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Abstract

Outside options shape bargaining outcomes, but understanding how they are deter-

mined is often challenging, because one’s outside options depend on others’ outside op-

tions, which depend, in turn, on others’ outside options, and so on. This paper describes

a non-cooperative theory of coalition formation in which the classical Nash bargaining

solution uniquely pins down both the sharing rule and the relevant outside options in

each coalition. This provides a tractable framework for investigating how various eco-

nomic shocks propagate via outside options.

1 Introduction

The Nash bargaining solution is a central concept in economics.1 It provides a sharing rule

in any given coalition as a function of its members’ outside options. Its clean axiomatic foun-

dations (Nash 1950) and close connections to non-cooperative bargaining (e.g., Binmore, Ru-

binstein, and Wolinsky 1986) make it theoretically appealing, and its simple functional form

makes it convenient in applications. In many settings of interest, however, agents simultane-

ously bargain over both which coalitions to form (e.g., which firms employ which workers,

which entrepreneurs become partners, which businesses form strategic alliances, etc.) and
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presenting this research has been essential. I am grateful to Matthew Elliott, Jerry Green and Rakesh Vohra

for extensive discussions and advice, as well as to numerous conference and seminar participants for useful

feedback. This work was supported by the Warren Center for Network & Data Sciences, and the Rockefeller

Foundation (#2017PRE301). All errors are my own.
1Nash bargaining is widely used in virtually every branch of economics: See for example Grout (1984),

Grossman and Hart (1986), Carraro and Siniscalco (1993), Mortensen and Pissarides (1994), Lundberg and

Pollak (1996), Bagwell, Staiger, and Yurukoglu (2018), Manea (2018) and Ho and Lee (2019).
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how to share the resulting gains from trade (e.g., wages, equity shares, etc.), and using the

Nash bargaining solution in these settings requires a theory of how the relevant outside op-

tions are determined.2 For example, the outside options of a job candidate when bargaining

with a potential employer are often determined by the bargaining outcomes with alternative

employers, which depend, in turn, on these alternative employers’ outside options, and so

on. Hence, understanding the resulting outcomes requires a theory that somehow cuts this

outside option Gordian knot.

In this paper, I describe a non-cooperative theory of coalition formation in stationary mar-

kets that cuts the outside option Gordian knot in a highly structured way. This theory has

four main deliverables. The first is uniqueness: The theory uniquely pins down both which

coalitions form and how the resulting surplus is shared. The second is familiarity: In the limit

as the bargaining frictions vanish, the sharing rule in each coalition corresponds to the classi-

cal Nash bargaining solution—with the relevant outside options endogenously determined

by the Nash bargaining solution in other coalitions. The third is tractability: A simple algo-

rithm identifies which coalitions form and how the resulting surplus is shared. The fourth is

sharp comparative statics: The coalitions that form can be organized into tiers, in such a way

that (small) changes in market fundamentals propagate—via outside options—from higher

to lower tiers, but not vice versa.

This paper builds on a large literature—originating from Chatterjee, Dutta, Ray, and Sen-

gupta (1993)—on non-cooperative coalition formation (see Ray 2007 for an illuminating re-

view of this literature). In contrast to most of this literature, I focus on large markets with

dynamic entry in which the bargaining opportunities are constant over time. This reduces

the relevance of delay as a bargaining tactic, and it ameliorates the equilibrium multiplic-

ity problem that is common in this literature. The main objective of this paper is thus to

understand how the primitives of thick markets map into outcomes—rather than to study

when thin markets can clear efficiently. In contrast to the literature on bargaining in sta-

tionary markets (e.g., Rubinstein and Wolinsky 1985; Gale 1987; Fraja and Sákovics 2001;

Manea 2011; Nguyen 2015; Polanski and Vega-Redondo 2018), I allow the agents to strate-

2In many applications, the analyst faces various sensible alternatives for both what the relevant outside

options are and how they enter the Nash bargaining solution—and different alternatives have qualitatively

different implications. For example, the extent to which unemployment is a relevant outside option in wage

bargaining determines the effects of unemployment insurance on the labor market—e.g., Pissarides (2000),

Krusell, Mukoyama, and Şahin (2010), Hagedorn, Karahan, Manovskii, and Mitman (2013) and Chodorow-

Reich, Coglianese, and Karabarbounis (2018)—and the ability of macroeconomic models to generate realistic

employment fluctuations—e.g., Shimer (2005), Hall and Milgrom (2008), Sorkin (2015), Chodorow-Reich and

Karabarbounis (2016), Hall (2017) and Ljungqvist and Sargent (2017).
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gically choose which coalitions to propose as well as how to share the resulting surplus. In

addition to introducing a natural bargaining dimension in these settings (namely, strategic

choice of partners), this allows me to (i) characterize the unique (stationary subgame perfect)

equilibrium in terms of the classical Nash bargaining solution, (ii) clarify exactly how the rel-

evant outside options in each coalition are determined, (iii) describe a simple algorithm that

constructs this equilibrium in rich settings where coalitions of arbitrary size can form, (iv)

show that the equilibrium payoff profile is the only one that satisfies a natural credibility

property, and (v) illustrate how different economic shocks propagate via outside options. I

defer a more detailed discussion of the contribution of this paper to the related literature in

section 7.

The theory that I describe in this paper is broadly consistent with the view that bargaining

plays a more prominent role in the determination of high-skill than low-skill wages.3 For

example, in two-sided pairwise matching markets where agents are vertically differentiated

by skill, bargaining outcomes are determined from the top down. In particular, an increase in

the skill of an agent can affect the payoffs of agents whose skill is lower than hers, but it does

not affect the payoff of anyone with higher skill. This is because the relevant outside options

of one’s counterparties are always determined by bargaining with more skilled agents.4

The qualitative predictions of this theory contrast with standard models of coalition for-

mation that build on the Nash bargaining solution. For example, Pycia (2012, p. 347) illus-

trates how a holdup problem typically emerges in these models:

Inflexible sharing of output leads to holdup in coalition formation. For instance,

consider the setting in which agents share output as in Nash bargaining with

constant bargaining powers. An agent may be better off with a lower rather

than a higher bargaining power—other things held equal—when a low bargain-

ing power allows him or her to form a highly productive coalition, while a high

bargaining power makes formation of such a productive coalition impossible by

lowering the payoffs of its members below their outside options.

In contrast to these models, the present theory allows agents to simultaneously bargain

over both which coalitions to form and how to share the resulting surplus. As a result, the

equilibrium sharing rule in each coalition is sensitive to its members’ endogenous outside

3Hall and Krueger (2012) and Brenzel, Gartner, and Schnabel (2014) document a positive correlation be-

tween education and wage bargaining in the Unites States and Germany, respectively.
4In Agranov, Elliott, and Talamàs (2019), we experimentally investigate, among other things, the empirical

validity of this prediction.
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options—and this precludes the holdup problem discussed above. However, in contrast to

the Nash bargaining solution in a fixed coalition with exogenous outside options, an agent’s

payoff may strictly decrease when the bargaining power of some of the others decreases.

Intuitively, Ann’s bargaining power can shape the outside options of some of Bob’s partners,

and the outside options of the partners of some of Bob’s partners, and so on—and hence end

up affecting Bob’s bargaining position in either direction.

Finally, this paper suggests a mechanism by which recent increases in labor market sort-

ing (e.g., Card, Heining, and Kline 2013; Eeckhout 2018; Song, Price, Guvenen, Bloom,

and von Wachter 2019) can divide labor markets into effectively-independent submarkets—

potentially leading to a sharp disconnection between the determinants of high-skill and

low-skill wages, as well as to widening inequality.5 Indeed, as in the canonical marriage

market model of Becker (1973), positive assortative matching arises if and only if skills are

complementary. But, in contrast to Becker’s framework (as well as much of the subsequent

literature), the present theory pins down prices uniquely, and hence provides testable pre-

dictions about how positive assortative matching affects the way in which economic shocks

propagate via outside options. For example, in two-sided pairwise matching markets where

workers and firms match in a positive assortative way, shocks propagate in blocks—in the

sense that a shock that propagates from one worker to another one also affects every worker

whose skill is in between. In particular, in this case the market endogenously decomposes

into different submarkets that are ordered by skill, and that are such that economic shocks

propagate between but not across them.

Roadmap

The rest of this paper is organized as follows. I start by providing an overview of the model

and the main result in section 2, and by illustrating these with a simple example in section 3.

I then describe the model in section 4 and I characterize its essentially-unique stationary

subgame-perfect equilibrium in section 5. I illustrate the comparative statics of the theory in

vertically differentiated markets in section 6. Finally, I discuss the contribution of this paper

to the related literature in section 7, and I conclude in section 8. I defer the formal proofs of

most of the results to Appendix A.

5See Acemoglu and Autor (2011) for a detailed account of the dramatic rise in U.S. earnings inequality

since the 1970s.
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2 Overview of the model and the main result

In the model, different types of agents enter a market over time in such a way that there are

always agents of each type looking to form a coalition. The model is intended to capture

the predominant economic forces in large markets with dynamic entry, where the relevant

matching opportunities are roughly constant over time.6 Examples include relatively thick

labor markets where workers and firms arrive over time in search of profitable (potentially

many-to-many) matches, and innovation hubs where firms cluster to form (potentially mul-

tilateral) strategic alliances.

The agents in the market bargain according to a standard protocol—in the spirit of the

canonical alternating-offers model of Rubinstein (1982)—over both which coalitions to form

and how to share the resulting gains from trade. The bargaining friction that incentivizes

them to reach agreements is their fear that an exogenous reason will prevent them from

matching in the future. As a result, as in the classical bargaining framework of Nash (1950),

risk preferences are essential drivers of the bargaining outcomes.

I show that there exists an essentially-unique stationary subgame-perfect equilibrium,

and I characterize which coalitions form and how the resulting gains from trade are shared

in this equilibrium. In the limit as the bargaining frictions vanish, the equilibrium payoff

profile converges to the unique profile x that satisfies the following credibility property:

Each type i’s payoff xi is her maximum Nash bargaining share—across all coalitions—

subject to the constraint that every other type j receives at least xj .

Roughly speaking, the strategic forces in the non-cooperative model require that each agent

get the maximum that she can justify as the result of Nash bargaining in some coalition

without appealing to her own outside option there.7 Intuitively, this prevents outside options

from being determined in a circular way, and it explains how the equilibrium outcome is

uniquely pinned down by the Nash bargaining solution. For example, this prevents MBA

6In particular, I assume that the surplus of each match is independent of which other matches have formed

in the past or will form in the future. The approach is similar to the one in Rubinstein and Wolinsky (1985) and

the subsequent literature studying non-cooperative bargaining in stationary markets.
7The Nash threat points in this theory correspond to agents’ utilities in autarky, and outside options enter

as lower bounds on payoffs. This is consistent with the outside option principle (e.g., Binmore, Rubinstein, and

Wolinsky 1986). Binmore, Shaked, and Sutton (1989) provide experimental support for this principle. More

recently, Jäger, Schoefer, Young, and Zweimüller (2018) find that real-world wages are insensitive to sharp

increases in unemployment insurance benefits, which is also consistent with the outside option principle if

unemployment is not a credible outside option in wage bargaining.
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Main Street Graduates Wall Street

“Why should we pay you w?”

