance of fot o2du is
comparable to the empirical results found in Hansen and Lunde (2005). For the variance of market
microstructure noise we set w? = 0.1.

The process is generated using an Euler scheme based on N = 23,400 intervals, where each
interval is thought to correspond to one second so that the entire interval corresponds to 6.5 hours,
which is the length of a typical trading day. The volatility process is restarted at its mean value
oo = 1 every day by setting 79 = 5/2. This keeps the noise-to-signal ratio, { = wQ/\/fol otdu,
comparable across simulations. In our Monte Carlo designs we let the effective sample size, n, be
either 1,560, 4, 680, or 23,400, which correspond to sampling every 15, 5, or 1 seconds, respectively.
So a sample with 4,680 observations, say, is obtained by including every fifth observation of the

N = 23,401 simulated data points over the [0, ¢] interval.

5.2 Implementation of realised kernels and subsampled realised kernels
From the simulated data, Xy,...,X,, we define the “skip-S returns” AgX; = X; — X;_g. The
subsampled realised autocovariances are computed by,
ng
= AsXjsts 185X p)sts1; s=1,...,5, h=-H,...,0,...,H,
=1

where ns = n/S. The subsampled realised kernel is defined by

S H
Z where KS = Z (B2 (95 +4°4) -

When § = 1 we use Hiy, | = 5.75(¢n)"'/? for the smooth THy kernel and Hortter 1 = V/12(€n)?
for the kinked Bartlett kernel. The “noise-to-signal” parameter, { = wQ/\/fol oldu need not

XS

03 |
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Figure 5: Mean squares errors (MSEs) for subsampled (kinked) Bartlett realised kernel using 3
different sample sizes. The MSE is fairly insensitive to S. These findings are fully consistent with
Theorems 2 and 3.

be estimated in our simulations, because w? is known and the integrated quarticity, fol oldu ~
NZ;-VZI agl./N, can be computed from the simulated data. The parameter p = fol a%du/\/fol ordu
can be computed from the simulated volatility path. When S > 2 the optimal H for the Bartlett
kernel is simply given by Hp, e ¢ = S=13/12(én)?, and the THy kernel has Hiy, s = c;ﬂ(fn),
where ¢g = S*I\/7.84,0 (1++/1+9.335), as defined in (18).

5.3 Simulation Results

Figures 5 and 6 shows the Monte Carlo results with the number of subsamples, S, increasing along
the horizontal axis and the MSE on the vertical axis. The lines represent different sample sizes.
Consider first the results based on the Bartlett kernel. Our theoretical results in Theorem
2 dictate that these lines should be horizontal. This result is confirmed. Still, a small increase
in the MSE as S increases is observed for the smaller sample sizes. The reason is that the lag
length of the implied kernel, Hjnyplieq, can only attain values that are divisible by S. While the
Bartlett kernel without subsampling has Hp, e | = [ y 12(§n)2-‘ , the implied Bartlett kernel has
Himpliea = S X [S*IQ/W-‘ . So as S increases the implied kernels’ Hjp,plieq is more likely to
deviate from Hﬁartlett,p which causes an increase in the mean squared error. The smaller is the
sample size, n, the smaller is the optimal value for H. So it is not surprising that the impact on MSE
is seen earlier when n is small. In this design, the optimal lag length, Hgamem’l, is about 67, 140,
and 403, for n = 1,560, n = 4,680, and n = 23,400, respectively. Though there is some variation
in the optimal H across simulations because it through &, depends on the simulated volatility path.
The lower panels present the results for the smooth THy kernel. Here, our theoretical results in

Theorem 3 state that the MSE is increasing in S, and this phenomenon is evident for all sample
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Figure 6: Mean squares errors (MSEs) for subsampled the (smooth) THo realised kernels using 3
different sample sizes. The THq kernel has MSEs that are slightly increasing in S. These findings
are fully consistent Theorems 2 and 3.

sizes. The results when w? = 0.01 and w? = 0.001 (not reported) are similar. Here the optimal H
is smaller and this causes subsampling to have a larger impact on the MSE. Naturally, the implied
kernels must have Hjpplieq > S, so that Hip,pliea = S whenever S > H*. This constraint is relevant
for our simulations with small levels of noise because subsampling takes Hjy,plieq further away from

its optimal value, as S increases beyond the optimal H.

