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Abstract

Different sellers often sell the same good at different prices. Using a strategic bargain-

ing model, I characterize how the equilibrium prices of a good depend on the interaction

between its sellers’ costs, its buyers’ values, and a network capturing various frictions as-

sociated with trading it. In contrast to the standard random-matching model of bargain-

ing in stationary markets, I allow agents to strategically choose whom to make offers to,

which qualitatively changes how the network shapes prices. As in the random-matching

model, the market decomposes into different submarkets, and—in the limit as bargain-

ing frictions vanish—the law of one price holds within but not across them. But strategic

choice of partners changes both how the market decomposes into different submarkets

and the determinants of each submarket’s price.

Price dispersion is pervasive in both online and offline markets.1 Several frictions—which

effectively restrict who can trade with whom—are behind this widespread phenomenon.

Perhaps most prominent among these are informational frictions. As George Stigler put it

(Stigler, 1961, p. 214),

Price dispersion is a manifestation—and, indeed, it is the measure—of ignorance

in the market.

In this paper, I take the trading frictions associated with trading a good as given, and I

investigate exactly how they translate into price dispersion in a decentralized bargaining
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setting. For simplicity, and in contrast to the search-theoretic approach pioneered by Stigler

(1961), I take these frictions to be binary: Two agents can either trade with no frictions (e.g.,

because they know each other), or they cannot trade at all.2

I consider different buyers and sellers of a homogeneous good (with different values and

costs, respectively) who strategically bargain over both whom to trade with, and their terms

of trade. An exogenous network describes which buyer-seller pairs can trade with each

other. The focus is on situations in which the agents enter the market over time in such a

way that their trading opportunities are stationary.3 This is intended to approximate the

predominant economic forces in large markets where the relevant trading opportunities are

roughly constant over time.

The main innovation with respect to the literature on bargaining in stationary networks

(e.g., Manea 2011, Nguyen 2015, Polanski and Vega-Redondo 2018) is that I allow the agents

to strategically choose whom to make offers to. Strategic choice of partners is a natural

element of bargaining, and—as I discuss below—it substantially affects how the network

shapes agents’ bargaining power. In particular, in contrast to the random-matching model

of Manea (2011), trading frictions are not sufficient to explain price dispersion: Only the

interaction between heterogeneities in values or costs and the incompleteness of the network

structure can generate deviations from the law of one price.

I start by showing that—as in the canonical bilateral alternating-offers model of Rubin-

stein (1982)—the process of iterated conditional dominance determines the terms of trade in

each part of the network.4 In particular, the model admits an essentially unique subgame-

perfect equilibrium: Each agent has a cutoff price such that she always accepts trades at prices

that are at least as good for her as her cutoff price. The cutoff price of a buyer (seller) is de-

termined by her value (cost) and the price at which she can trade in equilibrium when she

is the proposer—that is, the lowest (highest) cutoff price among her partners. This implies

that the bargaining power of an agent does not depend on the bargaining power of all of

her partners. Rather, it is determined by the minimum or the maximum among the cutoff

prices of all of her partners.5 This contrasts with the prediction of random-matching models,

2See Manea (2016) for an excellent recent survey of related models of bilateral trade in networks.
3The literature on non-cooperative bargaining in stationary markets goes back to Rubinstein and Wolinsky

(1985). See for example Gale (1987), Binmore and Herrero (1988), de Fraja and Sákovics (2001) and Lauermann

(2013).
4Iterated conditional dominance similarly pins down the terms of trade in the analogous random-matching

model of Manea (2011) (see Manea 2017a).
5This is a manifestation of the outside option principle (e.g., Sutton 1986), which states that only credible

outside options matter in bargaining. Indeed, in the present model, any threat by a buyer (seller) that involves
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and suggests that the economic forces that determine the terms of trade in each part of the

network are more local in nature than these models suggest.6

The result that drives the equilibrium characterization is that each agent’s cutoff price can

be bounded using a local network statistic—her best price—which is her equilibrium cutoff

price in the hypothetical situation in which she can choose one of her partners and bargain

bilaterally with her in isolation.7 While this bound is typically not tight, I show that it is tight

at the extremes: The best price of the buyer with the highest best price is her cutoff price and,

analogously, the best price of the seller with the lowest best price is her cutoff price. This

implies that all the agents’ cutoff prices converge to the same price in the limit as bargaining

frictions vanish if and only if the buyer with the highest limit best price is connected to the

seller with the lowest limit best price. In particular, the condition that the buyer with the

highest value is connected to the seller with the lowest cost is necessary, but not sufficient,

for the law of one price to hold.

Unlike the extreme market prices, the intermediate prices cannot be identified at a glance

from the agents’ best prices. However, I describe an algorithm that decomposes the trading

network into different components (or submarkets), with the property that the law of one

price holds—in the limit as bargaining frictions vanish—within submarkets but not across

them. This algorithm works by first identifying the buyer with the highest limit best price

(who determines the price of the submarket with the highest price), and then identifying

the set of all the traders who, in equilibrium, also end up trading in the submarket with

the highest price. Repeated application of this algorithm (after removing from the network

all the agents that trade in the submarkets previously identified) finds the price and all the

traders in each submarket.8

The network decomposition algorithm that I describe in this paper uncovers the role that

each trading relationship plays in shaping price dispersion in decentralized markets. For

making offers to anyone but one of her partners with the lowest (highest) cutoff price are not credible—and

hence do not affect anyone’s bargaining power. Binmore, Shaked, and Sutton (1989) provide experimental

evidence that is consistent with this principle.
6Under random matching, the fact that an agent is exogenously matched to bargain with positive prob-

ability with each of her partners implies that the number of partners with whom she can profitably trade in

equilibrium affects her bargaining power.
7The idea of characterizing the equilibrium by considering these hypothetical situations is inspired by

Elliott and Nava (forthcoming), who show that an efficient Markov-perfect equilibrium exists in their (thin-

market) setting for sufficiently small bargaining frictions if and only if the payoffs that result from bilateral

bargaining between the efficiently matched pairs are in the core of the market.
8Repeated application of the analogous algorithm for sellers provides the same decomposition (from the

submarket with the lowest price up instead of the submarket with the highest price down).
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instance, using this algorithm, I illustrate that, while a reduction in trading frictions (i.e.,

adding new links to the trading network) cannot increase the gap between the highest and

the lowest market price, it can increase the number of different prices at which the good is

traded at in equilibrium. This suggests that the relationship between price dispersion and

ignorance is not as straightforward as Stigler’s (1961) quote above suggests.

The rest of this paper is organized as follows. After presenting the model in section 1, I de-

scribe the essentially unique subgame-perfect equilibrium for arbitrary bargaining frictions

in section 2, and I characterize the limit equilibrium terms of trade in section 3. I further

discuss the contribution of this paper in the context of the related literature in section 4, and

I conclude in section 5. I relegate the details of some of the proofs to the appendix.

1 Model

1.1 The MarketM

There is a finite set B of types of buyers and a finite set S of types of sellers of a homogenous

good. The type i of a buyer is determined by her value vi ≥ 0 for the good and the set of

sellers that she can trade with. Similarly, the type j of a seller is determined by her cost

cj ≥ 0 of producing the good and the set of buyers that she can trade with. I let N denote

the set of all types of agents—that is, the union of the set B and the set S—and I let n denote

the cardinality of the set N .9 For simplicity, I assume that each buyer only values one unit of

the good, that each seller can only produce one unit of the good (and has no consumption

value for this good), and that the following generic assumption holds.10

Assumption 1.1. Each type i of buyer has a different value vi, and each type j of seller has a

different cost cj . Moreover, the prices that emerge from bilateral Nash bargaining (with zero

threat points) between any two different buyer-seller pairs are different (that is vi+cj
2
6= vi′+cj′

2

unless i = i′ and j = j′), and none of these prices coincide with the value of any buyer or the

cost of any seller.

Fix an undirected buyer-seller network g with node set N .11 If two types share an edge

in the network g, I say that they are connected, or that they are partners. Without loss of
9I often refer to a buyer of type i as “buyer i,” and to a seller of type j by “seller j.”

10Throughout this paper, I say that a property holds generically if it holds with probability one when values

and costs are independently drawn from a continuous and atomless distribution.
11A (directed) network g is a pair (N,E), where N is a set of nodes, and E is a set of edges between the

nodes; that is, E ⊆ {(i, j) | i, j ∈ N}. A network (N,E) is undirected if (i, j) is in E implies that (j, i) is in E.
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Figure 1: MarketW of Example 1.1, comprised of two types of sellers (s1 and s2, with costs

0 and 20, respectively) and three types of buyers (b1, b2, and b3, with values 100, 60, and 50,

respectively). The height of each node reflects its associated value or cost. An edge between

two nodes indicates that the associated types can trade with each other.

generality, I assume that each buyer i has a connection to a seller j whose cost cj is lower

than her value vi and, analogously, that each seller j has a connection to a buyer i whose

value vi is higher than her cost cj . Letting v and c be the profiles of buyers’ values and

sellers’ costs, I refer to the setM = (N, v, c, g) as the market.