“Because Main Street does.”

“Why should we pay you w?”

“Because Wall Street does.”

Figure 1: An example of the negotiation dynamics between MBA graduates, Wall Street

firms and Main Street firms that might lead to the MBA’s outside options being determined

in a circular way. When bargaining on Wall Street, MBA’s demand to obtain at least w be-

cause they can earn w on Main Street. But the only reason that Main Street pays w is that

Wall Street does.

graduates from claiming an outside option of w in Wall Street by arguing that this is what

they get in Main Street, while the only reason that Main Street pays themw is that Wall Street

does (see Figure 1).

Indeed, the relevant outside options in each coalition are determined in a highly struc-

tured way: The coalitions that form in equilibrium can be organized into tiers, in such a way

that the equilibrium sharing rule in each coalition converges—as the bargaining frictions

vanish—to the Nash bargaining solution, with the relevant outside options determined by

the Nash bargaining solution in coalitions that are in higher tiers. This provides a wealth of

novel comparative statics. In particular, it implies that (small) changes in market fundamen-

tals propagate—via outside options—from higher to lower tiers, but not vice versa.

3 Example

In this section, I illustrate the setting and the main results of this paper using an example.

The objective of this example is not to display the full generality of the framework, but

to illustrate the main ideas in the simplest possible setting. In particular, in this example

I assume that only pairs of agents can match, and that productivity is the only source of

heterogeneity—but the general model allows coalitions of arbitrary size as well as more

varied sources of heterogeneity.

Consider a large city where different agents (in the culinary industry, say) go to in search

of business opportunities.8 For simplicity, assume that there are only four types of agents

8I am grateful to Rachel Kranton for encouraging me to illustrate the results of this paper along these lines
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Chefs Maı̂tres

Cooks Managers

100

50

80 60

Figure 2: A chef generates 100 dollars when she matches with a maı̂tre (by starting a high-

end restaurant, say) and 80 dollars when she matches with a manager (by starting the occa-

sional low-end restaurant with great food, say). Similarly, a cook generates 60 dollars when

she matches with a maı̂tre (by starting the all-too-common high-end restaurant with unim-

pressive food, say) and 50 dollars when she matches with a manager (by starting a low-end

restaurant, say).

in this industry: Managers, maı̂tres, cooks and chefs, all of them risk neutral.9 Agents of all

types arrive to the city over time to find potential partners with whom to start a venture.

For simplicity, assume that each agent can only be part of one venture (because each feasible

venture is a lifelong full-time project, say), and that only bilateral coalitions between one

maı̂tre/manager and one chef/cook are feasible. Moreover, assume that the surplus of each

match is independent of which other matches form (because each venture is implemented

in a different geographic market, say), and that the surpluses of the four possible coalitions

are as illustrated in Figure 2.10

Which ventures form, and how is the resulting surplus shared? How does an increase

in the productivity of the chef-maı̂tre coalition (caused by a global increase in high-end

tourism, say), or an improvement in the chefs’ bargaining position (caused by a new technol-

ogy that allows them to directly deliver food to their clients’ doors, say) affect this market?

I investigate these questions by studying the equilibrium behavior of these agents when

they bargain according to an infinite-horizon protocol in the spirit of the alternating-offers

model of Rubinstein (1982): In each period, one of the agents that is in the city looking to

form a venture is selected uniformly at random to be the proposer. The selected agent can

propose a match as well as how to share its surplus. This captures the fact that starting a

business venture requires that someone has an idea: Once an agent has an idea, she can pro-

pose to implement it with another agent who, in turn, decides whether to join this venture

of Hart and Moore’s (1990) gourmet seafare example.
9For the purposes of this example, “maı̂tres” and “chefs” are high-end managers and cooks, respectively.

10Food being the most important part of a culinary experience, I assume that a match between a chef and a

manager generates more value than a match between a cook and a maı̂tre.
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Chefs48 Maı̂tres 48

Cooks19 Managers 29

Figure 3: Illustration of the equilibrium when the bargaining friction q is small (.02). The

number next to each box is the amount that the corresponding agents are indifferent be-

tween accepting and rejecting. An arrow from type i to type j indicates that each agent of

type i makes an offer to type j in equilibrium. Every equilibrium offer leaves the receiver

indifferent between accepting and rejecting (but is accepted).

(at the proposed terms of trade) or to wait for better opportunities to arise.

The bargaining friction that incentivizes agreements is that, after each period, each agent

has to leave the city (for personal reasons, say) with some probability q, preventing her from

starting any venture.11 Hence, when an agent is deciding whether to accept or reject an offer,

she has to trade off the potential for better opportunities arising in the future (e.g., having a

business idea herself), with the risk of having to leave the market before matching.

The unique subgame-perfect equilibrium of this game is illustrated in Figure 3. Chefs

propose to form business ventures with maı̂tres, and vice versa. Hence, even if chefs and

maı̂tres can match with managers and cooks, respectively, they effectively bargain over how

to share their gains from trade as if they were the only two types in the market. Intuitively,

the fact that a chef can always find a maı̂tre to bargain with, and vice versa, implies that their

surpluses in other coalitions do not affect their bargaining position. Indeed, since making

offers to others is off the equilibrium path, and an agent never benefits from receiving an

offer (since equilibrium offers leave the receiver indifferent between accepting and rejecting

them), in the limit as the bargaining friction q vanishes, chefs and maı̂tres share their gains

from trade equally.12

When a manager is the proposer, in equilibrium she always offers to match with a chef.

In this case, the chef has to trade off the gains from accepting such an offer with the expected

11For simplicity, in this example I normalize to zero the surplus that each agent obtains when she has to

leave the market before she has created a venture.
12More generally, their terms of trade are as prescribed by the Nash bargaining solution, with the Nash

threat points given by their payoffs when they are forced out of the city before they can start a business (which

in this example I have normalized to zero), as suggested by the outside option principle.
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Chefs Maı̂tres

Cooks Managers

50− 50

20− 30

50− 30

Figure 4: In the limit as the bargaining friction q goes to zero, the cutoffs of chefs, maı̂tres,

managers and cooks converge to 50, 50, 30 and 20, respectively.

gains of waiting to be able to make an offer in the future (at the risk that she might be forced

to leave the market before this happens). As a result, when the bargaining friction q is small

enough, the manager has to offer a chef close to 50 dollars (approximately what she gets

when proposing to match with a maı̂tre) for her to accept. In particular, in the limit as the

bargaining friction q vanishes, they share their surplus 50−30.13 Similarly, the cooks propose

to match with the managers, and—in the limit as the bargaining friction q vanishes—they

share their surplus 20− 30 (Figure 4 illustrates).

As the bargaining friction q vanishes, the equilibrium payoff profile converges to the

unique profile x that satisfies the following property: Each type i’s payoff xi is the maximum

that she can justify as the result of equal sharing in some coalition subject to the constraint

that her counterparty j receives at least xj . In other words, the strategic forces in the non-

cooperative model require that each type is able to justify her payoff as resulting from equal

sharing in some coalition while respecting the others’ payoffs—and this requirement alone

pins down the equilibrium payoffs uniquely.

In order to trace out how different economic shocks propagate via outside options, the

coalitions that form in equilibrium can be organized into tiers in such a way that the surplus

of each coalition is shared—as the bargaining friction q vanishes—according to equal shar-

ing subject to the binding outside options determined in higher tiers. For example, Figure 5

illustrates that the chef-maı̂tre coalition is in the first tier. Equal sharing in this coalition pins

down the chefs’ binding outside options when bargaining with managers which, in turn,

pins down the managers’ binding outside options when bargaining with cooks. This illus-

trates how different economic shocks propagate via outside options from higher to lower

13As long as the bargaining friction q is positive, chefs can obtain more from maı̂tres than from managers

when they are the proposers, because they can exploit to a greater degree their ability to make take-it-or-leave-

it offers with the former than with the latter. Intuitively, maı̂tres have more to lose by rejecting an offer than

managers do, because their matching opportunities are better. The difference, however, converges to zero as

the bargaining friction q vanishes.
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Chefs & Maı̂tres First tier

Chefs & Managers Second tier

Cooks & Managers Third tier

Figure 5: The equilibrium tier structure in the culinary example. A type’s payoff is deter-

mined (by the Nash bargaining solution subject to the binding outside options determined

in higher tiers) in the coalition where her name is in bold.

tiers, but not vice versa. For instance, an increase in the surplus of the chef-maı̂tre coalition

propagates downwards—via the chefs’ and managers’ outside options—to affect everyone.

But an increase in the surplus of the cook-manager coalition only affects cooks, who absorb

the whole surplus increase.

I defer to section 5 further discussion of the intuition for these results as well as the de-

scription of the algorithm that characterizes the equilibrium. I now turn to describing how

the results illustrated in this section generalize to settings with arbitrarily many types with

potentially different risk preferences and proposer probabilities, and where the productive

coalitions can be of arbitrary form and size.

4 Model: The bargaining game G

As already emphasized above, the model is intended to capture the predominant economic

forces in large markets with dynamic entry—where the relevant matching opportunities are

roughly constant over time. I describe the primitives of the model in subsection 4.1, the

bargaining protocol that turns these primitives into a well-defined non-cooperative game

in subsection 4.2, and the notion of equilibrium that I focus on throughout the paper in

subsection 4.3.

4.1 Primitives

There is a finite set N of different types of agents, and a sequence of agents of each type.

Different types of agents can—by matching—produce different amounts of perfectly divis-
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ible surplus (e.g., money). For simplicity, I assume that each match containing at least one

agent of each type in C ⊆ N produces y(C) ≥ 0 units of surplus when it forms.14,15 I refer

to yi := y(i) as type i’s autarky surplus. This can be interpreted as type i’s exogenous outside

option: How much she can obtain without anyone else’s consent.

While surplus is perfectly divisible, the utility generated by each match is—in general—

imperfectly transferable, because the agents’ utility functions need not be linear in money.

In particular, as in the canonical bargaining framework of Nash (1950), the preferences of

each agent of type i are represented by the von-Neumann Morgenstern utility function ui,

which is a concave, strictly increasing, and twice-continuously differentiable function of the

money that she gets.

Finally, I take as given a “bargaining power” profile p ∈ [0, 1]N , with
∑

i pi ≤ 1, which can

be interpreted as an exogenous measure of the relative bargaining powers of the different

types. In other words, p can be thought of as capturing primitives other than preferences

and productivities (e.g., relative scarcities of different types) that are relevant for bargaining

outcomes but that the present framework otherwise abstracts from.