6 Empirical study of General Electric trades

Here we compare subsampled realised kernels with other estimators. We estimate the daily incre-
ments of [Y] for the log-price of General Electric (GE) shares in 2000 and in 2004. The reason that
we analyse data from both periods is that the variance of the noise was around 10 times higher in
2000 than in 2004. A more detailed analysis on 29 other major stocks is provided in a Web Ap-
pendix to this paper available from www.hha.dk/~alunde/bnhls/bnhls.htm. This appendix also
describes the exact implementation of our estimators. Precise details on the cleaning we carried
out on the raw data before it was analysed are described in the web appendix to Barndorff-Nielsen,
Hansen, Lunde, and Shephard (2006).

Table 3 shows Summary statistics for seven estimators. The first estimator is the realised THs
kernel using approximate 1 minute returns. The approximate 1 minute returns are obtained by
skipping a fixed number of transactions, such that the average time between observations is one
minute. In 2000 we had to skip every 9.7 observations on average to construct the approximate
1 minute returns, and in 2004 we had to skip every 13.7 observations on average. The second
estimator is the subsampled realised THs kernel. So in 2000 we have S ~ 9.7 and in 2004 we have
S ~ 13.7. The third estimator is the realised THo kernel that is based on tick-by-tick data (i.e. all
available trades) and an H that is S times larger than that used by the first estimator.
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Table 3: Summary statistics for subsampled [Y'] estimators.

Mean  Std. (HAC) H Corr  acf(l) acf(2) acf(5) acf(10)

Sample period: 2000

Realised kernel (THy, H* = cén'/?)
K"™2(Xap. 1 min) 4.747  3.216 (6.133)  6.558  1.000 0.43 0.25 0.03 0.15

Subsampled realised kernel (THy, H = cén'/?)
KTH2(Xap_ 1 min; S) 4.709  3.220 (6.170)  6.558  0.997 0.43 0.25 0.03 0.16

Realised kernel (TH,, H=S-H*)

K™2(X] gick) 4.702 2946 (5.793) 62.44 0.986 0.46 0.27 0.05 0.13

Subsampled realised variances

[X20 minutes; 1200] 4417  3.650 (6.046) 0.894 0.26 0.17 -0.01 0.17

[X5 minutes; 300] 4908 3.018 (5.611) 0.984 0.44 0.23 0.01 0.14

X1 minutes; 60] 5.545  2.376 (5.167) 0.787 0.55 0.36 0.10 0.18

AMZ (2005)

TSRV (K, J) 4514  3.657 (6.766) 0.941 0.36 0.21 0.01 0.23
Sample period: 2004

Realised kernel (THy, H* = ctn'/?)

K"™2(Xap. 1 min) 0.962 0.568 (1.195) 5.723  1.000 0.34 0.32 0.28 0.08

Subsampled realised kernel (THy, H = cén'/?)
K"™2(Xap 1 min; S) 0.954  0.561 (1.202) 5.723  0.995 0.37 0.32 0.28 0.09

Realised kernel (TH,, H=S-H*)

K™2(X1 iek) 0.947  0.522 (1.130) 78.27  0.990 0.37 0.31 0.30 0.08
Subsampled realised variances

[X20 minutes; 1200] 0.885  0.516 (1.036) 0.933 0.27 0.27 0.27 0.08
[X5 minutes; 300] 0.943  0.503 (1.088) 0.984 0.37 0.32 0.30 0.08
X1 minutes; 60] 0.942  0.376 (0.921) 0.899 0.46 0.43 0.38 0.12
AMZ (2005)

TSRV (K, J) 0.946  0.560 (1.194) 0.944 0.33 0.35 0.28 0.11

Summary statistics for seven estimators. First the realised kernel using approzimate 1 minute returns with
H* and its subsampled version, followed by the realised kernel using tick-by-tick data with H = S-H*. Then
three subsampled realised variances based on 20, 5 and 1 minute returns. For instance, [ X5 minutes; 300] is
the average of 300 realised variances based on 5 minutes returns, obtained by shifting the time prices are
recorded by 1 second. Finally, TSRV (K, J) is the two-scale estimator that is robust to deviations from i.i.d.
noise. For both 2000 and 2004 we report the average of daily estimates with standard deviations. Corr
is the correlation between each of estimators and the first realised kernel. Finally we report four sample
autocovariances.

