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Abstract

In many settings, heterogenous agents make non-contractible investments before bar-

gaining over both who matches with whom and the terms of trade. In thin markets, the

holdup problem—that is, underinvestment caused by agents receiving only a fraction of

the returns from their investments—is ubiquitous. Using a non-cooperative investment

and bargaining game, we show that holdup need not be a problem in markets with dy-

namic entry—even if they are thin at every point in time. This provides non-cooperative

foundations for the standard price-taking assumption in matching markets, and shows

that intertemporal competition can perfectly substitute for intratemporal competition.

1 Introduction

In many markets, crucial investments are sunk by the time agents bargain over prices and

allocations. For example, workers and employers invest in human and physical capital well

before bargaining over who will match with whom and for what wages. This can lead to

holdup problems—that is, agents underinvesting because they do not expect to fully appro-

priate the returns from their investments (e.g., Williamson 1975; Grout 1984; Grossman and

Hart 1986; Tirole 1986; Hart and Moore 1990) and severely limit the efficiency of these mar-

kets (e.g., Hosios 1990; Acemoglu 1996, 1997; Cole, Mailath, and Postlewaite 2001a; de Meza

and Lockwood 2010; Elliott 2015; Felli and Roberts 2016).
∗Date Printed: April 17, 2019. We thank Benjamin Golub, George Mailath, Andrew Postlewaite and Larry

Samuelson for useful conversations, and various audiences for useful feedback. Financial support from the
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What market forces might prevent such holdup problems? Informally, the standard an-

swers involve the market being sufficiently thick—in the sense that each market participant

has many close substitutes, and hence can plausibly take the prices that she faces as being in-

dependent from her investments.1 For example, the literature investigating the efficiency of

investments under competitive matching (e.g., Cole, Mailath, and Postlewaite 2001b; Peters

and Siow 2002; Mailath, Postlewaite, and Samuelson 2013 and 2017; Nöldeke and Samuel-

son 2015; Chiappori, Salanié, and Weiss 2017; Chiappori, Dias, and Meghir 2018; Dizdar

2018) assumes holdup problems away by focusing on markets featuring a continuum of

price-taking agents on each side, and Acemoglu and Shimer (1999) show that holdup need

not be a problem in directed search environments also with a continuum of agents on each

side.2

While, in practice, many markets are not often particularly thick—so the arguments above

do not readily apply—many markets feature substantial inflows and outflows of agents. For

example, at any given time, most employers cannot find more than a handful of appropriate

available candidates and, similarly, most candidates cannot find more than a handful of ap-

propriate job openings. Over time, however, most employers can interview a large number

of appropriate candidates and, similarly, most candidates can interview for a large number

of appropriate job openings. This motivates the questions that we investigate in this paper:

To what extent can future entry generate present competition? Can intertemporal competi-

tion substitute for intratemporal competition? In particular, can markets that appear thin at

every point in time nevertheless be sufficiently competitive to prevent holdup?

The contribution of this paper is twofold. First, we show that intertemporal competition

can perfectly substitute for intratemporal competition. In particular, we show that dynamic

entry in a two-sided matching market can allow everyone to obtain the full returns from

their marginal investments—and hence eliminate the holdup problem. Intuitively, even if

there are only a few close substitutes for a given agent today, the expected entry of close

substitutes in the future creates present competition for this agent. Second, we provide

non-cooperative foundations for the widely used price-taking assumption in matching mar-

kets (e.g., Chiappori, Iyigun, and Weiss 2009; Nöldeke and Samuelson 2015; Eeckhout and

1Gretsky, Ostroy, and Zame (1999) formalize this idea in the context of the transferable utility assignment

game by showing that (i) in finite economies, agents generically do not get their marginal products, and (ii) in

continuum economies, (small groups of) agents generically get their marginal products. They also formalize

the idea that sufficiently large finite assignment economies are generally approximately perfectly competitive.
2The competitive matching literature assumes that agents are price takers—precluding holdup—in order

to investigate other possible sources of investment inefficiencies like coordination failures, participation con-

straints, and imperfect information.
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Kircher 2018; Chade and Eeckhout 2019). This clarifies the conditions under which the price-

taking assumption is appropriate, and suggests that dynamic entry can be an important force

driving price-taking behavior. To the best of our knowledge, this paper is the first to deliver

either of these two objectives.

We model two-sided matching markets as a non-cooperative investment and bargaining

game featuring stochastic inflows and outflows of agents. There are finitely many types of

agents—with potentially few agents of each type in the market at any point in time (that

is, limited intratemporal competition within types). Prior to entering the market, agents on

both sides have access to a rich investment technology. Agents’ investments shape their

matching surpluses. These investments can include general and type-specific investments.

Different types can have access to different investments. Investments are not contractible,

and hence sunk by the time agents enter the market. Once in the market, agents bargain

according to a standard protocol in the spirit of Rubinstein (1982): In each period, one agent

is randomly selected to be the proposer. The proposer chooses whom to make an offer to as

well as how to split the resulting surplus. The agent receiving the offer then decides whether

to accept it—in which case she matches with the proposer (and both leave the market)—or

reject it—in which case no match occurs in this period.

We characterize the type-symmetric Markov-perfect equilibria of this game for all suf-

ficiently high discount factors, and we show that there is no holdup problem in any such

equilibrium—in the sense that no investment deviation by any agent affects anyone else’s

payoffs, and hence each agent obtains the full returns of any unilateral investment deviation

that she makes.3 The intuition is roughly as follows: On the one hand, if one chooses to

invest more than the other agents of her type, she can play off the agents on the other side

of the market to obtain the full marginal returns from this deviation. On the other hand, if

one chooses to invest less than the other agents of her type, the future entry of agents of her

type allows the agents on the other side to ignore her without any payoff consequences, so

she again obtains the full (negative) marginal returns from this deviation. In other words,

even while engaging in decentralized non-cooperative bargaining in a market that may ap-

pear thin at every point in time, everyone is a price taker—and hence a residual claimant of

the surplus created or lost by any unilateral investment deviation. As a result, everyone’s

private and social incentives to invest are perfectly aligned.