Example 1.1. Throughout this paper, I illustrate the main concepts and results using the

marketW depicted in Figure 1. It consists of two types of sellers, s1 and s2, and three types

of buyers, b1, b2 and b3. Sellers of type s1 have a lower cost than sellers of type s2. Both types

of sellers can trade with the buyers of type b3—who place relatively low value on the good.

In addition, the sellers of type s2 can trade with the buyers of type b2—who value the good

more than the buyers of type b3 do—and the sellers of type s1 can trade with the buyers of

type b1—who value the good the most.

1.2 The Game Γ(M, δ)

Given the market M and a common discount factor δ > 0, I study the following infinite-

horizon complete-information bargaining game Γ(M, δ), which is intended to capture the

predominant strategic forces in a steady state of this market.12 In each period t = 0, 1, . . . ,

one agent of each type is active. More precisely, for each type i, there exists a sequence

i0, i1, . . . , iκ, . . . of agents of type i. In the first period (t = 0), the set of active agents is

{i0}i∈N and, for each κ ≥ 0, when the active agent iκ reaches an agreement and exits the

12This game is similar to the one considered by Rubinstein and Wolinsky (1985) and the subsequent litera-

ture studying bargaining in stationary markets.
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market in a given period, agent iκ+1 becomes active in the next period.

In each period t = 0, 1, . . . , one active agent is selected uniformly at random to be the

proposer. The proposer chooses one of her connections j to be the receiver, and makes the

active agent of type j a take-it-or-leave-it offer to trade at a certain price p. If the receiver

accepts this offer, the proposer and the receiver trade at the specified price and exit the

market. Otherwise, they stay in the market for the next period.13 Buyer b’s period-T utility

of trading at price p in period T + τ is δτ (vb − p). Analogously, seller s’s period-T utility of

trading at price p in period T + τ is δτ (p− vs).

2 Equilibrium: Arbitrary Bargaining Frictions

In this section, I investigate the subgame-perfect equilibrium of the game Γ(M, δ) for an

arbitrary discount factor δ.14 After describing the sense in which this game admits an es-

sentially unique equilibrium, I investigate what determines the equilibrium terms of trade

in each part of the network. The main finding is that equilibrium prices are driven by pairs

of types that essentially ignore the presence of other types in the market and engage in bi-

lateral bargaining, and that some such pairs—those with extreme terms of trade—can be

identified by computing one local network statistic for each type. This provides the basis for

characterizing, in section 3, the equilibrium prices in the limit as the discount factor δ goes

to 1.

2.1 Unique Equilibrium Prices

Proposition 2.1 below shows that each type has a cutoff price such that, in every subgame-

perfect equilibrium of the game Γ(M, δ), she always accepts trades at prices that are at least

as good for her as her cutoff price. This implies that, in every equilibrium, each buyer i that

has access to at least one seller whose cutoff price is lower than her value vi proposes to

trade at price ρj with one of her preferred partners j—that is, one of her connections j with

the lowest cutoff price ρj—and all such offers are always accepted.15 Similarly, in every
13For simplicity, when the proposer is buyer i, I restrict the proposed price p to be weakly lower than vi.

Analogously, when the proposer is seller j, I restrict the proposed price p to be weakly higher than cj .
14The strategy profile (σi)i∈N is a subgame-perfect equilibrium of the game Γ(M, δ) if it induces a Nash equi-

librium in each of its subgames. I often refer to the notion of subgame-perfect equilibrium simply as an “equi-

librium.”
15If such offers were accepted with probability less than one, buyer i would not have a best response. This

is because buyer i can always ensure that seller j accepts her proposal with probability one by proposing the
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equilibrium, each seller j that has access to at least one buyer whose cutoff price is higher

than her cost cj proposes to trade at the price ρi with one of her preferred-partners i—that

is one of her connections i with the highest cutoff price ρi—and all such offers are always

accepted. I say that a buyer i that has no access to any seller j whose cutoff price ρj is strictly

lower than her value vi is her own preferred partner and, analogously, that a seller j that has

no access to any buyer i whose cutoff price ρi is strictly higher than her cost cj is her own

preferred partner.16

Proposition 2.1. Each buyer i has a cutoff price ρi such that, in every subgame-perfect equilibrium

of the game Γ(M, δ), she always accepts trades at price p < ρi, and she always rejects trades at

price p > ρi. Analogously, each seller j has a cutoff price ρj such that, in every subgame-perfect

equilibrium of the game Γ(M, δ), she always accepts trades at price p > ρj , and she always rejects

trades at price p < ρj .

The statement of Proposition 2.1 can be strengthened, in the sense that the process of iter-

ated conditional dominance—which, in the present context, is a weaker solution concept than

subgame-perfect equilibrium17—determines behavior in the same way. This process, how-

ever, does not provide much insight into how the interaction between sellers’ costs, buyers’

values and the underlying network g capturing the relevant trading frictions determines

agents’ bargaining power. For this reason, Proposition 2.1 is only the starting point of the

equilibrium characterization. Its proof is analogous to the one given by Fudenberg and Ti-

role (1991) in the context of the canonical bilateral bargaining model of Rubinstein (1982),

and follows the one given by Manea (2017a) in the context of a random-matching version of

this model, so I defer it to Appendix A.

2.2 Cutoff Price is Determined by Preferred Partner’s Cutoff Price

One of the main difficulties in understanding the sources of bargaining power in networked

markets is that, in general, the bargaining power of an agent depends on the bargaining

power of all of her partners, which in turn depends on the bargaining power of all of their

partners, and so on, so bargaining power is a complex function of the network structure.

price ρj − ε, for any ε > 0.
16Naturally, a type that is her own preferred partner never trades in equilibrium (see Lemma B.1).
17In games of perfect information—like the bargaining game Γ(M, δ)—the notion of iterated conditional

dominance is weaker than the concept of subgame-perfect equilibrium in the following sense: Every subgame-

perfect equilibrium survives the process of iterated conditional dominance (Theorem 4.3 in Fudenberg and

Tirole, 1991).
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Figure 2: The Rubinstein prices pij in the game Γ(W , .98). The number next to the arrow that

points from type j to type i is the ij-Rubinstein price.

However, I now show how, in the game Γ(M, δ), the bargaining power of an agent does not

depend on the bargaining power of all of her connections. Rather, is is determined by the

minimum or the maximum of the cutoff prices among all of her connections. In particular,

Proposition 2.2 below describes how the cutoff price of each type is a weighted average

of her own cost or value and the cutoff price of her preferred partners. Interestingly, this

implies that the cutoff prices of mutually-preferred partners are determined independently

of others’ values, costs and connections. This is especially relevant because, as I discuss

below, mutually-preferred partners essentially determine all the equilibrium prices.

Proposition 2.2. If buyer i’s preferred partner is type j, then letting α := δ
δ+(1−δ)n , their cutoff

prices ρi and ρj satisfy

(1) ρi = (1− α)vi + αρj.

Analogously, if seller j’s preferred partner is type i, then their cutoff prices ρi and ρj satisfy

ρj = (1− α)cj + αρi.

Proof. Let j be the preferred partner of buyer i (an analogous argument works for sellers).

The cutoff price of buyer i is the price ρi that leaves her indifferent between trading at this

price at a given period t, which gives her a time-t utility of

(2) vi − ρi,

and waiting for period t+ 1, which gives her a time-t expected utility of

(3) δ

 1

n
(vi − ρj)︸ ︷︷ ︸

i’s utility when proposer

+
n− 1

n
(vi − ρi)︸ ︷︷ ︸

i’s expected utility when not proposer

 .
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since, in period t + 1, if she is the proposer (which occurs with probability 1/n) she trades

at the cutoff price ρj of her preferred partner j and, otherwise, she either trades at price

ρi or does not trade (note that, by definition, buyer i is indifferent between trading at her

cutoff price ρi and waiting for the next period, so her expected payoff in a period in which

she is not the proposer is vi − ρi independently of whether she trades or not). Equating the

expressions (2) and (3) gives Equation 1.

Corollary 2.1. If buyer i and seller j are mutually-preferred partners, then their cutoff prices ρi and

ρj are given by

(4) ρi =
vi + αcj
1 + α

=: pi,j and ρj =
cj + αvi
1 + α

=: pj,i.