The following three estimators are subsampled realised variances. These are based on returns
that are sampled in calendar time, where each intraday return spans 20 minutes, 5 minutes, or 1
minute, as indicated in the subscript of these estimators. To exhaust data sampled every second, the
number of subsamples are S = 1200, S = 300, and S = 60, respectively. For instance, the estimator
[ X5 minutes; 300] is the average of 300 realised variances, where each of the realised variances are

based on 5 minute intraday returns, simply changing the initial place that prices are recorded by
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one second. The last estimator, TSRV (K, J), by Zhang, Mykland, and Ait-Sahalia (2005), is the
two-scale estimator that is designed to be robust to deviations from i.i.d. noise. Here we use their

area adjusted estimator, which involves a bias correction.
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Figure 7: Three estimators for the daily increments to [Y] for General Electrics in November
2000 and 2004. Triangles are the estimates of the realised kernel using roughly 1 minute returns.
Diamonds are the estimates produced by the subsampled realised kernel. Circles are the estimates
of the realised kernel that uses tick-by-tick returns and an H that is S times larger than that used
by the first realised kernel. The intervals are the 95% confidence intervals for K THZ(Xap, Imin )-

From Table 3 we see that the estimators are very tightly correlated. The two realised kernels
and the subsampled realised kernel are almost perfectly correlated, and all reported statistics are

quite similar for these estimators. The two scale estimator is also quite similar to the realised
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kernels. Interestingly, amongst the subsampled realised variances, it is that based on 5 minute
returns that is most similar to the realised kernels. This suggest that 20 minute returns leads to
too much sampling error, whereas 1 minute returns are being influenced by the bias due to market
microstructure noise.

Time series for some of these estimators are drawn in Figure 7, where we plot daily point
estimates for November 2000 and November 2004. We also include the confidence intervals for
KTHQ(Xap, 1 min) using the method of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006).
The three estimators are virtually almost identical. While the subsampled realised kernel may
be slightly more precise than the moderately sampled realised kernel, KTHZ(Xap, 1 min), Figure 7
does not suggest there is a big difference between these two. The realised kernel that is based on
tick-by-tick data is slightly different from the other estimators, but always inside the confidence

interval for KTH2(X,0 1 min).

7 Conclusions

We have studied the properties of subsampled realised kernels. Subsampling is a very natural
addition to realised kernels, for it can be viewed as averaging over realised kernels with slightly
different starts of the day. We have provided a first asymptotic study of these statistics, allowing
the degree of subsampling or the number of lags to go to infinity or being fixed. Included in our
analysis is the asymptotic distribution of the estimator proposed by Zhou (1996).

Subsampling leads to few gains in our analysis. In fact, we found that subsampling is harmful
for the best class of realised kernel estimators. The main advantage of subsampling is that it can
overcome the inefficiency that results from a poor choice of kernel weights in the first place. For
example, when the truncated kernel is used to design estimators, the resulting estimator has poor
asymptotic properties, whereas the subsampled estimator is consistent and converges at rate nt/6.

In the realistic situation where the noise is endogenous and time dependent, subsampled realised
kernels do provide a simple way to make use of all the available data. We have discussed how to

make valid inference about such estimators.
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Appendix: Proofs

Lemma A.1 We have v,(Xs; S) = Zfzfs S%MvSh+S(X%) + R%/S.

The remainder R /S is a relatively small term, due to end effects. The term is defined explicitly
in the proof, and the expression shows that R can be made zero by tweaking the first S — 1 and
last S — 1 intraday returns.