A natural benchmark for our work is the literature on the assignment game with ex ante

3In a type-symmetric Markov-perfect equilibrium, all agents of a given type follow the same strategy—

which conditions only on the (current and expected future) matching opportunities in the market.
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non-contractible investments.4 There is a large literature—dating back at least to Becker

(1975)—that investigates the holdup problem in this setting. An important message from

this literature is that only under special circumstances can everyone fully appropriate the

social value of their investments. To illustrate this point, assume that, once investments are

sunk, a Walrasian outcome of the resulting matching market is selected. In such markets,

there are typically many Walrasian equilibria, and these support a continuum of possible

payoffs for each agent. Leonard (1983) (see also Demange 1982) shows that an agent fully

appropriates the social value of her investments if and only if she receives her highest possi-

ble payoff among all the Walrasian equilibria. Hence, a natural way to guarantee investment

efficiency is to give each agent her best possible Walrasian payoff. Unfortunately, however,

this is usually impossible, since it requires the existence of a unique Walrasian equilibrium

that pins down all prices—a situation that, as shown by Gretsky, Ostroy, and Zame (1999),

is not generic in finite markets.5

This paper contributes to the literature investigating the conditions under which match-

ing markets are competitive—in the sense that its members are price takers (e.g., Gret-

sky, Ostroy, and Zame 1999; Cole, Mailath, and Postlewaite 2001a). For example, in finite

matching markets with unidimensional attributes and complementarities in these attributes,

Cole, Mailath, and Postlewaite (2001a) provide a condition, called “doubly overlapping at-

tributes”, that guarantees that there is an essentially unique stable outcome, and that the as-

sociated prices continue to clear the market after any unilateral investment deviation. Under

these conditions, agents are price takers—in the sense that no unilateral change in attributes

affects the market prices—and, as a result, efficient non-contractible investments can be sup-

ported in equilibrium. We take a dynamic approach to address similar questions, and we

find that essentially no restrictions on the nature of the investments and resulting matching

surpluses are required to preclude holdup problems when agents are sufficiently patient.

In order to treat attribute choices as a non-cooperative game, Cole, Mailath, and Postle-

waite (2001a) introduce a bargaining function that associates a particular stable outcome to

each choice of attributes. They show that, for any efficient profile of investments, there is

a bargaining function that—by appropriately selecting the stable outcome after any devia-

4The assignment game is a static two-sided one-to-one matching market with transferable utility. See for

example Shapley and Shubik (1972).
5It is possible to simultaneously give everyone on one side of the market her maximum possible Walrasian

equilibrium payoff, but this requires also giving everyone on the other side of the market her minimum possi-

ble Walrasian equilibrium payoff (Shapley and Shubik 1972). Nevertheless, if only one side of the market has

investment opportunities, this selection can support efficient investments (e.g., Kranton and Minehart 2001;

Hatfield, Kojima, and Kominers 2014; Felli and Roberts 2016).
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tion from these investments—supports these investments in equilibrium. However, as they

discuss, this approach allows a lot of freedom for choosing the bargaining function, and

alternative choices are generally not consistent with efficient equilibrium investments. An

advantage of our non-cooperative approach is that it essentially uniquely pins down bar-

gaining outcomes as a function of investments: For any type-symmetric investment profile,

the notion of subgame-perfect equilibrium uniquely pins down everyone’s payoffs.

Makowski and Ostroy (1995) generalize the First Theorem of Welfare Economics by re-

laxing the price-taking and market-making assumptions: They consider a finite population

model in which individuals choose occupations, and those occupations determine the goods

that can be consumed. They show that a version of the First Theorem holds in their environ-

ment under two conditions. The first condition requires that everyone fully appropriates the

social value of her actions, and the second condition eliminates coordination problems. In

this paper, we show that the full appropriability condition is endogenously satisfied in our

dynamic non-cooperative bargaining game in the limit as agents become arbitrarily patient.

Several non-contractual solutions to the holdup problem in bilateral settings have been

proposed. For example, Gul (2001) shows how holdup need not be a problem for unobserv-

able investments, and Che and Sákovics (2004) show that holdup need not be a problem

when the investment and bargaining stages are intertwined.6 In contrast, we focus on set-

tings in which agents must sink their observable investments before bargaining in a match-

ing market, and we show how intertemporal competition can eliminate the holdup problem.

Roadmap

The rest of this paper is organized as follows. In section 2, we illustrate the main ideas

in the context of a simple example. In section 3, we describe the general model and, in

section 4, we present and prove our main result. We relegate some details of the analysis

in section 2 to Appendix A, and relatively standard results that we use to prove our main

result to Appendix B and Appendix C.

6Che and Sákovics (2018) investigate the role of contracts in settings in which the investment and bargain-

ing stages are intertwined. See Che and Sákovics (2008) for a brief overview of the literature on the holdup

problem.

5



2 Example

In this section, we present a simple example that captures the essential ideas of this paper.

We start, in subsection 2.1, by reviewing the standard holdup problem in the context of an

investment and bargaining game featuring two buyers and two sellers.7 Then, in subsec-

tion 2.2, we describe a homologous market with sequential entry, and we illustrate how, in

this case, the holdup problem vanishes as agents become arbitrarily patient. For simplicity,

in the version of this example featuring sequential entry, we assume that each agent that

leaves the market is immediately replaced by an identical agent (or replica).8

Later on, we show the analogous no holdup result in a more general setting that allows (i)

stochastic entry (a relaxation of the replica assumption), (ii) many types of buyers and sellers,

and (iii) a rich investment technology including general and type-specific investments.

2.1 Holdup in a market without sequential entry

Let us describe a simple game featuring a standard investment holdup problem. There are

two identical buyers, b1 and b2, and two identical sellers, s1 and s2, with a common discount

factor δ. In the first period t = 0, they simultaneously make investments. They can choose

to either invest or to not invest. Their investments shape their matching surpluses: When a

buyer and a seller match in any period t = 1, 2, . . . , they generate

2 units of surplus if both have invested,

1 unit of surplus if only one of them has invested, and

0 units of surplus if none of them has invested.

(1)

Not investing costs zero, and investing costs c, with 1/2 < c < 1. Hence, efficiency requires

that everyone invests if the discount factor δ is sufficiently close to 1.

We focus on the case in which investments at time 0 are not contractible. This requires

specifying how the outcome (that is, who matches with whom and how the resulting surplus

is shared) is determined as a function of the realized investments. We take a non-cooperative

approach: Once the agents have sunk their investments, they bargain according to the fol-

7The idea that holdup arises in finite static markets goes through in larger markets as well as in unbalanced

markets (i.e., markets with different amounts of buyers and sellers). See for example Gretsky, Ostroy, and Zame

(1999) and Cole, Mailath, and Postlewaite (2001a) for general treatments of this idea.
8This simplifying assumption has been widely used in the dynamic matching and bargaining literature; see

for example Rubinstein and Wolinsky (1985), Manea (2011), Nguyen (2015) and Polanski and Vega-Redondo

(2018).
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lowing standard protocol (e.g., Elliott and Nava 2019): In each period t = 1, 2, . . . , one of the

four agents is selected uniformly at random to be the proposer. If the selected agent has al-

ready matched in a previous period, no trade occurs in this period. Otherwise, the proposer

chooses one agent on the other side of the market, and makes her a take-it-or-leave-it offer

to share their gains from trade. The receiver of this offer then either accepts it—in which

case the pair match with the agreed shares—or rejects it—in which case no trade occurs in

this period.

This game features a standard holdup problem: Each agent pays the full costs of her invest-

ment at time t = 0, but the thinness of the market implies that she need not fully appropriate

the resulting increase in surplus in the matching stage—limiting her incentives to invest ef-

ficiently. Indeed, focusing on (Markov) strategies that only condition on the surpluses that

the agents that are yet to match can generate, we now argue that there does not exist any

Markov-perfect equilibrium featuring efficient investments. For brevity, we focus on the

case in which agents are arbitrarily patient.