The prices pi,j and pj,i are exactly the cutoff prices of buyer i and seller j when bargaining

in the random-proposer version of the classical bilateral alternating-offers model of Rubin-

stein (1982), in which, in each period, each agent has a probability of 1/n of being selected

to be the proposer. For this reason, I refer to these prices as the ij-Rubinstein price and the ji-

Rubinstein price, respectively.18 Note that both the ij-Rubinstein price and the ji-Rubinstein

price converge—as δ goes to 1—to the price that emerges from the Nash bargaining solu-

tion (with zero threat points) between i and j; that is, vi+cj
2

.19 Figure 2 depicts the relevant

Rubinstein prices pij in the game Γ(W , .98).

2.3 Mutually-Preferred Partners Determine All Prices

The observation that one’s cutoff price only depends on the cutoff price of her preferred part-

ners suggests that—in order to understand how cutoff prices are determined—it is useful to

trace out who is the preferred partner of whom. To this end, I define the preferred-partner

network G to be a directed network with node set N that has an edge from type i to type j

if j is a preferred partner of i. For instance, Figure 3 depicts the preferred-partner network

in the game Γ(W , .98) of Example 1.1. This network has two maximal connected subnet-

works (when viewed as an undirected network)20—or components. One component contains

18These notional prices are related to—but different from—Elliott and Nava’s (forthcoming) Rubinstein pay-

offs, which they define in their matching setting as the limit payoffs that would arise if all pairs in the efficient

match bargained bilaterally. In particular, the ij-Rubinstein price in the present setting is defined for all bar-

gaining frictions—and not only in the limit as bargaining frictions vanish.
19This close connection between the strategic bargaining model of Rubinstein (1982) and the Nash bargain-

ing solution was first discussed by Binmore (1987) (see also Binmore, Rubinstein, and Wolinsky 1986).
20A network (N ′, E′) is a subnetwork of network (N,E) if N ′ ⊆ N and E′ ⊆ E. A walk in (N,E) from i to j of

lengthm is a list (i1, i1, . . . , im) of nodes inN with i1 = i and im = j such that, for each 1 ≤ k ≤ m−1, (ik, ik+1)
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Figure 3: Preferred-partner network in the in the game Γ(W , .98) of Example 1.1. An edge

from i to j indicates that j is a preferred partner of i (that is, that type i offers to trade with

type j when she is the proposer) and the number associated to it is (approximately) the

corresponding price offered (equivalently, j’s cutoff price).

the mutually-preferred partners b1 and s1 and has relatively high cutoff prices. The other

component contains the mutually-preferred partners b2 and s2, and has relatively low cutoff

prices.

Note that each component of the preferred-partner network depicted in Figure 3 has ex-

actly one pair of mutually-preferred partners, whose terms of trade are determined by bilat-

eral bargaining (as described by Corollary 2.1 above) and essentially determine all the prices

in it.21 Proposition 2.3 shows that this is generically the case, which implies that mutually-

preferred partners drive the equilibrium prices in the game Γ(M, δ).

Proposition 2.3. Generically, each type has a unique preferred partner, and each component of the

preferred-partner network with at least two nodes contains exactly one pair of mutually-preferred

partners.

I defer the details of the proof of Proposition 2.3 to Appendix B. Here, I describe the main

idea behind it, which is that, generically, the preferred-partner network G does not contain cycles

with more than two nodes.22 Since each type has at least one preferred partner and that—

as shown by Lemma B.1 in the appendix—a type who is her own preferred partner is not

is in E. A network (N ′, E′) is a maximal connected subnetwork of the network (N,E) if there is no subnetwork

(N ′′, E′′) 6= (N ′, E′) of network (N,E) with E′ ⊂ E′′ such that, for every i, j ∈ N ′′, there is a walk in (N ′′, E′′)

from i to j.
21Indeed, when the discount factor δ is close to 1, each agent’s cutoff price is essentially the cutoff price of

her preferred partner (see Equation 1), so the cutoff price of each type that is in a component of the preferred-

partner network G with mutually-partners (i, j) is essentially the price that emerges from bilateral bargaining

between i and j.
22A cycle in G is a walk that begins and ends at the same node.
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the preferred partner of any other type, this implies that each component of the preferred-

partner network with at least two nodes contains at least one pair of mutually-preferred

partners. The fact that, generically, there is exactly one such pair then follows from the

observation that—as shown by Lemma B.4 in the appendix—generically, each type has a

unique preferred partner.

Suppose for contradiction that there exists a cycle (b1, s1, b2, s2, . . . , bm, sm) with m ≥ 2

such that, for each i in {1, 2, . . . ,m}, the preferred partner of buyer bi is seller si and the

preferred partner of seller si is buyer bi+1 (indices are modulo m), as depicted below.

b1

bm

s1

s2

b2sm

For each i in {1, 2, . . . ,m}, seller si−1 is connected to buyer bi, since bi is the preferred partner

of si−1. Hence, the fact that the preferred partner of bi is si implies that ρsi ≤ ρsi−1
for all i

in {1, 2, . . . ,m}, which is only possible if all these weak inequalities are actually equalities.

Analogously, ρsi = ρsi−1
for all i in {1, 2, . . . ,m}. Hence, for all i and j in {1, 2, . . . ,m}, buyer

i and seller j are mutually-preferred partners. By Corollary 2.1, this implies that csi = csi−1

and vbi = vbi−1
for all i in {1, 2, . . . ,m}, which is not generic.

2.4 Who are the Mutually-Preferred Partners?

The discussion so far implies that the trading network g endogenously decomposes into dif-

ferent components, with the prices in each component essentially determined by its unique

pair of mutually-preferred partners. This suggests that understanding what determines who

are the mutually-preferred partners is the key to characterizing the equilibrium prices. As a

first step, I now show how the mutually-preferred partners with extreme cutoff prices can be

easily identified using local network statistics. This is the basis for the recursive procedure

(which I describe in section 3) that finds all the mutually-preferred partners (for sufficiently

high discount factors δ). To do this, I first describe, in subsubsection 2.4.1, a personalized

bound—based on local information—on each type’s cutoff price, and then I show, in sub-

subsection 2.4.2, that this bound is tight at the extremes.
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2.4.1 Best Prices Bound Cutoff Prices

The observation that the cutoff price of mutually-preferred partners is essentially deter-

mined by bilateral bargaining between them, and that i’s preferred partner can always

choose to reciprocate i’s offers, suggests that the cutoff price of each type is weakly less

beneficial for her than the price that emerges from bilateral bargaining between her and any

of her partners. I now formalize this idea. In particular, I show how the cutoff price of each

type can be bounded using only local information—that is, information about her value or

cost and that of her partners. This will later be useful to provide tight bounds on the highest

and the lowest cutoff prices in the game Γ(M, δ) from these local network statistics.

To determine this bound for buyer i, for instance, first identify her best partner j—that is,

the seller that she is connected to with the lowest cost. Second, identify her best price, defined

as her ij-Rubinstein price pij . In other words, buyer i’s best price is her cutoff price in the

hypothetical situation in which she can (i) choose one of the sellers that she has access to, and

(ii) bargain bilaterally with her as in the random-proposer version of the alternating-offers

model of Rubinstein (1982) (with proposer probabilities given by 1/n). Proposition 2.4 shows

that no buyer does better in equilibrium than how she would do in this hypothetical case.

Intuitively, one’s partners’ bargaining power only increases when they can trade with others.

For instance, in the game Γ(W , δ) of Example 1.1, while buyer b3’s best price is relatively low

due to her access to the low-cost seller s1, her cutoff price ends up being higher than her best

price because s1 can bargain with the high-cost buyer b1 instead.

Definition 2.1. Buyer i’s best partner is the seller j that she is connected to with the lowest

cost cj , and her best price is the ij-Rubinstein price pij . Analogously, seller j’s best partner

is the buyer i that she is connected to with the highest value vi, and her best price is the

ji-Rubinstein price pji.

Proposition 2.4. A buyer’s best price is a lower bound on her cutoff price. Analogously, a seller’s

best price is an upper bound on her cutoff price.

Proof. Suppose that buyer i’s preferred partner is seller j (a similar argument proves the

analogous statement for sellers). It is enough to show that ρi ≥ pi,j (where pi,j is defined in

Equation 4). Denoting seller j’s preferred partner by k (see Figure 4), we have that ρi ≤ ρk

and, using Proposition 2.2, that ρi = fi,j(ρk) where fi,j(x) := (1 − α)(vi + αvj) + α2x. By

definition, pi,j = fi,j(pi,j). As illustrated in Figure 5 below, this implies that ρi ≥ pi,j .
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fi,j(ρk) ρj ρk

Figure 4: Illustration of the situation described in the proof of Proposition 2.4.

ρi

ρk

ρi = ρk

ρi ≤ ρk

ρi = fi,j(ρk)

pi,j

pi,j

(1− α)(vi + αvj)

Figure 5: Illustration of the argument in the proof of Proposition 2.4. The fact that α < 1

implies that the slope of the function fi,j is strictly less than one. The fact that pi,j = fi,j(pi,j)

and that ρi ≤ ρk implies that we must be in the thicker portion of the image of fi,j . In other

words, that ρi ≥ pi,j .

