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1 IntrodutionHigh frequeny �nanial data allows us to estimate the inrements to quadrati variation, the usualex-post measure of the variation of asset pries (e.g. Andersen, Bollerslev, Diebold, and Labys(2001) and Barndor�-Nielsen and Shephard (2002)). Common estimators, suh as the realisedvariane, an be sensitive to market fritions when applied to returns reorded over shorter timeintervals suh as 1 minute, or even more ambitiously, 1 seond (e.g. Zhou (1996), Fang (1996) andAndersen, Bollerslev, Diebold, and Labys (2000)). In response two non-parametri generalisationshave been proposed: subsampling and realised kernels by Zhang, Mykland, and A��t-Sahalia (2005)and Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006), respetively. Here we partially unifythese approahes by studying the properties of subsampled realised kernels.Our interest is the estimation of the inrement to quadrati variation over some arbitrary �xedtime period written as [0; t℄, whih ould represent a day say, using estimators of the realised kerneltype. For a ontinuous time log-prie proess X and time gap Æ > 0, the at-top1 realised kernelsof Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) take on the following formK(XÆ) = 0(XÆ) + HXh=1 k �h�1H � �h(XÆ) + �h(XÆ)	 ; H � 1:Here k(x), x 2 [0; 1℄, is a weight funtion with k(0) = 1, k(1) = 0, whileh(XÆ) = nÆXj=1 xjxj�h; xj = XÆj �XÆ(j�1); h = �H; :::;�1; 0; 1; :::;H;with nÆ = bt=Æ. Think of Æ as being small and so xj represents the j-th high frequeny return,while 0(XÆ) is the realised variane ofX. The above authors gave a relatively exhaustive treatmentof K(XÆ) when X is a Brownian semimartingale plus noise.It is important to distinguish three lasses of kernels funtions k(x): smooth, kinked, and dison-tinuous. Examples are the Parzen, the Bartlett and the trunated kernel, respetively. Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) have shown that the smooth lass, whih satisfyk0(0) = k0(1) = 0, lead to realised kernels that onverges at the eÆient rate, n1=4Æ . Whereas thekinked kernels, whih do not satisfy k0(0) = k0(1) = 0, lead to realised kernels that onvergene atn1=6Æ : The disontinuous kernels lead to inonsistent estimators as we show in Setion 3.4.Realised kernels use returns omputed starting at t = 0. There may be eÆieny gains byjittering the initial value S times, illustrated in Figure 1, produing S sets of high frequenyreturns xsj , s = 1; 2; :::; S. Zhang, Mykland, and A��t-Sahalia (2005) made this point for realisedvarianes. We an then average the resulting S realised kernel estimatorsK(XÆ;S) = 1S SXs=1Ks(XÆ);1It is alled a at-top estimator as it imposes that the weight at lag one is one. The motivation for this is disussedextensively in Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006).2



where Ks(XÆ) = s0(XÆ) + HXh=1 k �h�1H � �sh(XÆ) + s�h(XÆ)	 ;sh(XÆ) = nÆXj=1 xsjxsj�h; xsj = XÆ�j+ (s�1)S � �XÆ�j+ (s�1)S �1�:We allK(XÆ ;S) the subsampled realised kernel | noting that this form of subsampling is di�erentfrom the onventional form of subsampling, as we disuss below.Here we show that subsampling is very useful for the lass of disontinuous kernels, beausesubsampling makes these estimators onsistent and onverge in distribution at rate n1=6, wheren = SnÆ is the e�etive sample size. Zhou (1996) used a simple disontinuous kernel and gave abrief disussion of subsampling that kernel. We will see that his estimator an be made onsistentby allowing S !1 as n!1; a result whih is impliit in his paper, but one he did not expliitlydraw out. For the lass of kinked kernels, we show that subsampling is impotent, in the sense thatthe asymptoti distribution is the same whether subsampling is used or not. Finally, we show thatsubsampling is harmful when applied to smooth kernels. In fat, if the number of subsamples, S;inreases with the sample size, n; the best rate of onvergene is redued to less than the eÆientone, n1=4.
t

t

0 Æ 2Æ 3Æ
0 1S Æ �1 + 1S � Æ �2 + 1S � Æ �3 + 1S � Æ
9 > > > > > > > = > > > > > > > ;x11 9 > > > > > > > = > > > > > > > ;x12 9 > > > > > > > = > > > > > > > ;x13

9 > > > > > > > = > > > > > > > ;x21 9 > > > > > > > = > > > > > > > ;x22 9 > > > > > > > = > > > > > > > ;x23
Figure 1: x1j are the usual returns. The bottom series are the o�set returns xsj, s = 2; : : : ; S:The intuition for these results follows from Lemma A.1 in the appendix. It shows thath(XÆ ;S) = 1S SXs=1 sh(XÆ) ' S�1Xs=�S+1 kB � sS � Sh+s(XÆ=S); where kB(x) = 1� jxj ;where the approximation is due to subtle end-e�ets. The impliation is thatK(XÆ;S) ' S�1Xs=�S+1 kB � sS � s(XÆ=S) + HXh=1 k �h�1H � SXs=�S kB � sS � �Sh+s(XÆ=S) + �Sh�s(XÆ=S)	= HSXh=0 kS �h�1HS � ~Sh+s(XÆ=S): 3



So a subsampled realised kernel is a realised kernel simply operating on a higher frequeny (ignoringend-e�ets). The implied kernel weights, kS( hHS ); h = 1; : : : ; SH; are onvex ombinations ofneighboring weights of the original kernel,kS � hsHS � = S�sS k �hS �+ sSk �h+1S � ; h = 0; : : : ;H; s = 1; : : : ; S: (1)
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0 0.5 1Figure 2: The e�ets of subsampling some kernels. The left panels display the original kernel fun-tions and the right panels display their implied kernel funtions that are indued by subsampling.For the trunated (disontinuous) kernel the two are very di�erent. So subsampling makes animportant di�erene in this ase. For the (kinked) Bartlett kernel the two are virtually idential,whih suggests that subsampling has no e�et on this kernel. Finally, for the smooth kernel in thelower panels subsampling has only a small e�et by making the kernel funtion pieewise linear.In Figure 2 we trae out the implied kernel weights for three subsampled realised kernels.The left panels display the original kernel funtions and right panels display the implied kernelfuntions. For the trunated kernel (H = 1) subsampling leads to a substantially di�erent impliedkernel funtion { the trapezoidal kernel by Politis and Romano (1995). For the kinked Bartlettkernel subsampling leads to the same kernel funtion. For a smooth kernel funtion, the original4



and implied kernel funtions are fairly similar, however subsampling does impose some pieewiselinearity whih is the reason that subsampling of smooth kernels inreases the asymptoti variane.The onnetion between subsampled realised kernels and realised kernels is perhaps not too sur-prising, beause Bartlett (1950) motivated his kernel with the subsampling idea. The onventionalform of subsampling that is based on subseries that onsist of onseutive observations. This isdi�erent from our subsamples that onsist of every Sth observation. Suh are alled subgrids inZhang, Mykland, and A��t-Sahalia (2005). While the two types of subsampling are di�erent theyan result in idential estimators. For instane, the sparsely sampled realised variane, 10(XÆ); isidential to Carlstein's subsample estimator (of the variane of a sample mean when the mean iszero), see Carlstein (1986). Carlstein's estimator is based on non-overlapping subseries and K�unsh(1989) analysed the losely related estimator based on overlapping subseries. Interestingly, the(overlapping) subsample estimator by K�unsh (1989) is idential to the average sparsely sampledrealised variane alled \seond best" in Zhang, Mykland, and A��t-Sahalia (2005), so that theTSRV and MSRV estimators, by Zhang, Mykland, and A��t-Sahalia (2005), A��t-Sahalia, Mykland,and Zhang (2006), and Zhang (2006), an be expressed as linear ombinations of two or more sub-sample estimators of the overlapping subseries type by K�unsh (1989). For additional details on therelation between Bartlett kernel and various subsample estimators, see Anderson (1971, p. 512),Priestley (1981, pp. 439{440), and Politis, Romano, and Wolf (1999, pp. 95{98).This paper has the following struture. We present the basi framework in Setion 2 along withsome known results. In Setion 3 we present our main results. Here we derive the limit theory forsubsampled realised kernels and show that subsampling annot improve realised kernels within avery broad lass of estimators. In Setion 4, we given some spei� reommendations on empirialimplementation of subsampled realised kernels and how to ondut valid inferene in this ontext.We present results from a small simulation study in Setion 5 and an empirial appliation inSetion 6. We onlude in Setion 7 and present all proofs in an appendix.2 Notation, de�nitions and bakground2.1 Semimartingales and quadrati variationThe fundamental theory of asset pries says that the log-prie at time t, Yt, must, in a fritionlessarbitrage free market, obey a semimartingale proess (written Y 2 SM) on some �ltered probabilityspae �
;F ; (Ft)t�T � ; P�, where T � � 0. Cruial to semimartingales, and to the eonomis of�nanial risk, is the quadrati variation (QV) proess of Y 2 SM. This an be de�ned as[Y ℄t = plimN!1 NXj=1 �Ytj � Ytj�1�2 ; (2)(e.g. Protter (2004, p. 66{77) and Jaod and Shiryaev (2003, p. 51)) for any sequene of deter-ministi partitions 0 = t0 < t1 < ::: < tN = t with supjftj+1 � tjg ! 0 for N !1.5