Towards a contradiction, suppose that an efficient equilibrium exists. Given that the ag-

gregate surplus is at most 4, at least one of the agents has a limit gross payoff that is bounded

above by 1. Suppose, without loss of generality, that the limit gross equilibrium payoff of b1
is bounded above by 1, and consider a deviation by b1 to not invest. We show that b1’s limit

gross payoff under this deviation is bounded below by 1/2—i.e., this deviation reduces her

limit gross payoff by at most half of the corresponding reduction in gross aggregate surplus.

Since this deviation involves no investment costs, b1’s limit net payoff under this deviation

is also bounded below by 1/2, which is strictly higher than 1 − c (the upper bound on her

limit equilibrium net payoff). Hence, this deviation is profitable.

The key observation driving the argument is that, when everyone but b1 invests, b2 does

not delay in equilibrium.9 Hence, b1 can just wait until b2 matches, and then share the re-

maining unit of surplus approximately equally with the remaining seller—as specified by

the unique subgame perfect equilibrium at that point. As a result, her payoff is bounded

below by 1/2 in the limit as δ goes to 1. Intuitively, the deviator can hold out until her

competitor leaves, at which point she faces a bilateral monopoly situation—where the sur-

plus loss generated by her deviation is shared with another agent (while she pockets all the

associated savings).

9While the fact that b2 does not delay in equilibrium seems intuitive enough (it is difficult to imagine how

her bargaining position can improve after b1 leaves), proving this formally requires some care. We relegate the

details of the argument to subsection A.1 in Appendix A.
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2.2 No holdup in a market with sequential entry

Now consider a homologous market featuring sequential entry. In the first period t = 0, a

continuum of identical buyers and a continuum of identical sellers simultaneously make

(non-contractible) investments. As before, they can choose to either invest or to not invest,

and their investments determine the surplus of each match—as specified by (1). Each agent

that invests has to pay the investment cost c in the period in which she enters the market.10

As in the market without sequential entry, when agents are sufficiently patient, it is efficient

that everyone invests.

Once the agents have sunk their investments, they bargain according to the following

standard protocol (e.g., Talamàs 2019b): In each period t = 1, 2, . . . , there are two active

buyers and two active sellers. In particular, in the first period t = 1, two buyers and two

sellers are selected uniformly at random to be active and, every time a buyer and a seller

trade, they leave the market, and a new buyer-seller pair is drawn uniformly at random

(from those that are yet to become active) to replace them. Hence, in each period, both the

bargaining protocol and the set of surpluses that the active agents can create are exactly as

in a subgame that starts in period t = 1 of the benchmark setting without sequential entry

described above.

We argue that, in stark contrast to the setting without sequential entry, holdup in this

game need not be a problem. Indeed, focusing on Markov strategies that condition only

on the profile of investments made at t = 0 and the investments of the active agents, we

show that—when agents are sufficiently patient—there exists an efficient Markov-perfect

equilibrium (in which everyone invests).11 Intuitively, unlike in the case without entry, an

agent that chooses to deviate from an efficient equilibrium (by not investing) cannot hold out

until she faces a bilateral monopoly situation that allows her to share the surplus reduction

generated by her deviation. In fact, we show that the price that such a deviator has to pay in

order to match with an agent on the other side of the market is not affected by her deviation.

As a result, she faces the full negative consequences of her deviation.

In Appendix C, we show that there exists a Markov-perfect equilibrium of the subgame

that starts at t = 1 for any profile of investments made in period t = 0. Hence, in order to

show that there exists an efficient Markov-perfect equilibrium, it is enough to:

10This guarantees that, in equilibrium, each agent chooses the investment profile that maximizes her payoffs

conditional on entering the market (even if this happens with probability zero).
11Furthermore, when agents are arbitrarily patient, every type-symmetric Markov-perfect equilibrium is

efficient; see subsection A.2 in Appendix A.
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1. Describe Markov-perfect equilibrium strategy profiles in the subgames that start with

(i) everyone that is yet to trade (active or inactive) having invested, and (ii) all but one

of the active agents having invested.

2. Show that, under any strategy profile that specifies these actions in these subgames and

that everyone invests in t = 0, any unilateral investment deviation from this strategy

profile is unprofitable.

First, let us describe Markov-perfect equilibrium strategies for the subgames where ev-

eryone that is yet to trade (active or inactive) has invested: Each agent accepts every offer

that gives her at least w, and each proposer offers w to an agent on the other side of the mar-

ket, who accepts. Each agent must be indifferent between accepting and rejecting an offer

that gives her w; that is,

w = δ

1

4
(2− w)︸ ︷︷ ︸

proposer’s payoff

+
3

4
w︸︷︷︸

non-proposer’s payoff

 , that is, w =
δ

2− δ
→ 1.(2)

Second, let us describe Markov-perfect equilibrium strategies for every subgame in which

all but one agent, who is active, has invested. As soon as the deviator leaves, switch to the

strategy just described. While the deviator is active: Each non-deviator (i) offers w (defined

by Equation 2) to some other non-deviator, who accepts with probability one, and (ii) accepts

an offer if and only if it gives her at least w. The deviator (i) offers w to some non-deviator,

who accepts with probability one, and (ii) accepts an offer if and only if it gives her at least

w′. The deviator obtains 1− w when she is the proposer, so her cutoff w′ must satisfy

w′ = δ

1

4
(1− w)︸ ︷︷ ︸

deviator’s payoff when proposer

+
3

4
w′︸︷︷︸

deviator’s payoff when non-proposer

 ,

or, rearranging,

w′ = w
2− 2δ

4− 3δ
= w

(
1− 2− δ

4− 3δ

)
= w − δ

4− 3δ
> w − 1.

Hence, this is indeed an equilibrium, since 2 − w > 1 − w′ implies that the best the non-

deviators can do is to obtain 2 − w when they are the proposers. We conclude that the

deviator saves c but loses 1 in the limit as δ goes to 1. Hence, for all sufficiently high discount

factors, her deviation is not profitable.
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3 Model

There is a finite set I of types of agents, and a continuum of agents of each type. The type

of an agent determines her investment opportunities and her resulting gains from trade,

as specified below. All the agents have a common discount factor 0 ≤ δ < 1, common

knowledge of the game and perfect information about all the events preceding any of their

decision nodes in the game.

3.1 Investment

In the first period t = 0, all the agents simultaneously choose their investments: Each agent

of type i chooses an investment from a finite set Ki ⊂ Rmi , where mi ≥ 1. An agent of

type i with investment profile xi and an agent of type j 6= i with investment profile xj

produce y(xi,xj) > 0 units of surplus when they match, and the costs of their investments

are c(xi) and c(xj), respectively. An agent of type i with investment profile xi generates

y(xi,xi) > 0 in isolation (this can capture her outside options, for example). Each agent

pays her investment cost in the period in which she enters the market.