. — X5 . s, and write

Proof. Define the intraday returns z; = X5 5.
57 sJ—s

Xsreshy = Xa14258) = Xa(srs) T Ko(s-gas—1) T Lisho-1 T Tjs—sts.

So x; are intraday returns over short intervals, each having length §/S. The ’y,ll(X(;) equals

ngs
> (Xaj = X 1) (Xs-n) = Xs(-n-1))
j=1
ng
= Z (z(-1ys1 + -+ 258) (2(—n-1)s11 ++ + T(j—n)s)
j=1
n n n n
= Z%‘%‘—Sh + Z TjTj—Sh+1 + Z TjTj_Shy2 + 0 + Z TjTj—Sh+S—1
=1 =1 =1 =1
jmod S#0 jmod S¢{0,5—1} jmod S=1

n

n n
+ Z TjTj-Sh—1+ Z TjTj_Sh—2 T+ E TjTj—Sh—S+1-
J=1 Jj=1 Jj=1
jmod S#1 jmod S¢{1,2} jmod §=0

Similarly for s > 1 we have

ng n+s—1
> (Kjaogt = Xagneest) (Kagomrogt = Xogononegt) = o w5isn
j=1 j=s
n+s—1 n+s—1 n+s—1
+ Z TjZj—Sh+1 T Z TjZj—Sht2 + -+ Z TjTj—Sh+S—1
j=s j=s j=s
jmod S#s—1 jmod S¢{s—1,s—2} jmod S=s
n+s—1 n+s—1 n+s—1
+ Z TjTj—Sh—1 + Z TjTj_Sh—2 + -+ Z TjTj—Sh—S+1-
Jj=s Jj=s Jj=s
jmod S#s jmod S¢{s,1} jmod S=s-1
. . _ S—1 S—s
By adding up the terms, v, (Xs;S) = > 0" "¢, T75h+s(X%) + R%/S, where
S s—1 s—2 1
R¢ = — Z Z TiTi-Sh + Z TjTj—Sh+1 + -+ Z TjTj—Sh+S—-2
S5=2 j=1 j=1 j=1
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s—1 s—1 s—1
+ Z TjZTj—Sh—1 T E TjTj—Sh—2+ + E TjTj—Sh—S+1

j=1 j=2 j=s—1
S n+s—1 n+s—2 n+1
+Z Z ZjTj-sp+ Z ZTjTj-sh41+r + Z ZjTj—Sh+S5—2
S=2 j=n+1 j=n+1 j=n-+1
n+s—1 n+s—1 n+s—1
+ Z TjTj—sh—1 + Z TjTj_sp—2 + + Z TjTj—Sh—h+1
j=n+1 j=n+2 j=n+s—1

The term, R%, is due to end effects and involves much fewer cross products, z;x;, than does
23521 77 (Xs). So that RE/S is typically negligible. In fact, R can be made zero by assuming
Ty =+ =T5_1 =Tpy1 =+ = Tpys—1 =0. U

In the non-subsampling case Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) derived
the following helpful results.

Theorem A.1 We study properties as § | 0. Suppose that Y € BSM and (4) holds, then

Yo(Ys) = Ji o2du 2.0 0 0
(Y t 04 --- 0
n/? 71(. o) L MN (o,A1 X t/ a;ﬁdu> A= (AT
: 0 : : <. .
51 (Y) 00 -4

If, in addition, for ng > H, U € WN and Y 1L U then 5(Ys, Us) LS MN (O,QwQ[Y]B), where

2 10 ... 0 —1
By Bl2> -1 2 " e < 1 o> 0 0
B = , Bog = , Bi1 = , Bap = . . s
(321 By 2 P H -1 2 . Do
0o -1 2 0 0

E {3(Us)} = 2w?ns (1,-1,0,0,...,0)T, and Cov{7(Us)} = 4w'nsC + O(1),

_( Cu Ciz 1A 2N
C_<021 CQQ)’ CH_(—Z—)\Z 54+ )7

1 -4 6 ° ° o o
0 1 —4 6 ° e o

Cy=|0 0 , Co= I =4 6 o o
N 0 1 —4 6 e
0 0

Theorem A.2 Suppose that Y € BSM and (4) holds, then as 6 | 0
v0(Ys; S) — f(f o2du,
7,(Ys: S s t
n/? M(¥5:5) Ly MN (O,AS x t/ a;ﬁdu> ,
: 0

