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Abstract

In this paper we propose new approaches to estimating large dimensional monotone
index models. This class of models has been popular in the applied and theoretical
econometrics literatures as it includes discrete choice, nonparametric transformation,
and duration models. A main advantage of our approach is computational. For in-
stance, rank estimation procedures such as those proposed in Han (1987) and Cavanagh
and Sherman (1998) that optimize a nonsmooth, non convex objective function are diffi-
cult to use with more than a few regressors and so limits their use in with economic data
sets. For such monotone index models with increasing dimension, we propose to use a
new class of estimators based on batched gradient descent (BGD) involving nonparamet-
ric methods such as kernel estimation or sieve estimation, and study their asymptotic
properties. The BGD algorithm uses an iterative procedure where the key step exploits
a strictly convex objective function, resulting in computational advantages. A contri-
bution of our approach is that our model is large dimensional and semiparametric and
so does not require the use of parametric distributional assumptions.
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1 Introduction

Monotone index models have received a great deal of attention in both the theoretical and
applied econometrics literature, as many economic variables of interest are of a limited or
qualitative nature. A leading special case in this class is the binary choice model which is
usually represented by some variation of the following threshold crossing model:

yi = 1
(
X0,iβ

⋆ +XT
i β

⋆ − ui ≥ 0
)

(1)

where 1 (·) is usual indicator function, yi is the observed response variable, taking the values 0
or 1 and Xe,i =

(
X0,i,X

T
i

)T is an observed p+1 dimensional vector of covariates which effect
the behavior of yi. Both the scalar disturbance term ui with distribution function denoted by
G(·) and the (p+1)-dimensional true parameter vector β⋆

e =
(
β⋆,β⋆T

)T are unobserved, the
latter often being the parameter estimated from a random sample (Xe,i, yi), i = 1, 2, · · · , n1.

The disturbance term ui is restricted in ways that ensure identification of β⋆
e. Parametric

restrictions specify the distribution of ui up to a finite dimensional parameter and assume
that ui distributed independently of the covariates Xi. Under such a restriction, β⋆

e can be
estimated (up to scale) using maximum likelihood or nonlinear least squares. Estimators that
are robust to these parametric distributional assumptions have been proposed and analyzed
resulting in a variety of estimation procedures for β⋆

e.
An important class of semiparametric restrictions used in the literature is based on in-

dependence/index restrictions. Estimation procedures under this restriction include those
proposed by Han (1987), Ichimura (1993), Klein and Spady (1993). These cover but are not
limited to the above binary response model. This class of index models have a robustness
advantage over parametric approaches, but estimators within this class are difficult to com-
pute2 due to nonconvexity and in some cases also nonsmoothness of their respective objective
functions3. Furthermore the difficulty increases with the dimension of Xi. Recent work which
is motivated by computational concerns is Ahn et al. (2018). However, the employs a two
step procedure involving a fully nonparametric estimator in the first stage which makes it
difficult to handle covariates with large dimensions.

1To clarify discussion, throughout the paper we will only focus on model (1). But we note that all the
proposed algorithms and their theoretical properties in this paper apply directly to the most general class of
monotone index models without any modifications.

2Other estimation of index models includes Stoker (1986) and Powell et al. (1989). While these are
relatively easy to compute, such derivative based estimators cannot be applied unless all components of Xe,i

are continuously distributed.
3Generally, finding a a local optimum is generally NP-hard, let alone the global optimum (Murty and

Kabadi, 1987).
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A related drawback of all these procedures is that they are designed to estimate parameters
in models of a small and fixed dimension. A relatively recent and thriving literature in
econometrics and machine learning is recognizing the many advantages of allowing for large
dimensional models or models with a large set of controls. This class is a special case of
models that consider the situation when the dimension of Xi is large, and this is now often
modeled with its dimension increasing with the sample size. Due primarily to its empirical
relevance, there has been a burgeoning literature on estimation and inference on certain
econometric and statistics models with a large number of regressors or a large number of
moment conditions. For a survey of examples in economics and finance, see Fan et al. (2020).
Recent papers include Newey and Windmeijer (2009), Chernozhukov et al. (2017),Belloni
et al. (2018), Cattaneo et al. (2018a), Cattaneo et al. (2018b),

Related to our work is the recent literature on estimating large dimensional binary choice
or monotone index models such as Sur and Candès (2019) and Fan et al. (2020). Sur and
Candès (2019) considers inference in a large dimensional logit model, relying on the logistic
distribution of the disturbance term where it is shown that χ2 asymptotic approximations of
the LR statistic are suspect when the dimension of x is large. Fan et al. (2020) on the other
hand estimates parameters by optimizing the objective function introduced in Han (1987),
but with the number parameters increasing with the sample size. Optimizing these rank
based objective functions is unfortunately hard even with recent developments in algorithms
and search methods for optimizing non smooth and/or non convex objective functions. See
for example important recent work based on mixed integer programming (MIP) as in, e.g.
Fan et al. (2020) and Shin and Todorov (2021).

Therefore, in light of the drawbacks in the existing literature, this paper proposes a new
estimation procedure that is amenable to easier computation. Specifically we aim to construct
a computationally feasible estimator for a semiparametric binary choice and monotone index
models with increasing dimension based on a convex objective function and then establish
its asymptotic properties. As we will discuss in detail in the next section, our algorithm uses
an iterative estimator based on a batched gradient descent (BGD) method, and we show how
to use nonparametric methods to approximate the distribution in each stage of the iteration.
One is kernel regression, and the other is the method of sieves4.

4See Chen (2007) who pioneered the use of sieve methods in econometrics.
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1.1 Notations

Throughout the rest of this paper, we will be using the following notations. For any real
sequences {an}∞n=1 and {bn}∞n=1, we write an = o (bn) if lim supn→∞ |an/bn| = 0, an = O (bn) if
lim supn→∞ |an/bn| <∞, and an ∼ bn if both an = O (bn) and bn = O (an). For any random
sequences {an}∞n=1 and {bn}∞n=1, we write an = Op (bn) if for any 0 < τ < 1 there are N
and C > 0 such that P {|an/bn| > C} < τ holds for all n ≥ N , we write an = op (bn) if for
any C > 0, limn→∞ P {|an/bn| > C} → 0. For any Borel sets A ⊆ Rk, denote its Lebesgue
measure as m (A). For any symmetric matrix A, we write A ≻ 0 if A is positive definite, and
A ⪰ 0 if A is positive semi-definite. For any symmetric matrices A and B, we write A ≻ B if
A−B ≻ 0 and A ⪰ B if A−B ⪰ 0. For any matrix A, we denote σ (A) as its singular value,
and denote σ (A) and σ (A) as its largest and smallest singular value. For any symmetric
matrix A, we denote λ (A) as its eigenvalue, and denote λ (A) and λ (A) as its largest and
smallest eigenvalue. For any vector x = (x1, · · · , xp)T, we denote its Euclidean norm as
∥x∥ =

√∑p
i=1 x

2
i . For any matrices A = (aij)n×m, we denote ∥A∥ =

√∑n
i=1

∑m
j=1 a

2
ij. Note

that when A is positive semi-definite, there holds ∥Ax∥ ≤ λ (A) · ∥x∥; for general square
matrix A, there holds ∥Ax∥ ≤ σ (A) · ∥x∥. Finally, for any function f (x) with domain D,
define ∥f∥∞ = supx∈D f (x).

2 The BGD Estimator

To provide intuition for our semiparametric estimators that we introduce later, we start here
by considering a simplified version of the model where the cumulative distribution function
G (·) is completely known. Under such setup, we explore the batch gradient descent estimator
(BGD estimator) of β⋆

e when its dimensionality p may increase, which is also important on
its own right. Throughout the following analysis we assume that the data set satisfies the
following assumption.

Assumption 1. An i.i.d. data set Dn = {(Xe,i, yi)}ni=1 of sample size n is observed, where
yi is generated5 by yi = 1

(
X0,iβ

⋆
0 +XT

i β
⋆ − ui ≥ 0

)
with unobserved shock ui that is inde-

pendent of Xe,i and has CDF G (·).

Given any loss function ℓG (βe,Xe, y) that depends on G and is differentiable with respect
5Here we are decomposing the vector Xe,i into a scalar component X0,i and the vector Xi, and decomposing

the vector of parameters β⋆
e into the scalar term β⋆

0 and the vector β⋆. As we will see this is done for notational
convenience when imposing scale normalizations.
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to βe ∈ Be, the BGD estimator of β⋆
e is constructed based on the following iteration,

βe,k+1 = βe,k −
δk
n

n∑
i=1

∂ℓG
(
βe,k,Xe,i, yi

)
/∂βe, (2)

where δk > 0 is the learning rate. Note that n−1
∑n

i=1 ∂ℓG (βe,Xe,i, yi) /∂βe constitutes a
sample analogue of the derivative ∂E [ℓG (βe,Xe, y)] /∂βe. Unlike the stochastic gradient
descent (SGD) algorithm, in the BGD algorithm, in each round of update we evaluate the
derivative of the loss function over all data points. This increases the computational burden
but provides a more accurate estimator for the derivative of the expected loss function.
Given the initial guess of the parameter, βe,1, we iterate based on (2) until some terminating
conditions are satisfied.

In this paper, we consider the following loss function

ℓG (βe,Xe, y) =

∫ XT
e βe

−A

G (z) dz − yXT
e βe, (3)

for some sufficiently large positive constant A. A similar loss function to (3) was also consid-
ered in Agarwal et al. (2014). This loss function is attractive primarily because it is convex
and hence easy to optimize. Moreover, under some mild conditions, we can show that

∂E (ℓG (β⋆
e,Xe, y))

∂βe

= E
{(
G
(
XT

e β
⋆
e

)
− E (y|Xe)

)
Xe

}
= 0,

and
∂2E (ℓG (βe,Xe, y))

∂βe∂β
T
e

= E
{
G′ (XT

e βe

)
XeX

T
e

}
≻ 0,∀βe ∈ Be.

So β⋆
e uniquely minimizes EℓG (βe,Xe, y) over Be.

