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Abstract

Simple games are abstract representations of voting systems and other group-decision

procedures. A stable set—or von Neumann-Morgenstern solution—of a simple game

represents a “standard of behavior” that satisfies certain internal and external sta-

bility properties. Compound simple games are built out of component games, which

are, in turn, “players” of a quotient game. I describe a method to construct fair—or

symmetry-preserving—stable sets of compound simple games from fair stable sets

of their quotient and components. This method is closely related to the composition

theorem of Shapley (1963c), and contributes to the answer of a question that he for-

mulated: What is the set G of simple games that admit a fair stable set? In particular,

this method shows that the set G includes all simple games whose factors—or quo-

tients in their “unique factorization” of Shapley (1967)—are in G, and suggests a path

to characterize G.
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1 Introduction

Simple games—in which every coalition of players either wins or loses—represent political

structures in which “power” is the fundamental driving force. For example, a legislature

in which any two of three parties have enough parliamentary seats to form a new gov-

ernment can be represented by the three-player simple majority game.1

A fair stable set of a simple game is a set of distributions of power among the players that

(i) satisfies certain internal and external stability properties, and (ii) does not discriminate

among players based on their names. For example, the unique fair stable set of the three-

player simple majority game consists of the three possible outcomes in which power is

divided equally among two of the three players; intuitively, this stable set reflects that the

coalition forming government is vulnerable when one of its parties receives less than the

other.2

In 1978, Lloyd Shapley asked which simple games admit a fair stable set. Rabie (1985)

showed that the answer is not “all,” but—to the best of my knowledge—the set of simple

games that admit a fair stable set has not been characterized.3

In this article I describe a method to construct fair stable sets of compound simple games

from fair stable sets of their quotient and components, and I discuss how this method con-

tributes to the characterization of the set of simple games that admit a fair stable set.

Compound simple games are built out of component games, which are, in turn, “play-

ers” of a quotient game. An example of a compound simple game is the multimillion-

person game of “Presidential Election”—whose quotient is a weighted majority game

(the Electoral College), and whose components are symmetric majority games of assorted

sizes (the electorates of the 50 states and the District of Columbia). Sums of games—whose

1See Taylor and Zwicker (1999) for an excellent exposition of the theory of simple games.
2Stable sets were first studied by von Neumann and Morgenstern (1944), who—among many other

things—showed that all simple games have a stable set. In fact, they showed that many interesting games

admit multiple stable sets, which lead to the advancement of several refinements of the theory. The fair-

ness requirement is one such refinement; see also Shapley (1952), Luce and Raiffa (1957), Vickrey (1959),

Harsanyi (1974), Roth (1976), Muto (1980), Greenberg (1990), Bogomolnaia and Jackson (2002), Béal et al.

(2008), Mauleon et al. (2011), Jordan and Obadia (2015), Ray and Vohra (2015) and Dutta and Vohra (forth-

coming).
3Shapley raised this question during the Fourth International Workshop in Game Theory; see Lucas

(1978) and Rabie (1985). Rabie’s result is analogous to those of Stearns (1964) and Lucas (1968), who showed

that not all coalitional games with non-transferable and transferable utility, respectively, have a stable set

(see Lucas (1992) for an illuminating review of these and other results in the theory of stable sets).
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winning coalitions are exactly those that win in at least one of these games—and products

of games—whose winning coalitions are exactly those that win in all of these games—

are particular classes of compound games. For example, the game “Congress” can be

represented as the product of two simple majority games (the Senate and the House of

Representatives). A game is prime if it does not have any non-trivial compound represen-

tation.4

The main result of this article is closely related the composition theorem of Shapley

(1963c). To emphasize this connection, I quote his verbal description of his result (Shap-

ley, 1963c, pages 3-4) adding words in italics that transform it into a description of my

result:

If we divide the proceeds of a regular5 [compound simple] game among the

components, in accordance with a fair [stable set] of the quotient, and then

subdivide them among the players of each component according to a scaled-

down fair [stable set] of that component, using isomorphic fair stable sets for iso-

morphic components, then the resulting set of imputations is a fair [stable set] of

the compound.6

The combination of Shapley’s (1967) “unique factorization” theorem—which shows

how every simple game can be uniquely decomposed into a hierarchical arrangement of

compound simple games that use only prime quotients and the operations of sums and

products—with my composition result reveals that the set G of simple games that admit a

fair stable set includes all simple games whose factors—or prime quotients in their unique

factorization—are in G. In other words, a game that does not admit a fair stable set has

at least one factor that does not admit a fair stable set. It is an open question whether

the converse holds; if it does, the composition result presented in this article implies that

characterizing the set of prime games in G is equivalent to characterizing the set G.

The rest of this article is organized as follows. In section 2 I provide background mate-

rial: The definitions of simple game, compound simple game, committee and stable set,

and Shapley’s unique factorization and composition theorems. In section 3 I define what
4Compound simple games and their stable sets were first studied by Shapley (1963a, 1963b, 1963c, 1967).