The most familiar semimartingales are of Brownian semimartingale type (Y 2 BSM)Yt = Z t0 audu+ Z t0 �udWu; (3)where a is a preditable loally bounded drift, � is a �adl�ag volatility proess and W is a Brownianmotion. If Y 2 BSM then [Y ℄t = R t0 �2udu. In some of our asymptoti theory we also assume, forsimpliity of exposition, that�t = �0 + Z t0 a#u du+ Z t0 �#u dWu + Z t0 v#u dVu; (4)where a#, �# and v# are adapted �adl�ag proesses, with a# also being preditable and loallybounded and V is Brownian motion independent of W . Muh of what we do here an be extendedto allow for jumps in � (f. Barndor�-Nielsen, Graversen, Jaod, and Shephard (2006)).2.2 Assumptions about noiseWe write the e�ets of market fritions as U , so that we observe the proessX = Y + U: (5)Our sienti� interest will be in estimating [Y ℄t. In the main part of our work we will assumethat Y ?? U where, in general, A ?? B denotes that A and B are independent. From a marketmirostruture theory viewpoint this is a strong assumption as one may expet U to be orrelatedwith inrements in Y . However, the empirial work of Hansen and Lunde (2006) suggests thisindependene assumption is not too damaging statistially when we analyse data in thikly tradedstoks reorded approximately every minute (see also Kalnina and Linton (2006)).We make a white noise assumption about the U proess (U 2 WN ):E(Ut) = 0; Var(Ut) = !2; Var(U2t ) = �2!4; Ut ?? Us (6)for any t 6= s; where � 2 R+ : This white noise assumption is unsatisfatory but is a useful startingpoint if we think of the market fritions as operating in tik time (e.g. Bandi and Russell (2005),Zhang, Mykland, and A��t-Sahalia (2005) and Hansen and Lunde (2006)).Analogous to the realised autoovarianes we de�neh(YÆ; UÆ) = nÆXj=1 yjuj�h; yj = YÆj � YÆ(j�1) and uj = UÆj � UÆ(j�1):From (5) we have thath(XÆ) = h(YÆ) + h(YÆ; UÆ) + h(UÆ ; YÆ) + h(UÆ):It will be useful to have the following notation e(XÆ) = f0(XÆ); e1(XÆ); :::; eH(XÆ)g| ; whereeh(XÆ) = h(XÆ)+�h(XÆ); and introdue the analogous de�nitions of e(YÆ); e(UÆ); and e(YÆ; UÆ):6



3 Subsampled realised kernelHere we study subsampled realised kernels based on smooth and kinked kernel funtions. Speif-ially, we require that k(s) is ontinuous and twie di�erentiable on [0; 1℄ and that k(0) = 1 andk(1) = 0: Naturally, the derivatives at the end points are de�ned by k0(0) = limx#0 k(x)�k(0)x andk0(1) = limx"1 k(1)�k(x)1�x :Without subsampling, Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) showed thatk0(0) = 0 and k0(1) = 0; (7)is a neessary ondition for a realised kernel to have the best rate of onvergene, and this propertyis also key for subsampled realised kernels | see also the work of Zhang (2006) on using subsamplingof realised variane to obtain the same rate of onvergene. We shall refer to ontinuous kernelsthat satisfy (7) as smooth, otherwise they are alled kinked.In some of our proofs it is onvenient to extend the support of the kernel funtions beyond theunit interval, using the onventions: k(x) = 0 for x > 1 and k(�x) = k(x):Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) showed that kernel funtions of thetype an be used to produe onsistent estimators with mixed Gaussian asymptoti distributions.It is therefore interesting to analyze whether there are any gain from subsampling realised kernelsor not. Perhaps surprisingly we �nd that subsampling is harmful or, at best, impotent, for realisedkernels that are based on smooth or kinked kernel funtions.Below we formulate limit results for subsampled realised kernels using the notationk0;0� = Z 10 k(x)2dx; k1;1� = Z 10 k0(x)2dx; k2;2� = Z 10 k00(x)2dx;� = !2=qtR t0 �4udu; � = R t0 �2udu=qtR t0 �4udu;and we de�ne ~K(XÆ;S) = K(XÆ;S)+�SH;n; where �SH;n = S�1PSs=1PHh=1 �k(h+1H )� k(h�1H )	Rsh;n;Rsh;n = 12 (UtsnUtsn+hÆ + Uts0Uts0�hÆ � UtsnUtsn�hÆ � Uts0Uts0+hÆ); ts0 = s�1S Æ; and tsn = t+ s�1S Æ. So �SH;nis related to end-e�ets.Theorem 1 For large H and n the asymptoti distributions ofK(YÆ;S)� Z t0 �2udu; K(YÆ; UÆ;S) +K(UÆ; YÆ;S); and K(UÆ;S) + �SH;n;are mixed Gaussian, unorrelated with mean zero and asymptoti varianes given by4HnÆ k0;0� tZ t0 �4udu; (8)8!2 Z t0 �2uduk1;1� H�1�S (9)4!4nÆ ��k0(0)2 + k0(1)2	H�2 + k2;2� H�3�ÆS: (10)7



respetively, and the asymptoti variane of �SH;n is 4!4k1;1� =(HS): Furthermore, ~K(XÆ;S) �R t0 �2udu is mixed Gaussian with a zero mean and variane4tZ t0 �4udu8<:HnÆ k0;0� + 2��k1;1� H�1 + �2nÆ h�k0(0)2 + k0(1)2	H�2 + k2;2� H�3iS 9=; : (11)Subsampling has no impat on the �rst term, (8). This is despite the fat that subsamplinglowers the variane of the individual realised autoovarianes, ~h(YÆ). This is beause subsamplingintrodues positive orrelation between ~h(YÆ;S) and ~h+1(YÆ;S) that exatly o�sets the redutionin the variane of the realised autoovarianes. Subsampling does redue the varianes of the termse�eted by noise, (9) and (10), by a fator of S:The auxiliary quantity, ~K(XÆ;S); is introdued to simplify the exposition of our results. ~K(XÆ;S)and K(XÆ;S) are often asymptotially equivalent beause their di�erene, �SH;n; vanishes at a suf-�iently fast rate. This is made preise in the following Lemma.Lemma 1 If k0(0)2 + k0(1)2 6= 0 or S !1; then avarfK(XÆ)� ~K(XÆ)g=avarf ~K(XÆ)g = o(1): Ifk0(0)2 + k0(1)2 = 0 then avarfK(XÆ)� ~K(XÆ)g=avarf ~K(XÆ)g � �=�2 + 2qk2;2� k0;0� =(k1;1� )2� :We shall state several asymptoti results for n n ~K(XÆ)� R t0�2uduo : An impliation of Lemma1 is that K(XÆ) an be substituted for ~K(XÆ) whenever  < 1=4: When  = 1=4 the di�erenebetween K(XÆ) and ~K(XÆ) is not trivial in an asymptoti sense, but for all pratial purposes theirdi�erene is negligible. The reason being that a realisti empirial value for �; is � � 0:01: With theoriginal Tukey-Hanning kernel the relative variane in Lemma 1 is no larger than 1=f200(1+p3)g �0:00183:The most obvious generalisation of Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) isto think of the ase where S is �xed and we allow H to inrease with nÆ: When (7) holds, wean follow Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) and set H = (�nÆ)1=2. Thenwe obtain the result that, where Ls denotes onvergene in law stably (e.g. Barndor�-Nielsen,Graversen, Jaod, and Shephard (2006)),n1=4Æ � ~K(XÆ;S)� Z t0 �2udu� Ls!MN (0; 4!�tZ t0 �4udu�3=4 k0;0� + 2�1�k1;1� + �3k2;2�S !) :Whether or not (7) holds, when we set H = (�nÆ)2=3 we haven1=6Æ � ~K(XÆ;S)� Z t0 �2udu� Ls!MN "0; 4!4=3�tZ t0 �4udu�2=3�k0;0� + k0(0)2 + k0(1)22S �# :Here S plays a relatively simple role, reduing the impat of noise | by in e�et reduing the noisevariane from !2 to !2=pS. If (7) does hold then we getn1=6Æ � ~K(XÆ;S)� Z t0 �2udu� Ls!MN (0; 4k0;0� !4=3�tZ t0 �4udu�2=3) ;whih implies no asymptoti gains at all from subsampling.8