2.4.2 The Extreme Best Prices are the Extreme Cutoff Prices

A type’s best price is—in general—not the relevant measure of her bargaining power. For

instance, in the marketW of Example 1.1, buyer b3 has a significantly lower best price than

buyer b2, but these two types end up trading at the same price in equilibrium (when they

are the proposers). However, Proposition 2.5 below shows that the best price is the relevant

measure of bargaining power of those types with extreme cutoff prices. Intuitively, since a

buyer with the highest cutoff price is—naturally—the preferred partner of all of her partners,

it is as if she was in the hypothetical situation that defines her best price: Namely, it is as if

she could choose any one of her partners and bargain bilaterally with her. And she chooses

her best partner—so her cutoff price is exactly her best price (and analogously for sellers).

Proposition 2.5. The cutoff price of a buyer with the highest cutoff price is her best price. Analo-

gously, the cutoff price of a seller with the lowest cutoff price is her best price.

Proof. A buyer h with the highest cutoff price is, by definition, a preferred partner of all the

sellers that she is connected to. Hence, the cutoff price ρj of each seller j that she is connected

to is (1−α)cj+αρh, so buyer h’s preferred partner is her connection with the lowest cost; that

is, her best partner. The result then follows from the fact that buyer h’s best price is defined

13



to be her cutoff price when she and her best partner are mutually-preferred partners. The

analogous argument proves the analogous statement regarding sellers.

Corollary 2.2 below highlights how computing each type’s best price is sufficient to bound

the set of all the cutoff prices from above and below. This result follows from Proposition 2.4

and Proposition 2.5, since the former implies that the highest best price among buyers is

a lower bound on the highest cutoff price, and the latter implies that the highest best price

among buyers is an upper bound on the highest cutoff price (and analogously for sellers).

Corollary 2.2. The highest best price among buyers is the highest cutoff price, so the buyer with

the highest best price and her best partner are mutually-preferred partners. Analogously, the lowest

best price among sellers is the lowest cutoff price, so the seller with the lowest best price and her best

partner are mutually-preferred partners.

For instance, in the game Γ(W , .98), the buyer with the highest best price is b1, and the

seller with the lowest best price is s2. In this case, Corollary 2.2 implies that the best prices of

these two types (52 and 39, respectively) are the highest and the lowest cutoff prices in this

game, respectively.

While Corollary 2.2 identifies what determines the highest and the lowest cutoff price in

the game Γ(M, δ), it falls short of identifying all the cutoff prices. The existence of bargaining

frictions makes this task challenging, because these frictions create heterogeneities in the

cutoff prices within components of the preferred-partner network, which prevent us from

ranking these components in terms of their prices. For this reason, I now turn to studying

the equilibrium of this game in the limit as bargaining frictions vanish. In this limit, the

heterogeneities in cutoff prices within components vanish, and this facilitates the description

of a procedure that characterizes all the equilibrium prices.

3 Equilibrium: Arbitrarily-Small Bargaining Frictions

In this section, I characterize the equilibrium prices in the game Γ(M, δ) in the limit as the

discount factor δ goes to 1. The only trading frictions that remain in this limit are those

generated by the underlying trading network g. Hence, this characterization isolates the

effect of the trading network g on the equilibrium terms of trade. After showing that the

limit in question is well defined, I leverage the results of the previous section to (i) provide

a necessary and sufficient joint condition on the primitives (the exogenous trading network

as well as values and costs) for the law of one price to hold, (ii) describe an algorithm that

14



identifies each agent’s terms of trade, and (iii) illustrate how price dispersion can increase

after adding new connections in the underlying trading network, which emphasizes the

subtlety of the relationship between price dispersion and trading frictions.

3.1 The Limit Preferred-Partner Network

Proposition 3.1 below ensures that the equilibrium prices in the game Γ(M, δ) are well de-

fined in the limit as the discount factor δ goes to 1: In particular, it establishes that the

preferred-partner network G is the same for all sufficiently high discount factors δ. Com-

bined with Proposition 2.2 above, this implies that the equilibrium prices converge as δ

converges to 1. The proof is similar to that of the analogous result in the case of random

matching (Manea 2011, Proposition 1), so I defer it to Appendix C.

Proposition 3.1. There exists δ < 1 and G∗ such that G = G∗ for all δ > δ.

I refer to the networkG∗ in Proposition 3.1 as the limit preferred-partner network, and to each

of its connected components (when viewed as an undirected network) as a submarket. By

Corollary 2.1, the cutoff prices of mutually-preferred partners i and j in the limit preferred-

partner network converge—as δ goes to 1—to the one that results from Nash bargaining

between them; that is, if i is a buyer and j is a seller, their cutoff prices converge to vi+cj
2

.

Moreover, it follows from Proposition 2.2 that the cutoff price of every type in the submarket

of the mutually-preferred partners i and j also converges to this price; I refer to this price as

the submarket’s price. Intuitively, in the limit as bargaining frictions vanish, the cutoff price

of each type (the price at which she indifferent between trading and not trading) converges

to the cutoff price of her preferred partner (the price at which she can trade when she is the

proposer), which implies that all the cutoff prices in any submarket converge to the same

price.23

In the case of the market W of Example 1.1, the preferred-partner network depicted in

Figure 3 is also the limit preferred-partner network. The price of the submarket with the

highest price (which contains b1 and s1) is the price that emerges from Nash bargaining

between its mutually-preferred partners b1 and s1—namely, 50. Similarly, the price of the

submarket with the lowest price (which contains b2, b3 and s2) is the price that emerges from

Nash bargaining between its mutually-preferred partners b2 and s2—namely, 40.

23I often refer to all the submarkets’ prices as the market prices.
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3.2 The Law of One Price

Say that the law of one price holds in the marketM if all the cutoff prices in Γ(M, δ) converge

to the same value as the discount factor δ goes to 1. Corollary 3.1 is the analog of Corol-

lary 2.2: It describes how to identify the mutually-preferred partners in the submarkets with

the highest and the lowest price, respectively. In particular, it implies that the law of one

price holds in the marketM if and only if the highest limit best price among buyers is equal

to the lowest limit best price among sellers.

Definition 3.1. The limit best price of buyer i is the price vi+cj
2

that emerges from bilateral

Nash bargaining between her and her best partner j. Analogously, the limit best price of

seller j is the price vi+cj
2

that emerges from bilateral Nash bargaining between her and her

best partner i.

Corollary 3.1. The buyer with the highest limit best price and her best partner are mutually-preferred

partners in the submarket with the highest price. Analogously, the seller with the lowest limit best

price and her best partner are mutually-preferred partners in the submarket with the lowest price.

Corollary 3.1 implies that a necessary condition for the law of one price to hold is that the

highest-value buyer is connected to the lowest-cost seller. Indeed, denoting by v the highest

value among buyers and by c the lowest cost among sellers, v+c
2

is simultaneously a lower

bound on the highest limit best price among buyers and an upper bound on the lowest limit

best price among sellers. However, this condition is not sufficient for the law of one price

to hold: It must also be the case that the highest-value buyer has the highest limit best price

among buyers, and that the lowest-cost seller has the lowest limit best price among sellers.

For instance, in the market W of Example 1.1, the highest-value buyer (b1) and the lowest-

cost seller (s1) are connected, but the fact that the seller s2 has a lower best price than the

seller s1 (despite having a higher cost), implies that her neighbors (b2 and b3) can trade with

her at a price lower than the price at which s1 trades at. In particular, the law of one price

fails in this example.

Corollary 3.2 below highlights that reducing the trading frictions of a market never in-

creases the gap between the highest and its lowest market price. Moreover, it identifies the

conditions under which adding a connection between a buyer and a seller reduces this gap.

Corollary 3.2. Adding an edge in the underlying network g does not increase the gap between the

highest and the lowest market price, and it reduces this gap if and only if it either (i) connects the

buyer b with the highest best price to a seller whose cost is smaller than the one of b’s best partner, or
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(ii) connects the seller s with the lowest best price to a buyer whose value is higher than the one of s’s

best partner.

For instance, in the marketW of Example 1.1, connecting s1 and b2 does not decrease the

gap between the highest and the lowest market price (since it neither changes b1’s nor s2’s

limit best price), but connecting s2 and b1 does (since s2’s best partner becomes b1, her limit

best price becomes 60 and, hence, s1 becomes the seller with the lowest limit best price).