Yu(Ys; S)

26



248572 . 0 2 1 0

o 1-852 44282 . o 1 4 1 -
AS = — . — = . = Aoo, (A2)
3 0 1-572 442572 3o 1 4 -
and as 6 | 0 and S —
70 (Ys; S) — f(f odu,
¥.(Ys: S s t
n;/Q gl .6 ) L MN <0,Aoo><t/ Uidu).
: 0
Y (Ys: )
Proof of Theorem A.2. By Lemma A.1 we have 4, (Y S) ~ ZSS:_S SE‘S‘~ (Y%), and

the asymptotic properties of v, (Ys), h = —SH,...,SH, using the small time gaps, §/S, follows
S
straightforwardly from (A.1). Write

T Y S T

s=1
then for A > 1 we have

S| =

t
Var {, (Ys; >}—Var{ 3 (Yas)}—>—4‘,ﬁ;5t / oldu,

s=-—S

and similarly for A = 0 we find Var {7,(Ys; S)} = 2Vo, Stft +du. For h > 0 we find
Cov {7, (Y5 8), 441 (Y5; S)} = C S g5l Vi), 25 5 Y,
OV{'Yh( 03 )v7h+1( 03 )} - ov Zs* S~ S 75h+s( 55)?23*75 -s ’ySh-I—S-I—s( 55)
1
S — ~ S —
= Var {35 52 50, (Va) | = X, 5524 x —4t[oldu
t
= 4Vi g X n—létfaidu.
0

Covariances between 7, (Ys; S) and 7;(Ys; S) are zero for |h —i| > 2, as they do not “share” any of
the realised autocovariances 7 g, ,(Yss). O
Proof of Theorem 1. For the subsampled realised kernel on Yy we have

S —
S(V0’5+2V175):1+22521(S§S +QZ %ST 551)25’

so that Vp s +2Vi 5 = 1, where V5 and Vj g are defined in the proof of Theorem A.2. From the

structure of As we have

_ 4V 8V _
7 S0 kG EENAsliy = =52 Talo k()7 + =52 Xpet k() k(54 + O(3)
4(Vo,5+2Vi,s) \nH h \2 8V1 s h k(%)—k(%) 1 ! 2 1
= T n=ok(3r)” — Z 1 k(r) 1/H +0(z) =4 k(u)’de+0(5).
From Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006) we have

2

(Y, Us; $) 55 MN (0,22 Y]B), (A.3)
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E{3(Us;S)} = 2w?ns(1,-1,0,0,..,0)7. (A.4)

Furthermore, with U = U(j+sfl)5 we have ¥, (Us) = =V;7 y , + 2V, = Vi + Ry, — Rl

where V7, = Z?Zl U;(US +U:,,) and R; = %(USU;HZ +UU2, —UU:_, — UgUy). So with
wy = w_1 = 1, wy, = k(&2 7 Y, h =1,...,H + 1 we have from Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2006) that

H

K*(Us) = — Z (Why1 — 2wp +wp 1) Vi, —
h=0 h=1

M=

(why1 — wp—1) Rlsl,na

~1/2
where [ 2:k22 + 2o {k(0) + k'(l)}} SH (Whir — 2wp + w1 Vi, 5 N(0, 4w?) and
avar(H~1/? 21?:1 (Wht1 —wp—1) R}, ) = 4w'ky". Since the noise is independent across subsam-
ples, the results for K (X5, S) + Alk?l,n = — Zthl (whpy1 — 2wy, +wp_1) S7! 25521 Vi, and Alk?l,n =

by (whgr —wp—1) STEYY Ry, follow. O
Proof of Lemma 1. From (12) we have

avar (K (X;) - K(X;)} 4w4k1’l/(HS)
= t 00 2 k +k' ke
avar{ K (Xs)} 4t [joddu [HTSk. 2ok ”52{ ()HS) O+ Stsy H
B 6
— ; K220
(H:)ng“ +2p + s kﬂﬂ( . + S Zék“

which can be seen to vanish when &'(0)% 4 &'(1)2 # 0 or S — co. We need HS o n'/? for the ratio
not to vanish when &'(0)? + £'(1)2 = 0. With HS = c¢/n we find