3.1 E�etive Sample SizeThe e�etiveness of subsampling an be assessed in terms of the e�etive sample size, n = nÆS: Itmakes expliit that a larger S redues the sample size, nÆ, that is available for eah of the realisedkernels. Then we ask if it is better to inrease nÆ or S for a given n. In terms of n (11) beomes4tZ t0 �4udu"HSn k0;0� + 2��k1;1�HS + n�2(k0(0)2 + k0(1)2(HS)2 + S k2;2�(HS)3)# : (12)Here HS appears in the variane expression in a way that is almost idential to H when there isno subsampling (S = 1): The only di�erene is the impat on the last term. This term vanisheswhen k0(0) = k0(1) = 0 does not hold, beause the seond last term is then O �n=(SH)2� whereasthe last term is only O �H�1�O �n=(SH)2� : This feature of the asymptoti variane holds the keyto the di�erent results we derive for smooth and kinked kernels.3.2 Kinked Kernels: When k0(0) = k0(1) = 0 does not holdWhen (7) does not hold the asymptoti variane of ~K(XÆ ; S) is given by4tZ t0 �4udu(HSn k0;0� + 2��k1;1�HS + n�2 k0(0)2 + k0(1)2(HS)2 ) :While this expression depends on the produt HS; it is invariant to the partiular values of H andS; though we do need H !1 to justify the terms, k0;0� , k1;1� ; et. We have the following result.Theorem 2 (i) If SH = (�n)2=3 we haven1=6� ~K(XÆ;S)� Z t0 �2udu� Ls!MN  0; 4!4=3�tZ t0 �4udu�2=3�k0;0� + k0(0)2 + k0(1)22 �! ; (13)as n!1; so long as H inrease with n: (ii) The asymptoti variane is minimised by = n2k0(0)2+k0(1)2k0;0� o1=3 ; and 6k0;0� !4=3 �tZ t0 �4udu�2=3is the lower bound for the asymptoti variane.Thus (13) is not inuened by S; not even the rate of growth in S. All that matters is thatH grows and that HS grows at the right rate. The impliation is that there are no gains fromsubsampling when k0(0)2 + k0(1)2 6= 0. So we might as well set S = 1 and use the realised kernelthat does not require any subsampling. The seond part of Theorem 2 shows thatk0;0� = 6 h2 �k0;0� �2 �k0(0)2 + k0(1)2	i1=3ontrols the asymptoti eÆieny of estimators in this lass.Example 1 The Bartlett kernel, k(x) = 1 � x; has k0;0� = 1=3 and k0(0)2 + k0(1)2 = 2, so that6k0;0� = 2 �121=3 ' 4:58; whereas the quadrati kernel, k(x) = 1�2x+x2; is more eÆient, beauseit has k0;0� = 1=5 and k0(0)2 + k0(1)2 = 4; so that 6k0;0� = 12 � 5�2=3 ' 4:10:9



3.3 Smooth Kernels: When k0(0) = k0(1) = 0 holdsIn this Setion we onsider smooth kernel funtions. Some examples of smooth kernel funtions aregiven in Table 1, where kth1(x) is the Tukey-Hanning kernel.Table 1: Some smooth kernel funtions.Cubi kernel kC(x) = 1� 3x2 + 2x3Parzen kernel kP (x) = (1� 6x2 + 6x3 0 � x � 1=22(1� x)3 1=2 � x � 1THp kTHp(x) = sin2f�=2 (1� x)pgWe know from Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) that the rate of on-vergene of realised kernels improves when k0(0) = k0(1) = 0: This smoothness ondition will alsoimprove the rate of onvergene for subsampled realised kernels. For smooth kernel funtions, theasymptoti variane is given by4tZ t0 �4udu(HSn k0;0� + 2��k1;1�HS + �2nS k2;2�(HS)3) : (14)Beause the last term is multiplied with S it is evident that the asymptoti distribution will dependon whether S is onstant or inreases with n: This is made preise in the following Theorem.Theorem 3 (i:a) When S is �xed we set HS = (�n)1=2 and haven1=4� ~K(XÆ)� Z t0 �2udu� Ls!MN "0; 4!�tZ t0 �4udu�3=4�k0;0� + 2� k1;1� + S3 k2;2� �# : (15)(i:b) When S = an� for some 0 < � < 2=3; we set HS = (�n)1=2n�=4 and haven 1��=24 � ~K(XÆ;S)� Z t0 �2udu� Ls!MN "0; 4!�tZ t0 �4udu�3=4 nk0;0� + a3 k2;2� o# :(ii) Whether S is onstant or not, the asymptoti variane is minimized byHS = (�n)1=2s�k1;1�k0;0� �1 +r1 + 3S k0;0� k2;2�(�k1;1� )2�;and the lower bound is n�1=2!�tZ t0 �4udu�3=4 g(S); (16)where g(S) = 163 q�k1;1� k0;0� 8>>><>>>: 1vuut1+s1+3S k0;0� k2;2�(�k1;1� )2 +vuut1 +s1 + 3S k0;0� k2;2�(�k1;1� )29>>>=>>>; : (17)10



Remark. In (i:b) we impose � < 2=3: The reason is that H _ n1=2+�=4�� = n(1� 32�)=2 and weneed (1� 32�)=2 > 0 to ensure that H grows with n:The relative eÆieny in this lass of estimators is given from g(S); and we have the followingimportant result for subsampling of smooth kernelsCorollary 1 The asymptoti variane of ~K(XÆ;S) is stritly inreasing in S:The impliation is that subsampling is always harmful for smooth kernels. Furthermore, (i:b)shows that there is an eÆieny loss from allowing S to grow with n: See Table 2 for the values ofg(S) for some seleted kernel funtions.Another impliation of Theorem 3 onerns the best way to sample high frequeny returns.This result is formulated in the next orollary and will require some explanation.Corollary 2 The asymptoti variane, (16), as a funtion of �; is minimized for � = 1:The Corollary is interesting beause � = R t0 �2udu=qtR t0 �4du depends on the sampling shemeby whih intraday returns are obtained. So � an be interpreted as an asymptoti measure ofheteroskedastiity in the intraday returns, where � = 1 orresponds to homoskedasti intradayreturns. Rather than equidistant sampling in alendar time we an generate the sampling timesby, tj = t� � � jn� ; j = 0; 1; : : : ; n;where � is a time hange (�(0) = 0, �(1) = 1, and � is monotonially inreasing, so that 0 = t0 �t1 � � � � � tn = t). A hange of time does not a�et R t0�2udu but does inuene the integratedquartiity R t0�4udu; see e.g. Mykland and Zhang (2006). A partiularly interesting sampling shemeis business time sampling (BTS), see e.g. Oomen (2005, 2006), whih is the sampling sheme thatminimises the integrated quartiity, see Hansen and Lunde (2006, p. 135). It is easy to see that thetime hange assoiated with BTS, �(�), �bts(�) say, must solve R t��(s)0 �2udu = s� R t0 �2udu; and bythe impliit funtion theorem we have � 0bts(s) _ 1/ �2(~s); where ~s = t� �bts(s): The impliation isthat returns are sampled more frequently when the volatility is high and less frequently when thevolatility is low under BTS. In general we have � � 1 and Corollary 2 shows that BTS (� = 1) isthe ideal sample sheme. Naturally, sampling in business time is infeasible beause �bts dependson the unknown volatility path. Still, Corollary 2 an be used as argument in favor of samplingshemes that results in less heteroskedasti intraday returns than does CTS.Given S and � the optimal H is H = S(�n)1=2 for this lass of kernels whereS = S�1s�k1;1�k0;0� �1 +r1 + 3S k0;0� k2;2�(�k1;1� )2�: (18)In Table 2 we present key quantities for some smooth kernels. Perhaps the most interestingquantity is g(S) of (17), as it enable us to ompare the relative eÆieny aross estimators. InTable 2 we have omputed g(S) for the ase where � = 1. So g(S) an be ompared to 8 whih11