Based on loss function (3), the BGD estimator is constructed using the following iterative
procedure

βe,k+1 = βe,k −
δk
n

n∑
i=1

(
G
(
XT

e,iβe,k

)
− yi

)
Xe,i. (4)

We summarize our algorithm as follows in algorithm 1.

Remark 1. The key to the above approach is the construction of a convex objective function
that facilitates computation even with high dimensions. This transformed convex objective
works for any monotone model. In particular, for any model of the form yi = G(XT

e,iβ
⋆
e) + εi

with E (εi|Xe,i) = 0 and monotone G(·), a similar convex criterion as in (3) can be used for
inference on β⋆

e.

We now describe the asymptotic properties of βe,k based on (4). We first make the
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Algorithm 1: The BGD Estimator
input : Data set {(Xe,i, yi)}ni=1, sequence of learning rate {δk}∞k=1, initial guess

βe,1, CDF G (·), and terminating condition T
output: The BGD estimator β̂e

1 k ← 1;
2 while The terminating condition T is not satisfied do
3 βe,k+1 ← βe,k − δk

n

∑n
i=1

(
G
(
XT

e,iβe,k

)
− yi

)
Xe,i;

4 k ← k + 1;

5 β̂e ← βe,k;

following assumption.

Assumption 2. (i) Xe = [0, 1]p+1; (ii) Be is convex, and there exists some constant B0 > 0

such that for any βe ∈ Be, |βj| ≤ B0 for any 0 ≤ j ≤ p; (iii) there exists integer υG such that
G has up to υG-th bounded derivatives; (iv) Define Mn (βe) =

1
n

∑n
i=1G

′ (XT
e,iβe

)
Xe,iX

T
e,i and

M (βe) = E[Mn (βe)]. For any βe ∈ Be, there holds 0 < λe ≤ λ (M (βe)) ≤ λ (M (βe)) ≤
λe <∞.

Remark 2. Assumption 2(i) and (ii) facilitate the theoretical analysis of our estimator. Note
that when the space of the Xe is compact6, we can always redefine the true parameter vector
β⋆

e so that Assumption 2(i) holds. For Assumption 2(ii), note that to ensure that βe,k falls
into a compact set for each k, some form of truncation on βe,k+1 in (4) is needed. While
according to our results below, as long as Be is sufficiently large, it can be shown that βe,k

will fall into Be for all k with probability going to 1. We then assume that βe,k ∈ Be for all k.
Assumption 2(iii) imposes some smoothness conditions on G, where the requirement on υG

will be stated below. Such smoothness assumption can be easily satisfied by many commonly-
used distributions such as normal, Logistic, or t distribution. Assumption 2(iv) requires that
the eigenvalue of M (βe) is bounded below and above uniformly over Be.

For any βe ∈ Be, define ∆βe = βe − β⋆
e. Also define εi = yi − G

(
XT

e,iβ
⋆
e

)
, where

E [εi|Xe,i] = 0. When Assumption 1 and Assumption 2 hold, we have the following result.

Theorem 1. Let Assumption 1 and Assumption 2 hold. In addition, let υG = 3, p5 (log p)2 n−1 →
0, and the learning rate δk is chosen such that δk = δ ≤ 2/

(
3λe
)
. Let βe be updated based on

algorithm 1. We have that
6This condition is similarly imposed in Ichimura (1993). Note also that in Klein and Spady (1993),

Condition C.4a requires that, in the single-index case, XT
e β

⋆
e is bounded. Since there is no further sparsity

restrictions on β⋆, this condition is also similar to our Assumption 2(i).
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(i) Define

kBGD
1,n =

log
∥∥∆βe,1

∥∥+ 1
2
log (n/ (p log p))

− log (1− λeδ/2)
;

we have that

sup
k≥kBGD

1,n +1

∥∥∆βe,k

∥∥ = Op

(√
p (log p) /n

)
;

(ii) Define kBGD
2,n such that (1− λeδ)

kBGD
2,n
√
p log p→ 0, we have that

sup
k≥kBGD

2,n +1

∥∥∥∥∥∆βe,k+kBGD
1,n
−M−1 (β⋆

e)
1

n

n∑
i=1

εiXe,i

∥∥∥∥∥ = op
(
1/
√
n
)
;

(iii) For any k ≥ kBGD
1,n + kBGD

2,n + 1, define β̂e = β̂k. Also define

Σ⋆
1 =M−1 (β⋆

e)E
[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

]
M−1 (β⋆

e) ,

and

Σ̂1,n =M−1
n

(
β̂e

){ 1

n

n∑
i=1

Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i

}
M−1

n

(
β̂e

)
,

where G⋆
i = G

(
XT

e,iβ
⋆
e

)
and Ĝi = G

(
XT

e,iβ̂e

)
. Suppose further that E

(
Xe,iX

T
e,i

)
has uni-

formly (with respect to p) upper bounded eigenvalues. Then we have that∥∥∥Σ̂1,n − Σ⋆
1

∥∥∥→p 0.

(iv) For any p+ 1 vector ρ such that limn→∞ ∥ρ∥ <∞, limn→∞ ρTΣ⋆
1ρ = σ2 (ρ), and that

ρTM−1 (β⋆
e)

1√
n

∑n
i=1 εiXe,i →d N (0, σ2 (ρ)), we have that

ρT∆β̂e/
√
σ̂2 (ρ) /n→d N (0, 1) ,

where σ̂2 (ρ) = ρTΣ̂1,nρ.

Proof of Theorem 1. See Section B of Supplementary Material.

Note that unlike methods based on stochastic gradient descent (e.g., Toulis and Airoldi
(2017)) where the learning rate is required to decline with the sample size, when conducting
BGD, we can choose a constant learning rate throughout the whole iterations. However, any
decreasing learning learning rate satisfying

∑∞
k=1 δk = ∞ will lead to the same estimator

under our setup.
When p is fixed, Theorem 1(i) implies that supk≥kBGD

1,n +1

∥∥∆βe,k

∥∥ = Op (1/
√
n) , and

Theorem 1(ii) implies that for k sufficiently large, the BGD estimator is an asymptotically
linear estimator, so we have

√
n∆βe,k+kBGD

1,n
→d N (0,Σ⋆

1) by the central limit theorem. The
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asymptotic variance can be estimated based on Theorem 1(iii). When p is diverging, the
inference on β⋆

e based on the BGD estimator is given by Theorem 1(iv). Note that for
any given vector ρ, we require that 1√

n
ρTM−1 (β⋆

e)
∑n

i=1 εiXe,i is asymptotically normally
distributed. An alternative approach is to apply the high-dimensional central limit theorem
to 1

n

∑n
i=1M

−1 (β⋆
e)Xe,iεi (e.g., Chernozhukov et al., 2017).

The number of iterations required to obtain 1/
√
n consistency, kBGD

1,n , is determined by
many factors including the sample size n, the distance between the true parameter and the
initial guess ||∆βe,1||, as well as the lower bound of the eigenvalues of M (βe). In general,
kBGD
1,n is of order O (log n), but in practice when we apply the above algorithm, the spe-

cific number of iteration is difficult to determine. For detailed discussion of the number of
iterations, see Remark 6 at the end of Section 4.

3 Semiparametric BGD Estimation

In the previous section, we focused on iterative estimators based on the BGD algorithm
under the parametric setup. It is interesting to see whether this iterative convex estimation
approach can handle the case where no parametric form is assumed on the distribution of u.
Clearly, when the distribution of u is not known, the algorithm used above is not feasible.
We propose instead a modified algorithm that can handle this semiparametric case.

To ensure identification we normalize β⋆
0 to be 1, so our estimation target is β⋆. To

simplify our notation, we denote the space of X as X , and the corresponding parameter
space of β as B. Suppose that an initial guess for β⋆ is given by β1. In the k-th round
of iteration, to update βk based on the BGD algorithm, we require the knowledge of G
as in Section 2, which is infeasible when G is unknown. A natural idea is that we can
construct an estimator for G based on βk. More intuitively, suppose for a moment that in
the k-th round of iteration, βk is close to the unknown true parameter β⋆, then we have
that G (z) = E

[
y|X0 +XTβ⋆ = z

]
≈ E

[
y|X0 +XTβk = z

]
for any z ∈ R. This motivates

replacing the unknown G(·) in iteration k with a nonparametric estimator based on an
empirical analogue of E

[
y|X0 +XTβk = z

]
. We consider kernel estimation and the method

of sieves to obtain such estimators.
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3.1 The Kernel-BGD or KBGD Estimator

In this section we consider using kernel techniques to estimate G (·). The Nadaraya-Watson
kernel estimator of G (·) at iteration k is of the form

Ĝ (z|βk) =

∑n
j=1Khn

(
z −X0,j −XT

j βk

)
yj∑n

j=1Khn

(
z −X0,j −XT

j βk

) , z ∈ R, (5)

where Kh (·) = h−1K (·/h), K (·) is some kernel function, and hn is some bandwidth param-
eter depending on n. Given the estimated CDF Ĝ ( ·|βk), we can update the parameter as if
it were the true CDF G (·). In particular, βk is updated as

βk+1 = βk −
δk
n

n∑
i=1

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xi. (6)

As before, we keep updating βk based on (5) and (6), until some terminating conditions
are reached. The resulting estimator is labeled as the kernel-based batch gradient descent
estimator (KBGD estimator). We summarize our algorithm as follows in algorithm 2.

Algorithm 2: The KBGD Estimator
input : Data set {(Xe,i, yi)}ni=1, sequence of learning rate {δk}∞k=1, initial guess

β1, kernel function K, bandwidth hn, and terminating condition T
output: The KBGD estimator β̂

1 k ← 1;
2 while The terminating condition T is not satisfied do
3 for i← 1 to n do

4 Ĝ
(
X0,i +XT

i βk

∣∣βk

)
←

∑n
j=1 Khn(X0,i+XT

i βk−X0,j−XT
j βk)yj∑n

j=1 Khn(X0,i+XT
i βk−X0,j−XT

j βk)
;

5 βk+1 ← βk − δk
n

∑n
i=1

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xe,i;

6 k ← k + 1;

7 β̂ ← βk;

For any fixed z and β, under mild conditions there holds Ĝ (z|β)→p E
(
y|X0 +XTβ = z

)
.