Remark 3.1. Given that the function y determines the surplus of each match only as a function of

the investment profiles of its members, this formulation encodes all the heterogeneities among types

via their investment opportunities. This can capture arbitrary heterogeneity among different types

of agents. For example, suppose that there are two seller types, i′ and i′′, and two buyer types, j′

and j′′, and further that i′ is a much better fit for type j′ than j′′ is, while i′′ is a much better fit for

type j′′ than j′ is. To capture this situation, we can simply take the surplus y(xi,xj) associated with

any investment profile (xi,xj) ∈ (Ki′ × Kj′) ∪ (Ki′′ × Kj′′) to be high relative to the associated

investment costs, and the surplus y(xi,xj) associated with any investment profile (xi,xj) ∈ (Ki′′ ×
Kj′) ∪ (Ki′ ×Kj′′) to be low relative to the associated investment costs.

Remark 3.2. We assume that all investments are decided before any bargaining occurs for two rea-

sons. First, this highlights that our mechanism does not rely on intertwining the investment and

bargaining stages (as is the case in Che and Sákovics 2004, for example). Second, this substantially

simplifies the analysis by allowing us to leverage existing results in the non-cooperative bargaining

literature (e.g., Elliott and Nava 2019 and Talamàs 2019b).
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3.2 Non-cooperative bargaining

Once everyone chooses her investment in period t = 0, bargaining occurs in discrete periods

t = 1, 2, . . . . For each type i, there are ni ≥ 2 bargaining slots. In any given period, each slot of

a given type can be occupied by one agent of that type, or be empty. We refer to the agents

occupying the slots in any given period as the active agents in that period, and we denote the

total number of slots by n :=
∑

i∈I ni.

In each period t = 1, 2, . . . , one slot is selected uniformly at random (i.e., each slot is

selected with probability 1/n). If the slot is empty, no trade occurs in this period. Otherwise,

its occupant becomes the proposer. The proposer a chooses an active agent b (which can be

herself) and makes her a take-it-or-leave-it offer specifying a split of the surplus y(xa,xb),

where xa and xb denote agents a and b’s investment profiles, respectively. The receiver

of this offer can then accept or reject. If she accepts, then a and b exit the market with the

agreed shares, vacating their respective bargaining slots. Otherwise no trade occurs (and no

bargaining slots are vacated) in this period.

Remark 3.3. The assumption that there are finitely many bargaining slots together with Assump-

tion 3.4 below prevents the number of agents in the market from either growing without bound or

shrinking to zero.12

3.3 Stochastic entry

For each type i and each s ≤ ni, at the beginning of each period that starts with s empty

bargaining slots of type i, a number s′ ≤ s is drawn according to a stationary probability

distribution qis. Then, s′ agents are drawn uniformly at random from those agents of type i

that are yet to become active, and these are randomly assigned to different empty slots of

type i. Assumption 3.4 substantially simplifies the analysis.

Assumption 3.4. There are always at least two active agents of each type.

Assuming that there is always at least one active agent of each type simplifies the analysis

by guaranteeing that, when all the agents of the same type choose the same investments,

payoffs are uniquely determined by our notion of Markov-perfect equilibrium (Proposi-

tion B.2). Assuming that there are always at least two active agents of each type further

simplifies the analysis by guaranteeing that a deviating agent can play off the agents of

12Binmore and Herrero (1988) consider these limits in a related dynamic bargaining model.
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other types, and that no unilateral investment deviation shrinks the relevant bargaining op-

portunities of the non-deviators.

Remark 3.5. Assumption 3.4 holds under fairly mild conditions on the stochastic inflow process. It

holds, for example, if there is at least one active agent of each type in period t = 1, and qini−1(0) = 0

for each type i. It also holds under the classical replica framework of the literature on non-cooperative

bargaining in stationary markets (e.g., Rubinstein and Wolinsky 1985 and 1990; Gale 1987; de Fraja

and Sákovics 2001, Manea 2011, Lauermann 2013, Nguyen 2015, Polanski and Vega-Redondo 2018,

Talamàs 2019b) as long as there are two or more agents of each type.13

3.4 Histories, strategies and equilibrium

There are three kinds of histories. We denote by ht a history of the game up to—but not

including—time t. We denote by (ht; i) the history that consists of ht followed by agent i

being selected to be the proposer at time t. We denote by (ht; i → j; s) the history that

consists of (ht; i) followed by agent i offering a share s to agent j. A strategy σi for agent i

specifies her investment and, for all possible histories ht, the offer σi(ht; i) that she makes

following the history (ht; i) and her response σi(ht; j → i; s).

The strategy profile σ is a type-symmetric Markov-perfect equilibrium if it induces a Nash

equilibrium in every subgame, all the agents of any given type follow the same strategy, and

each agent a’s bargaining strategy conditions only on (i) the investment profile, (ii) the set

{y(xb,xc) | agents b, c active} of surpluses among the active agents, (iii) the set {y(xa,xb) |
agent b active} of surpluses that she can create with the active agents, (iv) for each type i

that is such that not all agents of type i yet to enter have chosen the same investment, the

number of vacant slots of type i, and (v) the going proposal (in the case of a response).14

4 No holdup in equilibrium

Theorem 4.1 below shows that an investment profile (xi)i∈I can be implemented as a type-

symmetric Markov-perfect equilibrium for all sufficiently high discount factors if and only

if it is constrained efficient—in the sense that no agent, taking others’ payoffs as given and free

13This framework assumes that each agent that leaves the market is immediately replaced by an identical

agent.
14The number of vacant slots of type i is payoff relevant only when not all agents of type i yet to enter have

chosen the same investment.
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to choose whom to match with, has a profitable investment deviation. In particular, in the limit

as agents become arbitrarily patient, in every type-symmetric Markov-perfect equilibrium,

each agent’s private benefit from any investment deviation coincides with its social benefit.

As background for this result, we note that, for each type-symmetric investment profile

x := (xi)i∈I and each type i, there exists Vi(x) > 0 such that, in every subgame-perfect

equilibrium of the subgame that starts at t = 1 with the investment profile x, Vi(x) is the

expected equilibrium (gross) payoff at the beginning of each period of each agent of type i

(Proposition B.2). We denote the limit of Vi(x) as δ goes to 1 by V ?
i (x).15

Theorem 4.1. A type-symmetric Markov-perfect equilibrium with investment profile x := (xi)i∈I

exists for all sufficiently high discount factors if and only if

xi ∈ argmax
zi∈Ki

[
max

(
y(zi, zi),max

j∈I

[
y(zi,xj)− V ?

j (x)
] )
− c(zi)

]
for each i in I.(3)

Proof. Necessity: Fix a type-symmetric Markov-perfect equilibrium σ with investment pro-

file (xi)i∈I . Let vi and wi denote the (gross) expected equilibrium payoff of each active agent

of type i in a period in which she is and she is not the proposer, respectively. Given that σ

is Markov perfect, each agent gets—when she is the proposer—the maximum amount that

she can obtain while leaving the receiver indifferent between accepting and rejecting (unless

she chooses to match with herself). Hence,

vi = max
(
y(xi,xi),max

j∈I
[y(xi,xj)− wj]

)
.

