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Abstract

In a wide variety of social and economic settings (e.g. crime, education, political

activism, technology adoption), players’ returns to their efforts depend on how much

effort others exert. Modeling these situations as a network game with strategic comple-

mentarities, we show that a player’s cycle centrality—a weighted sum of the number of

network cycles that she is in—determines the extent to which she benefits from her com-

plementarities with others. In contrast to the widely-used Bonacich centrality—which

measures how efforts propagate through the network—cycle centrality measures how

the variance of efforts propagates through the network. A utilitarian social planner who

can incentivize one player’s effort targets the one with the highest cycle centrality.
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1 Introduction

“I said that I would see you because I heard you are a serious man, to be treated

with respect. But I must say no to you. And I’ll give you my reasons: It’s true that

I have a lot of friends in politics. But they wouldn’t be friendly very long if they

knew that my business was drugs instead of gambling—which they consider a

harmless vice. But drugs, that’s a dirty business.”

So says Don Corleone when Sollozzo—another criminal operating in New York City—

offers him a share of the narcotics business (Puzo 1969). This situation illustrates two prop-

erties of the criminal business. First, criminals’ objectives are heterogeneous: Whereas Sol-

lozzo focuses on narcotics, Don Corleone and his friends focus on gambling. Second, social

ties among criminals—even among those with different objectives—play an important role

in shaping their activities: The actions of Sollozzo, Don Corleone, and his friends in politics

are complementary. This is both why Sollozzo offers Don Corleone to join his business, and

why Don Corleone is reluctant to accept this offer.

These features are common across a wide variety of social and economic activities. For

example, students decide both what and how much to study, and social ties among them

play an important role in their success. Similar issues arise when adolescents, farmers and

firms decide, respectively, which drugs, fertilizers and technologies to use, and how inten-

sively; or when unions, investigators and facebook users decide, respectively, whether to call

a strike, look for evidence, and post in favor or against a certain issue, and how aggressively.

We model these situations as follows1: Finitely many players simultaneously decide which

action to take. A network G describes the strategic complementarities between players:

Each player’s best response αi is the sum of her autarkic action βi (a preference parameter

that corresponds to her optimal action absent complementarities) and the linear combina-

tion θ
∑

j Gijαj of her neighbors’ actions, where θ is a measure of the intensity of the strategic

complementarities, or network effects. In order to isolate the effect of the network topology on

welfare—without imposing homogeneous preferences—we take players’ autarkic actions to

be independently distributed.2

1Glaeser et al. (1996) were among the first to point out how criminal interconnections act as a social multi-

plier on aggregate crime. In contrast to their model—which restricts attention to simple network structures—

and following the literature that started with Calvó-Armengol and Zenou (2004), we examine a model that

admits any social network; see Jackson et al. (2015) for an overview of this literature.
2The focus on independently-distributed preferences is common in the literature; see for example Acemoglu

et al. (2012) and Acemoglu et al. (2016).
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Ballester et al. (2006) showed that this game admits a unique Nash equilibrium, and that—

when (i) network effects are not too strong and (ii) autarkic actions are homogeneous—

players’ equilibrium actions are proportional to their Bonacich centralities (Katz 1953, Bonacich

1987). This result has been widely applied to understand social outcomes and to design po-

lices to improve them. For example, Calvó-Armengol and Jackson (2004) use this result

to describe the determinants of different employment dynamics in labor markets, Ballester

et al. (2006) to characterize effective criminal deterrence policies, and Candogan et al. (2012)

to describe the optimal pricing strategies of a monopolist serving a networked market.

The main contribution of this paper is to characterize geometrically the extent to which a

player benefits from her complementarities with others as a function of her position in the

network G. This is the relevant statistic in many contexts—e.g. a social planner designing

a policy to increase welfare, individuals deciding whether to form new partnerships, and

a social media platform setting individualized entry fees to maximize profits—and it is not

systematically related to the Bonacich centrality measure.