Denote such limit as L (z,β). Obviously, L (z,β⋆) = G (z) holds for any z ∈ R. Before we
move to a formal description of the statistical properties of the KBGD estimator, we first
provide some further discussion on L (z,β). For simplicity, in the following we only focus
on the case where all the covariates are continuous. We leave further discussion of the case
where some covariates are discrete to Remark 5. Note that when there are discrete covari-
ates, our algorithm can be directly applied without any modification, although some further
assumptions might be required.
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Denote the joint density of Xe and X as fe (Xe) = fe (X0,X) and f (X) =
∫
fe (X0,X) dX0,

respectively. Denote z (Xe,β) = X0 +XTβ. Also denote fX,z (X, z|β) as the joint density
of X and z (Xe,β) given β. Note that for any x and z,

P [X ≤ x, z (Xe,β) ≤ z] =

∫
X̃≤x

[∫
X̃0≤z−X̃Tβ

fe

(
X̃0, X̃

)
dX̃0

]
dX̃,

so the joint density of X and z (Xe,β) given β is given by fX,z (X, z|β) = fe
(
z −XTβ,X

)
,

and the marginal density of z (Xe,β) is given by

fz (z|β) =
∫
X
fX,z (X, z|β) dX =

∫
X
fe
(
z −XTβ,X

)
dX.

Define fX|z (X| z,β) = fX,z (X, z|β) /fz (z|β) as the conditional density of X given z and
β, we have that

L (z,β) = E
(
G
(
z −XT∆β

)∣∣ z (Xe,β) = z
)
=

∫
X
G
(
z −XT∆β

)
fX|z (X| z,β) dX, (7)

where recall that ∆β = β − β⋆.
Based on the above notations, we formally study the asymptotic properties of the KBGD

estimator under increasing dimensions. We first introduce some further assumptions.

Assumption 3. The kernel function K (·) satisfies: (i) K is bounded and twice continuously
differentiable with bounded first and second derivatives, and the second derivative satisfies
Lipschitz condition on the whole real line; (ii)

∫
K (s) ds = 1; (iii) there exists positive

integer υK such that
∫
sυK (s) du = 0 for 1 ≤ υ ≤ υK − 1; (iv) K (s) = 0 for |s| > 1.

Assumption 4. (i) There exists some constant ζ > 1 such that ζ−1 ≤ fe (Xe) ≤ ζ holds for
all Xe ∈ Xe; (ii) there exists positive integer υf such that fe (Xe) has bounded up to υf -th
derivatives.

Remark 3. Assumption 4(i) together with Assumption 2(i) is a commonly-used assumption
in the machine learning literature (e.g., Wager and Athey, 2018) and allows us to construct
a subset of Xe such that fz (z (Xe,β) |β) is uniformly lower bounded from zero.

The following lemma will be useful in the proof of our theorem.

Lemma 1. Suppose that Assumption 1, Assumption 2(i)-(iii), Assumption 3, and Assump-
tion 4 hold with υG = 3, υK = 2, and υf = 3. Suppose moreover that K is chosen such that
K ≥ 0. Define ψ (n, p, h) = h−1

√
log (pnh−1) /n+ h2. We have that

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

Ĝ (z (Xe,i,β)|β)Xi − E [L (z (Xe,i,β) ,β)Xi]

∥∥∥∥∥ = Op

(
p

2p+1
2(p+1)ψ

1
p+1 (n, p, hn)

)
.
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Proof of Lemma 1. See Section A of Supplementary Material.

Lemma 1 implies that 1
n

∑n
i=1 Ĝ (Z (Xe,i,β)|β)Xi will be close to E [L (z (Xe,i,β) ,β)Xi]

uniformly with respect to β as n increases if p increases mildly. Note that such uniform
convergence results are free of trimming; we do not need to trim Xe,i even when the density of
z (Xe,i,β) is small. So even when Ĝ (z (Xe,i,β)|β) is a poor estimator for L (z (Xe,i,β) ,β)

for some Xe,i and β, our results are still valid. While on the same time, the cost of not
conducting any trimming is that our guaranteed convergence rate depends heavily on the
dimensionality. To see this, note that to ensure that our estimator is consistent, p must
satisfy p

2p+1
2(p+1)ψ

1
p+1 (n, p, hn) → 0. Suppose that p/n → 0 and we choose hn = ((log n) /n)1/6,

we have that ψ (n, p, hn) ∼ ((log n) /n)1/3. This implies that when p is fixed, the convergence
rate in Lemma 1 is ((log n) /n)1/3(p+1). When p increases with n, the dimension p should
satisfy p log p = O (log n), implying that p is allowed to increase only mildly with n. Such
restriction on p basically comes from the fact that as Xe,i moves towards the boundary of
Xe, the density of random variable z (Xe,i,β) decreases faster towards zero given a larger p,
which makes the convergence rate sensitive to the increase of p.

Given Lemma 1, we are ready to study the statistical properties of the KBGD estimator.
For notational simplicity, in the following we denote z (Xe,i,βk) and z (Xe,i,β

⋆) as zi,k and
z⋆i , respectively. We have that under all the conditions as imposed in Lemma 1, there holds

βk+1 = βk − δkE [(L (zi,k,βk)−G (z⋆i )) ·Xi] + δk · (small order terms) . (8)

Note that zi,k = z⋆i +XT
i ∆βk and L (zi,k,βk) =

∫
X G

(
zi,k −XT∆βk

)
fX|z (X| zi,k,βk) dX, so

(L (zi,k,βk)−G (z⋆i )) ·Xi equals to{∫
X

[
G
(
z⋆i +XT

i ∆βk −XT∆βk

)
−G (z⋆i )

]
fX|z (X| zi,k,βk) dX

}
·Xi

=

∫ 1

0

∫
X

[
G′
(
z⋆i + t (Xi −X)T ∆βk

)
fX|z (X| zi,k,βk)

(
XiX

T
i −XiX

T
)]

∆βkdXdt, (9)

where the integration is understood to be element-wise. (There were some typos so I made
some revisions for the following notations.) To further simplify our notation, define

W
(
Xe, X̃e,β, t

)
= G′

(
z (Xe,β

⋆) + t
(
X− X̃

)T
∆β

)
fX|z

(
X̃
∣∣∣ z (Xe,β) ,β

)
,

V
(
Xe, X̃e,β, t

)
=
(
XXT −XX̃

T
)
W
(
Xe, X̃e,β, t

)
,

and

Λ (β, t) = E
[∫

X
V (Xe,i,Xe,β, t) dX

]
,

11



we have that

E [(L (zi,k,βk)−G (z⋆i )) ·Xi] =

∫ 1

0

Λ (βk, t)∆βkdt,

which indicates that

∆βk+1 =

{∫ 1

0

(Ip − δkΛ (βk, t)) dt

}
∆βk + δk · (small order terms) .

To ensure that with probability going to 1 the above iteration shrinks ∥∆βk∥, we make the
following assumption.

Assumption 5. There hold

sup
β∈B,t∈[0,1]

λ
(
Λ (β, t) + ΛT (β, t)

)
≤ λΛ <∞,

and

inf
β∈B,t∈[0,1]

λ
(
Λ (β, t) + ΛT (β, t)

)
≥ λΛ > 0.

Remark 4. Here we provide an illustrative example where Assumption 5 holds. The technical
details for establishing this can be found in Section B of Supplementary Material. Consider
the case where u is uniformly distributed over [−T1, T2] for both T1 and T2 large and Xe ∼

N

((
0

0

)
,

(
σ2 0

0 ΣX

))
. Then for T1 and T2 sufficiently large, Assumption 5 holds. More

generally, if the random error u is uniformly distributed over a sufficiently large support, and
has sufficiently small and exponentially decreasing probabilities outside the large support,
Assumption 5 will also hold.

Based on the above assumptions, we have the following result.

Theorem 2. Suppose that all the assumptions in Lemma 1 and Assumption 5 hold with
υG = 3, υK = 2, and υf = 3, δk = δ < min

{
1/ (2λΛ) , 1/

(
2p2 ∥G′∥2∞

)}
, and that βk is

updated based on algorithm 2. Define

kKBGD
1,n =

log (∥∆β1∥)− log
(
p

2p+1
2(p+1)ψ

1
p+1 (n, p, hn)

)
− log (1− δλΛ/4)

.

Then we have that

sup
k≥kKBGD

1,n +1

∥∆βk∥ = Op

(
p

2p+1
2(p+1)ψ

1
p+1 (n, p, hn)

)
.

In particular, if hn is chosen such that hn = ((log n) /n)1/6, then

sup
k≥kKBGD

1,n +1

∥∆βk∥ = Op

(
p

2p+1
2(p+1)

(
log n

n

) 1
3p+3

)
.
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Proof of Theorem 2. See See Section B of Supplementary Material.

Theorem 2 implies that the iterative estimator based on (5) and (6) is consistent under
increasing dimensions, no matter whether the starting point is close to the unknown true
parameter or not. However, the convergence speed heavily depends on the dimensionality of
the problem, p, even when p is fixed. This is not ideal under our single-index setup but is
not surprising since our algorithm does not involve any trimming procedure.