Table 2: Key quantities for some smooth-ontinuous kernels.k0;0� k1;1� k2;2� pk0;0� k1;1� k0;0� k2;2�(k1;1� )2 1 g(S)S = 1 S = 2 S = 3 S = 10Cubi 0:371 1:20 12:0 0:67 3:09 3:68 9:03 9:81 10:39 12:72Parzen 0:269 1:50 24:0 0:64 2:87 4:77 8:53 9:25 9:78 11:94TH1 0:375 1:23 12:2 0:68 3:00 3:70 9:18 9:96 10:55 12:89TH2 0:218 1:71 41:8 0:61 3:11 5:75 8:27 8:99 9:51 11:65TH5 0:097 3:50 489:0 0:58 3:85 8:07 8:07 8:82 10:19 11:57TH10 0:050 6:57 3610:6 0:57 4:19 24:79 8:04 8:80 10:19 11:59TH16 0:032 10:26 14374:0 0:57 4:33 39:16 8:02 8:80 10:20 11:60Key is g(S) that measures the relative eÆieny in this lass of estimators. Here omputed for thease with onstant volatility (� = 1) suh that these numbers are omparable with the maximumlikelihood estimator that has g = 8:00: No subsampling (S = 1) produes the best estimator andkernels with a relative large k0;0� k2;2� =(k1;1� )2 tend to be more sensitive to subsampling.is the orresponding onstant for the maximum likelihood estimator in the Gaussian parametriversion of the problem. We see that most kernels are only slightly less eÆient than the maximumlikelihood estimator, TH16 almost reahing this lower bound. Comparing g(S) for di�erent degreesof subsampling, reminds us that S = 1 (no subsampling) yields the most eÆient estimator. Thelarger the value of k0;0� k2;2� =(k1;1� )2 the more sensitive is the kernel to subsampling.
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Figure 3: Some smooth kernels, k(x=1); using their respetive optimal value of  when S = 1:Figure 3 plots some smooth kernel funtions, k(x=1) using their respetive optimal value for 1;see Table 2. We see that the TH1 kernel is almost idential to the ubi kernel. The TH16 kernel issomewhat atter, putting less weight on realised autoovarianes of lower order and higher weighton realised autoovarianes of higher order. The Parzen kernel is typially between TH1 and TH16.While the smooth kernels improve the rate of onvergene over the kinked kernels, the improve-ments may be modest in �nite samples. The reason is the following. When the noise is smallthe optimal H is small, and H may atually be quite similar for kinked and smooth kernels. Forinstane with � = 0:01 and n = 780, the Bartlett kernel has Bartlett(�n)2=3 = 9:00 whereas theubi kernel has Cubi(�n)1=2 = 10:78. So in this ase the two types of estimators are rather similarand despite the fat that HBartlett grows at the faster rate n2=3; the ubi kernels inludes more12



lags in this situation.3.4 Disontinuous kernel funtionsIn this setion we onsider the kernel funtions we have labelled as disontinuous kernels. Suhkernels lead to estimators with poor asymptoti properties. We shall see that subsampling ansubstantially improve suh estimators, making them onsistent with mixed Gaussian distributions.So for suh kernels, subsampling is a saviour.Lemma 2 Let Kw(XÆ) = PHh=0wh~h(XÆ); where H = o(n) (possibly onstant). Then w0 =1 + o(1) and w0 � w1 = o(n�1), are neessary onditions for E�Kw(XÆ)� R t0�2udu�! 0; andHXh=0 (wh+1 � 2wh + wh�1)2 = o(n�1); (19)is a neessary ondition for Var�Kw(XÆ)� R t0�2udu�! 0, where we set wH+1 = 0 and w�1 = w0:The lemma shows that realised kernels using a �xed H annot onverge to R t0�2udu in meansquares, beause suh estimators will not satisfy (19).Consider the ase where we onstrut wh from a kernel funtion and let H ! 1. In thissituation it is lear that any disontinuous kernel will violate (19), beausen HXh=0 (wh+1 � 2wh + wh�1)2 ' n� Xxj2Dk� limx"xj k(x)� limx#xj k(x)�2 :Here Dk is the set of disontinuity points for k(x):Next, we onsider the trunated kernel whih does not satis�es (19). We will see that subsam-pling this kernel produes an estimator that is onsistent and mixed Gaussian. This is true whetherH is �nite or is allowed to grow with the sample size.3.4.1 Zhou (1996) estimatorFirst we will look at estimators whih are thought of as having H �xed and allowing the degreeof subsampling to inrease. This is outside the spirit of the realised kernels of Barndor�-Nielsen,Hansen, Lunde, and Shephard (2006) whih need H to get large with nÆ for onsisteny, howeverit is lose to the important early work of Zhou (1996) and is strongly intelletually onneted tothe two sale estimators by Zhang, Mykland, and A��t-Sahalia (2005).The Zhou (1996) estimator an be written as 0(XÆ;S) + e1(XÆ ;S) whih is the subsampledrealised kernel based on the trunated kernel funtion using H = 1. Zhou (1996) notied that thevariane of his estimator was of order O( SnÆ ) +O( 1S ) +O(nÆS2 ), but did not realize that by allowingS to inrease with nÆ his estimator is onsistent. In fat, in a subsequent paper Zhou stated thathis subsampled realised kernels was inonsistent, see Zhou (1998, p. 114). The following Theoremgives its asymptoti distribution. 13



Theorem 4 Suppose S = 3n2Æ, then as nÆ !1n1=2Æ �0(XÆ ;S) + e1(XÆ ;S)� Z t0 �2udu� Ls!MN �0; 163 tZ t0 �4udu+ 8!4=3� :This asymptotis is not partiularly attrative for its seeming n1=2Æ rate of onvergene hidesthe fat that it assumes massive databases in order to allow S to inrease rapidly with nÆ. A moreinteresting way of thinking about this estimator is in terms of the e�etive sample size n = S�nÆ.Again we ask if it is better to inrease nÆ or S for a given n. This leads to the following result.Lemma 3 If S = (�n)2=3 then the Zhou estimator hasn1=6�0(XÆ ;S) + e1(XÆ ;S)� Z t0 �2udu� Ls!MN  0; !4=3�tZ t0 �4udu�2=3 �163 + 82 �! :The minimum asymptoti variane is8 3p3|{z}'11:54!4=3�tZ t0 �4udu�2=3 ; with  = 3p3:The Zhou estimator's asymptoti variane is thus of the form obtained by the kinked non-subsampled realised kernels, i.e. ones whih do not satisfy the k0(0) = k0(1) = 0 ondition.Example 2 Suppose n orresponds to using pries every 1 seond on the NYSE, so n = 23; 400.If !2 = 0:001 and tR t0 �4udu = 1, whih is roughly right in empirial work from 2004, then for theZhou estimator the optimal S ' 25 so that nÆ ' 920. Hene the degree of subsampling is rathermodest. In 2000, !2 = 0:01 and tR t0 �4udu = 1 would be more reasonable, in whih ase S = 118and nÆ = 198; whih orresponds to returns measured every roughly 2 minutes.3.4.2 2-lag at-top Bartlett estimatorA natural extension of Zhou (1996) is to allow H to be larger than one but �xed.Lemma 4 Let w0 = w1 = 1 and w2 = 1=2: With S = (�n)2=3 we haven1=6�0(XÆ ;S) + e1(XÆ ;S) + 12e2(XÆ;S)� Z t0 �2udu� Ls!MN  0; !4=3�tZ t0 �4udu�2=3�203 + 22�! ;and the minimum variane is10 3p3=5| {z }'8:43 !4=3�tZ t0 �4udu�2=3 ; with  = 3p3=5:The onstant in the asymptoti variane is here redued from about 11:54 to 8:43. Now we pro-eed by adding additional realised autoovarianes to Zhou's estimator, using the Bartlett weights,wh = k(h�1H ); h = 2; : : : ;H. An interesting question is what happens as we inrease H further?14