4.2 Bargaining protocol

Bargaining occurs in discrete periods t = 1, 2, . . . . In each period, the first agent in sequence

of each type (yet to leave the market) is active. At most one active agent is selected at random

to be the proposer (the active agent of type i is selected with probability pi). The proposer, of

type i, say, chooses one coalition C ⊆ N , and proposes a split of the corresponding surplus

among its members. The active agents of each type in C − i then decide in (a pre-specified)

order whether to accept or reject this proposal.16 If all of them accept, then they match with

the proposer and they, together with the proposer, leave the market with the agreed shares.

Otherwise, they, and the proposer, wait for the next period, as do all the active agents that

14As long as there is an upper bound on how many agents of a given type are productive in a given coalition,

the fact that the surplus of each coalition does not depend on whether it contains one or more agents of a given

type is without loss of generality, because types can always be defined so that this property holds. For example,

suppose that everyone is identical, and that coalitions of one and two agents produce 1 and 2 units of surplus,

respectively. This can be captured by letting there be two types of agents, with coalitions consisting of an agent

of any one of these types producing 1 unit of surplus, and coalitions containing both these types producing 2

units of surplus.
15For expositional clarity, I usually reserve the term “coalition” to refer to a set of types, while I use the term

“match” to mean a set of agents (that match).
16The order in which the agents respond is not relevant for the results.
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are neither proposers nor receivers of an offer in this period. At the end of each period, each

active agent is independently forced to leave the market with probability q > 0, in which case

she obtains her autarky surplus. The game is common knowledge, and it features perfect

information.

Note 4.1. For simplicity, and following the approach of Rubinstein and Wolinsky (1985) and

the subsequent literature on non-cooperative bargaining in stationary markets, I assume

that the agents enter the market over time in such a way that there is always one active

agent of each type in the market. While the results of this paper carry over to more realistic

models featuring exogenous entry (see for example Elliott and Talamàs 2019), I take the

traditional modeling approach here both for simplicity and in order to be able to more easily

contrast the results of this paper with those in the existing literature. Also, the results of

this paper go through if one assumes that no agent is ever exogenously forced out of the

market but that—instead—the agents are impatient. The Nash bargaining solution then has

to be appropriately constructed from agents’ time preferences (see for example Osborne and

Rubinstein 1990).

4.3 Histories, strategies and equilibrium

For each period t, let ht be a history of the game up to (but not including) period t, which is

a sequence of t pairs of proposers and coalitions proposed—with corresponding proposals

and responses. There are two types of histories at which some agent must take an action.

First, (ht, i) consists of ht followed by the active agent of type i being selected to be the

proposer in period t. Second, (ht, i → C, x, j) consists of (ht, i) followed by the active agent

of type i proposing that the surplus of coalition C is shared according to the profile x in RC ,

and all the active agents in C preceding type j in the response order having accepted.

A strategy σi for type i specifies, for all possible histories ht, the offer σi(ht, i) that she

makes following the history (ht, i) and her response σi(ht, j → C, x, i) following the history

(ht, j → C, x, i).17 The strategy profile (σi)i∈N is a subgame-perfect equilibrium of the game G
if it induces a Nash equilibrium in the subgame following every history. A subgame-perfect

equilibrium is stationary if no type’s strategy conditions on the history of the game except—

in the case of a response—on the going proposal and on the identity of the proposer. I often

refer to a stationary subgame-perfect equilibrium simply as an equilibrium. I now turn to

describing (i) how the bargaining game G admits an essentially unique equilibrium, and (ii)

17I allow for mixed strategies, so σi(ht, i) and σi(ht, j → C, x, i) are probability distributions over 2N ×RN
≥0

and {Yes, No}, respectively.
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which coalitions form and how the resulting surplus is shared in this equilibrium.

5 Equilibrium characterization

In this section, I characterize the essentially-unique equilibrium of the bargaining game G.

I start, in subsection 5.1, by deriving a system of equations that determines the equilibrium

payoffs. This system formalizes the outside option Gordian knot described in section 1: Each

type’s payoff depends on the surplus that she can obtain when she is the proposer net of the

others’ payoffs. But the others’ payoffs depend, in turn, on the others’ payoffs, and so on.

The objective of this section is to show that this system admits a unique solution, and to

characterize this solution. Informally, the characterization strategy leverages the observation

that there always exists at least one coalition that is sufficiently productive so that—when

bargaining to form this coalition—none of its members has a credible outside option. For

instance, in the example of section 3, the chef-maı̂tre coalition is sufficiently productive so

that neither chefs’ nor maı̂tres’ outside options are relevant when bargaining to form this

coalition. As a result, they essentially share the surplus of this coalition equally—and this

determines their binding outside options when bargaining to form other coalitions.

I divide the equilibrium characterization strategy into three steps. First, in subsection 5.2,

I describe an auxiliary non-cooperative game of isolated bargaining in any given coalition,

and I show how it can be used to derive an upper bound on each type’s equilibrium payoff.

Second, in subsection 5.3, I show that there exists at least one coalition where this bound

is tight for all of its members—which implies that this bound is actually the payoff of all

its members in every equilibrium of the game G. Third, in subsection 5.4, I leverage these

observations to recursively construct everyone’s unique equilibrium payoffs.

In subsection 5.5, I show that strategic bargaining in the game G cuts the outside option

Gordian knot in a very structured way: The equilibrium payoff profile is the only one that

satisfies the following credibility property: Each type’s payoff is the maximum that she can

justify as the result of isolated bargaining in some coalition subject to the constraint that

everyone else in this coalition receives at least her equilibrium payoff. In subsection 5.6,

I show that the set of coalitions that form in equilibrium can be organized into tiers, in

such a way that the relevant outside options in each coalition are determined exclusively in

higher tiers. Finally, in subsection 5.7, I discuss how—in contrast to alternative approaches

to coalition formation—bargaining in the present setting does not feature holdup problems.
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5.1 Equilibrium cutoff profile

Proposition 5.1 describes the equilibrium of the game G. This equilibrium is essentially

unique: Each type’s payoff is the same in every equilibrium; each type’s on-path responses

are the same in every equilibrium; and the proposals of each type (whose expected equi-

librium payoff is strictly higher than her autarky payoff) are the same in every equilibrium

except in non-generic cases in which one type’s maximum surplus net of the others’ payoffs

is achieved in more than one coalition.

Proposition 5.1. Each type i has a cutoff wi such that, in every stationary subgame-perfect equilib-

rium of the game G, she always accepts (rejects) every offer that gives her strictly more (less) than wi.

Moreover, when selected to be the proposer, each agent of type i with wi > yi proposes that one of the

coalitions C with the biggest net surplus y(C)−
∑

j∈C−iwj forms, and she offers each of its members

j 6= i the amount wj , all of whom accept.

Figure 3 in section 3 illustrates Proposition 5.1 in the example described there. The cutoff

of chefs and maı̂tres is 48, the cutoff of managers is 29, and the cutoff of cooks is 19. In this

case, each proposer i finds the type j that maximizes the net surplus y(i, j)−wj and offers the

active agent of type j her cutoff wj (and all such offers are always accepted). In particular,

chefs and maı̂tres make offers to each other, managers make offers to chefs, and cooks make

offers to managers.

Remark 5.1. In pairwise matching settings (in which each feasible match contains at most two

agents), every subgame-perfect equilibrium is in stationary strategies; see Talamàs (2019, Proposition

A.1).18 In this case, Proposition 5.1 holds without restricting attention to stationary strategies.

The rest of this section informally describes the argument behind the proof of Proposi-

tion 5.1 (deferring the formal details to Appendix A) and characterizes the equilibrium cut-

off profile as well as the set of coalitions that form in equilibrium. The immediate objective is

to describe a system of equations that determines the equilibrium payoffs in the bargaining

game G. To do this, consider a stationary subgame-perfect equilibrium of this game. For

each type i, let wi be the amount that type i is indifferent between accepting and rejecting in

any given period. On the equilibrium path, type j accepts every offer that gives her exactly

wj (otherwise, the proposer would have no best response), so the maximum amount that

type i can obtain when she is the proposer is maxC⊆N

[
y(C)−

∑
j∈C−iwj

]
. Type i makes

18Proposition A.1 in Talamàs (2019) is stated for the case of linear preferences, but its proof goes through

unchanged in the case of possibly heterogeneous and concave utilities of the present paper.
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acceptable offers in equilibrium if this quantity is strictly bigger than her autarky utility

ui(yi).19

By definition, each type i is indifferent between obtaining wi right away, which gives her

utility ui(wi), and waiting for the next period, which gives her an expected utility of

q ui(yi)︸ ︷︷ ︸
autarky utility

+(1− q)

[
pi ui

(
max
C⊆N

[
y(C)−

∑
j∈C−i

wj

])
︸ ︷︷ ︸

expected utility when proposing

+(1− pi) ui(wi)︸ ︷︷ ︸
expected utility when not proposing

]
.

To see this, note that waiting one period involves a risk of being forced to leave the market

(which materializes with probability q, and in which case the agent gets her autarky surplus

yi); in the event that she is not forced to leave at the end of the period, she has the opportunity

to make a proposal in the next period with probability pi, in which case she obtains y(C) −∑
j∈C−iwj ; otherwise, she either receives an offer that gives her wi (which she accepts), or

she does not receive any offer; in either case, her expected utility is ui(wi).

Rearranging terms gives that i’s expected utility when she is not the proposer is a weighted

average of her autarky utility and her expected utility when she is the proposer, with the

weight αi :=
q

(1−q)pi+q
on the former converging to 0 as the bargaining friction q goes to 0.

ui(wi)︸ ︷︷ ︸
exp. utility when not proposing

= αi ui(yi)︸ ︷︷ ︸
autarky utility

+(1− αi)ui

(
max
C⊆N

[
y(C)−

∑
j∈C−i

wj

])
︸ ︷︷ ︸

exp. utility when proposing

∀i ∈ N,(1)

Note 5.1. In the absence of bargaining frictions (i.e., when q = 0) system (1) has a great

multiplicity of solutions. For instance, in the example described in section 3, one extreme

solution to this system is the profile that gives chefs and cooks 100 and 60, respectively, and

0 to both maı̂tres and managers. Another extreme solution is the profile that gives 0 to both

chefs and cooks, and 100 and 50 to maı̂tres and managers, respectively.