See Shapley (1962) for an illuminating introduction to this theory.
5A compound simple game is regular if either its quotient is prime, or it is a sum of products that are not

themselves sums, or it is a product of games which are not themselves products.
6Stable sets were originally called “solutions.” In this quote, I have replaced “solution” for “[stable set]”

to reflect the modern terminology.
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it means for a stable set to be fair, and I state and prove the main result of this article:

A composition theorem that shows how to construct fair stable sets of compound sim-

ple games from fair stable sets of their quotient and components. I conclude in section 4

by discussing the implications of this result for the characterization of the set of simple

games that admit a fair stable set, and for the problem of aggregation in the theory of fair

stable sets.

2 Preliminaries

In this section I review the two fundamental results of Lloyd Shapley that this article

builds on. In subsection 2.1 I review the definitions of simple game, compound simple

game, dual of a game and committee of a game, and I present the unique factorization

theorem of Shapley (1967). In subsection 2.2 I review the definition of stable set of a game

and the composition theorem presented in Shapley (1963c).

2.1 Compound Simple Games

2.1.1 Simple Games

Let P be the set of all players that might ever come under consideration. A (simple) game

W is a collection of subsets of P (the winning coalitions) that includes the grand coalition

P , excludes the empty coalition, and is monotonic—in the sense that every superset of a

winning coalition is also winning.

The monotonicity of a game W implies that it can be identified with the set Wm that

contains only its minimal winning coalitions. For example, {ab, ac} represents the game in

which only the coalitions that contain both player a and one of players b and c win, and

{ab, ac, bc} represents the three-person simple majority game.7 A player is said to be a

dummy of a game if it is not in any of the minimal winning coalitions of the game.8

7For brevity I write ab for {a, b}, etc.
8Abusing terminology slightly, I often refer to the non-dummy players of a game as its players.
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2.1.2 Compound Simple Games

Throughout this article, let there be given m non-overlapping component games Wi, i =

1, 2, . . .m, together with an m-person quotient gameW , whose players are identified with

the integers 1, 2, . . . ,m.9

For each set S ⊂ P , let K(S) be the set {i | S ∈ Wi}; intuitively, the set K(S) consists of

the set of all components that S wins.

Definition 2.1. The compound simple gameW [W1, . . . ,Wm] is defined by the following con-

dition:

S ∈ W [W1, . . . ,Wm] if and only if K(S) ∈ W .

Thus, a coalition wins in the compound if and only if it wins enough of the components

to make up a winning coalition of the quotient. The gameW [W1, . . . ,Wm] is a compound

representation of gameM if it satisfies

S ∈M if and only if S ∈ W [W1, . . . ,Wm].

For example, the game {ab, ac} can be represented as the compound game whose quo-

tient is a two-player unanimity game, and whose components are the games {a} and

{b, c}. In contrast, the three-player majority game is prime, in the sense that it does not

have a non-trivial compound representation.

2.1.3 Sums and Products

Quotients having the maximum and minimum possible number of winning coalitions

play a central part in the theory of compound simple games; it is useful to represent them

as operations on games, as follows.10 The sum of m ≥ 2 non-overlapping games

(1) W1 ⊕W2 ⊕ · · · ⊕Wm

is the compound game Sm[W1,W2, . . . ,Wm] where the minimal winning coalitions of the

quotient Sm are all the singleton subsets of {1, 2, . . . ,m}. That is, a coalition wins in the

sum of games whenever it contains a winning contingent from at least one of these games.
9Non-overlapping in the sense that their non-dummy player sets do not overlap; that is, for any i 6= j,

the union ofWm
i is disjoint from the union ofWm

j .
10The quotient of a sum of games has the maximum possible number of winning coalitions (all nonempty

coalitions win) and the quotient of the product has the minimum number of winning coalitions (only the

coalition containing all non-dummy players wins).
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Similarly, the product of m ≥ 2 non-overlapping games

(2) W1 ⊗W2 ⊗ · · · ⊗Wm

is the compound game Pm[W1,W2, . . . ,Wm] where the only minimal winning coalition of

the quotient Pm is {1, 2, . . . ,m}. That is, a coalition wins in the product of games when-

ever it contains winning contingents from all of them.

2.1.4 Regular Compound Representations

The main result of this article concerns regular compound representations, defined as fol-

lows.

Definition 2.2. The compound representationW [W1, . . . ,Wm] of a simple game is regular

if either its quotient W is prime, or its quotient W is a sum and none of its components

Wi is a sum, or its quotientW is a product and none of its componentsWi is a product.