Given that each agent is selected to be the proposer with probability 1/n and that, in equi-

librium, no agent is ever offered more than her expected equilibrium payoff, we have that

wi = δ
(
1
n
vi + n−1

n
wi

)
. Rearranging gives

wi = χvi = χmax
(
y(xi,xi),max

j∈I
[y(xi,xj)− wj]

)
where χ :=

δ

n− δ(n− 1)
→ 1 as δ → 1.

Hence, it is enough to show that, for any investment deviation from the equilibrium σ by

an agent d, and for any agent a 6= d (of type i, say), a’s expected equilibrium payoff ŵa when

rejecting an offer from d gets arbitrarily close to wi as δ goes to 1. Indeed, given that the set

of investments is finite, and that wi converges to V ?
i (x) for each type i, when δ is sufficiently

close to 1 each agent a must then choose her investment za to maximize

max
(
y(za, za),max

j∈I
[y(za,xj)− V ?

j (x)]
)
− c(za).

15Talamàs (2019a) describes a simple algorithm that computes the profile V ?(x) for every investment profile

x := (xi)i∈I , and characterizes V ?(x) in terms of the the classical Nash bargaining solution.
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Suppose that an agent d of type k deviates from σ by investing xd 6= xk. Given Assump-

tion 3.4, neither the set {y(xa,xb) | agents a, b active} of surpluses among the active agents

nor the set {y(xd,xb) | agent b active} of surpluses that the deviator d can generate with the

active agents change while the deviator d is active. Hence, given that σ is Markov perfect,

for each agent a we can let ŵa be her expected equilibrium payoff when rejecting an offer

while d is active. Furthermore, when d is the proposer, she offers ŵa to some agent a, who

accepts with probability one.16

Fix an arbitrary type i, and let a 6= d be an agent of type i such that there exists an agent c 6=
a with whom the deviator trades with positive probability in equilibrium (Assumption 3.4

ensures that we can find such an agent). We argue that ŵa −wi converges to 0 as δ goes to 1.

Since σ is type symmetric, this implies that, for each agent b of type i, ŵb−wi also converges

to 0 in the limit as δ goes to 1.

Let ε > 0. First, note that ŵa ≥ wi − ε for all sufficiently high discount factors. This

is because agent a can always wait for the deviator to leave, and—once this happens—her

expected equilibrium payoff (when rejecting an offer) is wi. We now argue that ŵa ≤ wi + ε

for all sufficiently high discount factors. For contradiction, suppose otherwise. Given that,

as we have just argued, for each type j and each agent b of type j other than the deviator,

ŵb ≥ wj − ε for all sufficiently high discount factors, agent a must be making offers to the

deviator for all sufficiently high discount factors. For each such discount factor δ, letting

π > 0 be the probability that the deviator trades with someone other than a when a is not

the proposer, we have that

ŵa = δ

[
1

n
(y(xa,xd)− ŵd) +

n− 1

n
(πwi + (1− π)ŵa)

]
and, given that d can always make offers to a,

ŵd ≥ δ

[
1

n
(y(xa,xd)− ŵa) +

n− 1

n
ŵd

]
.

If the weak inequality holds with equality, it is easy to check that ŵa gets arbitrarily close

to wi as δ goes to 1, a contradiction. Otherwise, ŵa is strictly smaller than wi for all large

enough δ, also a contradiction.

Sufficiency: Proposition C.1 shows that there exists a type-symmetric Markov perfect equi-

librium in the subgame starting at t = 1 for every choice of agents’ investments. Hence, for
16Note that agent d deviates at the investment stage only, so σ still governs her bargaining strategy. Given

that σ is Markov, and that the environment is stationary from the point of view of the deviator d, she can obtain

a strictly bigger amount when she is the proposer than when she is the receiver, so she leaves the market—by

matching to herself or to someone else—with probability one when she is the proposer.
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each investment profile z, we can pick an equilibrium σ(z) of the subgame that starts at

t = 1. Given any investment profile (xi)i∈I , define a strategy profile as follows: All the

agents of type i invest xi, and each agent’s bargaining strategy given any investment profile

z is as specified byσ(z). This strategy profile is a Markov-perfect equilibrium if no agent has

incentives to deviate at the investment stage (t = 0), which—as argued in the necessity part

of the proof—is guaranteed (for all sufficiently high discount factors) by condition (3).

Remark 4.2. The absence of holdup in equilibrium does not imply that every equilibrium involves

efficient investments, nor that every efficient investment profile can be implemented in equilibrium.

For example, coordination failures can sustain inefficient investment profiles in equilibrium for all

sufficiently high discount factors. To see this, consider the example described in subsection 2.2, except

that the surplus of any match is 0 unless both sides invest (in which case this surplus is 2). It is

still efficient that everyone invests (for sufficiently high discount factors), but there is an (inefficient)

equilibrium in which no one invests. Participation constraints can also prevent the existence of an

equilibrium that implements an efficient type-symmetric investment profile. See for example Cole,

Mailath, and Postlewaite (2001a, 2001b) and Nöldeke and Samuelson (2015) for an investigation of

these sources of inefficiency in a competitive matching environment (that precludes holdup problems).
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Appendices

A Details omitted from section 2

A.1 Details omitted from subsection 2.1

We show formally the key observation from the example in subsection 2.1: When everyone

but b1 invests, b2 does not delay in equilibrium. Towards a contradiction, suppose that, when

b2 is the proposer, she delays (makes an unacceptable proposal) with probability π > 0, she

makes an acceptable offer to s1 with probability (1− π)β, and she makes an acceptable offer

to s2 with probability (1− π)(1− β).

First note that, since b2 delays, no one else can delay. To see this, let wi denote i’s expected

equilibrium gross payoff in any given period conditional on not trading in this period. It

follows from min{wb2+ws1 , wb2+ws2} ≥ 2 (which holds because b2 delays) andwb1+ws2+wb2+

ws1 < 3 (which holds because the aggregate discounted surplus is below 3) that wb1 +ws1 < 1

and wb1 + ws2 < 1. Hence, in equilibrium, b1 makes an acceptable offer with probability one

to either s1 or s2 when she is the proposer. Moreover, by the same argument, the sellers both

make acceptable offers to b1 with probability one when they are the proposers.