I now turn to showing that—as long as the bargaining friction q is positive—system (1) has

a unique solution, which I refer to as the equilibrium cutoff profile. The limit of this profile as

the bargaining friction q vanishes selects a unique profile out of the many possible solutions

to this system when q = 0. In other words, the unique equilibrium of the non-cooperative

game picks one of the many plausible bargaining outcomes in the frictionless case.20

19To see this, let Vi and Wi be be the expected utility of an agent of type i when she is and she is not selected

to be the proposer, respectively. We have that Wi = qui(yi) + (1− q)(piVi + (1− pi)Wi), so Vi > ui(yi) implies

that Vi > Wi. Hence, every type i with Vi > ui(yi) is strictly worse off by delaying.
20This is, of course, the comparative advantage of the non-cooperative approach (Rubinstein 1982).
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5.2 A personalized upper bound on the equilibrium cutoffs

The immediate objective is to provide, for each type, an upper bound on her equilibrium

cutoff. The basic idea is this: When proposing that a coalition forms, its members’ outside

options have to be met in order to induce them to accept. Hence, roughly speaking, a type

cannot be made worse off when the others’ outside options deteriorate. As a result, i’s

equilibrium cutoff in the hypothetical situation in which she can (i) choose any coalition and

(ii) prevent its members from making offers to any other coalition is an upper bound on her

equilibrium cutoff.21

To formalize this idea, consider the family {GC}C⊆N of variants of the bargaining game G
in which only one coalition C ⊆ N can form.22 The game GC is analogous to a multilateral

version of the canonical alternating-offers model of Rubinstein (1982), where the one feasi-

ble coalition C is given exogenously, and its members only bargain over how to share the

surplus y(C) of this coalition. Hence—as in the canonical multilateral Rubinstein bargain-

ing game—each game GC has a unique stationary subgame-perfect equilibrium. Moreover,

as in Binmore, Rubinstein, and Wolinsky (1986), the equilibrium cutoff profile in this game

converges to the (generalized) Nash bargaining solution in coalition C with the Nash threat

points given by autarky—that is, to the unique profile that solves

argmax
s∈RC

∏
j∈C

[uj(sj)− uj(yj)]pj subject to the feasibility constraint y(C) ≥
∑
j∈C

sj.(2)

For instance, Figure 6 illustrates each type’s cutoff in each relevant auxiliary game in the

example of section 3. Given that the preferences and the proposer probabilities in this ex-

ample are homogeneous, isolated bargaining between two agents essentially leads to equal

sharing. More precisely, each type’s cutoff in the auxiliary game associated with any given

coalition (that she is part of) is just below half of this coalition’s surplus. This reflects the

fact that the proposer obtains slightly more than half of the available gains from trade. But,

in the limit as the bargaining friction q vanishes, these cutoffs converge to exactly half of the

surplus of the corresponding coalition—as prescribed by the Nash bargaining solution.

Proposition 5.2 below formalizes the intuition that the equilibrium cutoff of each type in

the bargaining game G cannot be bigger than her best share—defined as follows. Informally,

21Preventing agents from accepting offers from other coalitions is not necessary for this exercise because—

given that the equilibrium offers leave the respondent indifferent between accepting and rejecting—agents’

payoffs are determined by the amount that they can obtain when they are given the opportunity to propose.
22More precisely, for each coalition C ⊆ N , the game GC is defined exactly as the bargaining game G, with

the following modification: The surplus y(D) of each coalition D 6= C is reduced to 0.

16



Chefs Maı̂tres

Cooks Managers

48

24

38 29

Figure 6: The number associated to a link between type i and type j is their equilibrium

cutoff in the auxiliary game in which the surplus of all the other coalitions is artificially set

to 0. An arrow from type i to type j indicates that the ij coalition is i’s best coalition, and the

associated number is her best share.

suppose that we ask each type: “Which coalitions would you be happy choosing if you

could pick one coalition C ⊆ N and bargain in isolation with its members (according to the

auxiliary game GC)?” Each type’s best coalitions are the ones that she would point to, and her

best share is her equilibrium cutoff in this hypothetical situation. Definition 5.1 formalizes

these concepts.

Definition 5.1. A type’s best share is her maximum equilibrium cutoff—across all coalitions

C ⊆ N—in the auxiliary game GC . A coalition C ⊆ N is one of type i’s best coalitions if i’s

equilibrium cutoff in GC is her best share. A coalition is perfect if it is a best coalition of all its

members.

In the example of section 3, the best share of both chefs and maı̂tres is 48, and their best

coalition is the chef-maı̂tre coalition, so this coalition is a perfect coalition. The best share of

managers is 38, and their best coalition is the chef-manager coalition. Finally, the best share

of cooks is 29, and their best coalition is the cook-maı̂tre coalition.

Proposition 5.2. Let w be a solution to (1). For each type i, wi is bounded above by i’s best share.

Figure 6 illustrates the exercise above in the context of the example in section 3. For

instance, if cooks were able to choose between maı̂tres and managers, and bargain with them

in isolation, their equilibrium cutoff would be 29 and 24, respectively. Intuitively, 29 must

then be an upper bound on the cooks’ equilibrium cutoff, because, in the bargaining game

G, both managers and maı̂tres can in fact choose to make offers to chefs as well, which can

only improve their bargaining position. Indeed, as illustrated in Figure 3, their equilibrium

cutoff is 19.
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5.3 The personalized upper bound is tight for at least one type

The combination of Proposition 5.3 and Proposition 5.4 below shows that the personalized

upper bound on each type’s equilibrium cutoff (provided by Proposition 5.2 above) is tight

for at least one type.

Proposition 5.3. Letw be a solution to (1). If type i is in a perfect coalition, then wi is i’s best share.

Intuitively, the fact that the cutoffs in GC are an upper bound on all of its members’ equi-

librium cutoffs in G (Proposition 5.2) implies that no one in a perfect coalition C has a better

option—when bargaining in G—than proposing to form coalition C. As a result, in every

equilibrium of the game G, every type in a perfect coalition C can do at least as well as in

the auxiliary game GC . For instance, given that maı̂tres’ cutoff in the example of section 3 is

bounded above by 48, in the equilibrium of the game of interest, chefs can do as well as they

can in the auxiliary game in which they can bargain in isolation with the maı̂tres because, in

this hypothetical case, maı̂tres’ cutoff is 48 (its upper bound in the game of interest). Hence,

the upper bound of 48 on chefs’ cutoff is tight.

Proposition 5.3 above is especially useful because, as highlighted by Proposition 5.4 be-

low, we can always identify at least one perfect coalition. Hence, we can pin down the

equilibrium cutoff of a nonempty subset of types using the auxiliary games {GC}C⊆N .

Proposition 5.4. There exists at least one perfect coalition.

Proposition 5.4 above follows from the fact that the equilibrium cutoffs in the auxiliary

games {GC}C⊆N satisfy the following property: For any two types i and j and any two

coalitions C and D containing both these types, if i’s cutoff in the auxiliary game GC is

bigger than i’s cutoff in the auxiliary game GD, then the same is true for type j (that is, j’s

cutoff in the auxiliary game GC is bigger than j’s cutoff in the auxiliary game GD).23 To see

why this implies the existence of a perfect coalition, note that this precludes the existence of

cycles in the network whose nodes are coalitions and whose link from C to C ′ indicates that

there is a type in C whose best share is strictly bigger in C ′ than in C. As a result, every path

(or sequence of distinct links) in this network must end at a perfect coalition.

Perhaps the best way to gain intuition for Proposition 5.4 is to recall that the Nash bar-

gaining shares s in each coalition C equalize the ratio ui(si)
u′i(si)

among all of its members. Since

the utility functions are concave, each type’s Nash bargaining share is increasing in this ra-

tio, so—given that, as described above, the equilibrium cutoffs in each game GC converge
23Pycia (2012) labels this property pairwise-aligned preferences over coalitions, and shows that the Nash bar-

gaining solution generates pairwise-aligned preferences over coalitions.
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to the Nash bargaining shares in C—the coalition with the highest such ratio is a perfect

coalition for all small enough bargaining frictions (at least in the generic case in which each

type’s Nash bargaining share in different coalitions is different).24

5.4 Recursive characterization of the equilibrium cutoff profile

The immediate objective is to derive an upper bound on the equilibrium cutoff of each type

when some of the other types’ cutoffs have already been determined. This is an essential

part of the algorithm that pins down everyone’s equilibrium cutoffs in the game G (Defini-

tion 5.3 below). As in subsection 5.2, the basic idea is that no one is hurt when the others’

outside options deteriorate. The difference with the argument above is that, now—in the

hypothetical situation in which agents bargain to form one coalition in isolation—the out-

side options of the agents whose cutoff has already been defined do not deteriorate below

their cutoff. To formalize this idea, for every coalition C ⊆ N and every profile x in RN with

y(C) ≥
∑

j∈C xj , consider the auxiliary game GCx , which is a variant of the bargaining game

GC in which each agent of type i can choose to leave the market with payoff xi immediately

after rejecting any proposal.

The game GCx is analogous to a multilateral version of the canonical alternating-offers

model of Rubinstein (1982) with exogenous outside options where both the feasible coalition

C and the outside option profile x are exogenous, and its members only bargain over how to

share the resulting gains from trade subject to their exogenously given outside options (e.g.,

Binmore, Rubinstein, and Wolinsky 1986). This game has a unique stationary subgame-

perfect equilibrium. In particular, the equilibrium cutoff profile of the game GCx converges to

the (generalized) Nash bargaining solution in coalition C, with the Nash threat points given

by autarky and the outside option profile x imposing only lower bounds on the payoffs—

that is, to the profile that solves

argmax
s∈RC

∏
j∈C

[uj(sj)− uj(yj)]pj subject to y(C) ≥
∑
j∈C

sj and sj ≥ xj for all j in C.(3)

Figure 7 illustrates the equilibrium cutoffs in each of the relevant auxiliary games in the

example of section 3, when the outside options are set to x1chefs = x1maı̂tres = 48 and x1cooks =

x1managers = 0. Naturally, the only cutoffs that are different from the case in which everyone’s

outside options are zero (the case illustrated in Figure 6) are those associated with coalitions

24This is essentially the argument that Pycia (2012) gives to show that the Nash bargaining solution gener-

ates pairwise aligned preferences over coalitions.
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Chefs Maı̂tres

Cooks Managers

48

24

48 48
9 29

Figure 7: The number that is closest to type i associated with a link between i and j is

approximately her equilibrium cutoff in the auxiliary game in which the surplus of all the

coalitions other than the one between i and j is artificially set to zero, and the outside option

profile x satisfies xchefs = xmaı̂tres = 48 and xcooks = xmanagers = 0. An arrow from type i to type

j indicates that the ij coalition is i’s x-best coalition in this case, and the associated number

is her x-best share.

involving either the chefs or the maı̂tres (the two types whose outside options have been

updated to be their equilibrium cutoffs).

Definition 5.3 describes an algorithm that uses the concepts described in Definition 5.2

below to pin down the equilibrium cutoff profile w.

Definition 5.2. For each coalition C ⊆ N and each profile x in RN , type i’s x-share in C is

her cutoff in the auxiliary game GCx if well defined, and 0 otherwise. Type i’s x-best share is

her maximum x-share across all coalitions C ⊆ N . A coalition C is i’s x-best coalition if i’s

x-share in C is her x-best share. A coalition is x-perfect if it is an x-best coalition of all of its

members.

Figure 7 illustrates that the chef-manager coalition is the managers’ x1-best coalition (and

is hence x1-perfect), and that the managers’ x1-best share is 29. The argument analogous to

the one behind Proposition 5.2 and Proposition 5.3 above shows that these x1-best shares

are upper bounds on the respective equilibrium cutoffs, and that these bounds are tight in

every x1-perfect coalition. In this case, this implies that the x1-best share of the managers

is their equilibrium cutoff. Definition 5.3 below formalizes this argument, in the form of an

algorithm that recursively pins down everyone’s cutoffs.