For moderately large H we have that n1=6 nK(XÆ)� R t0 �2uduo has an asymptoti variane of ap-proximately 43 f2 + (H + 1)g tR t0 �4udu+ 8!42H2 . This suggests 3 = 12!4=�H3tR t0 �4udu�+ o(1); sothe asymptoti variane (using 43121=3 + 8=122=3 = 2 3p12) is2 3p12| {z }'4:58 !4=3�tZ t0 �4udu�2=3 + o(1):So we ahieve an additional redution of the asymptoti variane. Not surprisingly, this is theasymptoti variane of the Bartlett realised kernel applied to a sample of size n when H _ n2=3,see Example 1. Here, by allowing H to grow we approah the situation with kinked kernels so weobserve the eventual impotene of subsampling { a property we have shown holds for all kinkedkernels. Hene as H gets large the optimal degree of subsampling rapidly falls and the best thingto do is simply to run a Bartlett realised kernel on the data without subsampling, i.e. take nÆ = n.
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Figure 4: The implied kernels that arise from subsampling some simple kernels. H = 1 orrespondsto the subsampled version of Zhou's estimator; H = 2 is that for Zhou's estimator after adding1=2~2(XÆ); and H = 1 (here approximated by H = 18) illustrates the implied kernel for Zhou'sestimator that is enhaned by an inreasing number of Bartlett-weighted realised autoovarianes.Figure 4 shows the implied kernel funtions that are generated by subsampling Zhou's estimator(H = 1) and the two estimators that have been enhaned by adding Bartlett weights. The relativeasymptoti eÆieny for these estimators are simply given by k0;0� of the implied kernel, where theimplied kernel for H = 1 orresponds to the trapezoidal kernel by Politis and Romano (1995). FromFigure 4 it is evident that k0;0� is dereasing in H whih explains that the asymptoti variane ofthis estimator is dereasing in H:3.4.3 Relationship to two sale estimatorThe two sale estimator of Zhang, Mykland, and A��t-Sahalia (2005) bias orrets 0(XÆ;S) using!̂2 = 0(XÆ=S)=2n. Their results are reproved here, exploiting our previous results to make theproofs very short. We set S = (�n)2=3, whih imposes the optimal rate for S:
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Theorem 5 With S = (�n)2=3 we haven1=6�0(XÆ ;S)� nÆ2!2 � Z t0 �2udu� Ls!MN (0; !4=3�tZ t0 �4udu�2=3�43+ 41 + �22 �) ; (20)n1=6( 1S PSnÆj=1 �UjÆ=S � U(j�S)Æ=S�2 � nÆ2!21S PSnÆj=1 �UjÆ=S � U(j�1)Æ=S�2 � nÆ2!2 ) Ls! N �0; 4!42�4=3 � 1 + �2 �2�2 1 + �2 �� :This allows us to understand that replaing 0(UÆ;S)�nÆ2!2 by 0(UÆ ;S)� nÆ2!̂2, yielding afeasible estimator with a smaller variane than the infeasible estimator.Theorem 6 With S = (�n)2=3 we haven1=6�0(XÆ;S)� 2nÆ!̂2 � Z t0 �2udu� Ls!MN (0; !4=3�tZ t0 �4udu�2=3�43+ 82�) :The minimum asymptoti variane is2 3p12| {z }'4:58 !4=3�tZ t0 �4udu�2=3 ; with  = 3p12:Thus the two sale estimator is signi�antly more eÆient than the Zhou estimator and is aseÆient as the Bartlett realised kernel.Example 3 (ontinued from Example 2). If !2 = 0:001 and tR t0 �4udu = 1, then S ' 40 andnÆ ' 580. Hene the degree of subsampling is larger than that used by Zhou.4 Some Empirial ReommendationsWe have worked under the assumption that the noise is of the independent type de�ned in (6).This assumption seems reasonable for equity returns when pries are sampled at moderate highfrequenies, e.g. for the liquid stoks on the New York stok exhange this assumption seemsreasonable when applied to 1 minute returns (Hansen and Lunde (2006)). In this ontext the bestapproah to estimation is to use a smooth realised kernel without any subsampling. A shortomingof this approah is that this estimator does not make use of all available observations. For example,transations on the most liquid stoks now take plae every few seonds, but for U 2 WN to bereasonable we an only sample every, say, 15th observation.In this Setion we disuss how to onstrut subsampled realised estimators that make use ofall available data. We also disuss how valid inferene an be made about suh estimators underrealisti assumptions about the noise in tik-by-tik data.Here we use a subsampled realised kernel, where S is hosen to be suÆiently large so that (6)is reasonable for a sample that only onsists of every Sth observation. The asymptoti varianean be estimated from the oarsely sampled data, using the methods by Barndor�-Nielsen, Hansen,16



Lunde, and Shephard (2006), and this leads to valid inferene that is robust to both time-dependentand endogenous noise in the tik-by-tik data.Spei�ally we reommend the following proedure.1. Choose S suÆiently large for (6) to be a plausible assumption for a sample that only onsistsof every Sth observation.2. Construt S distint subsamples, eah having approximately nÆ = n=S observations.3. For eah of the S subsamples, obtain estimates of !2 and IQ = tR t0 �4udu; and an initialestimate of IV = R t0 �2udu: See Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) forways to do this. Average eah of these estimators to onstrut the subsampled estimators,!̂2 = S�1PSs=1 !̂2s and IVinitial = S�1PSs=1 IVinitial;s and IQ = S�1PSs=1 IQs:4. Obtain an estimate, Ĥ; for the optimal H; by plugging the subsampled estimates into theexpression for the optimal H: Use this Ĥ to ompute the S realised kernels, Ks(Xskip-S);using a smooth kernel and the weights w0 = w1 = 1 and wh = k �h�1Ĥ � ; for h = 2; : : : ; Ĥ:Form their average to obtain the atual estimator, IV�nal = K(Xskip-S ;S):5. Finally, ompute the onservative estimate for avar fK(Xskip-S ;S)g using the �nite sampleexpressions, where w = (w0; w1; : : : ; wĤ)|,dVar fK(Xskip-S ;S)g = IQ (w|Aw)� 1nÆ + 8!̂2IV�nal (w|Bw) + 4!̂4 (w|Cw)� nÆ: (21)The variane estimate in (21) is the sum of the �nite sample versions of (8-10) with S = 1:So this expression ompletely ignores subsampling, and the expression is really an estimator ofVar(Ks(Xskip-S)): The reason is that subsampling does not redue the noise-variane by a fatorof S; unless the noise is unorrelated aross subsamples. This is unrealisti when the subsamplesexploit all the tik-by-tik data. However, we still have avar fK(Xskip-S ;S)g � avar(Ks(Xskip-S)),even if Ut ?? Us is violated for some s 6= t: So (21) is simply a robust estimator that is expetedto yield a onservative estimate of the variane. It is interesting to have some notion of howonservative this estimator is.Reall our result in Theorem 1 that avar fK(Yskip-S ;S)g = avar(Ks(Yskip-S)), see (8). So sub-sampling annot redue the ontribution to the asymptoti variane from this term, while theontributions from the two other terms (9) and (10), potentially an be driven all the way to zero.Example 4 With � = 1; the asymptoti variane of the realised TH2 kernel is proportional to1 + 2k1;1�k0;0� �11 + k2;2�k0;0� �31 = 5:75 + 1:710:218 25:75 + 41:80:218 (5:75)�3 ' 9:50:Subsampling this estimator with S = 10; say, redues this fator to no less than5:75 + 110 1:710:218 25:75 + 110 41:80:218 (5:75)�3 ' 6:12;17