3.3 Equilibrium Price Dispersion

The discussion above shows how (i) in order to characterize the market prices, it is suffi-

cient to identify the mutually-preferred partners in each submarket, and (ii) the mutually-

preferred partners of the submarket with the highest and the lowest price can be identified

by computing the limit best price of each agent. While it is impossible to identify at a glance

the mutually-preferred partners in the submarkets with intermediate prices, I now describe

an algorithm that identifies both the mutually-preferred partners and the rest of the types in

each submarket. This algorithm exploits the fact that—in contrast to the case with arbitrary

bargaining frictions—the cutoff prices in each submarket converge to the same price in the

limit as bargaining frictions vanish.

The key of the characterization of all the market prices is the description of algorithm B
(Definition 3.3 below), which identifies the set of all the types in the submarket with the

highest price. Once this algorithm has identified the submarket with the highest price, it

can be applied again to the rest of the market to find the types in the submarket with the

second-highest price, and so on, until it has identified all the types in each submarket—and

the corresponding prices.24

The idea that algorithm B exploits to identify all the types that trade in the submarket

with the highest price is intuitive: All the sellers that can, do trade in the submarket with the

highest price p. And the only buyers that trade in the submarket with the highest price p are

those that, if they were not to do so, they would find themselves in such a weak bargaining

position that they would be forced to trade at a price higher than p. This might occur, for

example, when all the low-cost sellers that she has access to trade in the submarket with the

highest price. In order to formalize this idea, Definition 3.2 below defines the agents’ best

partners and limit best prices in subsets of the marketM.

24A procedure analogous to algorithm B can be defined to identify the types in the submarket with the

lowest price, then the types in the submarket with the second-lowest price, and so on.
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Definition 3.2. Let M ⊆ N . If buyer i is connected to a seller in M with a strictly lower cost

than her value, then her best partner in M is the seller j in S that she is connected to with the

lowest cost cj , and her limit best price in M is vi+cj
2

. Otherwise, she is her own best partner in

M , and her limit best price in M is her own value vi. Analogously, if seller j is connected to a

buyer in S with a strictly higher value than her cost, then her best partner in M is the buyer i

in M that she is connected to with the highest value vi, and her limit best price in M is vi+cj
2

.

Otherwise, she is her own best partner in S, and her limit best price in S is her own cost cj .

Definition 3.3 (Algorithm B). Let X0 = {b, s}, where b is the buyer with the highest limit

best price p, and s is her best partner. Proceed inductively as follows: In step k ≥ 1, let Xk

be the union of Xk−1, the set of all the sellers whose cost is lower than p and that have a

connection in Xk−1, and the set of all the buyers whose limit best price in N −Xk−1 is higher

than p. End in the first step κ for which Xκ = Xκ−1, and let X := Xκ.

For instance, in the context of the market W in Example 1.1, algorithm B proceeds as

follows: In step 0, X0 = {b1, s1}, since b1 is the buyer with the highest limit best price (50),

and s1 is her best partner. In step 1, no sellers are included in X1, since s2 cannot trade with

b1, and no buyers are included in X1 either, since b3’s limit best price in the restriction of

market W to {b2, s2, b3} is 35 =
vb3+cs2

2
<

vb1+cs1
2

= 50. Hence, Theorem 3.1 below implies

that the submarket with the highest price consists only of the buyer b1 and the seller s1. For

brevity, I defer the details of the proof of Theorem 3.1 to Appendix D.

Theorem 3.1. The set X defined by algorithm B is the set of all the types in the submarket with the

highest price.

As discussed in subsection 3.2 above, the law of one price holds if and only if the high-

est limit best price among buyers is equal to the lowest limit best price among sellers. In

particular, given the generic Assumption 1.1, when the highest limit best price among buy-

ers is equal to the lowest limit best price among sellers, it must be that all the types are in

the same submarket. I now describe an independent proof of this result, which clarifies the

connection between Theorem 3.1 and the earlier discussion.

Corollary 3.3. The set X defined by algorithm B is equal to the set of all types N if and only if the

highest limit best price among buyers is equal to the lowest limit best price among sellers.

Proof. Suppose first that X = N . Suppose for contradiction that the highest limit best price

p among buyers is strictly higher than the lowest limit best price among sellers. Let s denote

the seller with the lowest limit best price. Let l denote the step of algorithm B in which seller
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s is included in X l. By definition, there is a buyer b that s is connected to that is in X l−1.

Using Assumption 1.1, this implies that vb+vs
2

is strictly higher than p, which implies that the

limit best price of s is strictly higher than p, a contradiction.

In the other direction, suppose that the highest limit best price p among buyers is equal

to the lowest limit best price among sellers. Suppose for contradiction that X 6= N . Then,

using Assumption 1.1, the limit best price in N −X of each buyer in N −X is strictly lower

than p, while the limit best price in N −X of each seller in N −X is strictly higher than p. In

other words, for each buyer i in N −X we can find a seller j in N −X that she is connected

to with vi+cj
2

< p, and similarly, for each seller j in N − X we can find a buyer i in N − X
that she is connected to with vi+cj

2
> p, a contradiction.

Remark 3.4. The assumption maintained throughout this article that agents are equally likely to be

the proposers and that they have a common discount factor is not important for any of the results of

this paper. In particular, the analogs of Corollary 3.1 and Theorem 3.1 hold if, letting qi and ri denote

agent i’s proposer probability and discount rate, respectively, we define buyer i’s limit best price as

the minimum—over all her partners j—of ri/qi
ri/qi+rj/qj

vi +
rj/qj

ri/qi+rj/qj
cj , and the corresponding seller

j as her best partner (and analogously for sellers).25 Intuitively, in general, the bargaining power of

agent i when bargaining bilaterally with agent j depends not only on their relative values and costs,

but also on their relative impatience and proposer probabilities.26

3.4 Comparative Statics

Stigler (1961) asserted that price dispersion is a measure of ignorance in the market (see the

quote in the introduction above). If we think of the trading network g as describing this

ignorance, Stigler’s quote would suggest that adding edges to the network g would tend to

ameliorate price dispersion. However, Corollary 3.5 below highlights that price dispersion

can increase when new edges are added in the trading network g (in the sense that the

number of different prices at which the good is traded at increases).27

Corollary 3.5. The number of different submarkets can increase after adding edges in the underlying

network g.
25In this case, denoting ∆ the length of time periods, the discount factor of each type i is e−ri∆, and the limit

is taken as ∆ goes to zero.
26The analog of Assumption 1.1 in this case is that for every two buyer-seller pairs (i, j) and (i′, j′),
ri′/qi′

ri′/qi′+rj′/qj′
vi′ +

rj′/qj′

ri′/qi′+rj′/qj′
cj′ 6= ri/qi

ri/qi+rj/qj
vi +

rj/qj
ri/qi+rj/qj

cj .
27As emphasized by Corollary 3.2, however, adding edges to the underlying network g cannot increase the

difference between the highest and the lowest market price.
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Figure 6: The marketM′ (right) is the same as the marketM (left), except for the extra edge

between buyer b0 and seller s1. The values of the buyers b0, b1 and b2 are 130, 100 and 72,

respectively. The costs of the sellers s0, s1, s2 and s3 are 0, 10, 20 and 40, respectively.

I illustrate Corollary 3.5 using marketsM′ andM′′ depicted in Figure 6. MarketM′′ only

differs from marketM′ in that buyer b0 and seller s1 are connected in the former, but not in

the latter. Figure 7 depicts the prices that emerge from Nash bargaining between any two

pairs of agents that can trade with each other in these markets. In both markets, b0 is the

buyer with the highest limit best price (65), so the set X0 defined by algorithm B is {b0, s0}.
Algorithm B ends with X = X0 in marketM′, because the highest limit best price of buyer

b1 in N − X0 (55) is lower than b0’s limit best price (65). In contrast, the added connection

allows seller s1 in market M′′ to enter the submarket with the highest price. Even in this

case, however, buyer b1 does not join this submarket, since her limit best price with seller s2
(60) is still lower than b0’s limit best price.

The fact that seller s1 joins the submarket with the highest price in market M′′ leads to

an increase in the second highest price (from 55 to 60), which in turn leads to an increase

in the number of submarkets: While the submarket with the second highest price in M′

contains all the agents except for b0 and s0, it contains only b1 and s2 in market M′′. As a

result, connecting b0 and s1 leads to the formation of three submarkets (with prices 65, 60

and 56) instead of two submarkets (with prices 65 and 55). Note, however, that seller s1 is

the seller with the lowest limit best price inM′, and adding the edge (b0, s1) increases her

limit best price. As a consequence, the addition of this edge reduces the difference between

the highest and the lowest market price (from 65− 55 to 65− 56).