Definition 5.3 (Algorithm A). Let x0 = 0. In each step s = 1, 2, . . . , for each type i in an

xs−1-perfect coalition, let xsi be i’s xs−1-best share; for each other type j, let xsj = 0. Stop in

the first step S such that every type is in an xS-perfect coalition, and let χ := xS .

Leveraging Proposition 5.4 and Proposition 5.3 inductively shows that algorithm A ends

in finitely many steps, and provides the following result.
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Proposition 5.5. The profile χ defined by algorithm A is the unique equilibrium cutoff profile w.

Proposition 5.5 makes the theory of coalition formation described in this paper especially

tractable. Indeed, it paves the way for the characterization of the equilibrium payoff profile

as the only one satisfying a certain credibility property. Also, it allows general comparative

statics, and it uncovers the tier structure of the set of equilibrium coalitions that illustrates

how shocks propagate via outside options.

5.5 Credibility and equilibrium

Understanding which coalitions form and how the resulting surplus is shared requires un-

derstanding how the outside option Gordian knot is cut. I now leverage Proposition 5.5 to

show that the equilibrium of the bargaining game G actually cuts this Gordian in an intuitive

way: The equilibrium payoff of any given type in any given coalition is the maximum that

she can justify as resulting from isolated bargaining in another coalition subject to the con-

straint that everyone else receives at least her equilibrium payoff. Moreover, the equilibrium

cutoff profile w is the only profile that satisfies this property.

Notation 5.1. For each profile x in RN , x−i denotes x after setting its ith entry to 0.

Definition 5.4. The profile x is credible if, for every type i, xi is i’s x−i-best share.

In words, the profile x is credible if, for every type i, xi is the maximum amount that she

can justify as being her equilibrium payoff in the game GCx−i
for some coalition C ⊆ N ; that

is, the maximum amount that she can justify as being her equilibrium payoff in the game

GC for some coalition C ⊆ N subject to the constraint that everyone else in C receives at least

what x gives her. At first sight, it might not be clear whether a credible profile always exists,

or whether more than one such profile can exist. An inductive argument, however, shows

that the profile χ defined by algorithm A is the unique credible profile (Proposition A.2),

giving the following result.

Theorem 1. The equilibrium cutoff profile w is the unique credible profile.

Theorem 1 provides intuition for how the strategic forces in the bargaining game G pin

down outcomes uniquely: These forces require each agent to justify her payoff by bar-

gaining in some coalition without appealing to her own outside option, and this rules out

multiplicity of consistent payoff profiles driven by outside options losing connection with

fundamentals—as it occurs in the example illustrated in Figure 1, for instance. Remarkably,

21



there is a unique profile that satisfies this property—and this explains why the game G pins

down outcomes uniquely.

The fact that the equilibrium cutoff profile of the game GCx converges to the Nash bargain-

ing solution (3) suggests that the limit equilibrium cutoff profile w of the bargaining game

G satisfies a similar credibility property in terms of the classical Nash bargaining solution. I

now turn to formalizing this idea.

Definition 5.5. Fix a coalition C ⊆ N and a profile x in RN . The profile of x-Nash shares

in C is the solution to (3) if well defined, and 0 otherwise. Type i’s x-Nash best share is

her maximum x-Nash share across all coalitions. Coalition C is one of type i’s x-Nash best

coalitions if herx-Nash share inC is equal to her maximumx-Nash share across all coalitions.

Coalition C is x-Nash perfect if it is an x-Nash best coalition of all of its members.

In words, the profile x is Nash credible if, for each type i, xi is the maximum that i can

justify as the result of Nash bargaining in some coalition—with Nash threat points given

by autarky—subject to the constraint that everyone else receives at least the payoff that x

gives her. An algorithm analogous toA that uses agents’ Nash-best shares as ingredients in-

stead of their best shares (Definition A.2) computes the unique Nash credible payoff profile,

providing the following result.

Corollary 5.2. As the bargaining friction q vanishes, the equilibrium cutoff profile w converges to

the unique Nash credible profile.

For instance, Figure 4 illustrates how each type’s limit payoff in the example of section 3

is the maximum (across her two potential coalitions) that she can justify using the Nash

bargaining solution (which, in this example, boils down to equal sharing) subject to the

constraint that everyone else receives at least her limit payoff. Corollary 5.2 implies that

this is the unique profile that satisfies this property—i.e., the Nash credible profile in this

example.

5.6 The equilibrium tier structure

The equilibrium of the game G cuts the outside option Gordian knot in a structured way: The

coalitions that form in equilibrium can be organized into tiers in such a way that the limit

sharing rule in each coalition satisfies the outside option principle of Binmore, Rubinstein,

and Wolinsky (1986)—with the relevant outside options in each coalition endogenously de-

termined by the Nash bargaining solution in coalitions that are in higher tiers. As a result,
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(small) shocks to the primitives can propagate—via outside options—from higher to lower

tiers, but not vice versa.

Formally, the first-tier coalitions are those coalitions C ⊆ N that are such that, for each of

its members i, χi is equal to i’s χ−i-share in C.25 The sharing rule in the first-tier coalitions

converges to the Nash bargaining solution, with the Nash threat points given by autarky,

and without any binding outside options. Intuitively, no member of a first tier coalition can

make a credible threat to propose to a different coalition, so it is as if the members of such

coalitions where bargaining in isolation. The first-tier types are those that are members of a

first tier coalition.

Proceeding inductively, after having identified, for every k in {1, 2, . . . , `− 1}, the kth-tier

coalitions, a coalition C ⊆ N is in the `th tier if and only if (i) it contains at least one (`− 1)th-

tier type and (ii) it is such that, for each of its members i who is not in the first, second, . . . ,

or (` − 1)th tier, χi is equal to i’s χ−i-share in C. The sharing rule in each `th-tier coalition

converges to the Nash bargaining solution, with the Nash threat points given by autarky,

and the binding outside options determined in higher tiers. The `th-tier types are those that

(i) are in an `th-tier coalition, and (ii) are not in any kth-tier coalition, for any k < `.

Figure 5 illustrates the tier structure in the example of section 3. In this case, an increase in

the productivity of the first tier coalition (the chef-maı̂tre coalition) hurts the second tier type

(managers), because it increases the outside options of the first tier type (chefs) that man-

agers have to honor. In contrast, such an increase is beneficial for third tier types (cooks).

This suggests that, in certain cases, a positive productivity shock to an `th-tier coalition af-

fects negatively (positively) the ` +mth-tier types when m is odd (even).26 Indeed, one can

construct the coalitional overlap network—whose nodes are all the coalitions that form in equi-

librium, and where a link between two coalitions represents the fact that they share at least

one type. Then, if there is only one path in the coalitional overlap network from one coalition

to another one, a small increase in the surplus of one does not hurt (benefit) the members of

the other if the path is even (odd).27

25Note that there is always at least one first tier coalition. In particular, every perfect coalition is in the first

tier.
26An increase in the productivity of an `th-tier coalition is never beneficial for ` + 1th-tier types, because it

can only increase their partners’ outside options.
27A path of a network is a sequence of distinct links. A path is even (odd) if it contains an even (odd)

number of links.
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5.7 Holdup

Pycia (2012) describes how a holdup problem can occur in models where agents bargain first

over which coalitions to form, and second over their terms of trade. Somewhat paradoxi-

cally, this implies that an agent can be worse off when she becomes more productive, her

bargaining power increases, or she becomes less risk averse. Corollary 5.3 highlights that

such a holdup problem does not arise in the present setting.

Corollary 5.3. A type’s payoff increases when the surplus of any coalition that she is part of increases,

when her bargaining power increases, or when she becomes less risk averse.28

Intuitively, the maximum payoff that a type can justify using the Nash bargaining solution

in some coalition subject to the constraint that others receive at least their equilibrium pay-

offs can only increase when a coalition that she is part of becomes more productive, when

her bargaining power increases, or when she becomes less risk averse. This follows from

the observation that the outside option xsj of any type j at the step s at which type i’s payoff

is determined by algorithm A cannot increase as a result of her becoming more productive,

her bargaining power increasing, or her becoming less risk averse.

However, in contrast to the Nash bargaining solution in a fixed coalition (with exoge-

nous outside options), the payoff of an agent can increase when others’ bargaining power

increases, when others’ risk aversion decreases, and when a productivity shock increases

others’ outside options. For instance, as illustrated by the example of section 3, cooks bene-

fit when the surplus of the chef-maı̂tre coalition increases. Indeed, this improves the chefs’

outside options when bargaining with managers which, in turn, deteriorates the managers’

outside options when bargaining with cooks.

6 Vertically differentiated markets

I now turn to describing comparative statics in the context of two-sided pairwise matching

markets, in which types are vertically differentiated either by skill, risk aversion, or bargain-

ing power. For ease of exposition, I refer to the types on one side as workers and the types

on the other side as firms. Also, I assume that each type i is endowed with a risk aversion

parameter ri and a skill (or productivity) parameter si; for each worker-firm pair (i, j), the sur-

28I say that a type whose utility function changes from u to w has become more risk averse if there exists a

concave function g such that w = g ◦ u.
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plus y(i, j) is strictly increasing in its members’ skills.29 I say that two types i and j match if

agents of type i match with agents of type j in equilibrium.

6.1 Shock propagation from the top down

Corollary 6.1 below illustrates how—in settings where the agents are vertically differentiated

by skill but are otherwise identical—the bargaining outcomes are determined from the most

skilled types down.

Corollary 6.1. When all the workers have the same risk aversion and bargaining power, an increase

in the skill of worker i from si to s′i > si does not affect the payoff of any worker j whose skill sj is

strictly higher than s′i.

Indeed, when all the types have the same risk aversion, algorithmA does not determine a

worker’s payoff before determining the payoffs of all the more skilled workers. This implies

that an increase in a type’s productivity does not affect the payoffs of the more productive

types. In other words, the relevant outside options of a firm that matches with a worker i are

never determined by bargaining with a less skilled worker and—as a result—the productiv-

ity of workers whose skills are lower than i’s do not affect i’s payoff.

Corollary 6.1 implies that when the source of heterogeneity among agents is their produc-

tivity, the bargaining outcomes are determined from the types with the highest payoffs down. In

contrast, Corollary 6.2 shows that, when the source of heterogeneity among agents is either

their risk aversion or their bargaining power, the bargaining outcomes are determined from

the types with the lowest payoffs up.

Corollary 6.2. When all the workers have the same skill and bargaining power, an increase in the

risk aversion of worker i from ri to r′i > ri does not affect the payoff of any worker whose risk aversion

is strictly higher than r′i. Similarly, when all the workers have the same skill and risk aversion, an

increase in the bargaining power of worker i from pi to p′i > pi does not affect the payoff of any worker

whose bargaining power is strictly lower than p′i.