(Xs)} ¢ < ¢
} = 5 o k0 g k22 — 522,00 ’
&t T 20+ gt <1+\/ G )

(ka'')2

avar{K(X,;) K(X
5)

avar{ K (X,

where we used that p, S > 1 and that z = \/b/a minimizes f(z) = az + b/z, a,b > 0. O
Proof of Theorem 2. (i) The mixed Gaussian result follows from Theorem 1. (ii) The best value
for ¢ is found by solving the first order condition kg*® —2¢™3 {K'(0)2 +K'(1)?} = 0, and substituting

2/3
this ¢ into (13) yields w*/3 (tﬁfaidu) times

E'(0)? + k'(1)? 1
4c {k?ﬁ + M} =dc (k?’o + 51&“) = 4ck2? (14 1/2) = 6ck2°.

3
0,0 0,013 0,0 0,0)2 1
Finally ck2° = {2 (K(0)% + &'(1)2) /K2 } k00 = {2 (k ) (K'(0)2 + k'(1)2)} 0
Proof of Theorem 3. (i.a) The mixed Gaussian result is straight forward using Theorem 1.

3/4
(i.b) Substituting HS = ¢'/2enl/2t2/4 and § = an® into (14) yields 4w (t f(faidu) times

Cn1/2+a/4 k_O,U 2,0k1’1

2,2
ks _ _ _

. a hd — ck%0p 1/2+a/4+c 3kf’2n 1/2+a/4’

n cnl/2+a/4

(cnl/2+a/4)3 o

+nn

because the second term is of lower order that the 1st and 3rd term when o > 0.

(#4) Minimizing (14) with respect to z = HS has the first order condition,

n~ k00 — 26 pkl (HS) ™% — 3¢nSk2X(HS)™ = 0,
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The unique positive solution is given by HS = c¢g(én) 1/2 where

0,0 11 00 22
\/ 1+3S’“ ’“ \/W +\/ ;0305’“

Now define z = k3°/(pka'), y = pkat /(Sk3?), and z = \/1+ 3z/y. Then cs = /(1 +2)/z
and z/y = (22 -1)/3 = (1 + )(z — 1)/3. So the minimum asymptotic variance is given by
4w (tféaﬁdu) kS (cs + Cs—m - 3 ~), which is proportional to
1+z Ve _ 14 1 Ve
o +2 (1+z) T 0viteesy — Va3 (\/m +VI1+ Z) :

Now substitute z = \/1 + 3Sk%k2? ) (pke')? and /2 = \/pk}’l/k[.]’o and (16) follows. O

Lemma A.2 Let g(S) be as defined in Theorem 3. Then ¢'(S) > 0 for all S > 0.

Proof. Consider the function f(z) = \/+7 +V1+ 1+ az, for a > 0. The first derivative

fllz) =29 (1+ \/m)_?’ﬂ, is positive for all z > 0. [

Proof of Corollary 1. From Lemma A.2 it follows that ¢'(S) > 0 for all S > 0, if we set z = S
and a = 3k3°k2? /(pke'")2. So any increment in S will increase the asymptotic variance. O

Proof of Corollary 2. By substitution for the first p in g(S) we find that (16) is proportional to

t 1/2 t 1/2
w (t/ oidu> (/ oidu> 1 + \/1 + \/1 +3SkSkT? (pke )2
0 0 V14V/1435KK2 2 (pkh )2

From Hansen and Lunde (2006, p. 135) it follows that business time sampling minimizes ¢ fotafldu

and by Lemma A.2 we have that also the second term is minimized for the largest possible value
of p, (set z = 1/p?). Since p < 1 the solution is p = 1. O