For example, the compound representation S3[a, b, c] of the game {a, b, c} is regular, but

the compound representation S2[a⊕ b, c] of the same game is not.11

2.1.5 Dual Games

The following duality between sums and products of games is useful to prove the main

result of this paper. The dualM∗ of a gameM is the set of all coalitions B that block in

M; that is, the set of all coalitions B whose complement P − B does not win inM. For

example, the dual of the sum of games (1) is W∗1 ⊗ W∗2 ⊗ · · · ⊗ W∗m, and the dual of the

product of games (2) isW∗1 ⊕W∗2 ⊕ · · · ⊕W∗m.

2.1.6 Committees

Shapley’s unique factorization theorem (Theorem 2.1 below) describes how a simple game

can be decomposed into a hierarchial arrangement of committees, defined as follows.

Definition 2.3. A committee of a gameM is another gameMC (with non-dummy player

set C) which is related to the first as follows: For every coalition S such that

S ∪ C ∈M and S − C /∈M,

11For brevity, in compound representations I denote the one-player component {a} by a, etc.
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we have

S ∈M if and only if S ∩ C ∈MC .

A committee of a game M is proper if it is not the committee of the whole set of its

non-dummy players or a committee that consists of only one individual. For example,

denoting the three player majority game byM3, the gameM3[b, c, d] is a proper commit-

tee of the game M3[a,M3[b, c, d], e]. Prime games are exactly those that do not possess

proper committees (Shapley, 1967, Section 7).12

2.1.7 Shapley’s Unique Factorization Theorem

The fundamental result of Shapley (1967) is that—just like every natural number can be

uniquely expressed as the product of prime numbers—every simple game has a unique

compound representation that only uses prime quotients and the operations of sums and

products.

Theorem 2.1 (Shapley, 1967, Theorem 8). Every simple game has a compound representation

that uses nothing but prime quotients and the associative operations ⊕ and ⊗ and that is unique

except for the arbitrariness in the ordering of the players.13

Continuing the analogy with the natural numbers, the factors of a simple game are its

quotients in the above compound representation.

2.2 Stable Sets of Compound Simple Games

2.2.1 Stable Sets of Simple Games

For any set of players Q, the set of imputations AQ is the simplex of real nonnegative

vectors x with xj = 0 for any j /∈ Q, and whose entries sum to one. Geometrically, the

12The games that have only two non-dummy players are an exception: even though they do not have

any proper committee, they are not regarded to be prime; see Shapley (1967, page 5).
13Shapley’s statement adds an additional exception regarding “the disposition of dummy players.” This

is because he defines a simple game to be a finite set N (the players) and a set of subsets of N (the winning

coalitions), so in order to define a compound simple game, he needs to specify to which component each

dummy player belongs. In contrast, I identify a simple game with the set of its minimal winning coalitions,

so I do not need to assign dummy players to components.
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Figure 1: A geometric representation of several imputation simplices.
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simplex of imputations AQ is the set of convex combinations of the vectors that divide a

unit of surplus among the players in Q. Figure 1 illustrates some imputation simplices.14

Fix a simple gameM. An imputation x dominates another imputation y via the coalition

S if S ∈ M and if each of the players in S gets strictly more payoff in x than in y. For

example, in the game {ab, ac, bc}, the imputation that gives one half of the payoff to each

of the players a and b dominates the imputation that gives all the payoff to player c via

the coalition ab. An imputation x dominates another imputation y if x dominates y via some

coalition.

Definition 2.4. Given a simple game M, a set X of imputations is (i) internally stable if

no imputation in X is dominated by any imputation in X , (ii) externally stable if each

imputation that is not in X is dominated by some imputation in X , and (iii) stable if it is

internally and externally stable.

Figure 2 depicts a set of imputations that constitutes a stable set of both {ab, ac, bc} and

{ab, ac}. Stable sets are the classical solutions of von Neumann and Morgenstern (1944).

2.2.2 Shapley’s Composition Theorem

The main contribution of Shapley (1963c) is the description of a method to construct a

stable set of a compound simple game from stable sets of its quotient and components. I

now formally describe this method. For each i = 1, 2, . . .m, let Xi be a stable set of the

gameWi, and let χ be a stable set of the quotient gameW .

14In the figures, I write a, b, c, d for Aa, Ab, Ac and Ad respectively.
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Figure 2: The imputation simplex Aab is a stable set of both {ab, ac, bc} and {ab, ac}.

b c

a

Definition 2.5. The compound set χ[X1, . . . , Xm] is the set of all imputations of the form

x =
m∑
i=1

αixi, α ∈ χ, xi ∈ Xi, i = 1, 2, . . . ,m.

Theorem 2.2 (Shapley, 1963c, Part II, Section 2, Theorem 1). The compound set χ[X1, . . . , Xm]

is a stable set of the compound gameW [W1, . . . ,Wm].