Indeed, when all the types have the same skill and bargaining power, algorithm A only

determines a worker’s payoff once it has determined the payoffs of all the more risk averse

workers. In other words, the relevant outside options of a firm that matches with a worker i

are never determined by bargaining with a less risk averse worker and—as a result—the risk

29Formally, let i and i′ be any two workers and let j be any firm. We have that y(i, j) > y(i′, j) if and only if

si > si′ , and there exists a concave function g such that ui = g ◦ ui′ if and only if ri > ri′ .
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Chefs Maı̂tres

Cooks Managers

50− 50

50− 30

Figure 8: Equilibrium matching pattern in the example when the surplus of the cook-maı̂tre

coalition is 80 instead of 60.

aversion of workers whose risk aversion is higher than i’s do not affect i’s payoff. Similarly,

when all the types have the same skill and risk aversion, algorithm A only determines a

worker’s payoff when it has determined the payoffs of all the less powerful agents.

6.2 Shock propagation under positive assortative matching

I now focus on settings in which the only source of heterogeneity is skill. I say that the

equilibrium features positive assortative matching if, for any two worker types i and i′ and

any two firm types j and j′, with si > si′ and sj > sj′ , if i matches with j′ in equilibrium,

then i′ does not match with j in equilibrium. For example, the equilibrium matching pattern

in the example of section 3 features positive assortative matching. In contrast, when this

example is modified to have cooks and maı̂tres generate 80 units of surplus instead of 60,

the equilibrium matching pattern does not feature positive assortative matching, because

the most productive cooks (i.e., chefs) match with the lowest productive managers, while

the least productive cooks match with the most productive managers (i.e., maı̂tres). Figure 8

illustrates the matching pattern in this case.

Pycia (2012) shows that when agents bargain over which coalitions to form understanding

that the sharing rule within coalitions will be determined by the Nash bargaining solution

(with exogenous outside options), the notion of stability—in the sense of the core—implies

that agents match in a positive assortative way with respect to their productivity and their

risk aversion. As the example illustrated in Figure 8 illustrates, this is not necessarily the

case in the present setting, where agents bargain simultaneously over both which coalitions

to form and how to share the resulting surplus.

In the context of his landmark investigation of marriage markets, Becker (1973) showed

that—in the context of two-sided one-to-one matching environment with a finite set of

agents and transferable utility (the assignment game)—agents match in a positive assorta-

tive way for all distribution of types if and only if their skills are complementary—in the
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sense that the match function is supermodular. Corollary 6.3 is the analogous result in the

present setting.

Corollary 6.3. The equilibrium features positive assortative matching for all distribution of types if

and only if the production function is strictly supermodular.30

To see the intuition behind Corollary 6.3, consider again the situation illustrated in Fig-

ure 8. As argued above, this matching pattern does not feature positive assortative matching,

so it must be the case that the production function is not strictly supermodular. Indeed, strict

supermodularity in this case boils down to the following condition

y(Chefs, Maı̂tres) + y(Cooks, Managers) > y(Chefs, Managers) + y(Cooks, Maı̂tres).

When this condition is satisfied, we cannot have the matching pattern illustrated in Figure 8,

because—given that cooks and managers do not match in equilibrium—it must be that the

sum of their payoffs is strictly bigger than the surplus they generate together. That is,

y(Cooks, Managers) < y(Chefs, Managers) + y(Cooks, Maı̂tres)︸ ︷︷ ︸
Sum of all four types payoffs

− y(Chefs, Maı̂tres)︸ ︷︷ ︸
Sum of Chefs and Maı̂tres payoffs

.

More generally, this argument shows that (i) when the equilibrium does not feature pos-

itive assortative matching, the production function is not strictly supermodular, and that

(ii) when the production function is not strictly supermodular, a set of four types can be

constructed so that their equilibrium matching pattern is not positive assortative.

Corollary 6.1 above highlighted that, in settings where the types are vertically differen-

tiated by their skills, each type is only affected by shocks that hit more productive types.

Corollary 6.4 below puts further structure on how shocks propagate under positive assorta-

tive matching.

Corollary 6.4. Consider an increase in the skill of worker i from si to s′i, and assume that the equi-

librium features positive assortative matching both before and after this shock. If this shock does not

affect the payoff of a worker j with sj < si, then it does not affect the payoff of any worker j′ with

sj′ ≤ sj either.

In other words, under positive assortative matching, shocks propagate in blocks, in the

sense that if a shock that affects worker i propagates to worker i′, it also affects every worker

whose skill is in between. Indeed, under positive assortative matching, algorithm A pins

30The production function is strictly supermodular if, for any two buyer types i and i′ and two seller types

j and j′, with si > si′ and sj > sj′ , we have that y(i, j) + y(i′, j′) > y(i′, j) + y(i, j′).
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down the workers’ (firms’) equilibrium payoffs in sequence—from the most skilled down.

As a result, in the scenario in which worker i becomes more productive and worker j—with

sj < si—is not affected, the output of the algorithm A from the step at which it pins down

j’s payoff on is not affected by this shock.

In order to gain more intuition for this observation, consider the case in which the shock

is sufficiently small so that it does not affect the equilibrium tier structure. If an increase in

the skill of a worker i from si to s′i does not affect the payoff of another worker j with sj < si,

it means that there is no path from i to j in the matching network (which has a link from one

type to another if they match in equilibrium). When the equilibrium matching is positive

assortative, this implies that there is no path to i from any other worker k less productive

than j either, which implies, in turn, that such an increase cannot affect k’s payoff either.

The situation described by Corollary 6.4 contrasts with the case in which the production

function is strictly submodular.31 Indeed, in this case, all the types that match do so with

the most productive type on the other side of the market.32 As a result, everyone’s payoffs

depend on the most productive types. In particular, in this case, an increase in the surplus

of the match among the two most productive types makes everyone other than these types

worse off. However, an increase in the surplus of any other match that includes the highest

type is fully absorbed by the low type of the match. For example, when the equilibrium is

as in Figure 8, an increase in the surplus of the chef-manager coalition from 80 to 90 is fully

absorbed by the managers.

7 Related literature

This paper is related to two complementary branches of the literature on non-cooperative

coalition formation—one that studies stationary markets (e.g., Rubinstein and Wolinsky 1985;

Gale 1987; Binmore and Herrero 1988; Fraja and Sákovics 2001; Manea 2011; Lauermann

2013; Nguyen 2015; Polanski and Vega-Redondo 2018; Talamàs 2019) and the other one that

31The production function is strictly submodular if, for any two buyers i and i′ and any two sellers j and j′,

with si > si′ and sj > sj′ , we have that y(i, j) + y(i′, j′) < y(i′, j) + y(i, j′).
32To see this in the context of the example, suppose for contradiction that the surplus function is submodular

and that chefs and maı̂tres match with each other, and so do cooks and managers. Then, the sum of the

payoffs of these four types is equal to the sum of the surpluses of these two types of coalitions, which, by

submodularity, is smaller than the sum of the surpluses generated by a chef-manager coalition and a cook-

maı̂tre coalition. In particular, at least one of these coalitions is more profitable than the sum of its members’

payoffs, a contradiction.
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studies non-stationary markets (e.g., Chatterjee, Dutta, Ray, and Sengupta 1993; Moldovanu

and Winter 1995; Bloch 1996; Ray and Vohra 1999; Corominas-Bosch 2004; Gale and Sabourian

2006; Ray 2007; Okada 2011; Abreu and Manea 012ab; Dilmé 2018; Elliott and Nava 2019).33

These two lines of research focus on two opposite extremes. On the one hand, in order

to investigate the strategic forces in a steady state of large dynamic markets, the former

typically assumes that the inflow of traders into the market perfectly matches its outflows. On

the other hand, in order to investigate the consequences of the endogenous evolution of the

set of active traders over time, the latter typically assumes that there are no inflows of traders

into the market. Hence, roughly speaking, these two lines of research focus on the likely

predominant strategic forces in thick and thin markets, respectively.

This paper’s main contribution is to the literature on bargaining in stationary markets.

The main innovation of this paper with respect to this literature is that I allow the agents

to strategically choose which coalitions to propose. This adds a new bargaining dimension

to these settings, and allows the connection between the predictions of the non-cooperative

model and the Nash bargaining solution.34 For example, Nguyen (2015) uses convex pro-

gramming techniques to characterize the stationary subgame-perfect equilibrium of a non-

cooperative bargaining game similar to the one in the present paper, but the equilibrium

in his framework does not have the tier structure described in this paper and cannot be

characterized in terms of the classical Nash bargaining solution.35

Despite the contrast between the settings under consideration, the strategic forces in

the present paper are most related to those that arise in the literature investigating non-

cooperative bargaining in non-stationary markets. Indeed, the structure of the equilibrium

33Also related, albeit with a somewhat different spirit, is the large literature that builds on legislative bar-

gaining model of Baron and Ferejohn (1989) (e.g., Eraslan 2002; Eraslan and McLennan 2013; Eraslan 2016;

Battaglini 2019).
34In Talamàs (2019), I study networked buyer-seller markets using a framework similar to the one in the

present paper, and I discuss how allowing the agents to strategically choose whom to make offers to funda-

mentally alters the determinants of price dispersion in these markets. In particular, I provide a simple neces-

sary and sufficient condition for the law of one price to hold in the limit as bargaining frictions vanish, and

I describe an algorithm that decomposes the buyer-seller network into submarkets, from the submarket with

the highest limit price down (or, alternatively, the submarket with the lowest limit price up).
35The main difference between the model in Nguyen (2015) and the one that I study in the present paper is

that, in the former, coalitions are proposed at random (instead of being selected strategically by the proposer)

and, in each period, its members bargain only over whether to form the proposed coalition and, if so, their

terms of trade. Another difference is that, in Nguyen (2015), all the types have linear utilities, while I assume

instead that—as in the classical framework of Nash (1950)—each type’s preferences can be represented by a

concave vN-M utility function.
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is similar to that of the no-delay perfect equilibrium characterized in Chatterjee, Dutta, Ray,

and Sengupta (1993). Other than the setting, the main difference is that—as in the classical

bargaining framework of Nash (1950)—I allow the agents to have heterogeneous vN-M util-

ity functions instead of restricting attention to the case of linear utilities. As a consequence,

in the limit as bargaining frictions vanish, in the present setting the coalitional surpluses

are shared according to the Nash bargaining solution—instead of according to equal shar-

ing. Moreover, the dynamic entry of the agents into the market implies that the structure of

the equilibrium in the present setting is fixed throughout—instead of evolving as different

coalitions form—and that the equilibrium that I characterize always exists and is the unique

stationary perfect equilibrium—instead of being one of the possible stationary perfect equi-

libria and existing only under certain conditions. Not surprisingly given the qualitative

differences between the settings, however, the predictions of the resulting theories are qual-

itatively distinct. For example, the endogenous evolution of the market in Chatterjee, Dutta,

Ray, and Sengupta (1993) implies that—unlike in the present setting—an agent does not nec-

essarily benefit when she becomes more productive (because her improved outside option

can lead others to avoid making offers to her, which can, in turn, make it more likely that

the market will evolve against her).