We proceed to establish the asymptotic normality of the KBGD estimator. Due to tech-
nical difficulties, throughout the following analysis in this section we only consider the case
where p is fixed. As we can see in Theorem 2, even in the case of fixed dimensionality,
the guaranteed convergence rate of the KBGD estimator based on (5) and (6) is at best
((log n) /n)

1
3p+3 , which still depends on p. To obtain asymptotic normality, we need to slightly

modify our algorithm. In particular, we introduce trimming to our algorithm. When up-
dating the parameter, we only use observations that fall into a pre-selected region as did in
Ichimura (1993). In particular, the algorithm is modified as,

βk+1 = βk −
δk
n

n∑
i=1

1ϕ
i ·
(
Ĝ (zi,k|βk)− yi

)
Xi, (10)

where Ĝ (zi,k|βk) = Ĝ (z (Xe,i,βk)|βk) is defined in (5), 1ϕ
i = 1

(
Xe,i ∈ X ϕ

e

)
, and X ϕ

e is a
subset of Xe given by

X ϕ
e =

{
Xe ∈ Xe :

ϕ

(1 +B0)p
≤ Xj ≤ 1− ϕ

(1 +B0)p
, 1 ≤ j ≤ p

}
(11)

for some ϕ > 0 whose choice will be provided later.
Different from (6), the update of βk based on (10) uses only a subset of the whole sample

for which the covariate vector Xe,i falls into X ϕ
e . The reason why we choose the trimming

set as in (11) is that, as we show in Section A of Supplementary Material, for any 0 < ϕ < 1,
there holds

inf
(Xe,β)∈Xϕ

e ×B
fz (z (Xe,β)|β) ≥ ζ

(
ϕ

2(1 +B0)p

)p

for some constant C > 0 that depends on ϕ. When p and ϕ are both fixed, fz (z (Xe,β)|β)
is uniformly lower bounded from zero for any combination (Xe,β) ∈ X ϕ

e ×B, so the uniform
estimation accuracy of L (z (Xe,i,β) ,β) with respect to Xe,i and β will be improved. Note
that trimming will cause some efficiency loss by throwing away some observations, but such
loss can be controlled to be small if we choose ϕ to be close to zero. We also point that
trimming is only applied to the update of the parameter; when nonparametrically estimating
G, we still use all the data points.
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To simplify our following notation, given the trimming parameter ϕ, we denote 1ϕ ·X as
Xϕ. We also define

Λϕ (β, t) = E
(
1ϕ
i ·
∫
X
V (Xe,i,Xe,β, t) dX

)
.

The following theorem provides a counterpart to the results in Theorem 2.

Theorem 3. Suppose that Assumption 1, Assumption 2(i)-(iii), Assumption 3, Assump-
tion 4, and Assumption 5 hold with υG = 3, υK = 2, and υf = 3, ϕ < λΛ/ (24p

2 ∥G′∥∞ ζ),
δk = δ < min

{
1/ (2λΛ) , 1/

(
2p2 ∥G′∥2∞

)}
, and that β is updated under (5) and (10), which

is the trimmed version of algorithm 2. Define

k̃KBGD
1,n =

log (∥∆β1∥)− log (ψ (n, p, hn))

− log (1− δλΛ/8)
,

then there holds

sup
k≥k̃KBGD

1,n +1

∥∆βk∥ = Op (ψ (n, p, hn)) .

Proof of Theorem 3. See Section B of Supplementary Material.

Note that when p is fixed, ψ (n, p, hn) no longer depends on p asymptotically. The im-
provement over the convergence rate basically comes from the improvement of the uniform
convergence rate of the kernel estimator due to trimming. Also note that under trimming, the
minimum number of iteration in Theorem 3, k̃KBGD

1,n , is of order log n as long as nhn → ∞.
This implies that under trimming, a faster convergence rate is guaranteed with the minimum
number of iterations being of the same magnitude as that of the estimator without trimming.

We now proceed to establish the asymptotic normality of βk. Define

ξϕn =
1

n

n∑
i=1

(
Ĝ (z⋆i |β⋆)− yi

)
Xϕ

i .

We note that

∆βk+1 = ∆βk −
δk
n

n∑
i=1

(
Ĝ (zi,k|βk)− yi

)
Xϕ

i ,

= ∆βk −
δk
n

n∑
i=1

(
Ĝ (zi,k|βk)− Ĝ (z⋆i |β⋆)

)
Xϕ

i − δkξ
ϕ
n

=

∫ 1

0

Ip − δk
n

n∑
i=1

Xϕ
i

∂Ĝ (z (Xe,i,β)|β)
∂βT

∣∣∣∣∣
β=β⋆+t∆βk

 dt∆βk − δkξϕn, (12)

where the integration is understood to be element-wise. Define Λ⋆
ϕ = Λϕ (β

⋆, 0). To under-
stand the properties of the above algorithm, we need the following lemmas.
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Lemma 2. Suppose that all the and assumptions and assumptions in Theorem 3 hold. For
any sequence of subset {Bn}∞n=1 with Bn ⊆ B, we have that

sup
β̃∈Bn,t∈[0,1]

∥∥∥∥∥∥ 1n
n∑

i=1

Xϕ
i

∂Ĝ (z (Xe,i,β)|β)
∂βT

∣∣∣∣∣
β=β⋆+t∆β̃

− Λ⋆
ϕ

∥∥∥∥∥∥
= Op

(
h−2
n

√
(log (nh−1

n )) /n+ h3n + sup
β∈Bn

∥∆β∥
)
.

Proof of Lemma 2. See Section A of Supplementary Material.

Lemma 3. Suppose that all the assumptions and conditions in Theorem 3 hold. If hn is
chosen such that nh6n → 0, we have that

√
nξϕn →d N

(
0,Σϕ

ξ

)
, where

Σϕ
ξ = E

[
(1−G (z⋆i ))G (z⋆i ) (X

ϕ
i − E(Xϕ|z⋆i ))(X

ϕ
i − E(Xϕ|z⋆i ))T

]
.

Proof of Lemma 3. See Section A of Supplementary Material.

Now we are in a position to illustrate the results of the asymptotic normality of our
KBGD estimator.

Theorem 4. Suppose that all the assumptions and conditions in Theorem 3 hold. Suppose
moreover that hn is chosen such that nh6n → 0 and nh4n/ (log n)

2 →∞, and that β is updated
under (5) and (10). Then

(i) There holds

sup
k≥k̃KBGD

1,n +kKBGD
2,n +1

∥∆βk∥ = Op

(
n−1/2

)
,

where kKBGD
2,n is given by

kKBGD
2,n =

log
(
n1/2

)
+ log (ψ (n, p, hn))

− log (1− δλΛ/16)
;

(ii) Define β̂ = β̂k for any k − k̃KBGD
1,n − kKGBD

2,n →∞, we have that
√
n
(
β̂ − β⋆

)
→ N

(
0,Σϕ

β

)
,

where Σϕ
β = Λ⋆−1

ϕ Σϕ
ξ

(
Λ⋆−1

ϕ

)T.

Proof of Theorem 4. See Section B of Supplementary Material.

We introduce the estimator for the variance matrix, based on which the confidence interval
of β⋆ can be then constructed.
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Theorem 5. Suppose that all the assumptions and conditions in Theorem 4 hold. Let β̂

be defined as in Theorem 4. Define Λ̂ϕ = 1
n

∑n
i=1X

ϕ
i ∂Ĝ

(
z
(
Xe,i, β̂

)∣∣∣ β̂) /∂βT. Moreover,
define

Σ̂ϕ
ξ =

1

n

n∑
i=1

(
G̃i

(
1− G̃i

)(
Xϕ

i − Ê
(
Xϕ
∣∣ ẑi))(Xϕ

i − Ê
(
Xϕ
∣∣ ẑi))T) ,

where

G̃i =

∑n
j=1 K̃h̃n

(ẑi − ẑj) yj∑n
j=1 K̃h̃n

(ẑi − ẑj)
, Ê

(
Xϕ
∣∣ ẑi) = ∑n

j=1 K̃h̃n
(ẑi − ẑj)Xϕ

j∑n
j=1 K̃h̃n

(ẑi − ẑj)
, ẑi = X0,i +XT

i β̂,

K̃ ≥ 0 is any second-order kernel function and h̃n is the bandwidth parameter satisfying
h̃n → 0 and h̃2n

√
n/ log(n)→∞. Then we have that∥∥∥∥Λ̂−1

ϕ Σ̂ϕ
ξ

(
Λ̂−1

ϕ

)T
− Σϕ

β

∥∥∥∥→p 0.

Proof of Theorem 5. See Section B of Supplementary Material.

We provide some remarks for the KBGD estimators.

Remark 5. Our previous discussion has be restricted to the case where all the covariates are
continuously distributed, while our algorithm can be directly applied to the case where there are
discrete covariates without any modifications. In contrast to the average derivative approach
(Stoker, 1986; Powell et al., 1989) that uses the differentiation with respect to covariates,
the KBGD estimator performs differentiation with respect to the parameters, so it does not
impose requirements on the continuity of the covariates. It should be noted that we do require
at least one continuous covariate to guarantee identification of the parameters. For simplicity,
we recommend normalizing a continuous covariate as X0. Finally, we point out that stronger
assumption should be imposed to make our results valid when there are discrete covariates.
In particular, suppose that Xe =

(
XT

c ,X
T
d

)T, where Xc is the collection of all the continuous
covariates, whereas Xd is the collection of all the discrete covariates. Also denote the density
function of Xc conditional on Xd as fXc|Xd

(Xc|Xd). Then we require that all the conditions
imposed on the fe (Xe) hold for fXc|Xd

(Xc|Xd) for any realizations of Xd.

Remark 6. We finally provide some remarks on the implementation of our KBGD estimator.
The KBGD estimator might be sensitive to the data magnitude. So when implementing such
an estimator, we recommend first standardizing the data so that each covariate has zero
mean and unit variance. Note that when constructing the KBGD estimator, we normalize
the coefficient of X0,i to 1, indicating that the coefficients of Xe,i can not all be zeros. So we
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need to test whether at least one covariate affects the conditional probability of yi = 1. One
option is to run a Logit or Probit regression and test whether all the coefficients are equal to
zero. Moreover, X0,i must have positive impacts over the conditional probability.

When applying our algorithm, it is also crucial to choose the tuning parameters including
the constant learning rate δ, bandwidth of kernel estimator hn, and terminating conditions of
the algorithm. Theorem 4 implies that the learning rate δ can be chosen as a constant through-
out all rounds of iterations but is required to be smaller than 1/ (2λΛ) and 1/ (4p2 ∥G′∥∞),
neither of which is known. So we recommend setting the constant δ to be 1 in the first place.
If the iteration based on such learning rate does not converge (for example, diverges to infin-
ity or oscillates), we suggest choosing a smaller δ (say, half of the magnitude as the one we
chose before) and perform the iteration from the starting point again.