Second, letting w be the quantity that a seller that is yet to match is indifferent between

accepting and rejecting in a subgame in which b1 has already matched, the fact that b2 delays

implies that ws1 > w. We have that

w = δ

(
1

4
(2− w) +

3

4
w

)
(4)

and that

ws1 = δ

1

4
(1− wb1)︸ ︷︷ ︸
s1 proposes

+
1

4
πws1 + (1− π)(βws1 + (1− β)w′)︸ ︷︷ ︸

b2 proposes

+
1

4
(κws1 + (1− κ)w)︸ ︷︷ ︸

b1 proposes

+
1

4
w︸︷︷︸

s2 proposes


(5)

where κ denotes the probability that b1 makes an offer to s1 in any period before anyone has

matched when b1 is the proposer, and w′ is the quantity that a seller that is yet to match is

indifferent between accepting and rejecting in a subgame in which b2 has already matched.

Given that 2 − w ≥ 1 ≥ 1 − wb1 , that w′ < w, and that ws1 = ws2 unless β = 1 (because

b2 makes offers only to a seller with the lowest cutoff), the combination of Equation 4 and

Equation 5 implies that ws1 ≤ w, a contradiction.
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A.2 Details omitted from subsection 2.2

We show that—for all sufficiently high discount factors—every type-symmetric Markov-

perfect equilibrium of the game described in subsection 2.2 is efficient. Suppose for con-

tradiction that there exists a sequence D of discount factors converging to 1, such that, for

each δ ∈ D, there exists a type-symmetric Markov-perfect equilibrium σ in which only the

sellers invest. We show that, for all sufficiently high δ ∈ D, a buyer can profitably deviate by

investing. A similar argument shows that—when agents are arbitrarily patient—there exists

no type-symmetric Markov-perfect equilibrium in which only the buyers invest, or in which

neither the buyers nor the sellers invest.

Let δ ∈ D and consider the associated equilibrium σ. On the equilibrium path, each

agent’s expected payoff when she rejects an offer satisfies

w = δ

1

4
(1− w)︸ ︷︷ ︸

proposer’s payoff

+
3

4
w︸︷︷︸

non-proposer’s payoff

 , that is, w =
δ

4− 2δ
→ 1

2
.(6)

Suppose that buyer b′1 deviates and invests, and consider a subgame in which b′1 is active.

From the point of view of b′1, the environment is stationary. Hence, when she is the proposer,

she makes offers that leave the receiver indifferent between accepting and rejecting, and

which are accepted with probability one.17

Let s be a seller such that there exists a seller s′ 6= s with whom the deviator trades with

positive probability, and let ŵs be her expected equilibrium payoff when rejecting an offer

from b′1. We show that, in the limit as δ goes to 1, ŵs converges to 1/2. Given that σ is Markov

perfect and specifies that each agent of the same type follows the same strategy, this implies

that every other seller’s expected equilibrium payoff when rejecting an offer from b′1 also

converges to 1/2, so when δ is sufficiently high this deviation is profitable (the deviator’s net

gain is 1− c > 0).

First, we argue that ŵs is bounded below by 1/2 in the limit as δ goes to 1. Given that the

seller s can always wait for the deviator to leave (at which point she obtains 1/2), for each

ε > 0, ŵs is bounded below by 1/2− ε for all high enough δ ∈ D. A similar argument shows

that the expected equilibrium payoff ŵb of each buyer b 6= b′1 conditional on not being the

proposer in a period in which b′1 is active is bounded below by 1/2 in the limit as δ goes to 1.

Second, we argue that ŵs is bounded above by 1/2 in the limit as δ goes to 1. Suppose for

contradiction that there exists ε > 0 such that ŵs ≥ 1/2 + ε for all sufficiently high δ ∈ D.
17Note that we are considering an investment deviation from σ, so the Markov-perfect equilibrium σ still

governs the deviator’s bargaining strategy.
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Given that, as we have just argued, for each buyer b 6= b′1, ŵb is bounded below by 1/2 in

the limit as δ goes to 1, seller s must be making offers to the deviator b′1 for all sufficiently

high δ ∈ D. For each such discount factor δ, letting π > 0 be the probability that the deviator

trades with someone other than s when s is not the proposer, we have that

ŵs = δ

[
1

4
(2− ŵb′1

) +
3

4
(πw + (1− π)ŵs)

]
and ŵb′1

= δ

[
1

4
(2− ŵs) +

3

4
ŵb′1

]
,

which implies that ŵs converges to 1/2 as δ goes to 1, a contradiction.

B Uniqueness of perfect equilibrium payoffs

Proposition B.2 shows that, as long as there is always at least one agent of each type active in

the market, the notion of subgame-perfect equilibrium pins down the payoffs of all agents

conditional on their (type-symmetric) investment strategies. Moreover, these payoffs are

independent of the details of the process by which bargaining slots are filled. This is a slight

generalization of the analogous result in Talamàs (2019b), where it is assumed that exactly

one agent of each type is active in the market at each point in time. Proposition B.2 holds

under the following assumption, which is weaker than Assumption 3.4.

Assumption B.1. There is always at least one active agent of each type.

Proposition B.2. Fix an investment profile x := (xi)i∈I , and suppose that Assumption B.1 holds.

For every type i, there exists a value Vi(x) > 0 such that, in every subgame-perfect equilibrium with

investment profile x, the expected equilibrium payoff of each active agent of type i at the beginning of

each period is Vi(x).

The proof of Proposition B.2 is identical to the corresponding result in Talamàs (2019b),

which is itself similar to the proof of the analogous result in Manea (2017) in the context of

a model with random matching (as opposed to the framework with strategic choice of part-

ners that we focus on in this paper). For completeness, we provide this proof here. Propo-

sition B.2 follows from Proposition B.3, since every subgame-perfect equilibrium of a game

with perfect information (as the one we study) survives the process of iterated conditional

dominance (Theorem 4.3 in Fudenberg and Tirole 1991).

Following Fudenberg and Tirole (1991, page 128), we define iterated conditional domi-

nance on the class of multi-stage games with observed actions as follows.
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Definition B.1. Action ati available to some agent i at information set Ht is conditionally dom-

inated if every strategy of agent i that assigns positive probability to action ati in the infor-

mation set Ht is strictly dominated. Iterated conditional dominance is the process that, at each

round, deletes every conditionally-dominated action given the strategies that have survived

all the previous rounds.

Fudenberg and Tirole (1991) show how iterated conditional dominance solves the alternating-

offers bilateral model of Rubinstein (1982). Manea (2017) shows how iterated conditional

dominance also solves a wide class of models similar to the one considered in this article.

We prove Proposition B.3 using the techniques developed in Manea (2017).

Proposition B.3. Fix an investment profile (xi)i∈I . For every type i, there exists wi > 0 such that,

in every game in which Assumption B.1 holds, after the process of iterated conditional dominance,

every agent of type i always accepts (rejects) an offer that gives her strictly more (less) than wi.

Proof. The proof consists of two steps. First, we define recursively two sequences (mk
i )i∈I and

(Mk
i )i∈I , and show by induction on k that after every step s of iterated conditional dominance

(see below for a formal definition of such a step), each agent of type i always rejects every

offer that gives her strictly less than δms
i and always accepts every offer that gives her strictly

more than δM s
i . Second, we show that both sequences (mk

i )i∈I and (Mk
i )i∈I converge to the

same point (wi)i∈I .