The similarity between the strategic forces in Chatterjee, Dutta, Ray, and Sengupta (1993)

and the present paper might seem surprising given that these two papers differ not only

in the setting under study but also in the bargaining protocol. Indeed, they use a rejector-

proposes protocol (in which the rejector of a proposal becomes the proposer in the next period)

instead of the random-proposer protocol of the present paper. Ray (2007) (see also Compte and

Jehiel 2010) discusses how the former protocol gives considerably more bargaining power

to the receiver of the offer than the latter, and how this explains the contrasting predictions

often obtained under these two protocols. Intuitively, however, the dynamic entry of agents

into the market featured in the present paper implies that agents do not have to consider

how the market might evolve after they reject an offer, which implies that the difference

between these protocols is much less pronounced—and it actually vanishes with the bar-

gaining frictions.

In the context of convex games,36 Chatterjee, Dutta, Ray, and Sengupta (1993) show that the

prediction of the no-delay stationary perfect equilibrium of their coalition formation game

converges—as the bargaining frictions vanish—to the egalitarian solution of Dutta and Ray

(1989). The similarity between the structure of the equilibrium in their game and the one

in the present paper suggests that their results can be generalized beyond the case of linear

36A game is convex if, for any two coalitions C1 and C2, y(C1 ∪ C2) ≥ y(C1) + y(C2)− y(C1 ∩ C2).
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utilities and can more generally be understood in terms of the Nash bargaining solution.

Relatedly, Compte and Jehiel (2010) focus on environments in which the grand coalition

generates the highest surplus, and in which only one coalition may form. They show that,

if an (asymptotically) efficient stationary equilibrium exists, the corresponding profile of

payoffs is the one that maximizes the product of agents’ payoffs among those in the core.

This paper is further related to two other lines of research. First, the idea of building a the-

ory of coalition formation from the Nash bargaining solution goes back at least to Rochford

(1984), who defines a symmetrically-pairwise-bargained payoff profile of an assignment game

with transferable utility as one that satisfies the following property: Each matched pair

shares output according to the Nash bargaining solution—with each agent’s disagreement

point being the maximum that she can achieve in any other match (keeping the others’ pay-

offs fixed).37,38 Burguet and Caminal (2018) show that a modification and extension of this

idea (in a context in which only one coalition can form) uniquely pins down the agents’ pay-

offs, and provide strategic foundations for the resulting coalition formation solution concept.

While these concepts are similar in spirit to the one described in the present paper, the non-

cooperative approach described here suggests that—in the setting of this paper—the outside

option principle (e.g., Binmore, Rubinstein, and Wolinsky 1986) holds, so outside options do

not enter through disagreement points, but act instead as bounds on the range of validity of

the Nash bargaining solution.39

Second, Collard-Wexler, Gowrisankaran, and Lee (2019) provide strategic foundations

for the Nash equilibrium in Nash bargains (Horn and Wolinsky 1988), which is a widely used

bargaining solution concept for bilateral oligopoly settings. In contrast to the coalition for-

mation approach of the present paper—in which each agent can be part of at most one

coalition—the Nash-in-Nash solution assumes that all the parties trade with each other (i.e.,

that all possible coalitions form) and derives prices for each bilateral contract as a function

of the fundamentals. In particular, being a surplus division rule for a given network, the

37Rochford (1984) shows that the set of symmetrically-pairwise-bargained payoff profiles is the intersection

of the kernel and the core. Kleinberg and Tardos (2008) refer to such profiles as “balanced outcomes.” Alterna-

tive approaches to select a point from the core of the assignment game include Kranton and Minehart (2001)

(who focus on an extreme point of the core) and Elliott (2015) (who focuses on different convex combinations

of the extreme points of the core).
38The idea of endogenizing the Nash threat points was pursued by Nash (1953) himself (see also Binmore

1987 and Abreu and Pearce 2015) and it is the essence of well-known consistency notions (e.g. Sobolev 1975,

Peleg 1986, Hart and Mas-Colell 1989, Serrano and Shimomura 1998). See also Moldovanu (1993) and de Fonte-

nay and Gans (2014) for alternative approaches to endogenous outside options in bilateral settings.
39In Agranov, Elliott, and Talamàs (2019), we experimentally investigate, among other things, the empirical

validity of this prediction.
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Nash-in-Nash solution is silent about which network might form in equilibrium.

In order to investigate the private and social incentives for exclusion of hospitals from

insurer networks, Ho and Lee (2019) consider a modification of the Nash-in-Nash solu-

tion tailored to a setting in which one insurer bargains with many hospitals. They show

how—by allowing the insurer to threaten to replace an included hospital with an excluded

alternative—this modification can rationalize observed levels of exclusion in U.S. commer-

cial health insurance markets. In particular, an insurer’s ability to contract with fewer hos-

pitals than available allows her to use excluded hospitals to bound the included hospitals’

prices—as prescribed by the outside option principle.

8 Conclusion

The Nash bargaining solution is a central solution concept in economics. Nash proposed this

solution concept using an axiomatic approach. In his own words (Nash, 1953, p. 129),

One states as axioms several properties that it would seem natural for the so-

lution to have and then one discovers that the axioms actually determine the

solution uniquely.

My objective in this paper has been to investigate how prices and allocations are deter-

mined in stationary matching markets, in which agents bargain both about which coalitions

to form and how the resulting surplus is shared within them. One possible approach to fulfill

this objective is to extend Nash’s axioms to this setting, and then to discover what solution

comes out of these axioms. In this paper, I have taken an alternative approach, which lever-

ages the celebrated connection between non-cooperative bargaining and the Nash bargain-

ing solution: I have extended the canonical non-cooperative bargaining model that connects

with the Nash bargaining solution (e.g., Binmore, Rubinstein, and Wolinsky 1986) to the

setting of interest, and I have let this model suggest how the Nash bargaining solution gen-

eralizes to this setting. The payoff profile under the resulting theory of coalition formation

is the unique profile that is such that each agent’s payoff is her maximum Nash bargaining

share among all the coalitions subject to the constrain that everyone else gets at least her equi-

librium payoffs. An interesting avenue for future research is to investigate whether Nash’s

axioms have natural analogs in the framework of this paper that characterize this solution.

This paper suggests a handful of exciting directions for future research. First, as discussed

in section 1, the contribution of this paper can be seen as enriching the outside option princi-
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ple of Binmore, Rubinstein, and Wolinsky (1986) to determine, not only how outside options

enter the Nash bargaining solution, but also how they are determined by the Nash bargaining

solution. Binmore, Shaked, and Sutton (1989) and Jäger, Schoefer, Young, and Zweimüller

(2018) provide empirical evidence that is consistent with the outside option principle. In

Agranov, Elliott, and Talamàs (2019), we design and implement a new experimental ap-

proach that replicates the relevant strategic forces in stationary markets, and we use it to

investigate the empirical relevance of the qualitative predictions that emerge from this the-

ory.

Second, the theory that emerges from this paper opens a door to the investigation of

agents’ incentives to invest in different skills and relationships—when these investments

must be sunk before bargaining takes place. This is the case, for example, in labor markets,

in which both firms and employees must make substantial investments before they know

who is going to end up matching with whom. In Elliott and Talamàs (2019), we study the

extent to which the classical holdup problem (e.g., Williamson 1975; Grossman and Hart

1986; Hart and Moore 1990; Hosios 1990; Acemoglu 1996; 1997, Cole, Mailath, and Postle-

waite 2001; Elliott 2015) is actually a problem in markets that—as in the present paper—

attract traders over time. Leveraging the characterization of the present paper to study how

agents’ use their investments to obtain more favorable outcomes in decentralized markets is

an interesting avenue of future research.

Third, following most of the related literature, this paper focuses on settings in which each

coalition’s productivity is independent of which other coalitions form. In many settings of

interest, however, this is counterfactual (e.g., because different coalitions are in competition

with each other, or because they provide products that complement each other). The analysis

of this paper can be extended to characterize the structure of the coalitions that form in

equilibrium in settings with externalities but, in general, these externalities can imply that

such equilibria do not exist, or that there is more than one such equilibrium. Ray and Vohra

(1999) and Ray (2007) extend the construction of the (no-delay stationary subgame-perfect)

equilibria in Chatterjee, Dutta, Ray, and Sengupta (1993) to settings with externalities across

coalitions.40 A similar generalization of the construction of perfect equilibria that I describe

in this paper to settings with general externalities across coalitions seems attainable—even

if substantially more involved because of the more general preferences considered in this

paper.

Finally, an important direction for future research is to investigate the conditions under

40See also Bloch (1996), de Clippel and Serrano (2008), Maskin (2016) and Chade and Eeckhout (2019).
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which the outcome of decentralized bargaining in the thick markets considered in this pa-

per is efficient. If one considers the economy consisting of the set of all the agents that have

matched in equilibrium before any given period, the resulting allocation is in the core of this

economy, and hence efficient. As a result, the only source of inefficiency in these markets can

be the frequency with which agents of different types match in equilibrium.41 Investigating

the potential sources of inefficiencies in these markets should provide the natural counter-

part to the large literature investigating the efficiency of decentralized bargaining outcomes

in thin markets (e.g., Compte and Jehiel 2010; Burguet and Caminal 2018; Elliott and Nava

2019).

41The modeling approach that we develop in Elliott and Talamàs (2019) to study investment incentives is

better suited to investigate this question than the one of the present paper (mainly because, in contrast to the

present paper, it features exogenous entry).
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A Appendix: Details omitted from section 5

In subsection A.1, I rewrite the system of equations (1) that any equilibrium cutoff profilew

in the bargaining game G satisfies. In subsection A.2, I characterize the stationary subgame-

perfect equilibrium of the auxiliary games GCx . In subsection A.3, I provide the proofs of

Propositions 5.2, 5.3 and 5.4. Finally, in subsection A.4, I provide the proofs of Proposi-

tion 5.5, Theorem 1 and Corollary 5.2.

A.1 Rewriting the system of equations (1)

I start by defining the function that I use to compactly rewrite system (1) as (4).

Definition A.1. For each type i, let the function fi : [yi,∞]→ R be implicitly defined by

ui(x) = αiui(yi) + (1− αi)ui(fi(x))

where recall that αi :=
q

(1−q)pi+q
. Figure 9 illustrates.

In words, fi(x) is the amount that an agent of type i can obtain when she is the proposer

in a stationary equilibrium conditional on her being indifferent between accepting and re-

jecting the amount x.42 The fact that the utility function ui is strictly increasing ensures that

fi is well defined and, since αi ∈ (0, 1), that fi(x) > x for all x > yi. Moreover, it follows from

the concavity of the utility function ui that the difference between fi(x) and x is increasing

in x (see Figure 9). System (1) can be written as

(4) fi(wi) = max
C⊆N

(
y(C)−

∑
j∈C−i

wj

)
for all i in N.