Continuing with the interpretation of the trading network g as measuring the “ignorance

in the market,” Corollary 3.6 shows that no agent ever benefits from her ignorance.
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Figure 7: Prices that emerge from Nash bargaining between any two pairs of agents that

can trade with each other in markets M′ and M′′. Market M′ decomposes into two sub-

markets: {s0, b0} and {s1, b1, s2, b2, s3} with prices 65 and 55, respectively (left). MarketM′′

decomposes into three submarkets: {s0, b0, s1},{b1, s2} and {b2, s3} with prices 65, 60 and 56,

respectively (right).

Corollary 3.6. A buyer’s limit cutoff price does not increase when the set of types that she can trade

with expands. Analogously, a seller’s limit cutoff price does not decrease when the set of types that

she can trade with expands.

Proof. Suppose that we add the connection between buyer i and seller j in the network g,

where i is a buyer and j is a seller. Note that if, before adding the edge (i, j), buyer i is not

in the set X defined by algorithm B, then X does not change after adding this edge. Hence,

adding the edge (i, j) can only allow buyer i to be part of a submarket with a lower price.

The analogous argument shows that adding this edge can only allow seller j to be part of a

submarket with a higher price.

4 Related Literature

This article contributes to the emerging literature on strategic bargaining in networked mar-

kets.28 An important part of this literature studies the conditions under which decentralized

bargaining in markets without inflows of traders can be efficient and/or feature the law of

28See for example Kranton and Minehart (2001), Calvó-Armengol (2001), Corominas-Bosch (2004) and

Polanski (2007) for important early contributions to this literature.
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one price.29 In this paper, I focus instead on markets in which the inflows of traders into the

market balance its outflows, and I provide a framework to investigate how different frictions

affect the terms of trade in these markets.

Most related to this paper is Manea (2011), who also characterizes the equilibrium prices

in the limit as bargaining frictions vanish in a non-cooperative model of bargaining in a

stationary networked market.30 The present paper differs from Manea (2011) in two impor-

tant ways. First, it allows agents to strategically choose whom to make offers to—instead

of being randomly matched to bargain. Second, it allows heterogeneities in buyers’ values

and sellers’ costs—instead of assuming that each potential trading relationship has the same

value—which, as already emphasized in the introduction, are essential for the emergence of

price dispersion in this setting.

Strategic choice of partners is a natural element of bargaining, and the contrast between

the results of this paper and those obtained in the context of random-matching models illus-

trates how it can fundamentally alter the determinants of bargaining power in decentralized

markets. For example, as Polanski and Vega-Redondo (2018) show, under random match-

ing, the condition for the law of one price to hold in the limit as bargaining frictions vanish

has to do with the bargaining power of each subset of buyers: Informally, each subset of

buyers must collectively have enough edges to low-cost sellers, or, equivalently, each subset

of seller must collectively have enough edges to high-value buyers. In contrast, I show that

under strategic choice of partners, this condition involves computing one local statistic for

each agent—her best price—and comparing it across agents: The highest best price among

buyers must be equal to the lowest best price among sellers. Also, under random matching,

the buyer-to-seller ratio in each submarket plays a crucial role in determining each submar-

ket’s price (Manea 2011). In contrast, I show that, under strategic choice of partners, not

only the market decomposes into a different set of submarkets, but also the price in each

submarket instead corresponds to Nash bargaining between two of its members.

The contrast between the determinants of prices under random and strategic matching

has an intuitive explanation: Under random matching, the ratio of the probability that a

seller in a given submarket is the proposer relative to that of a buyer is directly proportional

to its buyer-to-seller ratio. This implies that the bargaining power of the sellers in a given

submarket is proportional to its buyer-to-seller ratio—and, as a consequence, so is its price.

29See for example Abreu and Manea (2012a,2012b), Elliott (2015), Donna, Schenone, and Veramendi (2017),

Agranov and Elliott (2017) and Elliott and Nava (forthcoming).
30See also Nguyen (2015), who uses convex-programming techniques to characterize the essentially-unique

stationary subgame-perfect equilibrium of a model that nests the one in Manea (2011).
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But, when the agents strategically choose whom to make offers to, the connection between

the buyer-to-seller ratio in a given submarket and the relative proposer probabilities of each

side of the submarket is lost. Indeed, even if we choose the buyers’ proposer probabilities

to be proportional to the market’s buyer-to-seller ratio—so that equilibrium prices are a

function of this ratio— each submarket’s price in the present setting is independent of its

buyer-to-seller ratio (unless only one submarket forms in equilibrium).

Nguyen (2015) provides a useful characterization of the essentially-unique stationary

subgame-perfect equilibrium of a model that nests the one in Manea (2011). In contrast to

both Manea (2011) and the present paper, his characterization relies on convex-programming

techniques. In an extension of the model of Manea (2011) that allows for heterogenous sell-

ers’ costs and buyers’ values, Polanski and Vega-Redondo (2018) use the characterization

in Nguyen (2015) to identify the conditions under which the law of one price holds in the

limit as bargaining frictions vanish. In contrast to the present paper, however, Polanski and

Vega-Redondo (2018) do not characterize the equilibrium prices in markets in which the law

of one price does not hold.

5 Conclusion

The widespread phenomenon of price dispersion is the result of different frictions that pre-

vent the traders who buy at high prices from reaching out to the traders that sell at low

prices. In this paper, I take these frictions as given—in the form of a buyer-seller network

that determines which agents can trade with each other—and I show how they shape the

prices that emerge when buyers and sellers engage in decentralized strategic bargaining in

a stationary market.

The main distinction between the present paper and previous work on strategic bar-

gaining in stationary markets is that—instead of being randomly matched in each period—

agents strategically choose whom to make offers to. Strategic choice of partners qualitatively

changes both how the market decomposes into different submarkets and how each submar-

ket’s price is determined. In particular, when agents strategically choose their partners, the

price in each submarket does not depend on its buyer-to-seller ratio, but it is instead the

price that emerges from bilateral bargaining between two of its members. Leveraging this

observation, I describe an algorithm that characterizes how the interaction between sellers’

costs, buyers’ values, and the network structure determines the prices in decentralized sta-

tionary markets.
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The assumption that the exogenous flow of traders into the market exactly matches the

endogenous flow of traders out of the market makes the analysis of the determinants of

steady-state prices in networked markets tractable. I leave for future research the investi-

gation of the extent to which the models featuring this simplifying assumption capture the

main economic forces present in the steady states of more general models with endogenous

inflows and outflows of traders. By providing foundations for the replica assumption in

random-matching bargaining models, Manea (2017b) constitutes an important step in this

direction.
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Appendix

A Proof of Proposition 2.1

I prove Proposition 2.1 using a slightly more general framework than the one described in

section 1. In subsection A.1 I describe this framework. In subsection A.2 I state the analog of

Proposition 2.1 in this framework (Proposition A.1) and I prove it.

A.1 Framework

The set of agents is N . Fix an n × n symmetric matrix s. I refer to the weighted network

s as the surplus network, and I assume that agents i and j can produce si,j ∈ R units of

surplus. Letting δi denote type i’s discount factor, I consider the following infinite-horizon

bargaining game Γ(s, d, q) generated by the network s, the discount-factor profile d, and a

probability distribution q on N . In each period, one agent is selected to be the proposer

(agent i is selected with probability qi). The proposer p then chooses an agent r and offers

her a wagew ≤ sp,r to help her produce sp,r units of surplus. If r accepts the offer, p and r exit

the game with payoff sp,r−w and w, respectively; in period t+ 1, agents p and r are replaced

by replicas.31 If r rejects the offer, the two agents remain in the game for the next period. The

informational and knowledge assumptions, histories and strategies are analogous to those

described in section 1.

A.2 Iterated Conditional Dominance

Following Fudenberg and Tirole (1991, page 128), I define iterated conditional dominance

on the class of multi-stage games with observed actions as follows.

Definition A.1. Action ati available to some agent i at information set Ht is conditionally

dominated if every strategy of agent i that assigns positive probability to action ati in the

information set Ht is strictly dominated. Iterated conditional dominance is the process that,

at each round, deletes every conditionally-dominated action given the strategies that have

survived all the previous rounds.

Fudenberg and Tirole (1991) show how iterated conditional dominance solves the alternating-

offers bilateral model of Rubinstein (1982). Manea (2017a) shows how iterated conditional
31If the proposer p makes an offer to herself, her payoff is sp,p and she is replaced by a replica.
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dominance also solves a wide class of models similar to the one considered in this article. I

prove Proposition A.1 using the techniques developed in Manea (2017a).

Proposition A.1. Every agent i has a wage wi such that—after the process of iterated conditional

dominance—she always accepts (rejects) an offer that gives her strictly more (less) than wi.

Proof. The proof consists of two steps. First, I define recursively two sequences (mk
i )i∈N

and (Mk
i )i∈N , and show by induction on k that after every step s of iterated conditional

dominance (see below for a formal definition of such a step), each agent i always rejects

every offer that gives her strictly less than δims
i and always accepts every offer that gives her

strictly more than δiM s
i . Second, I show that both sequences (mk

i )i∈N and (Mk
i )i∈N converge

to the same point (wi)i∈N .