see (11). So the variane redution is less than 36% and even with S ! 1 the redution isless than 40%: In pratie, the redution is likely to be muh smaller, beause the noise is notindependent aross subsamples. So even though (21) is a onservative estimator { it is not perverselyonservative.5 Simulation study5.1 Simulated model and designIn this setion we analyse the �nite sample properties of K(XÆ;S); using both a smooth TH2 kerneland a kinked Bartlett kernel. We onsider the following SV model,dYt = �dt+ �tdWt; �t = exp (�0 + �1� t) ; d� t = �� tdt+ dBt; orr(dWt;dBt) = �;where � is a leverage parameter. This model is frequently used for simulation is this ontext, seee.g. Huang and Tauhen (2005) and Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006).In our simulated model, we set � = 0:03, �1 = 0:125, � = �0:025 and � = �0:3. Further, we set�0 = �21=(2�) in order to standardize E ��2t � = 1: With this on�guration the variane of R t0 �2udu isomparable to the empirial results found in Hansen and Lunde (2005). For the variane of marketmirostruture noise we set !2 = 0:1:The proess is generated using an Euler sheme based on N = 23; 400 intervals, where eahinterval is thought to orrespond to one seond so that the entire interval orresponds to 6.5 hours,whih is the length of a typial trading day. The volatility proess is restarted at its mean value�0 = 1 every day by setting �0 = 5=2: This keeps the noise-to-signal ratio, � = !2=qR 10 �4udu;omparable aross simulations. In our Monte Carlo designs we let the e�etive sample size, n; beeither 1; 560, 4; 680, or 23; 400, whih orrespond to sampling every 15, 5, or 1 seonds, respetively.So a sample with 4; 680 observations, say, is obtained by inluding every �fth observation of theN = 23; 401 simulated data points over the [0; t℄ interval.5.2 Implementation of realised kernels and subsampled realised kernelsFrom the simulated data, X0; : : : ;Xn; we de�ne the \skip-S returns" �SXj = Xj � Xj�S: Thesubsampled realised autoovarianes are omputed by,̂sh = nÆXj=1�SXjS+s�1�SX(j�h)S+s�1; s = 1; : : : ; S; h = �H; : : : ; 0; : : : ;H;where nÆ = n=S: The subsampled realised kernel is de�ned by\K(X;S) = 1S SXs=1 \Ks(X); where \KsH(X) = ̂s0 + HXh=1 k(h�1H ) �̂sh + ̂s�h� :When S = 1 we use H�TH2;1 = 5:75(�n)1=2 for the smooth TH2 kernel andH�Bartlett;1 = 3p12(�n)2for the kinked Bartlett kernel. The \noise-to-signal" parameter, � = !2=qR 10 �4udu need not18
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Table 3: Summary statistis for subsampled [Y ℄ estimators.Mean Std. (HAC) H Corr af(1) af(2) af(5) af(10)Sample period: 2000Realised kernel (TH2, H� = �n1=2)Kth2(Xap. 1 min) 4.747 3.216 (6.133) 6.558 1.000 0.43 0.25 0.03 0.15Subsampled realised kernel (TH2, H = �n1=2)Kth2(Xap. 1 min;S) 4.709 3.220 (6.170) 6.558 0.997 0.43 0.25 0.03 0.16Realised kernel (TH2, H = S �H�)Kth2(X1 tik) 4.702 2.946 (5.793) 62.44 0.986 0.46 0.27 0.05 0.13Subsampled realised varianes[X20 minutes; 1200℄ 4.417 3.650 (6.046) 0.894 0.26 0.17 -0.01 0.17[X5 minutes; 300℄ 4.908 3.018 (5.611) 0.984 0.44 0.23 0.01 0.14[X1 minutes; 60℄ 5.545 2.376 (5.167) 0.787 0.55 0.36 0.10 0.18AMZ (2005)TSRV (K; J) 4.514 3.657 (6.766) 0.941 0.36 0.21 0.01 0.23Sample period: 2004Realised kernel (TH2, H� = �n1=2)Kth2(Xap. 1 min) 0.962 0.568 (1.195) 5.723 1.000 0.34 0.32 0.28 0.08Subsampled realised kernel (TH2, H = �n1=2)Kth2(Xap. 1 min;S) 0.954 0.561 (1.202) 5.723 0.995 0.37 0.32 0.28 0.09Realised kernel (TH2, H = S �H�)Kth2(X1 tik) 0.947 0.522 (1.130) 78.27 0.990 0.37 0.31 0.30 0.08Subsampled realised varianes[X20 minutes; 1200℄ 0.885 0.516 (1.036) 0.933 0.27 0.27 0.27 0.08[X5 minutes; 300℄ 0.943 0.503 (1.088) 0.984 0.37 0.32 0.30 0.08[X1 minutes; 60℄ 0.942 0.376 (0.921) 0.899 0.46 0.43 0.38 0.12AMZ (2005)TSRV (K; J) 0.946 0.560 (1.194) 0.944 0.33 0.35 0.28 0.11Summary statistis for seven estimators. First the realised kernel using approximate 1 minute returns withH� and its subsampled version, followed by the realised kernel using tik-by-tik data with H = S �H�. Thenthree subsampled realised varianes based on 20, 5 and 1 minute returns. For instane, [X5 minutes; 300℄ isthe average of 300 realised varianes based on 5 minutes returns, obtained by shifting the time pries arereorded by 1 seond. Finally, TSRV (K; J) is the two-sale estimator that is robust to deviations from i.i.d.noise. For both 2000 and 2004 we report the average of daily estimates with standard deviations. Corris the orrelation between eah of estimators and the �rst realised kernel. Finally we report four sampleautoovarianes.The following three estimators are subsampled realised varianes. These are based on returnsthat are sampled in alendar time, where eah intraday return spans 20 minutes, 5 minutes, or 1minute, as indiated in the subsript of these estimators. To exhaust data sampled every seond, thenumber of subsamples are S = 1200; S = 300; and S = 60; respetively. For instane, the estimator[X5 minutes; 300℄ is the average of 300 realised varianes, where eah of the realised varianes arebased on 5 minute intraday returns, simply hanging the initial plae that pries are reorded by21



one seond. The last estimator, TSRV (K;J), by Zhang, Mykland, and A��t-Sahalia (2005), is thetwo-sale estimator that is designed to be robust to deviations from i.i.d. noise. Here we use theirarea adjusted estimator, whih involves a bias orretion.
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Figure 7: Three estimators for the daily inrements to [Y ℄ for General Eletris in November2000 and 2004. Triangles are the estimates of the realised kernel using roughly 1 minute returns.Diamonds are the estimates produed by the subsampled realised kernel. Cirles are the estimatesof the realised kernel that uses tik-by-tik returns and an H that is S times larger than that usedby the �rst realised kernel. The intervals are the 95% on�dene intervals for KTH2(Xap. 1min ).From Table 3 we see that the estimators are very tightly orrelated. The two realised kernelsand the subsampled realised kernel are almost perfetly orrelated, and all reported statistis arequite similar for these estimators. The two sale estimator is also quite similar to the realised22



kernels. Interestingly, amongst the subsampled realised varianes, it is that based on 5 minutereturns that is most similar to the realised kernels. This suggest that 20 minute returns leads totoo muh sampling error, whereas 1 minute returns are being inuened by the bias due to marketmirostruture noise.Time series for some of these estimators are drawn in Figure 7, where we plot daily pointestimates for November 2000 and November 2004. We also inlude the on�dene intervals forKTH2(Xap. 1 min) using the method of Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006).The three estimators are virtually almost idential. While the subsampled realised kernel maybe slightly more preise than the moderately sampled realised kernel, KTH2(Xap. 1 min); Figure 7does not suggest there is a big di�erene between these two. The realised kernel that is based ontik-by-tik data is slightly di�erent from the other estimators, but always inside the on�deneinterval for KTH2(Xap. 1 min).7 ConlusionsWe have studied the properties of subsampled realised kernels. Subsampling is a very naturaladdition to realised kernels, for it an be viewed as averaging over realised kernels with slightlydi�erent starts of the day. We have provided a �rst asymptoti study of these statistis, allowingthe degree of subsampling or the number of lags to go to in�nity or being �xed. Inluded in ouranalysis is the asymptoti distribution of the estimator proposed by Zhou (1996).Subsampling leads to few gains in our analysis. In fat, we found that subsampling is harmfulfor the best lass of realised kernel estimators. The main advantage of subsampling is that it anoverome the ineÆieny that results from a poor hoie of kernel weights in the �rst plae. Forexample, when the trunated kernel is used to design estimators, the resulting estimator has poorasymptoti properties, whereas the subsampled estimator is onsistent and onverges at rate n1=6:In the realisti situation where the noise is endogenous and time dependent, subsampled realisedkernels do provide a simple way to make use of all the available data. We have disussed how tomake valid inferene about suh estimators.ReferenesA��t-Sahalia, Y., P. A. Mykland, and L. Zhang (2006). Ultra high frequeny volatility estima-tion with dependent mirostruture noise. Unpublished paper: Department of Eonomis,Prineton University.Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2000). Great realizations. Risk 13,105{108.Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2001). The distribution of exhangerate volatility. Journal of the Amerian Statistial Assoiation 96, 42{55. Corretion publishedin 2003, volume 98, page 501.Anderson, T. W. (1971). The Statistial Analysis of Time Series. New York: John Wiley andSons. 23
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Zhou, B. (1996). High-frequeny data and volatility in foreign-exhange rates. Journal of Businessand Eonomi Statistis 14, 45{52.Zhou, B. (1998). Parametri and nonparametri volatility measurement. In C. L. Dunis andB. Zhou (Eds.), Nonlinear Modelling of High Frequeny Finanial Time Series, Chapter 6,pp. 109{123. New York: John Wiley Sons Ltd.Appendix: ProofsLemma A.1 We have h(XÆ;S) =PSs=�S S�jsjS Sh+s(X ÆS ) +RxS=S:The remainder RxS=S is a relatively small term, due to end e�ets. The term is de�ned expliitlyin the proof, and the expression shows that RxS an be made zero by tweaking the �rst S � 1 andlast S � 1 intraday returns.Proof. De�ne the intraday returns xj = X ÆS j �X ÆS j� ÆS ; and writeXÆ(j+ s�1S ) �XÆ(j�1+ s�1S ) = X ÆS (jS+s�1) �X ÆS (jS�S+s�1) = xjS+s�1 + � � �+ xjS�S+s:So xj are intraday returns over short intervals, eah having length Æ=S. The 1h(XÆ) equalsnÆXj=1 �XÆj �XÆ(j�1)� �XÆ(j�h) �XÆ(j�h�1)�= nÆXj=1 �x(j�1)S+1 + � � �+ xjS� �x(j�h�1)S+1 + � � �+ x(j�h)S�= nXj=1 xjxj�Sh + nXj=1jmodS 6=0xjxj�Sh+1 + nXj=1jmodS=2f0;S�1g xjxj�Sh+2 + � � � + nXj=1jmodS=1xjxj�Sh+S�1+ nXj=1jmodS 6=1xjxj�Sh�1 + nXj=1jmodS=2f1;2gxjxj�Sh�2 + � � �+ nXj=1jmodS=0xjxj�Sh�S+1:Similarly for s > 1 we havenÆXj=1 �XÆj+ s�1S �XÆ(j�1)+ s�1S ��XÆ(j�h)+ s�1S �XÆ(j�h�1)+ s�1S � = n+s�1Xj=s xjxj�Sh+ n+s�1Xj=sjmodS 6=s�1xjxj�Sh+1 + n+s�1Xj=sjmodS =2fs�1;s�2gxjxj�Sh+2 + � � � + n+s�1Xj=sjmodS=sxjxj�Sh+S�1+ n+s�1Xj=sjmodS 6=sxjxj�Sh�1 + n+s�1Xj=sjmodS =2fs;1gxjxj�Sh�2 + � � � + n+s�1Xj=sjmodS=s�1xjxj�Sh�S+1:By adding up the terms, h(XÆ ;S) =PS�1s=�S+1 S�sS Sh+s(X ÆS ) +RxS=S; whereRxS = � SXS=2 0�s�1Xj=1 xjxj�Sh + s�2Xj=1 xjxj�Sh+1 + � � �+ 1Xj=1 xjxj�Sh+S�225