We denote the surplus y(xi,xj) that a buyer of type i and a seller of type j generate when

they match by sij .

(i) Iterated Conditional Dominance Procedure

Let us start by reviewing how the process of iterated conditional dominance works in the

present context. For simplicity, we break up the procedure into steps 0, 1, . . . , with each step

containing three rounds.

Step 0.

Round 0a. Note that a strategy that ever accepts with positive probability a negative share

is strictly dominated by the strategy reject all offers and make only offers that give me a positive

share. These are all the actions that are eliminated in Round 0a. Hence, after this round every

agent of type i always rejects every offer that gives her strictly less than δm0
i , where

(7) m0
i := 0.
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Round 0b. Given the actions that survive round 0a, each agent of type i has an expected payoff

(at the beginning of the period, before the proposer has been chosen) of at most M0
i , where

(8) M0
i := max

j
{sij}.

because, by assumption, no agent of type j can ever offer any agent of type i a payoff higher

than sij , and, by the actions eliminated in round 0a, no agent ever accepts a negative payoff.

Hence, every strategy κ of an agent of type i that ever rejects with positive probability an

offer a that gives her strictly more than δM0
i is strictly dominated by a similar strategy κ′

that specifies accept a with probability π in every instance in which κ specifies reject a with

probability π. These are all the actions that are eliminated in Round 0b; so after this round

every agent of type i always accepts every offer that gives her strictly more than δM0
i .

Round 0c. Given the actions that survive rounds 0a and 0b, every strategy κ of every agent

of type i that ever makes an offer with positive probability that gives y > δM0
j to an agent

of type j is strictly dominated by a similar strategy κ′ that specifies offer y − ε > δM0
j to

agent j with probability π in every instance in which κ specifies offer y to an agent of type j with

probability π, since every agent of type j must accept both y and y−ε. These are all the actions

that are eliminated in round 0c; after this round no agent ever makes an offer giving y > δM0
j to

any agent of type j.

Proceeding inductively, imagine that, after step s = k ∈ Z≥0, we have concluded (as we

have just done for the case s = 0) that every agent of type i:

1. rejects every offer that gives her strictly less than δms
i ,

2. has an expected payoff (at the beginning of each period) of at most M s
i ,

3. accepts every offer that gives her strictly more than δM s
i , and

4. does not make offers that give strictly more than δM s
j to any agent of type j.

We now show that points (1) to (4) also hold at step s = k + 1.

Step k + 1.

We refer to strategies that assign positive probability only to actions that have survived all

previous rounds of iterated conditional dominance as “surviving strategies.”

Round (k+1)a. Given the surviving strategies, it is conditionally dominated for any agent of

type i to ever accept an offer that gives her a surplus strictly lower than δmk+1
i , where mk+1

i
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is defined as follows:

(9) mk+1
i :=

1

n
max

(
max
j∈N

(sij − δMk
j ), δmk

i

)
+
n− 1

n
δmk

i

To see this, consider a period-t subgame where an agent of type i has to respond to an offer

x < δmk+1
i . We argue that, for sufficiently small ε > 0, accepting this offer is conditionally

dominated by the following plan of action—which is designed to give her a time-t expected

payoff that approaches δmk+1
i as ε goes to 0: Reject all offers received at dates t′ ≥ t. When selected

to be the proposer at time t′, offer δMk+t+1−t′
j +ε if t′ ∈ [t+1, t+k+1] and max

j∈N
(sij−δMk+t+1−t′

j ) >

δmk+t+1−t′
i , and make an unacceptable offer otherwise (e.g. offer a negative amount to some agent).

Note that since t′ ≥ t+ 1, we have that k+ t+ 1− t′ ≤ k. Hence, by the induction hypothesis,

all agents j accept the offer δMk+t+1−t′
j + ε at period t′ ∈ [t+ 1, t+ k+ 1]. Moreover, note that

Equation 9 can be written as

(10) mk+1
i =

 δmk
i if max

j∈N
(sij − δMk

j ) ≤ δmk+t+1−t′
i

1
n

max
j∈N

(sij − δMk
j ) + n−1

n
δmk

i otherwise

and an analogous equation can be used to expand the term mk
i in Equation 10, and then

mk−1
i in the resulting equation, and so on until reaching m0

i = 0. It is clear from the resulting

formula for mk+1
i that, under the surviving strategies, the strategy constructed above gener-

ates an expected period-t payoff for i of δmk+1
i as ε → 0. Hence, letting ε > 0 be sufficiently

small, this strategy conditionally dominates accepting x in period t. These are the actions

eliminated in round (k+1)a; after this round no agent of type i ever accepts any offer that gives

her a surplus lower than δmk+1
i .

Round (k+1)b. Given the surviving strategies, it is conditionally dominated for any agent

of type i to reject an offer that gives her strictly more than δMk+1
i , where Mk+1

i is defined by

(11) Mk+1
i :=

1

n
max

(
max
j∈N

(sij − δmk
j ), δMk

i

)
+
n− 1

n
δMk

i

To prove this, we show that for each agent of type i, all surviving strategies deliver expected

payoffs of at most Mk+1
i at the beginning of period t. First, consider a period-t subgame

where i is the proposer. Note that i cannot make an offer that generates an expected payoff

greater than

max

(
max
j∈N

(sij − δmk
j ), δMk

i

)
.

To see this note that, under the surviving strategies, all agents of type j reject all offers lower

than δmk
j , and when an agent of type j rejects an offer, every agent o type i can expect a
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period-(t + 1) payoff of at most Mk
i . Second, consider a period-t subgame where an agent

of type i is not the proposer; under the surviving strategies, this agent can expect a period-t

payoff of at most Mk
i . Therefore, agent of type i has an expected payoff (at the beginning of each

period) of at most Mk+1
i . These are all the actions that are eliminated in round (k+1)b; after

this round, no agent ever offers strictly more than δMk+1
j to any agent of type j.

Round (k+1)c. Given the surviving strategies, every strategy κ of agent of type i that ever

makes an offer that gives y > δMk+1
j to agent of type j is strictly dominated by a similar

strategy κ′ that specifies offer y − ε > δMk+1
j to agent of type j with probability π in every

instance in which κ specifies offer y to agent of type j with probability π, since every agent of

type j must accept both y and y − ε. These are all the actions that are eliminated in round

(k+1)c; after this round no agent ever makes an offer giving y > δMk+1
j to any agent of type j.

(ii) The sequences (mk
i )i∈N and (Mk

i )i∈N converge to the same limit.

First, we prove by induction on k that for all i ∈ N , the sequence (mk
i )k≥0 is increasing in k,

the sequence (Mk
i )k≥0 is decreasing in k, and max

j∈N
(sij) ≥ Mk

i ≥ mk
i ≥ 0 for all k ≥ 0. This

implies that both sequences (mk
i )i∈N and (Mk

i )i∈N converge.