The main result of this paper is that each player’s expected utility—before autarkic actions

are realized—is proportional to her cycle centrality: A new statistic that measures the extent

to which other players’ actions have simultaneous effects on her actions via different network

walks. Absent preference correlations—that is, correlations in autarkic actions—these effects

are the only source of correlation among players’ equilibrium actions, and they determine

the extent to which players benefit from their complementarities with others.3

As we illustrate, the player who takes the highest action when preferences are homogeneous—

that is, the most Bonacich-central player—can also be the one who benefits the least from

her strategic complementarities with others—that is, the least cycle-central player. Hence,

while Bonacich centrality has proved extremely useful in understanding the determinants

of players’ actions, our result suggests that it is not the right measure for understanding the

connections between social structure and welfare, and that cycle centrality can enrich our

understanding in this regard.

When strategic complementarities are pairwise symmetric,4 a player’s cycle centrality is

simply a weighted sum of the number of network cycles that she is in; for arbitrary strategic

3Relatedly, Elliott and Golub, (2015, 2017) show how the extent to which a player contributes to the existence

of certain network cycles determines how essential she is for the scope of cooperation in negotiations over the

provision of public goods. Whereas the crucial aspect about the geometry of the network in their case is the

strength of arbitrarily long cycles (which determine its spectral radius), the contribution of each cycle to cycle

centrality is geometrically decreasing in its length.
4Strategic complementarities are pairwise symmetric if the network that captures them is undirected.
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complementarities, it is a weighted sum of the circles—that is, the pairs of walks from her to

another player—that she is in. Whereas the widely-used Bonacich centrality measures how

actions propagate through the network,5 cycle centrality measures how the variance of actions

propagates through the network: A player’s cycle centrality is the sum—across all players

j—of the derivative of the variance of her equilibrium action with respect to the variance of j’s

autarkic action.

The main insights of this paper are twofold. First, the way in which the variance of equi-

librium actions propagates through the network has important welfare implifications, be-

cause it determines the extent to which equilibrium actions are correlated across players,

and hence the extent to which each player benefits from her complementarities with oth-

ers. Second, in the standard network game that we consider, the way in which the variance

of actions propagates through the network can be characterized geometrically in terms of

network cycles. The combination of these two insights provides the connection between

network cycles and welfare that we characterize in this paper.

A central objective of the social and economics networks literature is to relate different

network statistics to social phenomena (recent examples include Banerjee et al. 2016, Bloch

et al. 2016, Ambrus et al. 2017, Baqaee and Farhi 2017, Demange 2017, Elliott and Golub 2017,

Galeotti et al. 2017, Golub and Morris 2017 and Leister 2017).6 To the best of our knowledge,

the centrality measure that we identify as being important for welfare—cycle centrality—is

not systematically related to any of the existing statistics. Hence, our result suggests that

cycle centrality has the potential to yield new insights about the effects of social structure on

welfare.

The rest of this article is organized as follows. In § 2 we present the model, together

with the definitions of walks, circles and cycles. In § 3 we present our main result—each

player’s expected utility is proportional to her cycle centrality—and we discuss the contrasts

between cycle centrality and the widely-used Bonacich centrality. As an application, in § 4

we illustrate how a social planner can use information on players’ cycle centralities to design

effective policies. Finally, we conclude in § 5.

5A player’s Bonacich centrality is the sum—across all players j—of the derivative of her equilibrium action

with respect to j’s autarkic action.
6For recent surveys of network-centrality related economic applications, see for example Acemoglu et al.

(2016), Golub and Sadler (2016), Zenou (2016) and Jackson et al. (2017).
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2 Model

2.1 Preferences

Each player i chooses her action αi ∈ R to maximize her utility

(1) ui = βiαi −
1

2
α2
i + θαi

∑
j

Gi,jαj,

where Gi,j ∈ R is the element in the ith row and jth column of the matrix G that captures

the strategic complementarities between players (with Gi,i = 0 for all players i) and where

θ > 0 measures the intensity of the network effects.7

Player i’s best response function is αi = βi + θ
∑

j Gi,jαj. Note, in particular, that βi is

i’s optimal action absent network effects; for this reason, we refer to βi as i’s autarkic action.