+ s�1Xj=1 xjxj�Sh�1 + s�1Xj=2 xjxj�Sh�2 + � � �+ s�1Xj=s�1xjxj�Sh�S+11A+ SXS=2 0�n+s�1Xj=n+1xjxj�Sh + n+s�2Xj=n+1xjxj�Sh+1 + � � �+ n+1Xj=n+1xjxj�Sh+S�2+ n+s�1Xj=n+1xjxj�Sh�1 + n+s�1Xj=n+2xjxj�Sh�2 + � � � + n+s�1Xj=n+s�1xjxj�Sh�h+11A :The term, RxS ; is due to end e�ets and involves muh fewer ross produts, xixj ; than doesPSs=1 sh(XÆ): So that RxS=S is typially negligible. In fat, RxS an be made zero by assumingx1 = � � � = xS�1 = xn+1 = � � � = xn+S�1 = 0. �In the non-subsampling ase Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) derivedthe following helpful results.Theorem A.1 We study properties as Æ # 0: Suppose that Y 2 BSM and (4) holds, thenn1=2Æ 0BBB� 0(YÆ)� R t0 �2udu~1(YÆ)...~H(YÆ) 1CCCA Ls!MN �0; A1 � tZ t0 �4udu� ; A1 = 0BBB� 2 0 � � � 00 4 � � � 0... ... . . . ...0 0 � � � 4 1CCCA : (A.1)If, in addition, for nÆ � H, U 2 WN and Y ?? U then e(YÆ; UÆ) Ls!MN �0; 2!2[Y ℄B�, whereB = � B11 B12B21 B22 � ; B22 = 0BBBB� 2 �1 0 � � ��1 2 . . . . . .. . . . . . . . . �1� � � 0 �1 2
1CCCCA ; B11 = � 1 ��1 2 � ; B21 = 0BBB� 0 �10 0... ...0 0 1CCCA ;E fe(UÆ)g = 2!2nÆ (1;�1; 0; 0; :::; 0)| ; and Cov fe(UÆ)g = 4!4nÆC +O(1);C = � C11 C12C21 C22 � ; C11 = � 1 + �2 �2� �2�2� �2 5 + �2 � ;C21 = 0BBBBB� 1 �40 10 0... ...0 0

1CCCCCA ; C22 = 0BBBBB� 6 � � � ��4 6 � � �1 �4 6 � �0 1 �4 6 �... . . . . . . . . . . . .
1CCCCCA :Theorem A.2 Suppose that Y 2 BSM and (4) holds, then as Æ # 0n1=2Æ 0BBB� 0(YÆ;S)� R t0 �2udu;e1(YÆ;S)...eH(YÆ;S) 1CCCA Ls!MN �0; AS � tZ t0 �4udu� ;
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AS = 23 0BBBBB� 2 + S�2 � 0 � � �1� S�2 4 + 2S�2 � . . .0 1� S�2 4 + 2S�2 . . .... . . . . . . . . .
1CCCCCA! 23 0BBBBB� 2 1 0 � � �1 4 1 . . .0 1 4 . . .... . . . . . . . . .

1CCCCCA = A1; (A.2)and as Æ # 0 and S !1n1=2Æ 0BBB� 0(YÆ;S)� R t0 �2udu;e1(YÆ;S)...eH(YÆ;S) 1CCCA Ls!MN �0; A1 � tZ t0 �4udu� :Proof of Theorem A.2. By Lemma A.1 we have ~h(YÆ;S) ' PSs=�S S�jsjS ~Sh+s(Y ÆS ); andthe asymptoti properties of h(Y ÆS ); h = �SH; : : : ; SH; using the small time gaps, Æ=S; followsstraightforwardly from (A.1). WriteV0;S = 1S  1 + 2 SXs=1 �S�sS �2! = 23 �1 + S�22 �! 23 V1;S = 1S  0 + SXs=1 sS S�sS ! = 16 �1� S�2�! 16 :then for h � 1 we haveVar f~h(YÆ;S)g = Var( SXs=�S S�jsjS ~Sh+s(YÆS ))! 4V0;SnÆ tZ t0 �4udu;and similarly for h = 0 we �nd Var f~0(YÆ;S)g = 2V0;SnÆ tR t0�4udu. For h � 0 we �ndCov �~h(YÆ;S); ~h+1(YÆ;S)	 = CovnPSs=�S S�jsjS ~Sh+s(YÆS);PSs=�S S�jsjS ~Sh+S+s(YÆS )o= VarnPSs=1 S�sS sS ~Sh+s(YÆS)o =PSs=1 S�sS sS � 1n4t tR0�4udu= 4V1;S � 1nÆ t tR0�4udu:Covarianes between ~h(YÆ;S) and ~i(YÆ;S) are zero for jh� ij � 2; as they do not \share" any ofthe realised autoovarianes ~Sh+s(YÆS ). �Proof of Theorem 1. For the subsampled realised kernel on YÆ we haveS (V0;S + 2V1;S) = 1 + 2XSs=1 �S�sS �2 + 2XSs=1 sS S�sS + S(S�1)S = S;so that V0;S + 2V1;S = 1; where V0;S and V1;S are de�ned in the proof of Theorem A.2. From thestruture of AS we have1H PHi;j=0 k( iH )k( jH )[AS ℄i;j = 4V0;SH PHh=0 k( hH )2 + 8V1;SH PHh=1 k( hH )k(h�1H ) +O( 1H )= 4(V0;S+2V1;S)H PHh=0 k( hH )2 � 8V1;SH2 PHh=1 k( hH )k( hH )�k(h�1H )1=H +O( 1H ) = 4Z 10 k(u)2dx+O( 1H ):From Barndor�-Nielsen, Hansen, Lunde, and Shephard (2006) we havee(YÆ; UÆ;S) Ls!MN �0; 2!2S [Y ℄B� ; (A.3)27