For the choice of the bandwidth hn, when using a fourth-order kernel function, Theorem 4
requires that hn is chosen such that nh6n → 0 and nh4n/ (log n)

2 → ∞. As a rule of thumb,
we recommend choosing hn = C · n−1/5. For the choice of the constant C, we can choose
C = Ck = std (zi,k) for the k-th round of iteration and C = std (ẑi) when estimating the
variance Σϕ

β.
We finally discuss the terminating conditions. As we show in Theorem 4, to obtain 1/

√
n-

consistency and asymptotic normality, the iteration number is required to be only of order
log (n). However, such rule can not be directly applied to determine the number of iterations
since the initial distance ∥∆β1∥ as well as the lower bound on the eigenvalues λΛ are both
unknown. We recommend the following terminating condition (NOTE: I multiply the toler-
ance with δ. One referee points out that if δ is small, then max1≤j≤p |β̂j,k+1 − β̂j,k| will be
small. So we need to adjust it by multiplying δ.)

max
1≤j≤p

|β̂j,k+1 − β̂j,k| < δ · ϱ

for some predetermined tolerance ϱ. During the simulation, we choose ϱ = 10−5. Note that
in many cases, max1≤j≤p |β̂j,k+1 − β̂j,k| may not be monotonically decreasing with k; in some
extreme cases, max1≤j≤p |β̂j,k+1 − β̂j,k| may even be oscillating and does not shrink to zero.
On these conditions, we recommend stopping iteration when the maximum distance achieves
its minimum value.

3.2 The SBGD Estimator

In this section, we consider an alternative nonparametric approximation for the unknown
CDF based on the method of sieves. Given a set of basis functions {rj (z)}∞j=0 that is complete
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in C (R) space, any smooth CDF G can be represented by G (z) =
∑∞

j=0 π
⋆
j rj (z) for any

z ∈ R, where {π⋆
j}∞j=0 is the unknown coefficients of the basis functions. In practice, to

make the algorithm tractable, we truncate the sequence of basis functions and only use the
first q + 1 ones for approximation, where q increases with sample size n at some rate. To
approximate G, it then remains to provide an estimator for the unknown coefficients of the
basis functions {π⋆

j}
q
j=0. Our estimation procedure for {π⋆

j}
q
j=0 shares similar intuition as

the one that motivates the Nadaraya-Watson kernel estimator in the previous section. In
particular, suppose for a moment that in the k-th round of update, we start with βk, which
is close to the unknown true parameter β⋆. In this case, define rq(z) = (r0 (z) , · · · , rq (z))T

and π⋆
q =

(
π⋆
1, · · · , π⋆

q

)T, we have that

yi ≈ G (zi,k) + εi ≈ rT
q (zi,k)π

⋆
q + εi,

where recall that zi,k = X0,i +XT
i βk. The above relationship motivates the following linear

projection type estimator for the sieve coefficients

π̂q,n,k =

(
n∑

i=1

rq (zi,k) r
T
q (zi,k)

)−1( n∑
i=1

rq (zi,k) yi

)
. (13)

Given the sieve coefficient estimator π̂q,n,k, the unknown CDF G in the k-th round of update
is approximated by

Ĝ (z|βk) = rT
q (z) π̂n,q,k, −∞ < z <∞. (14)

Based on the estimated CDF Ĝ (z|βk), the update of the parameter can be carried out based
on (6). We iterate sequentially based on (13), (14) and (6) until some terminating conditions
are satisfied. The resulting estimator is then labeled as the sieve-based batch gradient descent
estimator (SBGD estimator). We summarize our algorithm as follows in algorithm 3.

Remark 7. In the above SBGD procedure, we update the sieve parameters via a linear pro-
jection into the basis vector rq. An alternative procedure can be based on the flexible Logit
regression proposed by Hirano, Imbens, and Ridder (2003). The advantage of using flexible
Logit regression is that the estimated CDF Ĝ (z|βk) always falls between 0 and 1 for all z,
which makes the update more stable. A disadvantage of such update is that the flexible Logit
regression is based on MLE, which does not allow for an analytical solution. Using numer-
ical optimization to solve for the sieve coefficients in each round of update will increase the
computational burdens.

Remark 8. Compared with the KBGD algorithm, the SBGD procedure has at least two
advantages. On the one side, the sieve-based approximation for the unknown CDF is global
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Algorithm 3: The SBGD Estimator
input : Data set {(Xe,i, yi)}ni=1, sequence of learning rate {δk}∞k=1, initial guess

β1, the order of sieves q, sieve functions r(z) = (r0 (z) , · · · , rq (z))T, and
terminating condition T

output: The SBGD estimator β̂

1 k ← 1;
2 while The terminating condition T is not satisfied do
3 π̂q,n,k ←(∑n

i=1 rq

(
X0,i +XT

i βk

)
rT
q

(
X0,i +XT

i βk

))−1 (∑n
i=1 rq

(
X0,i +XT

i βk

)
yi
)
;

4 for i← 1 to n do
5 Ĝ

(
X0,i +XT

i βk

∣∣βk

)
← rT

q

(
X0,i +XT

i βk

)
π̂q,n,k;

6 βk+1 ← βk − δk
n

∑n
i=1

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xe,i;

7 k ← k + 1;

8 β̂ ← βk;

and guarantees uniform approximation error rate. This allows us to update the parameter
without performing any form of trimming as we did for the KBGD estimator. Moreover, we
can then develop the asymptotic distribution of the SBGD estimator for the case of increasing
dimensionality. On the other hand, the KBGD procedure relies on the kernel estimation of
CDF G at n data points, whose computational complexity of each update is of order O (n2).
While the most time-consuming part of the SBGD procedure is the OLS procedure (13), with
computational complexity of order O (nq2 + q3). When q/

√
n→ 0, the computational burden

of SBGD estimator will be substantially lower than that of KBGD estimator.

Define Rq (z) = G (z) − rT
q (z)π⋆

q, Γq,n (β) = 1
n

∑n
i=1 rq

(
X0,i +XT

i β
)
rT
q

(
X0,i +XT

i β
)
,

Γq,n,k = Γq,n (βk), and Xq,n (z,β) = 1
n

∑n
i=1 r

T
q

(
X0,i +XT

i β
)
Γ−1
q,n (β) rq (z)Xi. Through te-

dious algebra shown in the Supplementary Material to this paper, we can show that the
SBGD procedure has the following representation,

βk+1 = βk −
δk
n

n∑
i=1

(Xi − Xq,n (zi,k,βk)) (G (zi,k)−G (z⋆i ))

− δk
n

n∑
i=1

Xir
T
q (zi,k) Γ

−1
q,n,k

(
1

n

n∑
j=1

rq (zj,k)Rq (zj,k) +
1

n

n∑
j=1

rq (zj,k) εj

)

+
δk
n

n∑
i=1

(Rq (zi,k)Xi + εiXi) , (15)

where recall that zi,k = X0,i + XT
i βk. To study the properties of the above procedure, we
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introduce some additional assumptions.

Assumption 6. (i) There holds max0≤j≤q ∥rj∥∞ ≤ Dq,0, max0≤j≤q

∥∥r′j∥∥∞ ≤ Dq,1, and
max0≤j≤q

∥∥r′′j∥∥∞ ≤ Dq,2; (ii) Define Γq (β) = E
(
rq

(
X0 +XTβ

)
rT
q

(
X0 +XTβ

))
, there hold

infβ∈B λ (Γq (β)) ≥ λΓ > 0 and supβ∈B λ (Γq (β)) ≤ λΓ < ∞ for all q; (iii) There hold

supz∈R
∣∣G (z)− rT (z)π⋆

q

∣∣ ≤ Eq,0 and supz∈R

∣∣∣G′ (z)− (r′ (z))T π⋆
q

∣∣∣ ≤ Eq,1, where r′(z) =(
r′0(z), · · · , r′q(z)

)T.

For any −∞ < z <∞, define the population counterpart of Xq,n (z,β) as

Xq (z,β) = E
(
rT
q (z (Xe,β)) Γ

−1
q (β) rq (z)X

)
.

To gain some insights into Xq(z,β), we note that Xq(z,β) = rT
q (z) Γ−1

q (β)E (rq (z(Xe,β)X)).
Take X1, the first argument of X, as an example, under mild conditions we have that
E (X1| z(Xe,β = z)) =

∑q
j=0 π

⋆
X1,j

rq(z)+ EX1,q, where π⋆
X1,q

=
(
π⋆
X1,0

, · · · , π⋆
X1,q

)T is the first
(q+1) sieve parameter, and EX1,q is the approximation error which shrinks to 0 uniformly with
respect to z as q increases. Then Γ−1

q (β)E (rq (z(Xe,β)Xj)) equals to π⋆
X1,q

plus some ap-
proximation error that shrinks to zero as q increases. In this case, rT

q (z) Γ−1
q (β)E (rq (z(Xe,β)X1))

equals to E (X1| z(Xe,β = z)) up to some approximation error, and as a result, limq→∞Xq(z,β) =

E (X| z(Xe,β = z)).
We have the following lemma.

Lemma 4. Define χ1,n =
√
pq2D4

q,0 log (pqDq,0Dq,1n) /n, and χ2,n =
√
pqD2

q,0 (χ1,n + Eq,0) .
Suppose that Assumption 1, Assumption 2(i)-(iii), and Assumption 6 hold, and moreover,
υG ≥ 1 and the combination of p, q and υG guarantees that χ1,n → 0 as n→∞. Then if βk

is updated based on (13), (14) and (6), the following holds,

βk+1 = βk − δkE [(X− Xq (z (Xe,βk) ,βk)) (G (z (Xe,βk))−G (z (Xe,β
⋆)))] + δkRn,k,

where supk≥1 ∥Rn,k∥ = Op (χ2,n).

Proof of Lemma 4. See Section A of Supplementary Material.

Lemma 4 provides a parallel result to (8). In particular, define

Ψq (β, t) = E
[
G′ (z (Xe,β

⋆) + tXT∆β
) (

XXT − Xq (z (Xe,β) ,β)X
T
)]
,

under all the conditions imposed in Lemma 4, we have that

∆βk+1 =

{∫ 1

0

(Ip − δkΨq (βk, t)) dt

}
∆βk + δkRn,k. (16)

Obviously, (16) is also a parallel result to (9). As a result, to ensure that (16) constitutes a
contraction for ∥∆βk∥, we impose the following assumption.
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Assumption 7. For any q ≥ 0, there hold

inf
0≤t≤1,β∈B

λ
(
Ψq (β, t) + ΨT

q (β, t)
)
≥ λΨ > 0,

sup
0≤t≤1,β∈B

λ
(
Ψq (β, t) + ΨT

q (β, t)
)
≤ λΨ <∞.