Players’ autarkic actions are identically and independently distributed, with E(βi) = 0 and

E(β2
i ) = σ2.

Note 2.1. We don’t restrict the sign of players’ actions. We interpret a positive action as corre-

sponding to pursuing one option (e.g. narcotics) and a negative action as pursuing another

option (e.g. gambling). With this interpretation, player i’s positive strategic complementar-

ity with player j is interpreted as follows: The more player j pursues gambling, the more it

pays for player i to pursue gambling as well (and the less it pays for her to pursue narcotics).

Note 2.2. The assumption that autarkic actions are identically and independently distributed

with zero mean is common in the literature; see for example Acemoglu et al. (2016). The

assumption that all players’ autarkic actions are equally distributed is not crucial for our

characterization of expected utility in terms of network cycles (see Note 3.2), but the as-

sumptions that they are independently distributed and that their expected value is zero are.

The former assumption allows us to focus on how the network alone generates correlations

among players’ actions. The latter assumption is natural in the contexts that we consider.

2.2 Nash Equilibrium

We focus on the Nash equilibrium of the one-shot game in which each player chooses αi ∈ R
simultaneously. The system of best replies is (I − θG)α = β. We require that network effects

be sufficiently small; formally, we assume that the spectral radius of θG is less than one,

7The restriction that θ is positive is without loss of generality, because we do not restrict the signs of the

entries of G.
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so that the Leontief matrix M = (I − θG)−1 =
∑∞

k=0 θ
kGk is well defined, and the unique

Nash equilibrium action profile is Mβ. This assumption also implies that the equilibrium is

asymptotically stable; see for example Bramoullé and Kranton (2016).

2.3 Definitions: Walks, Circles and Cycles

In the context of a weighted graph, a walk is an ordered set of nodes. A walk from i to j is a

walk that starts at i and ends at j. The length of a walk is the number of links that it involves.

The weight of a walk is the product of the weights of its links. Figure 1 illustrates a walk of

length 3.

1

2

3

4

1
2

2
3

3
4

Figure 1: A walk from 1 to 4 of length 3 with weight 1
2
2
3
3
4
= 1

4
.

A k-cycle is a walk of length k from a node to itself. A k-circle from i to j is an ordered set

of two walks from i to j whose combined length is k. The weight of a k-circle is the product of

the weights of its two associated walks. Figure 2 illustrates a 4-circle.
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Figure 2: A 4-circle from 1 to 4 with weight 1
4
4 = 1.

We denote by Dk
i the sum of the weights of all different k-circles that start at i. In partic-

ular, in the pairwise-symmetric case (i.e., when Gi,j = Gj,i) Dk
i = (k + 1)Ck

i , where Ck
i is the

sum of the weights of all of k-cycles that start and end at i.8

8To see this note that, for any given k-cycle C := {i1, i2, . . . , ik, i1}, there are k + 1 associated k-circles that

start at i1: ({i1, i2, . . . , i1}, {i1}) , ({i1, i2, . . . , ik}, {i1, ik}) , . . . , ({i1}, {i1, ik, ik−1, . . . , i1}). And the weight of

each of these k-circles is the same as the weight of the k-cycle C.

6



Definition 2.1 defines a new network centrality measure that—as Theorem 3.1 shows—

determines the value of each network position.

Definition 2.1. Player i’s cycle centrality is ci :=
∑∞

k=0 θ
kDk

i .

3 Cycle Centrality Determines Welfare

In § 3.1 we present the main result of this paper: The extent to which a player benefits from

her strategic complementarities with others is proportional to her cycle centrality. In § 3.2

we illustrate—via a simple example—the contrasts between cycle centrality and the widely-

used Bonacich centrality.

3.1 Main Result

Theorem 3.1. Each player’s expected utility is proportional to her cycle centrality.