E fe(UÆ ;S)g = 2!2nÆ (1;�1; 0; 0; :::; 0)| : (A.4)Furthermore, with U sj = U(j+ s�1S )Æ we have ~sh(UÆ) = �V sh+1;n + 2V sh;n � V sh�1;n +Rsh+1;n �Rsh�1;n;where V sh;n =Pnj=1 U sj (U sj�h + U sj+h) and Rsh;n = 12(U snU sn+h + U s0U s�h � U snU sn�h � U0U sh). So withw0 = w�1 = 1; wh = k(h�1H ); h = 1; : : : ;H + 1 we have from Barndor�-Nielsen, Hansen, Lunde,and Shephard (2006) thatKs(UÆ) = � HXh=0 (wh+1 � 2wh + wh�1) V sh;n � HXh=1 (wh+1 � wh�1)Rsh;n;where h nH3k2;2� + nH2 fk0(0) + k0(1)gi�1=2PHh=0 (wh+1 � 2wh + wh�1) V sh;n d! N(0; 4!4) andavar(H�1=2PHh=1 (wh+1 �wh�1)Rsh;n) = 4!4k1;1� : Sine the noise is independent aross subsam-ples, the results for K(XÆ; S) + �SH;n = �PHh=1 (wh+1 � 2wh + wh�1)S�1PSs=1 V sh;n and �SH;n =PHh=1 (wh+1 � wh�1)S�1PSs=1Rsh;n follow. �Proof of Lemma 1. From (12) we haveavarfK(XÆ)� ~K(XÆ)gavarf ~K(XÆ)g = 4!4k1;1� =(HS)4t R t0�4udu hHSn k0;0� + 2��k1;1�HS + n�2 nk0(0)2+k0(1)2(HS)2 + S k2;2�(HS)3oi= �(HS)2n k0;0��k1;1� + 2�+ nHS � k0(0)2+k0(1)2k1;1� + S n(HS)2 � k2;2�k1;1� ;whih an be seen to vanish when k0(0)2 + k0(1)2 6= 0 or S !1: We need HS _ n1=2 for the rationot to vanish when k0(0)2 + k0(1)2 = 0. With HS = �pn we �ndavarfK(XÆ)� ~K(XÆ)gavarf ~K(XÆ)g = �2� k0;0�k1;1� + 2�+ S�2 k2;2�k1;1� � �2 1+sk2;2� k0;0�(k1;1� )2 ! ;where we used that �; S � 1 and that x =pb=a minimizes f(x) = ax+ b=x; a; b > 0: �Proof of Theorem 2. (i) The mixed Gaussian result follows from Theorem 1. (ii) The best valuefor  is found by solving the �rst order ondition k0;0� �2�3 �k0(0)2 + k0(1)2	 = 0, and substitutingthis  into (13) yields !4=3 �tR t0�4udu�2=3 times4�k0;0� + k0(0)2 + k0(1)23 � = 4�k0;0� + 12k0;0� � = 4k0;0� (1 + 1=2) = 6k0;0� :Finally k0;0� = n2 �k0(0)2 + k0(1)2� =k0;0� o1=3 k0;0� = �2�k0;0� �2 �k0(0)2 + k0(1)2��1=3 :�Proof of Theorem 3. (i:a) The mixed Gaussian result is straight forward using Theorem 1.(i:b) Substituting HS = �1=2n1=2+�=4 and S = an� into (14) yields 4! �t R t0�4udu�3=4 timesn1=2+�=4n k0;0� + 2�k1;1�n1=2+�=4 + nn� k2;2�(n1=2+�=4)3 = k0;0� n�1=2+�=4 + �3k2;2� n�1=2+�=4;beause the seond term is of lower order that the 1st and 3rd term when � > 0:(ii) Minimizing (14) with respet to x = HS has the �rst order ondition,n�1k0;0� � 2��k1;1� (HS)�2 � 3�2nSk2;2� (HS)�4 = 0:28



The unique positive solution is given by HS = S(�n)1=2; whereS =s�k1;1�k0;0� �1 +r1 + 3S k0;0� k2;2�(�k1;1� )2� =s�k1;1�k0;0� +r (�k1;1� )2+3Sk0;0� k2;2�(k0;0� )2 :Now de�ne x = k0;0� =(�k1;1� ); y = �k1;1� =(Sk2;2� ); and z = p1 + 3x=y: Then S = p(1 + z)=xand x=y = (z2 � 1)=3 = (1 + z)(z � 1)=3: So the minimum asymptoti variane is given by4! �tR t0�4udu�3=4 k0;0� (S + 2Sx + 13Sxy ); whih is proportional toS + 2Sx + 13Sxy =q1+zx + 2q 1x(1+z) + px(1+z)p1+z3y = 1px 43 � 1p1+z +p1 + z� :Now substitute z =q1 + 3Sk0;0� k2;2� =(�k1;1� )2 and x�1=2 =q�k1;1� =k0;0� and (16) follows. �Lemma A.2 Let g(S) be as de�ned in Theorem 3. Then g0(S) > 0 for all S > 0:Proof. Consider the funtion f(x) = 1p1+p1+ax +p1 +p1 + ax, for a > 0. The �rst derivativef 0(x) = a4 �1 +pax+ 1��3=2, is positive for all x > 0. �Proof of Corollary 1. From Lemma A.2 it follows that g0(S) > 0 for all S > 0; if we set x = Sand a = 3k0;0� k2;2� =(�k1;1� )2: So any inrement in S will inrease the asymptoti variane. �Proof of Corollary 2. By substitution for the �rst � in g(S) we �nd that (16) is proportional to!�tZ t0 �4udu�1=2�Z t0 �2udu�1=2( 1q1+p1+3Sk0;0� k2;2� =(�k1;1� )2 +r1 +q1 + 3Sk0;0� k2;2� =(�k1;1� )2) :From Hansen and Lunde (2006, p. 135) it follows that business time sampling minimizes t R t0�4uduand by Lemma A.2 we have that also the seond term is minimized for the largest possible valueof �; (set x = 1=�2). Sine � � 1 the solution is � = 1. �Proof of Lemma 2. From the proof of 1 we haveKw(UÆ) = Kw(UÆ; 1) = �PHh=0 (wh+1 � 2wh + wh�1)V 1h;n �PHh=1 (wh+1 � wh�1)R1h;n;where Var(V 1h;n) = (4n�2h)!4: V 1h;n is entirely made up of U1j U1j�h terms so that Cov(V 1h;n; V 1k;n) = 0;for h 6= k: Hene Varn ~Kw(UÆ)o � 4!4(n�H2 )PHh=0 (wh+1 � 2wh + wh�1)2 ; and the results followssine H = o(n): �Proof of Theorem 4. The asymptoti distribution of 0(XÆ;S) + e1(XÆ;S) � R t0 �2udu is mixedGaussian with variane of approximately, for moderate nÆ and S,n�1Æ 163 tR t0 �4udu+ 8!4nÆS : (A.5)The �rst term appears from (A.2), the seond from Theorem A.2 of Barndor�-Nielsen, Hansen,Lunde, and Shephard (2006). �Proof of Lemma 3. With S = (�n)2=3 we have n�1Æ = S=n = �2=3n�1=3 and nÆS = n=S2 =�2��4=3n1=3; so that (A.5) in the proof of Theorem 4 beomes n1=3 times163 �2=3tZ t0 �4udu+ 8!4�2��4=3 = !4=3 �tZ t0 �4udu�2=3�163 + 8�2� :29



So n1=6 n0(XÆ;S) + e1(XÆ;S)� R t0�2uduo onverges to a mixed Gaussian distribution with thisvariane. We an now minimise this asymptoti variane by seleting 3 = 3. At this value theasymptoti variane is!4=3�tZ t0 �4udu�2=3 �163 (3)1=3 + 8 (3)�2=3� ' 11:53!4=3�tZ t0 �4udu�2=3 :�Proof of Lemma 4. From Theorems A.2 and 1 we obtain the following upper-left 3�3 submatriesof A1 and C; [A1;3�3℄ = 23 0� 2 � �1 4 �0 1 4 1A ; [C3�3℄ = 0� �2 + 1 � ���2 � 2 �2 + 5 �1 �4 6 1A :With w = (1; 1; 12)| we have w|[A1;3�3℄w = 203 and w|[C3�3℄w = 12 : The result now follows, as theasymptoti variane isn1=3�Sn tZ 10 �4udu203 + 4!4 nS2 12� = !4=3�tZ 10 �4udu�2=3 �203 + 2�2� :�Proof of Theorem 5. We have0(XÆ ;S)� 2nÆ!2 � Z t0 �2udu = 0(YÆ;S)� tR0�2udu| {z }n�1Æ 43 tR t0�4udu +20(UÆ; YÆ ;S)| {z }S�18!2 R t0�2udu + 0(UÆ;S)� 2nÆ!2| {z }4!4 nÆS (1+�2) ;whih has mean zero and a variane that is the sum of the three terms given below the brakets.The three terms are given from (A.2), (A.3), and Theorem A.1, respetively. For large S = (�n)2=3(implying large nÆ = n=S = �1��2=3n1=3) we haven1=6�0(XÆ ;S)� 2nÆ!2 � Z t0 �2udu� Ls!MN (0; 4!4=3�tZ t0 �4udu�2=3 � 3 + 1+�22 �) :By the approximations1S Pnj=1 �UjÆ=S � U(j�S)Æ=S�2 ' 2S �Pnj=1 U2jÆ=S +Pnj=1 UjÆ=SU(j�S)Æ=S�1S Pnj=1 �UjÆ=S � U(j�1)Æ=S�2 ' 2S �Pnj=1 U2jÆ=S +Pnj=1 UjÆ=SU(j�1)Æ=S� ;and using 2S = 2n1=2�2=3n2=3 � n�1=2 = n�1=6q 42�4=3 � n�1=2 we see thatn�1=6 n�1=2Pnj=1 �UjÆ=S � U(j�S)Æ=S�2 � 2nÆ!2n�1=2Pnj=1 �UjÆ=S � U(j�1)Æ=S�2 � 2nÆ!2 ! L! N �0; 4!42�4=3 � 1 + �2 �2�2 1 + �2 �� :�Proof of Theorem 6. Follows from Theorem 5, and n�1=20(XÆ=S) = n�1=20(UÆ=S) + op(1) and!4=�4=3 = !4=3 �tR t0�4udu�2=3. � 30