A.2 Auxiliary game: Bargaining in a fixed coalition with exogenous out-

side options

I now turn to characterizing the equilibrium of the auxiliary game GCx . Naturally, the fact

that there is only one relevant coalition in this game substantially simplifies the system that

pins down its equilibrium cutoff profile. Indeed, I now use a relatively simple argument to

show that this cutoff profile exists and is unique (Lemma A.1).43

42This interpretation relies on the argument used in section 5 to derive the system (1), which, for brevity, I

do not reproduce here.
43This result is close existing results in the literature, but I am not aware of the existence of a proof of this

result in the general framework of the present paper (featuring coalitions of arbitrary size and imperfectly
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wiyi fi(wi)

ui(x)

x

αui(yi) + (1− α)ui(x)

Figure 9: Illustration of the definition of the function fi (Definition A.1).

Lemma A.1. For any coalition C ⊆ N and any profile x in RN satisfying
∑

j∈C xj ≤ y(C), the

game GCx has unique stationary subgame-perfect equilibrium. As the bargaining friction q goes to

zero, the equilibrium cutoff profile converges to the profile that solves

argmax
s∈RC

∏
j∈C

[uj(sj)− uj(yj)]pj subject to y(C) ≥
∑
j∈C

sj and sj ≥ xj for all j in C.(5)

Proof. Consider a stationary subgame-perfect equilibrium of the game GCx . For each type i in

C, let vi be the amount that an agent of type i is indifferent between accepting and rejecting

in any given period. The argument analogous to the one used to derive system (1) shows

that the equilibrium cutoff profile v satisfies

(6) fi(vi) = max

[
fi(xi), y(C)−

∑
j∈C−i

vj

]
for all i in C.

Existence of a solution to system (6) follows from Brouwer’s fixed point theorem. To prove

uniqueness, suppose for contradiction that there are two profiles v,v′ that solve system (6).

Define S to be the set of all types for which these two solutions differ; that is, S := {i ∈
N | vi 6= v′i}. Let i be one of the elements of the set S for which fi(vi) − vi is highest, and

suppose without loss of generality that fi(vi) − vi is an upper bound on
{
fj(v

′
j)− v′j

}
j∈S .

Since fi(vi)− vi is increasing in vi, we also have that vi > v′i. Moreover we have that

(7) fi(vi) = y(C)−
∑

j∈C−i

vj,

since, otherwise, vi = xi, which contradicts the fact that vi > v′i ≥ xi. In particular,

fj(vj)− vj ≥ y(C)−
∑
j∈C

vj = fi(vi)− vi ≥ fj(v
′
j)− v′j for all j in S,

transferable utility), so I provide the proof of Lemma A.1 below. This argument is a slight generalization of

standard arguments in the literature (e.g., Ray, 2007, Chapter 7) to the setting without perfectly transferable

utility considered in this paper.
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or, using again that fj(vj) − vj is increasing in vj , vj ≥ v′j for all j in S. But then, Equa-

tion 7 combined with the fact that the function fi is increasing and, by definition, fi(v′i) ≥
y(C) −

∑
j∈C−i v

′
j implies that v′i ≥ vi, a contradiction. For brevity, I omit the proof of the

characterization of the limit equilibrium payoffs in terms of the Nash bargaining solution; it

is the analog of the main result in Binmore, Rubinstein, and Wolinsky (1986) in the setting of

the present paper.

A.3 Proof of Proposition 5.2, Proposition 5.3 and Proposition 5.4

A.3.1 Proof of Proposition 5.2

Let w be a solution of system (1), and fix an arbitrary type i. Let C ⊆ N be such that

fi(wi)−wi = y(C)−
∑

j∈C wj , and let v be the equilibrium cutoff profile in GC0 . By definition,

we have that fi(vi)−vi = y(C)−
∑

j∈C vj . Suppose for contradiction that vi < wi. This implies

that there exists k ∈ C such that vk > wk. Since fi(vi) − vi is increasing in vi, this implies

that fi(vi) − vi < fi(wi) − wi and fk(vk) − vk > fk(wk) − wk, which contradicts the fact that

fi(vi)−vi = y(C)−
∑

j∈C vj = fk(vk)−vk and fk(wk)−wk ≥ y(C)−
∑

j∈C wj = fi(wi)−wi.

A.3.2 Proof of Proposition 5.3

Let w be a solution of system (1), let C be a perfect coalition, and let v be the equilibrium

cutoff profile in GC0 . Suppose for contradiction that there exists i ∈ C such that wi < vi. This

implies that there exists k ∈ C with wk > vk, which contradicts Proposition 5.2.

A.3.3 Proof of Proposition 5.4

Given the discussion of Proposition 5.4 in the main text, it only remains to show that for any

two types i and j and any two coalitions C and D containing both these types, if i’s cutoff

in the auxiliary game GC is bigger than i’s cutoff in the auxiliary game GD, then j’s cutoff in

the auxiliary game GC is bigger than j’s cutoff in the auxiliary game GD. To see that this is

the case, let vC and vD be the equilibrium cutoff profile in GC and GD, respectively. We have

that

fi(v
C
i )− vCi = y(C)−

∑
j∈C

vCj = fj(v
C
j )− vCj and fi(v

D
i )− vDi = y(D)−

∑
j∈D

vDj = fj(v
D
j )− vDj .

Hence, given that fi(x)− x is increasing in x, vCi ≥ vDi implies that vCj ≥ vDj .
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A.4 Proofs of Proposition 5.5, Theorem 1 and Corollary 5.2

Proposition A.1 and Proposition A.2 together prove Proposition 5.5 and Theorem 1. Corol-

lary 5.2 follows from the combination of Lemma A.1 above and Proposition A.3 below.

Proposition A.1. A profile x in RN solves system (4) if and only if it is credible.

Proof. Let the profile x in RN be credible, and fix an arbitrary type i. Given that fi(xi) ≤
maxC⊆N(y(C) −

∑
j∈C−i xj), we only need to show that there exists a coalition C ⊆ N with

fi(xi) ≥ y(C)−
∑

j∈C−i xj , but this is satisfied by i’s x−i-best coalition.

In the other direction, suppose that the profile x in RN solves system (4), and fix an arbi-

trary type i in N . Since, xi = maxC⊆N(y(C)−
∑

j∈C−i xj), i’s x−i-best share is bounded above

by xi, so letting C ⊆ N be such that

fi(xi) = y(C)−
∑

j∈C−i

xj,(8)

it is enough to show that i’s x−i-share in C is bounded below by xi. Let the profile v in RC

solve

fi(vi) = y(C)−
∑

j∈C−i vj

fk(vk) = max
[
fk(xk), y(C)−

∑
j∈C−k vj

]
for all k in C − i.

Suppose for contradiction that vi < xi. Since vj ≥ xj for all j ∈ C− i, this implies that vj > xj

for some type j in C. Using that fi(vi) − vi is increasing in vi, Equation 8, and that x solves

system (6), we get

fj(vj)− vj = fi(vi)− vi < fi(xi)− xi = y(C)−
∑
j∈C

xj ≤ fj(xj)− xj

which implies that vj < xj , a contradiction.

Proposition A.2. The payoff profile χ defined by algorithm A is the unique credible profile.

Proof. First, I prove by induction in the step number s that algorithmA only updates payoffs

that are 0 (i.e., if xsi 6= 0, then xs+1
i = xsi ). The base step is vacuous. For the induction step,

consider a step s of algorithmA, and suppose that, if xs−1i 6= 0, then xsi = xs−1i . Given that the

outside options that have to be met only increase from step s to step s+1, every xs−1-perfect

coalition is an xs-perfect coalition, so xs−1i 6= 0 implies that xs+1
i = xsi .

Second, note that in every step s of algorithmA, xs−1 < xs, so algorithmA ends in finitely

many steps. Indeed, the argument analogous to the one behind Proposition 5.4 restricted to
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the set Ks = {i ∈ N | xsi = 0} shows that there exists at least one coalition C that is an

xs-perfect coalition and contains at least one of the types in Ks.

Finally, I prove by induction in the step number s that, for each s ≤ S, every credible

profile gives xsi to each type i in N −Ks (so that χ is the only possible credible profile). Let z

be a credible payoff profile. Let s be such that zi is equal to xs−1i for each type i in N −Ks−1

(this induction hypothesis is vacuously true when s = 1, so there is no need to prove the

base step separately). Suppose for contradiction that, for some i in Ks−1, xsi is strictly bigger

than zi (the induction hypothesis together with fact that algorithm A only updates outside

options upwards implies that xsi cannot be strictly smaller than zi). In other words, there

exists a coalition C such that i’s z−i-share in C is strictly smaller than i’s xs−1-share in C.

This implies that for some j in Ks−1, zj is strictly bigger than j’s xs−1-share in C (that is, j’s

xs−1-best share), which, as just argued, contradicts the induction hypothesis.

The algorithm A? below is analogous to algorithm A using the notion of x-Nash-best

shares and x-Nash-best coalitions instead of x-best shares and x-best coalitions.

Definition A.2 (Algorithm A?). Let x0 = 0. In each step s = 1, 2, . . . , for each type i in

an xs−1-Nash perfect coalition, let xsi be i’s xs−1-Nash best share; for each other type j, let

xsj = 0. Stop in the first step S such that every type is in an xS-Nash perfect coalition, and let

χ? := xS .

Proposition A.3. The payoff profile χ? defined by algorithm A? is the unique Nash-credible profile.

The only part of the proof of Proposition A.3 that differs from the proof of Proposition A.2

is the reasoning behind the fact that, for each step s with Ks 6= ∅, there is at least one xs-

perfect coalition containing at least one type in Ks. The argument in this case is analogous

to that in Pycia (2012, pages 330-331).44 Denoting, for each coalition C, type i’s xs−1-Nash

share in C by xCi , and letting u′i denote the derivative of the utility function ui, we have that

ui(x
C
i )/u

′
i(x

C
i ) is the same for every type i in C ∩Ks−1; denote by µC this common value. A

coalition C with maximum µC is i’s xs-Nash best coalition for each i ∈ Ks, since each type

i’s xk−1-Nash share in C is increasing in µC .

44Pycia (2012) uses this argument to illustrate how there exists a stable coalitional structure when coalitional

output is shared according to the Nash bargaining solution (with exogenous outside options).
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Elliott, M. and E. Talamàs (2019). No holdup in dynamic markets. Mimeo.

Eraslan, H. (2002). Uniqueness of stationary equilibrium payoffs in the baron–ferejohn

model. Journal of Economic Theory 103(1), 11–30.

Eraslan, H. (2016). Uniqueness of stationary equilibrium payoffs in the baron–ferejohn

model with risk-averse players. International Journal of Economic Theory 12(1), 29–40.

Eraslan, H. and A. McLennan (2013). Uniqueness of stationary equilibrium payoffs in coali-

tional bargaining. Journal of Economic Theory 148(6), 2195–2222.
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