(i) Iterated Conditional Dominance Procedure

Let me start by reviewing how the process of iterated conditional dominance works in

Γ(r, s, q,∆). For simplicity, I break up the procedure into steps 0, 1, . . . , with each step con-

taining three rounds.

Step 0.

Round 0a. Note that a strategy that ever accepts with positive probability a negative share

is strictly dominated by the strategy reject all offers and make only offers that give me a positive

share. These are all the actions that are eliminated in Round 0a. Hence, after this round every

agent i always rejects every offer that gives her strictly less than δim0
i , where

(5) m0
i := 0.

Round 0b. Given the actions that survive round 0a, agent i has an expected payoff (at the

beginning of the period, before the proposer has been chosen) of at most M0
i , where

(6) M0
i := max

j
{si,j}.

because, by assumption, no agent j can ever offer agent i a payoff higher than si,j , and, by

the actions eliminated in round 0a, no agent ever accepts a negative payoff. Hence, every

strategy S of agent i that ever rejects with positive probability an offer a that gives her strictly

more than δiM
0
i is strictly dominated by a similar strategy S ′ that specifies accept a with

probability π in every instance in which S specifies reject a with probability π. These are all the

actions that are eliminated in Round 0b; so after this round every agent i always accepts every

offer that gives her strictly more than δiM0
i .
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Round 0c. Given the actions that survive rounds 0a and 0b, every strategy S of agent i

that ever makes an offer with positive probability that gives y > δjM
0
j to agent j is strictly

dominated by a similar strategy S ′ that specifies offer y − ε > δjM
0
j to agent j with probability

π in every instance in which S specifies offer y to agent j with probability π, since agent j must

accept both y and y − ε. These are all the actions that are eliminated in round 0c; after this

round no agent ever makes an offer giving y > δjM
0
j to any agent j.

Proceeding inductively imagine that, after step s = k ∈ Z≥0, we have concluded (as we

have just done for the case s = 0) that every agent i:

1. rejects every offer that gives her strictly less than δims
i ,

2. has an expected payoff (at the beginning of each period) of at most M s
i ,

3. accepts every offer that gives her strictly more than δiM s
i , and

4. does not make offers that give strictly more than δjM s
j to any agent j.

I now show that points (1) to (4) also hold at step s = k + 1.

Step k + 1.

I refer to strategies that assign positive probability only to actions that have survived all

previous rounds of iterated conditional dominance as “surviving strategies.”

Round (k+1)a. Given the surviving strategies, it is conditionally dominated for agent i to

ever accept an offer that gives her a surplus strictly lower than δimk+1
i , wheremk+1

i is defined

as follows:

(7) mk+1
i := qi max

(
max
j∈N

(si,j − δjMk
j ), δim

k
i

)
+ (1− qi)δimk

i

To see this, consider a period-t subgame where agent i has to respond to an offer x < δim
k+1
i .

I argue that, for sufficiently small ε > 0, accepting this offer is conditionally dominated by

the following plan of action—which is designed to give her a time-t expected payoff that

approaches δimk+1
i as ε goes to 0: Reject all offers received at dates t′ ≥ t. When selected to be the

proposer at time t′, offer δjMk+t+1−t′
j + ε if t′ ∈ [t + 1, t + k + 1] and max

j∈N
(si,j − δjMk+t+1−t′

j ) >

δim
k+t+1−t′
i , and make an unacceptable offer otherwise (e.g., offer a negative amount to some agent).

Note that since t′ ≥ t+ 1, we have that k+ t+ 1− t′ ≤ k. Hence, by the induction hypothesis,

all agents j accept the offer δjMk+t+1−t′
j + ε at period t′ ∈ [t+ 1, t+k+ 1]. Moreover, note that
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Equation 7 can be written as

(8) mk+1
i =

 δim
k
i if max

j∈N
(si,j − δjMk

j ) ≤ δim
k+t+1−t′
i

qimax
j∈N

(si,j − δjMk
j ) + (1− qi)δimk

i otherwise

and an analogous equation can be used to expand the term mk
i in Equation 8, and then mk−1

i

in the resulting equation, and so on until reaching m0
i = 0. It is clear from the resulting for-

mula for mk+1
i that, under the surviving strategies, the strategy constructed above generates

an expected period-t payoff for i of δimk+1
i as ε → 0. Hence, letting ε > 0 be sufficiently

small, this strategy conditionally dominates accepting x in period t. These are the actions

eliminated in round (k+1)a; after this round no agent i ever accepts any offer that gives her a

surplus lower than δimk+1
i .

Round (k+1)b. Given the surviving strategies, it is conditionally dominated for agent i to

reject an offer that gives her strictly more than δiMk+1
i , where Mk+1

i is defined by

(9) Mk+1
i := qi max

(
max
j∈N

(si,j − δjmk
j ), δiM

k
i

)
+ (1− qi)δiMk

i

To prove this, I show that for each agent i, all surviving strategies deliver expected payoffs

of at most Mk+1
i at the beginning of period t. First, consider a period-t subgame where i

is the proposer. Note that i cannot make an offer that generates an expected payoff greater

than

max

(
max
j∈N

(si,j − δjmk
j ), δiM

k
i

)
.

To see this note that, under the surviving strategies, all agents j reject all offers lower than

δjm
k
j , and when j rejects an offer, i can expect a period-(t+ 1) payoff of at most Mk

i . Second,

consider a period-t subgame where i is not the proposer; under the surviving strategies, i

can expect a period-t payoff of at most Mk
i . Therefore, agent i has an expected payoff (at the

beginning of each period) of at most Mk+1
i . These are all the actions that are eliminated in round

(k+1)b; after this round, no agent ever offers strictly more than δjMk+1
j to agent j.

Round (k+1)c. Given the surviving strategies, every strategy S of agent i that ever makes

an offer that gives y > δjM
k+1
j to agent j is strictly dominated by a similar strategy S ′ that

specifies offer y−ε > δjM
k+1
j to agent j with probability π in every instance in which S specifies

offer y to agent j with probability π, since agent j must accept both y and y − ε. These are all

the actions that are eliminated in round (k+1)c; after this round no agent ever makes an offer

giving y > δjM
k+1
j to any agent j.

(ii) The sequences (mk
i )i∈N and (Mk

i )i∈N converge to the same limit.
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First, we prove by induction on k that for all i ∈ N , the sequence (mk
i )k≥0 is increasing in k,

the sequence (Mk
i )k≥0 is decreasing in k, and max

j∈N
(si,j) ≥ Mk

i ≥ mk
i ≥ 0 for all k ≥ 0. This

implies that both sequences (mk
i )i∈N and (Mk

i )i∈N converge.

Note that m0
i = 0 and M0

i := max
j
{si,j}, and that Equation 7 and Equation 9 imply that

m1
i ≥ 0 and M1

i ≤ max
j
{si,j}, so m1

i ≥ m0
i and M1

i ≤M1
i . Now suppose that for some l ∈ N:

ml
i ≥ ml−1

i and M l
i ≤M l−1

i .

I show that

ml+1
i ≥ ml

i and M l+1
i ≤M l

i .

Note that, by the induction hypothesis, every summand in Equation 7 when k = l + 1 is

smaller than when k = l, which implies that ml+1
i ≤ ml

i. Similarly, every summand in

Equation 9 when k = l+ 1 is bigger than when k = l, which implies that M l+1
i ≥M l

i . Hence,

the sequence (mk
i )k≥0 is increasing in k and the sequence (Mk

i )k≥0 is decreasing in k, which,

implies that

max
j∈N

(si,j) ≥Mk
i ≥ mk

i ≥ 0 for all k ≥ 0.

since max
j∈N

(si,j) = M0
i > m0

i = 0.

Second, I show that the sequences (mk
i )i∈N and (Mk

i )i∈N converge to the same limit. Let Dk

be max
i∈N

(Mk
i −mk

i ). I show that

Dk ≤
(

max
j∈N

δj

)k
D0 =

(
max
j∈N

δj

)k
max
j,j′∈N

(sj,j′)

for all k ≥ 0; that is, that Dk converges to 0 as k grows large. Indeed,

Dk+1 = max
i∈N

[Mk+1
i −mk+1

i ]

= max
i∈N

[
qi max

(
max
j∈N

(si,j − δjmk
j ), δiM

k
i

)
+ (1− qi)δiMk

i

−qi max

(
max
j∈N

(si,j − δjMk
j ), δim

k
i

)
+ (1− qi)δimk

i

]
= max

i∈N

[
qi

[
max

(
max
j∈N

(si,j − δjmk
j ), δiM

k
i

)
−max

(
max
j∈N

(si,j − δjMk
j ), δim

k
i

)]
+(1− qi)

[
δiM

k
i − δimk

i

]]
= max

i∈N

[
qi

[
max

(
si,j∗ − δj∗mk

j∗ , δiM
k
i

)
−max

(
si,j∗ − δj∗Mk

j∗ , δim
k
i

) ]
+(1− qi)

[
δiM

k
i − δimk

i

]]
≤ max

i∈N

[
qi max

(
δj∗(M

k
j∗ −mk

j∗), δi(M
k
i −mk

i )
)

+ (1− qi)δiDk

]
≤ max

j∈N
δjD

k
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where j∗ is any element of argmax
j∈N

(si,j − δjM
k
j ), and the second inequality is a consequence of

Lemma A.1 below.