For an illustration of Theorem 2.2, consider the game {ab, ac}. This game can be rep-

resented as a compound game, whose quotient is the two-player unanimity game, and

whose components are {a} and {b, c}. A stable set of its quotient consists of all impu-

tations that share the payoff among its two players, and Aa and Ab are stable sets of its

components {a} and {b, c}, respectively. Shapley’s composition theorem then says that

the set Aab (illustrated in Figure 2) is a stable set of the game {ab, ac}. Similarly, since

any singleton set that consists of an imputation that shares the payoff arbitrarily between

players b and c is a stable set of the game {b, c}, any straight line in Aabc from Aa to any

point in Abc is a stable set of the game {ab, ac}; the right diagram of Figure 3 illustrates

another stable set of this game that can be constructed in this way.15

3 Fair Stable Sets of Compound Simple Games

Fair stable sets are those that do not discriminate among players based on their names.

Not all stable sets are fair; for example, the stable set of the three-player majority game

depicted in Figure 2 is not fair, since it discriminates among its three non-dummy players

(who play exactly the same role in this game). In subsection 3.1 I formally describe what

it means for a stable set to be fair, and in subsection 3.2 I provide the main result of this

15Shapley (1963c) also presents a generalization of his composition theorem that shows that the require-

ment that such a line be straight is not necessary.
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article: A composition theorem that shows how to construct fair stable sets of compound

simple games from fair stable sets of its quotient and components.

3.1 Fair Stable Sets of Simple Games

A permutation π of the set of players P acts on an imputation by permuting its indices—

for example,16 (ab)Ab = Aa—and it acts on a set of imputations by acting on each of the

imputations of this set—for example, (ab)Abc = Aac.

Definition 3.1. A permutation π of the player set P is an isomorphism between an imputation

set X and an imputation set Y if πX = Y .

An imputation set X is said to be isomorphic to an imputation set Y if there exists an

isomorphism betweenX and Y . For example, the permutation (bc) is an isomorphism be-

tween Aab and Aac. Isomorphisms between an imputation set X and itself are symmetries

of X . For example, the permutation (ab) is a symmetry of Aabc.

A permutation π of the set of players P acts on a gameM by permuting the players in

each of the coalitions inM. For example, (ac){ab, ac} = {cb, ca}.

Definition 3.2. A permutation π of the player set P is an isomorphism between a gameM1

and a gameM2 if πM1 =M2, or, equivalently, πMm
1 =Mm

2 .

A gameM1 is said to be isomorphic to a gameM2 if there is an isomorphism between

M1 and M2. For example, the permutation (ac) is an isomorphism between the game

{ab, ac} and the game {cb, ca}. Isomorphisms between a gameM and itself are symmetries

ofM. For example, the permutation (bc) is a symmetry of the game {ab, ac}, and every

permutation of the players is a symmetry of the three-player majority game.

Definition 3.3. A stable set X of a game M is fair if every symmetry of M is also a

symmetry of X .

The stable set of the games {ab, ac, bc} and {ab, ac} illustrated in Figure 2 is not fair,

since it is not invariant under the permutation (bc) (which is a symmetry of both these

games). The left and right diagrams in Figure 3 illustrate the unique fair stable set of

the game {ab, ac, bc} and {ab, ac}, respectively. The fair stable set of {ab, ac, bc} is a set of

16I denote by (a1a2a3 . . . an) the permutation that maps a1 to a2, a2 to a3, . . . , an−1 to an, an to a1, and

every other player to herself.
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Figure 3: The fair stable sets of {ab, ac, bc} (left) and {ab, ac} (right).

b c

a

b c

a

three imputations; in each of these imputations, two players divide the payoff equally,

leaving the remainding player with zero payoff. The fair stable set of {ab, ac} is the set of

all imputations in the simplex Aabc that give the same payoff to both players b and c.

Since the isomorphism relation between games is an equivalence relation, we can parti-

tion every set of games into isomorphic classes. For example, the set of games {{ab, ac}, {cb, ca}}
has only one isomorphic class (itself), but the set of games {{ab, ac}, {ab, ac, bc}} has two

isomorphic classes ({ab, ac}, and {ab, ac, bc}).

3.2 A New Composition Theorem

Let χ be a fair stable set of the quotient W . For each isomorphic class C of components,

pick a representativeWi, let Xi be a fair stable set ofWi and, for each componentWj in C,

let Xj = µXi, where µ is any isomorphism betweenWi andWj .17

Theorem 3.1. If the compound representationW [W1, . . . ,Wm] is regular then the compound set

χ[X1, . . . , Xm] is a fair stable set of the compound gameW [W1, . . . ,Wm].

We need to construct the fair stable sets of the components so that Xi is isomorphic to

Xj when Wi is isomorphic to Wj because some games admit multiple fair stable sets.18

Hence, if we want to make sure that the composition process respects the symmetry of the

game, we need to choose “the same” fair stable set in any two isomorphic components.19

17Note that this construction does not depend on the isomorphism µ chosen because, for every two

isomorphisms µ1 and µ2 between Wi and Wj there is a symmetry σ of Wi such that µ1σ = µ2 (namely

σ := µ−1
1 µ2). Hence, since Xi is a fair stable set, µ2Xi = µ1σXi = µ1Xi.