Remark 9. Assumption 7 is similar to Assumption 5. Indeed, since we already pointed out
that limq→∞Xq(z,β) = E (X| z(Xe,β = z)), then

lim
q→∞

Ψq (β, t) = E
[
G′ (z (Xe,β

⋆) + tXT∆β
) (

XXT − E (X| z(Xe,β) = z)XT
)]
.

We can then verify that under the data generating process in Remark 4, Assumption 7 will
also hold asymptotically.

Based on the above assumptions, we have the following result.

Theorem 6. Suppose that Assumption 1, Assumption 2(i)-(iii), Assumption 6 and Assump-
tion 7 hold, and moreover, υG ≥ 1 and the combination of p, q and υG guarantees that
χ1,n → 0 as n→∞. Suppose moreover that the learning rate is chosen such that δk = δ with
0 < δ < min

{
1/ (2λΨ) , λΨ/(2 ∥G′∥2∞ p2{1 + λ−1

Γ (q + 1)D2
q,0}2)

}
, and that β is updated based

on algorithm 3. Define

kSBGD
1,n =

log (∥∆β1∥)− log (χ2,n)

− log (1− λΨδ/4)
,

then we have that

sup
k≥kSBGD

1,n +1

∥∆βk∥ = Op (χ2,n) .

Proof of Theorem 6. See Section B of Supplementary Material.

Based on the consistency results in Theorem 6, we are ready to establish the asymptotic
normality of our SBGD estimator. Different from the KBGD estimator studied in the previous
section, now we allow the dimensionality p to diverge with n at some rate.

Apply the mean value theorem to (15), we have that

∆βk+1 =

{
Ip − δk

∫ 1

0

1

n

n∑
i=1

G′ (z⋆i + tXT
i ∆βk

) (
XiX

T
i − Xq,n (zi,k,βk)X

T
i

)
dt

}
∆βk

− δk
n

n∑
i=1

Xir
T
q (zi,k) Γ

−1
q,n,k

(
1

n

n∑
j=1

rq (zj,k)Rq (zj,k) +
1

n

n∑
i=1

rq (zj,k) εj

)

+
δk
n

n∑
i=1

(Rq (zi,k)Xi + εiXi) .

21



Define Ψ⋆
q = E

[
G′ (z (Xe,β

⋆))
(
XXT − Xq (z (Xe,β

⋆) ,β⋆)XT
)]

and Vq = E
(
Xir

T
q (z⋆i ) Γ

−1
q (β⋆)

)
.

Similar to Lemma 2 and Lemma 3, we provide two additional lemmas that are useful to un-
derstand the above dynamics.

Lemma 5. Suppose that Assumption 1, Assumption 2(i)-(iii), and Assumption 6 hold, υG ≥
2 and the combination of p, q and υG guarantees that χ1,n → 0 as n → ∞. Then for any
sequence {Bn}∞n=1 with Bn ⊆ B we have that

sup
0≤t≤1,β∈Bn

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq,n (z (Xe,i,β) ,β)X

T
i

)
−Ψ⋆

q

∥∥∥∥∥
= Op

(
pqD2

q,0χ1,n +
√
p3q2D3

q,0Dq,1 sup
β∈Bn

∥∆β∥
)
.

Proof of Lemma 5. See Section A of Supplementary Material.

Lemma 6. Suppose that Assumption 1, Assumption 2(i)-(iii), and Assumption 6 hold, υG ≥
2 and the combination of p, q and υG guarantees that χ1,n → 0 as n → ∞. Define rq,i,k =

rq (zi,k), and Rq,i,k = Rq (zi,k). Also define χ3,n =
√
p2qD2

q,1 log (pqDq,2n) /n, then we have
that

sup
k≥kSBGD

1,n +1

∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q,i,kΓ

−1
q,n,k

(
1

n

n∑
j=1

rq,j,kRq,j,k +
1

n

n∑
j=1

rq,j,kεj

)
+

1

n

n∑
i=1

Rq (zi,k)Xi −
1

n

n∑
i=1

Xq (z
⋆
i ,β

⋆) εj

∥∥∥∥∥ = Op (χ4,n) ,

where χ4,n =
√
pqD2

q,0Eq,0 +
√
pqDq,0χ2,nχ3,n + χ2,n

√
p2q4D6

q,0D
2
q,1/n.

Proof of Lemma 6. See Section A of Supplementary Material.

Based on the above two lemmas, we are now ready to study the asymptotic distribution
of the SBGD estimator.

Theorem 7. Suppose that Assumption 1, Assumption 2(i)-(iii), Assumption 6 and Assump-
tion 7 hold, υG ≥ 2, the combination of p, q and υG guarantees that χ1,n → 0 as n → ∞,
and that β is updated based on algorithm 3. We have that

(i) There holds

∆βk+1 =
(
Ip − δΨ⋆

q

)
∆βk +

δ

n

n∑
i=1

(Xi − Xq (z
⋆
i ,β

⋆)) εi + R̃n,k,

where supk≥kSBGD
1,n +1

∥∥∥R̃n,k

∥∥∥ = Op (χ5,n) with χ5,n = pqD2
q,0χ1,nχ2,n+

√
p3q2D3

q,0Dq,1χ
2
2,n+χ4,n;
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(ii) Define β̂ = βk+kSBGD
1,n +kSBGD

2,n +1 with

kSBGD
2,n =

− logχ2,n + log
√
n

− log (1− λΨδ/4)
,

and any k ≥ 1. If the combination of p, q and υG further guarantees that
√
nχ5,n → 0 as

n→∞, we have that

√
n
(
β̂ − β⋆

)
= Ψ⋆−1

q

1√
n

n∑
i=1

(Xi − Xq (z
⋆
i ,β

⋆)) εi + op

(
n− 1

2

)
.

Then for any p× 1 vector ρ such that ∥ρ∥ <∞ and 1√
n

∑n
i=1 ρ

TΨ⋆−1
q (Xi − Xq (z

⋆
i ,β

⋆)) εi →d

N (0, σ2
S (ρ)) with

σ2
S (ρ) = lim

n→∞
ρTΨ⋆−1

q E
{
G (z⋆i ) (1−G (z⋆i )) (Xi − Xq (z

⋆
i ,β

⋆)) (Xi − Xq (z
⋆
i ,β

⋆))T
}(

Ψ⋆−1
q

)T
ρ,

there holds
√
nρT

(
β̂ − β⋆

)
→d N

(
0, σ2

S (ρ)
)
.

Proof of Theorem 7. See Section B of Supplementary Material.

Similar to Fan et al. (2020), Theorem 7 demonstrates the asymptotic normality of the
SBGD estimator under high dimensionality. Based on such asymptotic distribution, we
finally provide the estimator for the asymptotic variance so that inference on the unknown
parameter can be conducted.

Theorem 8. Suppose that all the conditions listed in Theorem 7 hold and pq2D4
q,0Eq,1 → 0

as n → 0. Let β̂ be as defined as in Theorem 7. Define r̂q,i = rq

(
z
(
Xe,i, β̂

))
, r̂′

q,i =

r′
q

(
z
(
Xe,i, β̂

))
, π̂q =

(∑n
i=1 r̂q,ir̂

T
q,i

)−1

(
∑n

i=1 r̂q,iyi) , Ĝi = r̂T
q,iπ̂, Ĝ

′
i = r̂′T

q,iπ̂q, Ψ̂
⋆
q,i =

1
n

∑n
i=1 Ĝ

′
i ·
(
XiX

T
i − Xq,n

(
ẑi, β̂

)
XT

i

)
, X̂q,i =

1
n

∑n
j=1 Xj r̂

T
q,jΓ

−1
q,n

(
β̂
)
r̂q,i, and

σ̂2
S (ρ) = ρTΨ̂⋆−1

q

1

n

n∑
i=1

{
Ĝi

(
1− Ĝi

)(
Xi − X̂q,i

)(
Xi − X̂q,i

)T}(
Ψ̂⋆−1

q

)T
ρ,

If
√
p6q10D18

q,0D
2
q,1/n + p2q4D7

q,0Dq,1Eq,0 + pq3D6
q,0Eq,1 → 0, then for any p × 1 vector ρ such

that ∥ρ∥ <∞, there holds ∣∣σ̂2
S (ρ)− σ2

S (ρ)
∣∣→p 0.

Proof of Theorem 8. See Section B of Supplementary Material.

We conclude this section with some guidance of implementation of the SBGD estimator.
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Remark 10. For SBGD estimators, the choice of the constant learning rate δ and the stop-
ping rule are the same as those of KBGD estimators, as was discussed in Remark 6. For the
choice of sieve functions, we can use polynomial series for the case where the error term ui

has bounded support and Hermite polynomials for the case where ui has unbounded support.
Note that when using polynomial series {1, z, z2, · · · , zq}, the correlation between the sieve
functions increases as the approximation order q increases, which may lead to a violation of
Assumption 6(ii). To improve the finite sample performance of our method, we recommend
using Chebyshev or Legendre polynomials. Moreover, in the case where ui has unbounded sup-
port, following Bierens (2014), we recommend first conducting the following transformation
G (z) = G̃ (T (z)), where T : R 7→ [−1, 1] is a differentiable function, and then using stan-
dard Chebyshev or Legendre polynomials to approximate G̃. For example, in our following
simulations and empirical applications, we use T (z) = 2π−1 arctan (z) and Legendre polyno-
mials. For the uniform error bound of truncated Legendre polynomials, see Wang and Xiang
(2012). Finally, for the choice of the order of the sieve functions, we recommend choosing q
that minimizes some pre-specified loss function, say,

∑n
i=1(yi − Ĝi)

2, where Ĝi is defined in
Theorem 8.