Lemma A.1 (Manea 2017a). For all w1, w2, w3, w4 ∈ R,

|max(w1, w2)−max(w3, w4)| ≤ max(|w1 − w3|, |w2 − w4|).

B Proof of Proposition 2.3

Proposition 2.3 follows from Lemma B.2, Lemma B.3 and Lemma B.4 below. Indeed, when

each type has a different cutoff price, each type has a unique preferred partner, so each

component of the preferred-partner network G has at most one cycle. Hence, Lemma B.2,

Lemma B.3 and Lemma B.4 together imply that, generically, each type that is not her own

preferred partner can reach exactly one pair of mutually-preferred partners in G.32

Lemma B.1 provides a preliminary observation that is useful to prove Lemma B.2.

Lemma B.1. A type who is her own preferred partner is not the preferred partner of any other type.

Proof. Let buyer i be her own preferred partner (an analogous argument works for sellers),

let j be one of her connections, and suppose for contradiction that i is one of j’s preferred

partners. Since cj < vi = ρi, we get ρj = αcj +(1−α)ρi = αcj +(1−α)vi < vi, a contradiction.

Lemma B.2. Each type that is not her own preferred partner can reach at least one cycle of length at

least two in the preferred-partner network G.

Proof. Each type can reach at least one cycle in the network G, because there are finitely

many types, each with at least one preferred partner. Moreover, no type that is not her own

preferred partner can reach a cycle of length 1. This is because, as shown by Lemma B.1, if a

type is her own preferred partner, she is not anyone else’s preferred partner.

Lemma B.3. Generically, the preferred-partner network does not contain cycles with more than two

nodes.

Proof. See the text below Proposition 2.3.
32A node can reach a pair (i, j) of mutually-preferred partners in G if there is either a walk in G from it to i or a

walk in G from it to j.
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Lemma B.4. Generically, no two types have the same cutoff price.

Proof. Consider two different buyers i and i′ that have the same cutoff price. Given Corol-

lary 2.1, this is not generic if each of i and i′ have a mutually-preferred partner. So suppose

without loss of generality that buyer i does not have a mutually-preferred partner, and let

seller j be one of her preferred partners. Also, let seller j′ be one of the preferred partners of

buyer i′. Using Proposition 2.2, we get that

αvi + (1− α)ρj = ρi = ρi′ = αvi′ + (1− α)ρj′ .(10)

Generically, ρj does not depend on vi since, by assumption, i is not one of j’s preferred

partners and there are no cycles in the preferred-partner network G with more than two

nodes (Lemma B.3). Moreover, ρj′ either does not depend on vi or—in case there is a walk in

G from j′ to i—is linear in vi, with coefficient α(1− α)κ, for some κ ≥ 1. Hence, generically,

Equation 10 does not hold.

C Proof of Proposition 3.1

For each agent i, let f δi (x) denote i’s cutoff price when her preferred-partner’s cutoff price

is x and the discount factor is δ; that is, using Proposition 2.2, f δi (x) = δ
δ+(1−δ)nx + (1−δ)n

δ+(1−δ)nvi

for each buyer i, and f δj (x) = δ
δ+(1−δ)nx+ (1−δ)n

δ+(1−δ)ncj for each seller j. Also, given a walk W =

(1, 2, . . . , k−1, k, k−1), let f(W, δ) denote 1’s cutoff price when W is a walk of the preferred-

partner network and the discount factor is δ. That is, f(W, δ) = f δ1 ◦ f δ2 ◦ · · · ◦ f δk−2 (pk−1,k(δ))

where pi,j(δ) is as in Corollary 2.1.

Suppose for contradiction that there is no δ < 1 such that the preferred-partner network

is fixed for all δ ∈ (δ, 1). Given that there are finitely many different walks in g, and that both

f(W, δ) and each agent’s cutoff price are continuous in δ,33 this implies that there exist two

different walks W and W ′ in g with the same first node, and a strictly increasing sequence

S = (δz)z∈N converging to one, such that (i) when δ ∈ S , f(W, δ) = f(W ′, δ), and (ii) for all

z ∈ N and all δ > δz sufficiently close to δz, f(W, δ) > f(W ′, δ). But f(W, δ) = f(W ′, δ) is a

polynomial equation in δ, so it either holds for all δ or for at most finitely many values of δ,

a contradiction.
33To see that each agent’s cutoff price is continuous in δ, note that, for each agent i, {mk

i }k∈N defined in the

proof of Proposition A.1 is a sequence of continuous functions in δ, which converges uniformly to wi on any

interval I ⊂ (0, u) with u < 1. Hence, by the uniform convergence theorem, wi is also continuous in δ.
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D Proof of Theorem 3.1

The proof of Theorem 3.1 follows from Lemma D.1 and Lemma D.2 below. Lemma D.1

shows that all the types in X are in the submarket with the highest price p. This is intuitive:

All the sellers that can, do trade in this submarket. Similarly, a buyer who—if she did not

enter this submarket—would find herself in such a weak bargaining position that she would

have to pay a higher price than p, also has no better option but to trade in this submarket.

Definition D.1. For any set S ⊆ N , I refer to the marketMS = (N, v, gS, r), where gS denotes

the network g after removing from it every edge involving any agent inN−S as the restriction

of the marketM to S.

Lemma D.1. The set X defined by algorithm B is a subset of the set H of all the types in the

submarket with the highest price.

Proof. I prove by induction on k that, for all 0 ≤ k ≤ κ, Xk ⊆ H . The base step follows from

Corollary 3.1. The induction step is as follows. Let 0 < k ≤ κ be such that all types in Xk−1

are in H . The fact that all the sellers in Xk are in H is clear. Indeed, a seller in Xk whose

preferred partner in G∗ is not in H is connected to a buyer in H , which is a contradiction,

since, by definition, the cutoff prices of all the types in H converge to a higher price than the

cutoff prices of all the types who are not in H .

It only remains to show that the preferred partner of a buyer whose best price among the

types inN−Xk−1 is higher than p is inH . To see this, suppose otherwise. Then Corollary 3.1

applied to the restriction of the marketM to N −H implies that the second-highest market

price is higher than p, a contradiction.

Lemma D.2 shows that X contains all the types in the submarket with the highest price.

Lemma D.2. The set H of all the types in the submarket with the highest price is a subset of the set

X defined by algorithm B.

Proof. I show that there exists ε > 0 such that, for all small-enough bargaining frictions, the

cutoff price of every agent i ∈ N −X is lower than p− ε, which implies that H −X is empty,

since all the cutoff prices of the types in H converge to p.

For each discount factor δ ∈ (0, 1), let σ′(δ) and σ′′(δ) be subgame-perfect equilibria of

Γ(M′, δ) and Γ(M′′, δ), respectively, whereM′ andM′′ denote the restriction of the market
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M to N −X and X , respectively. By Corollary 3.1, it is enough to show that (σi(δ))i∈N , de-

fined by σi(δ) = σ′′i (δ) if i ∈ X and σi(δ) = σ′i(δ) otherwise, is a subgame-perfect equilibrium

of Γ(M, δ) for all discount factors δ sufficiently close to 1.

Note that (σi(δ))i∈N is a subgame-perfect equilibrium of Γ(M, δ) if and only if no agent

has an incentive to deviate when she is the proposer.34 First, note that, by construction, no

agent (not) in X has an incentive to deviate and make a proposal to another agent (not) in

X . Second, note that, by definition, no seller in N −X has any connection in X .

Hence, it only remains to show that, when δ is close enough to 1, no buyer inN−X has an

incentive to deviate by making offers to a seller inX , and that no seller inX has an incentive

to deviate by making offers to a buyer in N −X . But this is clear, since, by Corollary 3.1 and

Lemma D.1 applied to the market M′′, the cutoff prices of all the types in X converge to

p, and, by Corollary 3.1 and Lemma D.1 applied to the marketM′, the cutoff price of each

agent in N −X converges to a price strictly smaller than p.

34Indeed, as shown by Proposition 2.2, the cutoff price of an agent’s preferred partner determines her own

cutoff price.
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