18For example, both Abc and the union of all imputations that give 1/2 to c and share the other 1/2

between a and b and all imputations that give 1/2 to b and share the other 1/2 between c and d are fair

stable sets of the game {ab, bc, cd}.
19In fact, it is enough to require the use of isomorphic fair stable sets for isomorphic componentsWi and

Wj for which there is a symmetry of the quotientW that mapsWi toWj .
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The condition that the compound representation be regular is to avoid situations like

the one described in Example 3.2.1 below, in which the compound representation “hides”

certain symmetries of the game by having a componentWi that is isomorphic to a com-

ponent of another componentWj .

Example 3.2.1. The following example shows that the conclusion of Theorem 3.1 is not

generally true without the requirement that the compound representation be regular.

Consider the compound simple game S2[a ⊕ b, c], where S2 is the sum of components

1 and 2. This compound representation is not regular, since both its quotient and one of

its components are sums of games.

Both S2 and a ⊕ b have a unique fair stable set, which consists of the imputation that

divides the unit payoff equally among their two players; denote them by η and Y1, respec-

tively. Similarly, the game c has a unique fair stable set, which consists of the imputation

that gives the unit payoff to player c; denote it by Y2.

The compound set η[Y1, Y2] consists of the singleton set containing the imputation that

gives 1/4 to each of players a and b, and 1/2 to player c. But this is not a fair stable set of

the game; for example, (ac) is a symmetry of the game but not a symmetry of η[Y1, Y2].

3.3 Proof of Theorem 3.1

Let π be a symmetry of the compound game in regular formW [W1, . . . ,Wm]. Given The-

orem 2.2, we just need to show that π is a symmetry of the compound set χ[X1, . . . , Xm],

which follows from Proposition 3.5, Proposition 3.6 and Proposition 3.7 below.

3.3.1 Outline of the Proof

The first step (Proposition 3.5) is the most subtle one: I show that for every componentWi,

there exists a componentWj such that the map π is an isomorphism betweenWi andWj .

When a map has this property, I say that it is compatible with the compound representation

W [W1, . . . ,Wm]. The requirement that the compound representation be regular is used in

this first step. Indeed, a symmetry of a game need not be compatible with its non-regular

compound representations; for example, (ac) is a symmetry of the game in Example 3.2.1,

but it is not an isomorphism between any of its components.

A corollary of the first step is that π naturally defines a permutation π∗ of the players

of the quotient. The second step (Proposition 3.6) is to show that π∗ is a symmetry of the

12



Figure 4: The maps πL, πM and πR of Example 3.3.1.
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(c) The map πR

quotient. The third and final step (Proposition 3.7) is to show that any permutation of the

players with the two properties above is a symmetry of the compound set χ[X1, . . . , Xm].

3.3.2 Intuition for the Proof

Before proving the three steps of the proof, I present Example 3.3.1 to help build intuition

for why the statement proved in each step holds.

Example 3.3.1. Consider the nine-player game with regular compound representation

(3) M[M3,M3,M3],

whereM denotes the three-player game {{1, 2}, {1, 3}} andM3 denotes the three-player

majority game. Let the set of non-dummy players in the first, second, and third compo-

nent be {a, b, c}, {d, e, f} and {g, h, i} respectively.

The two sets of players {d, e, f} and {g, h, i} play the same role, in the sense that any

two players in one of these sets combined with any two players in {a, b, c} win. In fact,

the set of all minimal winning coalitions of this compound game are exactly the set of all

four-player coalitions just described.

To gain intuition for the first step of the proof of Theorem 3.1, consider the maps πL,

πM and πR depicted in Figure 4. The map πL is not compatible with the compound repre-

sentation (3), since it maps players d and e to one component and player f to a different

component. To see why πL is not a symmetry of the compound game, note that it maps
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the winning coalition {a, b, e, f} to the losing coalition {a, b, e, g}. In contrast, the maps

πM and πR are compatible with the compound representation (3).

To gain intuition for the second step of the proof of Theorem 3.1, note that since the

maps πM and πR are compatible with the compound representation (3), they define the

following two maps on the players ofM: The map π∗M interchanges players 1 and 2 and

keeps 3 fixed (so it is not a symmetry of the quotientM), and the map π∗R interchanges

players 2 and 3 and keeps 1 fixed (so it is a symmetry of the quotient W). To see why

πM is not a symmetry of the compound game (3), note that it maps the winning coalition

{a, b, g, h} to the losing coalition {d, e, g, h}.

To gain intuition for the third step of the proof of Theorem 3.1, note that the map πR

(which is compatible with the compound representation and defines a map on the quo-

tient that is a symmetry of the quotient) is a symmetry of the compound set η[Y1, Y2, Y3],

where η and {Yi}i=1,2,3 denote the unique fair stable sets of the quotient and components

of the compound game (3), respectively; this compound set consists of the set of all im-

putations that give 0 ≤ x ≤ 1/2 units of surplus to each of two players in component 1,

and 1/4− x/2 to each of two players in each of the other two components.