4 Monte Carlo Experiments

This section conducts Monte Carlo simulations to study the performance of our KBGD and
SBGD estimators. We focus on two aspects of our estimators. First, we study the finite-
sample properties of the KBGD estimator, including the bias and the root mean squared error
(RMSE). Let the j-th argument of the true parameter be β⋆

j , and the simulation is repeated
R times, where its estimator in the r-th round of simulation is β̂r

j , then the bias and RMSE

are respectively given by Bias = | 1
R

∑R
r=1(β̂

r
j − β⋆

j )| and RMSE =
√∑R

r=1(β̂
r
j − β⋆

j )
2/R. We

also investigate whether the confidence interval based on the asymptotic distribution has
good coverage rate. We consider nominal coverage rate α = 0.95, so the confidence interval
for β⋆

j in the r-th round of repetition is given by CIrj = [β̂r
j − 1.96 · ŝtd

r

j , β̂
r
j + 1.96 · ŝtd

r

j ],
where ŝtd

r

j is the estimated standard deviation of β̂r
j . The actual coverage rate is then given

by CR = 1
R

∑R
r=1 1(β

⋆
j ∈ CIrj ).

Second, we are also interested in how sensitive our estimators are to the initial guess
of the true parameter. In each repetition of our simulation, we consider three different
initial guesses: the true parameter vector, the parameter vector estimated based on the
Logit regression, and the parameter with all elements being zeros. If the estimation results
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starting from different initial guesses are close or even identical to each other, the estimation
methods are insensitive to the initial guesses and thus are robust in terms of computation.
Denote β̂

r

T, β̂
r

L, and β̂
r

Z as the estimators with starting points being true parameter, Logit

estimator, and vector of zeros (origin point). We use SL =
√

1
R

∑n
i=1 ||β̂

r

L − β̂
r

T||2/||β⋆||2 and

SZ =
√

1
R

∑n
i=1 ||β̂

r

Z − β̂
r

T||2/||β⋆||2 as the measurement of the sensitivity, where β⋆ is the true
parameter vector. To compare the performance of our method with the existing estimators,
we also consider Ichimura’s semiparametric least squares (SLS) estimator (Ichimura, 1993),
Klein and Spady’s semiparametric maximum likelihood (SMLE) estimator (Klein and Spady,
1993), and maximum rank correlation (MRC) estimator (Han, 1987; Fan et al., 2020).

Table 1: Finite Sample Performance: u ∼ Cauchy
β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

n = 2500

Bias
KBGD0.0134 0.0123 0.0108 0.0109 0.0225 0.0323 0.0053 0.0120 0.0222 0.0388
SBGD 0.0146 0.0128 0.0115 0.0113 0.0246 0.0327 0.000590.0121 0.0243 0.0396

RMSE
KBGD0.2493 0.1464 0.1450 0.1866 0.3076 0.5529 0.1146 0.1611 0.2642 0.5068
SBGD 0.2508 0.1433 0.1459 0.1852 0.3123 0.5409 0.1162 0.1575 0.2618 0.4895

CR
KBGD0.9550 0.9610 0.9500 0.9510 0.9490 0.9540 0.9640 0.9580 0.9660 0.9630
SBGD 0.9520 0.9480 0.9340 0.9380 0.9280 0.9460 0.9430 0.9440 0.9460 0.9550

n = 5000

Bias
KBGD0.0087 0.0025 0.0052 0.0071 0.0130 0.0063 0.0021 0.0080 0.0130 0.0141
SBGD 0.0076 0.0015 0.0046 0.0062 0.0108 0.0023 0.0014 0.0068 0.0109 0.0103

RMSE
KBGD0.1692 0.0960 0.0986 0.1263 0.2019 0.3626 0.0863 0.1034 0.1756 0.3307
SBGD 0.1679 0.0942 0.0978 0.1248 0.1984 0.3530 0.0857 0.1023 0.1711 0.3211

CR
KBGD0.9600 0.9590 0.9530 0.9530 0.9460 0.9500 0.9400 0.9720 0.9640 0.9480
SBGD 0.9530 0.9540 0.9430 0.9570 0.9540 0.9510 0.9380 0.9550 0.9510 0.9450

Table 2: Finite Sample Performance: u ∼ t(4)
β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

n = 2500

Bias
KBGD0.0024 0.0032 0.0042 0.0014 0.0042 0.0163 0.0021 0.0033 0.0043 0.0135
SBGD 0.0017 0.0040 0.0041 0.0024 0.0056 0.0195 0.0019 0.0036 0.0054 0.0161

RMSE
KBGD0.1509 0.0861 0.0831 0.1112 0.1708 0.3083 0.0748 0.0936 0.1539 0.2874
SBGD 0.1519 0.0868 0.0844 0.1123 0.1718 0.3105 0.0760 0.0949 0.1551 0.2907

CR
KBGD0.9540 0.9540 0.9500 0.9480 0.9440 0.9520 0.9440 0.9450 0.9490 0.9370
SBGD 0.9430 0.9460 0.9440 0.9390 0.9510 0.9430 0.9350 0.9460 0.9490 0.9350

n = 5000

Bias
KBGD0.0021 0.0002 0.0012 0.0020 0.0001 0.0019 0.0040 0.0008 0.0019 0.0015
SBGD 0.0020 0.0003 0.0013 0.0023 0.0009 0.0000 0.0042 0.0011 0.0027 0.0032

RMSE
KBGD0.1077 0.0606 0.0560 0.0777 0.1264 0.2157 0.0509 0.0658 0.1077 0.2052
SBGD 0.1081 0.0609 0.0560 0.0779 0.1270 0.2180 0.0511 0.0663 0.1084 0.2070

CR
KBGD0.9440 0.9490 0.9610 0.9350 0.9390 0.9550 0.9540 0.9540 0.9500 0.9420
SBGD 0.9420 0.9530 0.9580 0.9250 0.9390 0.9560 0.9520 0.9510 0.9480 0.9430
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Table 3: Finite Sample Performance: u ∼ χ2(3)− 3
β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

n = 2500

Bias
KBGD0.0104 0.0116 0.0075 0.0202 0.0220 0.0570 0.0034 0.0124 0.0246 0.0548
SBGD 0.0114 0.0125 0.0073 0.0207 0.0226 0.0599 0.0038 0.0127 0.0253 0.0574

RMSE
KBGD0.2216 0.1297 0.1258 0.1660 0.2574 0.4578 0.1042 0.1328 0.2223 0.4228
SBGD 0.2220 0.1315 0.1261 0.1663 0.2594 0.4637 0.1042 0.1346 0.2250 0.4274

CR
KBGD0.9650 0.9440 0.9520 0.9510 0.9500 0.9520 0.9580 0.9510 0.9600 0.9550
SBGD 0.9570 0.9450 0.9370 0.9500 0.9430 0.9520 0.9360 0.9460 0.9540 0.9540

n = 5000

Bias
KBGD0.0045 0.0059 0.0032 0.0046 0.0102 0.0151 0.0009 0.0071 0.0147 0.0249
SBGD 0.0049 0.0062 0.0028 0.0047 0.0101 0.0155 0.0008 0.0071 0.0149 0.0256

RMSE
KBGD0.1531 0.0889 0.0868 0.1129 0.1769 0.3109 0.0732 0.0916 0.1479 0.2904
SBGD 0.1531 0.0887 0.0868 0.1131 0.1765 0.3104 0.0734 0.0915 0.1480 0.2901

CR
KBGD0.9650 0.9510 0.9410 0.9470 0.9490 0.9450 0.9540 0.9650 0.9560 0.9450
SBGD 0.9660 0.9510 0.9420 0.9460 0.9510 0.9480 0.9500 0.9680 0.9590 0.9430

Table 4: Finite Sample Performance: u ∼ N(0, 1)
β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

n = 2500

Bias
KBGD0.0034 0.0046 0.0024 0.0046 0.0150 0.0220 0.0013 0.0065 0.0106 0.0192
SBGD 0.0048 0.0050 0.0022 0.0048 0.0153 0.0222 0.0013 0.0064 0.0111 0.0201

RMSE
KBGD0.1345 0.0783 0.0722 0.0941 0.1576 0.2870 0.0626 0.0844 0.1407 0.2639
SBGD 0.1366 0.0794 0.0730 0.0947 0.1598 0.2903 0.0634 0.0852 0.1427 0.2680

CR
KBGD0.9500 0.9490 0.9540 0.9520 0.9510 0.9530 0.9590 0.9490 0.9390 0.9520
SBGD 0.9490 0.9350 0.9300 0.9460 0.9370 0.9420 0.9450 0.9410 0.9430 0.9380

n = 5000

Bias
KBGD0.0030 0.0033 0.0006 0.0033 0.0053 0.0121 0.0033 0.0003 0.0029 0.0051
SBGD 0.0035 0.0035 0.0006 0.0036 0.0055 0.0129 0.0036 0.0005 0.0033 0.0062

RMSE
KBGD0.0964 0.0538 0.0527 0.0706 0.1083 0.1912 0.0452 0.0584 0.0949 0.1727
SBGD 0.0967 0.0543 0.0534 0.0706 0.1088 0.1928 0.0456 0.0587 0.0954 0.1740

CR
KBGD0.9390 0.9490 0.9500 0.9470 0.9430 0.9450 0.9450 0.9390 0.9460 0.9570
SBGD 0.9390 0.9450 0.9420 0.9420 0.9360 0.9480 0.9500 0.9440 0.9450 0.9590

When studying finite-sample performance, we consider data generating process

yi = 1(X0,i + β⋆
1X1,i · · ·+ β⋆

10X10,i − ui > 0), i = 1, 2, · · · , n,

where data are i.i.d over i, and X0,i, X1,i, · · · , X10,i, ui are also independent. We set β⋆ =

(1, 1, 0.5, 1, 2, 4,−0.5,−1,−2,−4)T,X0,i ∼ N(0, 1),X1,i ∼ Bernoulli (1/2),X2,i ∼ Poisson (2),
Xj,i ∼ (χ2(1) − 1)/

√
2 for 3 ≤ j ≤ 10. We consider 4 setups for the random error ui:

ui ∼ Cauchy, ui ∼ t(4), ui ∼ χ2(3) − 3 and ui ∼ N(0, 1). We consider two sample sizes
n = 2500 and 5000. Finally, we repeat the simulation 1000 times.