Proof. Player i’s first order condition is

ui =
1

2
α2
i =

1

2
(Mβ)2i =

1

2

∑
j,k

MijβjMikβk.(2)

Taking expectations, since the βi’s are iid with E(βi) = 0 and E(β2
i ) = σ2, we get

E(ui) =
σ2

2

∑
j

M2
ij.(3)

Recalling that Mij =
∑∞

`=0 θ
`(G`)ij , noting that (Gk)ij is the sum of the weights of all k-walks

from i to j, and collecting terms we get

M2
ij =

∞∑
`=0

∞∑
m=0

θ`+m(G`)ij(G
m)ij =

∞∑
k=0

k∑
`=0

θk(G`)ij(G
k−`)ij.(4)

Summing over j and noting that Dk
i =

∑
j

∑k
`=0(G

`)ij(G
k−`)ij gives the result.

Note 3.1. Player i’s Bonacich centrality is bi :=
∑∞

k=0 θ
kW k

i , where W k
i denotes the sum of the

weights of all different k-walks that start at i. Equivalently, player i’s Bonacich centrality is

(i) the sum of the elements in the ith row of the Leontief matrix M , and (ii) the sum—across

all players j—of the derivative of her equilibrium action with respect to j’s autarkic action.

In contrast, player i’s cycle centrality is (i) the sum of the squares of the entries of the ith

row of this matrix, and (ii) the sum—across all players j—of the derivative of the variance of
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her equilibrium action with respect to the variance of j’s autarkic action. In § 3.2, we further

illustrate the contrasts between these two centrality measures with a simple example.

Note 3.2. If players’ autarkic actions are not identically distributed, player i’s expected utility

is proportional to
∑∞

k=0 θ
k
∑

j D
k
ijσ

2
j , where Dk

ij denotes the sum of the weights of all k-circles

from i to j, and σ2
j := E(β2

j ). Intuitively, the weight of k-circles from i to j is proportional to

the variance of j’s autarkic action.

3.2 Cycle Centrality not Systematically Related to Bonacich Centrality

As discussed in Note 3.1, cycle centrality and Bonacich centrality are not systematically re-

lated. In this section we illustrate this point via a highly symmetric network in which the

most Bonacich-central player can be the least cycle central.

Consider the network depicted in Figure 3. Note that players 1, 5, 9 and 13 play the same

role in this network.9 Similarly, players 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15 and 16 play the same

role, and there is no player that plays the same role as player 0. Note that players who play

the same role have the same centrality.

k Ck
0 Ck

1 Ck
2

1 0 0 0

2 4 4 3

3 0 6 6

4 28 31 22

5 24 72 64

2

3

4 1 0

5

6 7

8

9

10 11

12

13

14

15

16

k W k
0 W k

1 W k
2

1 4 4 3

2 16 13 10

3 56 42 33

4 184 151 112

5 604 520 375

Figure 3: A network with three player roles, together with a sample of the number of k-

cycles (table on the left) and k-walks (table on the right) emanating from each player role.

The maximum (minimum) in each row is in bold (gray).

The left and right tables in Figure 3 indicate, respectively, the number of k-cycles and

k-walks emanating from each of these roles (for the first five values of k, and where we

9Formally, two nodes i and j of a network g play the same role if there is a symmetry of g—that is, an

automorphism of g, or a renaming of the players that preserves edges—that maps i to j.
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identify players 0, 1 and 2 with each of the possible three player roles in this network). Note

that, for all values of k depicted, more walks emanate from player 0 than from any other

player. Indeed, this is true for every k > 0, so for every intensity θ of network effects, player

0 is the most Bonacich-central player.

In contrast, for all values of k depicted, more k-cycles emanate from player 1 than from

any other player. As a consequence, for all small enough intensities θ of network effects,

player 1 is the most cycle-central player. For large enough values of k, however (e.g. k ≥ 15),

more k-cycles emanate from player 0 than from any other player, and hence for all high

enough intensities θ of network effects, player 0 is the most cycle-central player.