3.3.3 Terminology

Abusing terminology slightly, I often denote the component Wi by its index i, I refer to

the intersection of a coalition A of players with the non-dummy player set of a given

component i as the intersection of coalition A with component i, and I say that coalition A

intersects with component i when this intersection is not empty.

3.3.4 Three Auxiliary Results

In this subsection I present three auxiliary results that facilitate the proof of Proposi-

tion 3.5. On the one hand, Lemma 3.2 is useful to reduce the number of cases to be consid-

ered in the proof of Proposition 3.5.20 On the other hand, Lemma 3.3 and Lemma 3.4 give

useful information about the map π; both of these results are weaker than the statement

that π is compatible with the compound representation χ[X1, . . . , Xm], but they are useful

to establish this fact.

20In particular, it is because of this result that Case 2 in the proof of Proposition 3.5 follows from Case 1.
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Lemma 3.2. A permutation is an isomorphism between two games if and only if it is an isomor-

phism between their duals.

Proof. LetM1 andM2 be two games and let µ be a permutation such that µM1 =M2. Let

B be a blocking coalition ofM1; that is, suppose that P −B /∈M1. Then µ(P −B) /∈M2,

so P − µ(B) /∈ M2; that is, µ(B) is also a blocking coalition ofM2. Since µ is one to one,

this implies that µM∗
1 = M∗

2. The converse follows from the fact that every game is the

dual of its dual.

Lemma 3.3 holds irrespective of whether the compound representation is regular.

Lemma 3.3. Let A and B be two minimal winning coalitions of a given component. If π(A)

intersects with component j but π(B) does not, then the intersection of π(A) with j is a minimal

winning coalition of j.

Proof. LetA andB be two minimal winning coalitions of a given component, and suppose

that π(A) intersects with component j but π(B) does not. Let C be a minimal winning

coalition (of the compound) that includes A (such a coalition C can be found because i

is not a dummy of the quotient). The intersection of π(C) with j is not empty, since it is

the union of the intersection of π(C − A) with j and the intersection of π(A) with j. This

intersection is in fact a minimal winning coalition of j, since π(C) is minimal winning

coalition of the compound. Hence, it is enough to show that the intersection of π(C − A)
with j is empty.

Note that—since π(B) does not intersect with j—the intersection of π(C − A) with j

is equal to the intersection of π((C − A) ∪ B) with j. Suppose for contradiction that this

intersection is not empty. Then, since (C − A) ∪ B is a minimal winning coalition of

the compound, this intersection must in fact be a minimal winning coalition of j, which

contradicts the fact that it is a strict subset of the intersection of π(C) with j (which is itself

a minimal winning coalition of j).

Lemma 3.4 is only relevant for compound representations whose quotient is prime.

Lemma 3.4. If the quotient is prime, there is a unique component u with the property that, for all

minimal winning coalitions A of a given component, the image of A under π intersects with u.

Proof. On the one hand, suppose for contradiction that there is no such component u.

Then there are two minimal winning coalitions A and B of component i, and two com-

ponents j and k, such that π(A) intersects with j and not with k, and π(B) intersects with
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k and not with j. Indeed, if this was not the case, then, for every two minimal winning

coalitions C and D of i, either π(C) would intersect only with a subset of those compo-

nents that π(D) intersects with, or vice versa. But this would imply that there is a minimal

winning coalition C of i such that, for every minimal winning coalition D of i, π(D) in-

tersects with all the components that π(C) intersects with (so any component that π(C)

intersects with would serve as u).

I show that the sum of j and k is a committee of the quotient, which is a contradiction of

the assumption that the latter is prime. Let S be a set (of components) such that S ∪ {j, k}
wins and S − {j, k} does not win in the quotient. By Lemma 3.3, the intersection of

π(A) with j is a minimal winning coalition of j, and the intersection of π(B) with k is a

minimal winning coalition of k. This means that no minimal winning coalition C (of the

compound) that intersects with j can intersect with k (and vice versa);21 that is, that S

wins in the quotient if and only if it contains either l or k.

On the other hand, suppose for contradiction that there are (at least) two different

components u1 and u2 with the property that, for all minimal winning coalitions A in i,

the image of A under π(A) intersects with both u1 and u2. I show that the product of u1
and u2 is a committee of the quotient, which is again a contradiction of the assumption

that the quotient is prime.

Let S be a set (of components) such that S ∪ {u1, u2} wins and S − {u1, u2} does not

win in the quotient. Every minimal winning coalition C (of the compound) that contains

a minimal winning coalition C1 of u1 also contains a minimal winning coalition of u2 (and

vice versa).22 So S wins in the quotient if and only if S contains both u1 and u2.