Regarding the implementation of KBGD and SBGD algorithms, the learning rate is cho-
sen as δ = 1, the starting point is the Logit estimator, and the stopping rule is either
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max1≤j≤p |β̂j,k+1 − β̂j,k| < 10−5 or k ≥ 20000. for KBGD estimator, we use fourth-order
Epanechnikov kernel to construct the Nadaraya-Watson estimator. In each iteration, the
bandwidth hn is chosen as hn = σẑ · n−1/5, where n is sample size, σẑ is the standard devia-
tion of zi,k, and zi,k = X0,i +XT

i βk. For the SBGD estimator, we use transformed Legendre
polynomials according to the discussion in Remark 10. For the choice of the order of the
sieve functions q, we also use the procedure proposed in Remark 10, where the smallest and
the largest order are 9 and 25, respectively.

Table 1 through Table 4 report the finite-sample properties of our estimators. It can be
seen that our estimators perform well in finite sample cases. Both estimators have small bias
which is close to zero, and the RMSE decrease with the increase of sample size at roughly
1/
√
n rate. Moreover, the confidence interval constructed based on the asymptotic variance

and normal approximation has actual coverage rate that is quite close to the nominal rate
0.95.

Table 5: Sensitivity to Initial Points: u ∼ Cauchy
Sensitivity Running Time (Seconds)

Method SL SZ True Logit Zeros

n = 2500

KBGD 0.0024 0.0023 161.19 122.15 208.63
SBGD 0.0028 0.0023 1.2784 0.8431 1.2784
SLS 0.1516 505.26 70.132 64.268 106.62

SMLE 0.1555 960.61 524.01 522.01 284.76
MRC 0.1213 0.5207 13.085 11.710 24.112

n = 5000

KBGD 0.0026 0.0025 529.91 499.48 788.40
SBGD 0.0025 0.0024 1.7869 1.5380 2.4520
SLS 0.1033 1157.6 248.89 240.39 366.79

SMLE 0.1073 2806.7 2285.3 1345.0 945.60
MRC 0.0757 0.4289 46.215 44.501 116.79

We study the sensitivity of different methods to the initial points. The setups of the data
generating process and the implementation of KBGD and SBGD algorithms are the same as
before7, expect that now we consider different starting points. When implementing the SLS
and SMLE estimators, the bandwidth is chosen as hn = n−1/5 and hn = n−1/6.02, respectively.
The optimization is conducted using MATLAB code fminsearch, where the optimization
setup is given by optimset(’MaxFunEvals’, 1e5, ’MaxIter’, 1e5, ’display’, ’off’,

’TolFun’, 1e-6, ’TolX’, 1e-6, ’Display’, ’off’). Table 5 through Table 8 report
the simulation results.

7We also fix the order of sieve functions at q = 11 for comparisons.
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Table 6: Sensitivity to Initial Points: u ∼ t(4)
Sensitivity Running Time (Seconds)

Method SL SZ True Logit Zeros

n = 2500

KBGD 0.0026 0.0021 109.25 33.136 184.70
SBGD 0.0023 0.0022 0.6700 0.5013 1.0117
SLS 0.0879 399.90 63.759 60.848 95.000

SMLE 0.0901 559.56 95.108 100.18 178.05
MRC 0.0689 0.5052 9.2122 7.8178 21.141

n = 5000

KBGD 0.0022 0.0025 405.38 67.322 689.25
SBGD 0.0021 0.0024 1.3466 0.8639 2.1190
SLS 0.0637 1125.2 244.08 247.96 360.41

SMLE 0.0631 1857.7 240.17 231.56 725.61
MRC 0.0508 0.4157 44.072 38.570 119.16

Table 7: Sensitivity to Initial Points: u ∼ χ2(3)− 3
Sensitivity Running Time (Seconds)

Method SL SZ True Logit Zeros

n = 2500

KBGD 0.0030 0.0024 143.91 73.499 201.50
SBGD 0.0025 0.0023 0.8701 0.7267 1.1815
SLS 0.1305 239.37 58.384 62.397 106.08

SMLE 0.1303 647.64 62.495 64.875 208.23
MRC 0.1080 0.5103 9.8474 8.3594 21.378

n = 5000

KBGD 0.0032 0.0024 445.74 240.86 756.32
SBGD 0.0027 0.0024 1.4611 1.1934 2.2780
SLS 0.0953 1910.6 247.92 243.61 361.14

SMLE 0.0931 2397.5 245.75 238.29 918.13
MRC 0.0767 0.4130 46.638 40.899 117.53

We can see that for both KBGD and SBGD estimators, SL and SZ are both close to zero,
indicating that the resulting estimators starting from Logit estimator or zeros are almost
identical to the ones starting from the unknown true parameter. Such a result demonstrates
that our algorithms are quite robust to different initial guesses and do not suffer from the issue
of local minimum. On the contrary, we can see that SLS, SMLE, and MRC are all sensitive
to the initial guess. Under the above methods, the estimators starting from parametric Logit
regression differ significantly from those starting from the unknown true parameter, and such
difference even explodes for SLS and SMLE when we consider estimators starting from the
origin point. The above results highlight the numerical robustness of our estimators. Finally,
for computation time, we can see that KBGD algorithm is relatively time-consuming while
SBGD algorithm is extremely time-efficient compared with existing methods.
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Table 8: Sensitivity to Initial Points: u ∼ N(0, 1)
Sensitivity Running Time (Seconds)

Method SL SZ True Logit Zeros

n = 2500

KBGD 0.0025 0.0022 110.99 25.494 178.22
SBGD 0.0021 0.0023 0.6477 0.4543 0.9677
SLS 0.0758 383.14 62.927 61.633 92.688

SMLE 0.0757 515.67 64.967 65.545 223.319
MRC 0.0598 0.5114 8.8695 7.5822 21.086

n = 5000

KBGD 0.0023 0.0024 353.21 52.811 694.78
SBGD 0.0023 0.0026 1.1284 0.7802 2.0912
SLS 0.0497 1256.8 237.60 240.89 379.09

SMLE 0.0480 1826.7 255.10 264.30 1198.6
MRC 0.0373 0.4199 43.467 37.779 122.74

5 Empirical Application

Table 9: Estimation Results
(I) (II) (III)

Estd. Coefficients 1.0695∗∗∗

(0.0914)
0.9350∗∗∗

(0.1580)
0.9486∗∗∗

(0.1437)
Num. of Obs. 21805 21805 21805
Estimation Methods Logit KBGD SBGD
Running Time 0.0440 714.73 97.550
Num. of Iterations – 1617 1741

Note: Running time are all in seconds. For Logit regression, we report the coefficient of
education divided by that of total asset. ∗∗∗ indicates significance at 1% level. For the
KBGD estimator, in each round of update, the calculation of kernel estimators is distributed
over 6 cores using parallel computation. For SBGD estimator, the smallest and largest orders
of sieves are 9 and 31, respectively.

As a demonstrative example, this section applies our new algorithms to study how edu-
cation background affects household risk aversion. In the existing researches, it’s extensively
documented that risk aversion is significantly correlated with the level of education, although
the directions of correlation are mixed, see Outreville (2015) for a comprehensive review. In
this study, we investigate how the household-level educational background affects household’s
risk preferences as well as its investing behaviors.

We use the national survey data from 2019 China Household Financial Survey Project
(CHFS) (Gan et al., 2014), which provides household-level information over demographics,
asset and debt, income and consumption, social security and insurance, and various house-
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hold’s subjective preferences. The dependent variable we are interested in is the degree of
risk aversion of the household. In particular, yi is constructed to take value of 0 if the i-th
household is completely against any form of risks and thus is described as being extremely
risk averse; it takes value of 1 if the family is willing to bear some form of risks when making
investments. We study how the conditional probability of yi = 1 is affected by a set of factors
based on the binary choice model. The key factor that we are particularly interested in is
educational backgrounds, which is defined as the average years of education across all the
members in the household. We also consider a set of control variables including gender, eth-
nicity, health conditions, marital status, geographic region of residence, economic knowledge
and household totoal asset, whose impacts on the risk aversion are of interest on their own
right.

Before estimation, we standardize all covariates so that the resulting variables have zero
mean and unity variance. When conducting semiparametric estimation, we normalize the
coefficient of total asset to 1. This is because, intuitively, household with more total asset will
be more tolerant to risks, indicating that total asset has positive impacts over the conditional
probability of yi = 18. To provide a comparison to the semiparametric estimation results, we
first conduct parametric Logit regression and report the normalized coefficients in regression
(I) in Table 9. We then conduct KBGD and SBGD estimation and report the estimated
coefficients of education in (II) and (III). The implementation details of the algorithms are
the same as those in the previous section.

As we can see from Table 9, no matter which estimation methods we use, the coefficient
of educational background is estimated to be positive with significance at 1% level. This
implies that, holding other conditions fixed, increase in the average years of education of
the households leads to increase of household’s willingness to bear risks. Comparing the
semiparametric estimation results with that of Logit regression, we find that the KBGD
and SBGD estimators are close to each other, which are both smaller than that of Logit
regression, indicating that parametric estimation might suffer from model misspecification
and lead to an overestimation of the impacts of education on risk aversion. We finally compare
the computation time of each method. We can see that both KBGD and SBGD estimators
take much longer to converge compared with the parametric estimation. Comparatively, the
SBGD algorithm is significantly faster than the KBGD algorithm. This implies that SBGD
algorithm might be more advantageous when there are large number of data points.

8Preliminary Probit and Logit estimation also support such argument.
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6 Conclusions

In this paper, we proposed new estimation procedures for binary choice and monotonic index
models with increasing dimensions. Existing semiparametric estimation procedures for this
model cannot be implemented in practice when the number of regressors is large, and thus
are particularly unsuitable for big data models such as those considered in much of the
machine learning literature. In contrast, our algorithm-based procedures can be used for
many regressor models as it involves convex optimization at each iteration of the procedure.
We show this iterative procedure also has desirable asymptotic properties when the number
of regressors increases with the sample size in ways that are standard in big data literature.
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