Proof of Lemma 2. From the proof of 1 we have

Ku(Us) = Ku(Us; 1) = = 40 (wng1 — 2wy +wh—1) Vi, — SSpy (Wit — wa—1) R},

where Var(Vhl’n) = (4n—2h)w™. Vhlm is entirely made up of Ujl Ujl_h terms so that Cov(Vhljn, Vkl,n) =0,
for h # k. Hence Var {K’w(U,g)} > 4wt (n—4) Z}?:o (why1 — 2wy, + wp—1)?, and the results follows
since H = o(n). O

Proof of Theorem 4. The asymptotic distribution of v, (Xs;S) + 7, (Xs; S) — f[f o2du is mixed

Gaussian with variance of approximately, for moderate ns and S,
ngl%tﬁ) Uidu + —8“];"5. (A.5)

The first term appears from (A.2), the second from Theorem A.2 of Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2006). O

Proof of Lemma 3. With § = ¢(¢én)*3 we have nj' = S/n = c&?3n1/3 and Mo=n/S? =
¢~2¢=43p1/3 50 that (A.5) in the proof of Theorem 4 becomes n'/3 times

16 t t 23 116
—052/3t/ ot du + 8wle 26743 = /3 (t/ Uidu> <?c + 802) :
0 0
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So nl/6 {70(X5; S) +7,(Xs;S) — fgaidu} converges to a mixed Gaussian distribution with this
variance. We can now minimise this asymptotic variance by selecting ¢3 = 3. At this value the

asymptotic variance is

t 2/3 16 t 2/3
w3 <t/ Uidu) {? (3)/% +8 (3)2/3} ~ 11.53w"/? <t/ Uidu) .
0 0
g

Proof of Lemma 4. From Theorems A.2 and 1 we obtain the following upper-left 3 x 3 submatrices
of Ay and C,

AN+l . °
; [Caxs] = | =A2—2 X245

2

2
[As3x3l =3z 1
0 | 46

3

— =~ e
-~ e e

)y 4y 9
asymptotic variance is

1 1 2/3
5 (5[ ot v atart) = (o [ otau)  (Ber ).

With w = (1,1, )T we have WA 3x3]w = % and wT[Csys|lw = % The result now follows, as the

O
Proof of Theorem 5. We have

t t
Y0(X5; §) — 2n50° — / ordu = 79(Y5; 8) — [ondu +2v4(Us, Y5; S) + 70(Us; S) — 2n507,
[] 0 N~ -~ - N o

-~

t n 2
S—18w?2 fotf%du 4W4T5(1+)‘ )

~

~
¢
—14 4
ng 3tf0(rudu

which has mean zero and a variance that is the sum of the three terms given below the brackets.
The three terms are given from (A.2), (A.3), and Theorem A.1, respectively. For large S = ¢(¢n)%/?
(implying large ny = n/S = ¢~ '¢~?/3n1/3) we have

¢ t 2/3
nl/6 {’Yo(Xé;S) _ 2n5w2 _/ aidU} Eﬁ MN {0,4w4/3 <t/ aidu> (g + 1";—5\2) } .
0 0

By the approximations

1 2 2

S Z?zl (Ujé/S - U(ij)é/S) = g (22:1 Ufa/s + Z?:l Ujé/SU(ij)5/5>

1 9 2

g Lj=1 (Ujsss = Ug-1ya/s)” = S (22:1 Uss + 251 Ujﬁ/SU(j—l)zS/S) :
and using % = 05731:;/3 xn /2 =p1/6 02544/3 x n~1/2 we see that

~1/6 n-!/? >i1 Uisys — U(jfs)a/s)2 —2n5w? \ v do 4ot 14X N
" —1/2 5 e — U 2 _ 2 | 7 ' 9¢4/3 A2 1402 :
n 2001 (Ujsss = Ug-nyoys)” — 2now c2¢

0
Proof of Theorem 6. Follows from Theorem 5, and n_1/270(X5/S) = n_1/270(U5/S) +0,(1) and

2/3
w43 = WA/3 (tf(faidu) / . O
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