The situation of player 2 is a bit more subtle: On the one hand, for all values of k, less k-

cycles emanate from player 2 than from player 1, so player 2 is less cycle central than player

1 for all intensities of network effects. On the other hand, more k-cycles emanate from player

2 than from player 0 for some values of k (e.g. k = 3, 5) but less k-cycles emanate from player

2 than from player 0 for other values of k (e.g. k = 2, 4). As a consequence, player 2 is more

cycle central than player 0 for some network-effect intensities (e.g. θ = .2) but less cycle

central than player 0 for other network-effect intensities (e.g. θ = .25).

Table 1 illustrates these phenomena by depicting both the cycle and the Bonacich centrali-

ties for each of the three player types and a sample of network effects θ (below the maximum

value θ ≈ .3 of network effects for which these measures are well defined). Note in particular

how, for intermediate values of network effects (e.g. θ = .2), player 0 is the least cycle-central

player while being the most Bonacich central.

θ = .1 θ = .2 θ = .25 θ = .28

Player Type ci bi ci bi ci bi

0 1.14 1.64 2.08 3.75 5.89 8.33 39.52 24.52

1 1.17 1.60 2.47 3.44 6.91 7.33 35.08 21.00

2 1.13 1.45 2.16 2.81 5.36 5.67 22.33 15.64

Table 1: Cycle and Bonacich centralities for four different intensities θ of network effects.

The maximum (minimum) value of each column is in bold (gray).

Intuitively, cycle centrality is sensitive to the fact that more intermediate-length cycles

emanate from players 1 and 2 than from player 0, even if more walks (of all lengths) emanate

from player 0 than from players 1 and 2. For this reason, when intermediate-length cycles

have relatively high weight in the cycle centrality measure—that is, when network effects

are of intermediate intensity—player 0 is the least cycle central, even though she is the most

9



Bonacich central.

4 Social Planner Targets the Most Cycle-Central Player

In this section we illustrate how a planner can use the cycle centrality network statistic to

maximize the effectiveness of her policies. This analysis is motivated by Ballester et al.

(2004), who extensively analyze how a social planner willing to reduce criminal activity

can use Bonacich centrality to increase the effectiveness of her policies. For simplicity, in this

section we focus on the case in which strategic complementarities are pairwise symmetric

(we discuss the case in which complementarities are not pairwise symmetric in Note 4.2).10

Following the celebrated criminal-market application of Ballester et al. (2004), we focus

on the problem of a planner who wants to minimize the expected sum of players’ utilities;

this could be, for example, because she wants to minimize the number of active criminals,

and potential criminals choose to become active if their expected utility of doing so is higher

than their outside option.11 An analogous analysis goes through if the planner wants to

maximize the expected sum of players’ utilities; this could be, for example, simply because

the planner is benevolent, or because she wants to maximize the profits of a social media

platform who is able to charge individualized entry fees.

In order to achieve her objective, the social planner can—before preferences are realized—

commit to disincentivizing the action of one player, which reduces her autarkic action’s

variance by ε > 0 (where ε is smaller than the variance of each player’s autarkic action). This

could represent, for example, the planner’s ability to focus her investigative efforts towards

one criminal.12 We discuss alternative policy options in Note 4.3 and Note 4.4.

Who should the social planner target? The variance of the equilibrium action of the tar-

geted player will be reduced, which—in turn—will reduce the variance of the actions of

others. Hence, since each player’s expected utility is the variance of her equilibrium action,

10For recent related exercises, see for example Galeotti et al. (2017), König et al. (2017) and Leister (2017).
11See e.g Ballester et al. (2004) and Calvó-Armengol and Jackson (2004) for formal models along these lines.

Whereas in these models potential criminals decide to enter once they know both their preferences and their

position in the network, the simplest version of our story requires that potential criminals choose whether to

become active before they know both their preferences and which network position they will occupy. In this

case, all potential criminals are homogeneous at the time when they choose whether or not to become active,

and it is an equilibrium for all of them to become active if the expected utility of doing so is bigger than their

outside option.
12See Zenou (2016) for a survey discussing several implementations of similiar exercises.
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the optimal target is the player for whom this cumulative effect is highest. As shown by

Proposition 4.1, this is the player with the highest cycle centrality.