3.3.5 Step 1 of the Proof

Proposition 3.5. The map π is compatible with the representationW [W1, . . . ,Wm].
21To see this, let C be a minimal winning coalition (of the compound) that contains a minimal winning

coalition of j and that intersects with k. Letting J and K denote the non-dummy player sets of j and k, the

coalitionH = (C−J−K)∪π(B)∪π(A) is minimal winning of the compound, so the image ofH under π−1

is also a minimal winning coalition of the compound. But this cannot be, since this image contains A ∪ B,

which is a strict superset of any minimal winning coalition.
22This is because, since π−1 is a symmetry of the compound, and the image ofC under π−1 intersects with

i, this intersection is in fact a minimal winning coalition of i. Hence, by the definition of u2, π(π−1(C)) = C

intersects with u2, so this intersection is in fact a minimal winning coalition of u2 (since π(C) is a minimal

winning coalition of the compound).
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Proof. Fix an arbitrary component i. It is enough to show that there exists a component j

such that the image of every minimal winning coalition of i under π intersects only with

j.23 Since the compound representation W [W1, . . . ,Wm] is regular, the following three

cases are exhaustive.

Case 1: The quotientW is a sum and the componentWi is not a sum: Let A and B be two mini-

mal winning coalitions of i. Since the set of minimal winning coalitions of the compound

consists of the union of the set of minimal winning coalitions of each component, we can

assume without loss of generality that π maps A to a minimal winning coalition of some

component j. Since component i is not a sum, we cannot partition its set of non-dummy

players into two nonempty sets in such a way that there is no minimal winning coalition

that intersects both of them. In other words, there is a set {A1 = A,A2, . . . , Al = B} of

minimal winning coalitions of i with the property that, for all t = 1, 2, . . . , l − 1, the coali-

tion At intersects with the coalition At+1. Since π maps A1 to a minimal winning coalition

of j, and A1 overlaps with A2, π maps A2 to a minimal winning coalition of j as well.24

Iterating on this observation, we conclude that π maps B to a minimal winning coalition

of j.

Case 2: The quotientW is a product and the componentWi is not a product: Since the dual of

the product of games is the sum of their duals (see subsubsection 2.1.5), this case follows

from the combination of Case 1 and Lemma 3.2.

Case 3: The quotient W is prime: Let u be the unique component with the property that,

for all minimal winning coalitions A of component i, the image of A under π intersects

with u (see Lemma 3.4). Also, let T be the union of all components j for which there is

a minimal winning coalition A of i such that π(A) intersects with j. I prove that T is a

proper committee of the quotient, which implies—since the quotient is prime—that T is

a singleton.

First, I prove that T is a committee. For each component j ∈ T − {u}, let Aj be a

minimal winning coalition whose image under π−1 is a minimal winning coalition of i

23Indeed, the same logic then proves that the image of every minimal winning coalition of j under π−1

intersects only with i, so π in fact maps every minimal winning coalition of i to a minimal winning coalition

of j, and vice versa.
24Indeed, since A2 is a minimal winning coalition of a component (and hence the compound), π(A2) is

also a minimal winning coalition of the compound (and hence of some component). Since A2 intersects

with A1, and π(A1) is a minimal winning coalition of j, π(A2) intersects with j (and is therefore a minimal

winning coalition of j as well).
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(we can find such coalitions by Lemma 3.3), and let Au be a minimal winning coalition in

u whose image under π−1 intersects with i.

Suppose for contradiction that there exist sets (of components) S1, S2 and Q such that

both S1 ∪ T and S2 ∪ T win, both S1 − T and S2 − T lose, and (S1 − T ) ∪ Q wins but

(S2 − T ) ∪Q loses in the quotient.

Note that u must be an element of Q, because the image under π−1 of a coalition (of

players) that does not intersect with u but intersects with π(A), for some minimal winning

coalition A of i, cannot be a winning coalition of the compound (since the image of every

winning coalition of the compound that intersects with i intersects with u).

Let B1 and C be two coalitions (of players) that contain at most one minimal winning

coalition from each of the components in S1 − T and in {Aj}j∈Q, respectively, and such

that B1 ∪ C is a minimal winning coalition of the compound (we can do this, because the

union of one minimal winning coalition in each component in (S1− T )∪ {Aj}j∈Q wins in

the compound). Note that the image of C under π−1 intersects with i, and hence wins in

i.

Let B2 be a coalition (of players) that contains one minimal winning coalition from

each of the components in S2 − T . Since the union of S2 − T with Q does not win in the

quotient, B2 ∪ C does not win in the compound. But since the union of S2 with T wins in

the quotient, the union of B2∪C with the union D of the coalitions {Aj}j∈T−Q wins in the

compound. This contradicts the fact that—since the image of D under π−1 only intersects

component i, and the image of C under π−1 wins in i—the image of B2∪C ∪D under π−1

wins in exactly the same components as does the image of B2 ∪ C under π−1.