Note that m0
i = 0 and M0

i := max
j
{si,j}, and that Equation 9 and Equation 11 imply that

m1
i ≥ 0 and M1

i ≤ max
j
{si,j}, so m1

i ≥ m0
i and M1

i ≤M1
i . Now suppose that for some l ∈ N:

ml
i ≥ ml−1

i and M l
i ≤M l−1

i .

We show that

ml+1
i ≥ ml

i and M l+1
i ≤M l

i .

Note that, by the induction hypothesis, every summand in Equation 9 when k = l + 1 is

smaller than when k = l, which implies that ml+1
i ≤ ml

i. Similarly, every summand in

Equation 11 when k = l + 1 is bigger than when k = l, which implies that M l+1
i ≥ M l

i .

Hence, the sequence (mk
i )k≥0 is increasing in k and the sequence (Mk

i )k≥0 is decreasing in k,

which, implies that

max
j∈N

(sij) ≥Mk
i ≥ mk

i ≥ 0 for all k ≥ 0.

since max
j∈N

(sij) = M0
i > m0

i = 0.

Second, we show that the sequences (mk
i )i∈N and (Mk

i )i∈N converge to the same limit. Let

Dk be max
i∈N

(Mk
i −mk

i ). We show that

Dk ≤
(

max
j∈N

δ

)k

D0 =

(
max
j∈N

δ

)k

max
j,j′∈N

(sjj′)
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for all k ≥ 0; that is, that Dk converges to 0 as k grows large. Indeed,

Dk+1 = max
i∈N

[Mk+1
i −mk+1

i ]

= max
i∈N

[
1
n max

(
max
j∈N

(sij − δmk
j ), δM

k
i

)
+ (1− 1

n)δM
k
i

− 1
n max

(
max
j∈N

(sij − δMk
j ), δm

k
i

)
+ (1− 1

n)δm
k
i

]
= max

i∈N

[
1
n

[
max

(
max
j∈N

(sij − δmk
j ), δM

k
i

)
−max

(
max
j∈N

(sij − δMk
j ), δm

k
i

)]
+(1− 1

n)
[
δMk

i − δmk
i

]]
≤ max

i∈N

[
1
n

[
max

(
sij′ − δmk

j′ , δM
k
i

)
−max

(
sij′ − δMk

j′ , δm
k
i

) ]
+(1− 1

n)
[
δMk

i − δmk
i

]]
≤ max

i∈N

[
1
n max

(
δ(Mk

j′ −mk
j′), δ(M

k
i −mk

i )
)
+ n−1

n δDk

]
≤ max

j∈N
δDk

where j′ in the first inequality is any element of argmax
j∈N

(si,j − δMk
j ), and the second inequality is a

consequence of Lemma B.4 below.

Lemma B.4 (Manea 2017). For all w1, w2, w3, w4 ∈ R,

|max(w1, w2)−max(w3, w4)| ≤ max(|w1 − w3|, |w2 − w4|).

C Existence of a type-symmetric Markov-perfect equilibrium

Proposition C.1 below is analogous to the Markov-perfect equilibrium existence proof in

Elliott and Nava (2019).

Proposition C.1. For every investment profile x, there exists a strategy profile that is a type-

symmetric Markov-perfect equilibrium of the subgame starting in period t = 1 with investment

profile x.

Proof. Let the kind of an agent be determined by her type and her investment profile. With-

out loss of generality, we can assume that the investment sets {Ki}i∈I do not overlap, so we

can identify the set of agent kinds by K := ∪i∈IKi, which is finite because each Ki is itself fi-

nite. Letm denote the number of elements ofK. We abuse terminology by referring to i ∈ K
as “agent i.” Let K be the finite set of all possible profiles of agents that can be active in the

market at any given time. We characterize the Markov perfect equilibrium of the subgame
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that starts at t = 1 with any given investment profile, and then use it to show that such an

equilibrium exists.

Consider a Markov-perfect-equilibrium strategy profile and its corresponding value func-

tion V : K → Rm, where V (K) gives each agent’s expected equilibrium payoff in any period

at the beginning of a period that starts with active agent set K (before any agents become

active this period). Consider a subgame with active agent set K ∈ K, and let sij denote the

surplus that agents i and j generate when they match in this subgame. By Markov perfec-

tion, agent j accepts any offer that gives her strictly more than δVj(K), and rejects any offer

that gives her strictly less than δVj(K). This implies that no one offers more than δVj(K)

to any agent j. Therefore, a proposer i makes offers with positive probability only to j that

maximizes her net payoff sij − δVj(K). Hence, when i ∈ K is the proposer, the expected

payoff of k ∈ K\{i} is

∑
j∈K\{i,k}

πijδVk(K\{i, j}) +

1−
∑

j∈K\{i,k}

πij

 δVk(K)

where πij denotes the probability that i and j agree to trade. When i is the proposer, if there

exists j ∈ K such that δ(Vi(K) + Vj(K)) < sij , then she makes offers only to j ∈ K for

which sij − δVj(K) is maximum, and agreement obtains with probability one. Otherwise,

she delays—in the sense that she makes offers that are not accepted in equilibrium. We

denote the probability that i ∈ K delays by πii. Thus, any agreement probability profile

πi(K) ∈ ∆(K)—corresponding to the histories in which i is the proposer—that is consistent

with the value function V must be in

Πi,K(V ) =

πi ∈ ∆(K)

∣∣∣∣∣∣∣
πii = 0 if δVi < max

j∈K\{i}
{sij − δVj(K)},

πik = 0 if sik − δVk(K) < max{δVi(K), max
j∈K\{i}

{sij − δVj(K)}

 .

For any value function V , any K ∈ K and any agent i ∈ K, define f i,K(V ) : K → Rm by

f i,K
i (V ) = πiiδVi(K) + (1− πii) maxj∈K\{i}{sij − δVj(K)}
f i,K
k (V ) = (πii + πik)δVk(K) +

∑
j∈K\{i,k}

πijδVk(K\{i, j}) ∀k 6= i,

for any πi ∈ Πi,K(V ). That is, f i,K
i (V ) gives the set of expected payoffs that are consistent

with the value function V in any history in which active agent set is K and the proposer is

agent i. Letting V denote the set of value functions V : K → Rm, consider the correspondence

F : V → V defined by

F (V )(K) =
1

n

∑
i∈K

f i,K(V ), for all value functions V and all K ∈ K.(12)
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The value function V corresponds to a Markov-perfect equilibrium payoff profile if and

only if V ∈ F (V ). So it is enough to show that the correspondence F has a fixed point. This

follows from Kakutani’s fixed point theorem (Kakutani 1941). Indeed, the domain V of F is

a non-empty, compact and convex subset of an Euclidean space. Moreover, since, for any

K ∈ K and any i ∈ K, the correspondence Πi,K is upper-hemicontinuous with non-empty

convex images, so is the correspondence f i,K , and hence so is F .
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