Proposition 4.1. The optimal target is the player with the highest cycle centrality.

Proof. Letting E(β2
i ) = σ2

i , without assuming that σ2
i = σ2 for all i, Equation 3 reads

E(ui) =
1

2

∑
j

M2
ijσ

2
j =

1

2

∞∑
k=0

θk
∑
j

σ2
j

k∑
`=0

(G`)ij(G
k−`)ij.

where we have used Equation 4. Noting that Dk
ij :=

∑k
`=0(G

`)ij(G
k−`)ij is the sum of the

weights of all k-circles from i to j, we obtain that

E(ui) =
1

2

∞∑
k=0

θk
∑
j

Dk
ijσ

2
j(5)

Summing over all i yields

E

(∑
i

ui

)
=

1

2

∞∑
k=0

θk
∑
i,j

Dk
ijσ

2
j .(6)

When G is symmetric, we have that
∑

iD
k
ij =

∑
i D

k
ji = Dk

j , and hence we can write Equa-

tion 5 as

E

(∑
i

ui

)
=

1

2

∑
j

σ2
j cj.(7)

In particular, the derivative of E (
∑

i ui) with respect to σ2
j is j’s cycle centrality.

Note 4.1. Proposition 4.1 holds irrespectively of whether individual’s autarkic actions are

identically distributed. Intuitively, the expected sum of players’ utilities is linear in the

variances of the autarkic actions, so the effect of a marginal increase in the variance of the

autarkic action of one player on the expected sum of utilities is independent of the initial

variances.

Note 4.2. When strategic complementarities are not pairwise symmetric, it follows from

Equation 6 that the planner’s optimal target is the player j for whom
∑∞

k=0 θ
k
∑

iD
k
ij is high-

est. This is the player who is most cycle central in the transpose of G.

Note 4.3. A social planner who—instead of being able to incentivize one individual only—

can choose to reduce the variance of each player i by xi subject to the budget constraint∑
i∈N x2

i = 1, spends on player i a fraction of her budget that is proportional to i’s cycle

centrality.
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Note 4.4. An alternative way to illustrate how measuring cycle centrality can be useful to

design efficient policies is to focus—as in Ballester et al. (2006), for example—on the case

in which the social planner can remove one player from the network altogether in order to

minimize the expected sum of player’s utilities.13 By Equation 7, the key player—that is, the

optimal target of the social planner—is the one whose removal decreases the weighted sum∑
j σ

2
j cj of players’ cycle centralities the most.

As in the key-player policy of Ballester et al. (2006), when one player is removed from the

network, the impact on this sum is twofold: First, the expected sum of utilities decreases by

the expected utility of the player removed. Second, the cycle centrality of all other players

changes. Because of this second—indirect—effect, the key player need not be the player

with the highest cycle centrality.

5 Conclusion

In many economic and social settings, players’ actions are complementary and understand-

ing the determinants their welfare important. The main result of this paper is that, in a

setting in which (i) players’ preferences are independently distributed, and (ii) a network

specifies the existing strategic complementarities, the extent to which a player is present

in cycles of this network—her cycle centrality—determines the extent to which she benefits

from her strategic complementarities with others. This paper also illustrates how a social

planner can use data on cycle centrality to design effective policies to maximize or minimize

utilitarian welfare.

Since existing centrality measures are not systematically related to cycle centrality, the

results of this paper suggest that this network statistic has the potential for being an im-

portant new tool for understanding the connections between social structure and social and

economic outcomes. The tight connection between cycle centrality and welfare illustrated in

this article relies on a widely-used—but special—linear-quadratic model. Elliott and Golub

(2017) show how many of the insights developed by the literature that uses this model apply

much more generally. We leave the exploration of the connection between cycle centrality

and welfare in more general settings for future research.

13Ballester et al. (2006) characterize the optimal policy of a planner who wants to minimize the sum of all

actions.
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