Second, I prove that T is a strict subset of the set of all components, so T is in fact a

proper committee. For contradiction, suppose otherwise. Let A be a minimal winning

coalition (of the compound) that does not win i (such a coalition can be found because

the quotient is prime, and hence it is not the product of i and some other game), let j be

a component that π(A) wins, let Bj denote the intersection of π(A) with j, and let Aj be

a minimal winning coalition of j whose image under π−1 intersects with i (we can find

such Aj because of the assumption that T is the set of all components). Then the image

of (π(A) − Bj) ∪ Aj under π−1 is a minimal winning coalition of the compound, and it

intersects with component i; hence, this intersection is a minimal winning coalition of

i. But, since π(π−1(A)) = A does not intersect i, this means that the image of Aj under

π−1 is a minimal winning coalition of i, which is only possible if j is equal to u (since
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the image of every minimal winning coalition in i under π intersects with u). Hence, the

only component that π(A) wins is u. This means that we can decompose the quotient as

the sum of u and another game, a contradiction of the assumption that the quotient is

prime.

3.3.6 Step 2 of the Proof

Given Proposition 3.5, we can define, for every symmetry µ of the compound game, the

map µ∗ from the set of components to itself such that µ∗(i) = j if µWi =Wj .

Proposition 3.6. The map π∗ is a symmetry of the quotientW .

Proof. Let S be a minimal winning coalition of the quotient. Since π∗ is one-to-one, it

is enough to show that the image of S under π∗ is a minimal winning coalition of the

quotient. For contradiction, suppose otherwise. Let the coalition A contain exactly one

minimal winning coalition of each of the components with index in S. Then A is a mini-

mal winning coalition of the compound, but π maps it to a non-minimal winning coalition

of the compound, a contradiction.

3.3.7 Step 3 of the Proof

Proposition 3.7. If a permutation µ is compatible with the compound representationW [W1, . . . ,Wm]

and µ∗ is a symmetry ofW , then µ is a symmetry of the compound set χ[X1, . . . , Xm].

Proof. Let µ be a permutation that is compatible with the compoundW [W1, . . . ,Wm], and

that is such that µ∗ is a symmetry of the quotient W . Let x be in the compound set

χ[X1, . . . , Xm]. Since µ is one-to-one, it is enough to show that µ(x) is also in this com-

pound set. By definition,

x =
m∑
i=1

αixi, and µ(x) =
m∑
i=1

αiµ(xi).

for some α ∈ χ and, for each i = 1, . . . ,m, xi ∈ Xi. Since µ is an isomorphism between the

components i and π∗(i), by construction we have that µXi is equal to Xµ∗(i). Also, since χ

is a fair stable set ofW and µ∗ is a symmetry ofW , there exists β ∈ χ such that βµ∗(i) = αi

for all i = 1, 2, . . . ,m (namely, β := µ∗−1α). Hence, we can write µ(x) as

µ(x) =
m∑
i=1

βµ∗(i)µ(xi),
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for some β ∈ χ and, for i = 1, . . . ,m, µ(xi) ∈ Xµ∗(i); that is, µ(x) is in the compound

χ[X1, . . . , Xm].

4 Conclusion

Lloyd Shapley made fundamental contributions to the theory of simple games. In partic-

ular, he was the first to define and study compound simple games. One of the reasons he

thought compound simple games are interesting is that they allow us to study the prob-

lem of aggregation of players in game theory. In his own words (Shapley, 1963c, pages

4-5):

An important question in the application of n-person game theory is the ex-

tent to which it is permissible to treat firms, committees, political parties, la-

bor unions, nations, etc., as though they were individual players. Behind

every game model played by such aggregates, there lies another, more de-

tailed model: a compound game of which the original is the quotient. Given

any solution concept, it is legitimate to ask how well it stands up under the

aggregation—or disaggregation—of its players. How sensitive are its theoret-

ical predictions to the detail adopted in constructing the model?

Shapley’s (1963c) composition theorem shows that the stable sets proposed by von Neu-

mann and Morgenstern (1944) stand up well under the disaggregation of their players: A

stable set of the gross model (the quotient), with details added at the component level,

becomes a stable set of the refined model (the compound game).

In this article, I have shown that fair stable sets—that is, stable sets that do not discrim-

inate among players based on their names—stand up well under the disaggregation of

their players in a similar manner. This result can also be used to shed light on a question

that Lloyd Shapley asked in 1978 and that remains open to this day: What is the set of

simple games that admit a fair stable set? The composition theorem presented in this ar-

ticle implies that a game that does not admit a fair stable set must have a factor—or prime

quotient in its unique factorization (Shapley, 1967)—that does not admit a fair stable set.

This raises several natural questions that I leave for future research. For example: Is

there any game that admits a fair stable set some of whose factors do not admit a fair

stable set? Or: What is the set of prime games that admit a fair stable set? Answers to
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these questions might provide the key to the characterization of the set G of simple games

that admit a fair stable set. In particular, the composition result presented in this article

implies that if the answer to the first question is negative, answering the second question

would be equivalent to characterizing the set G.
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