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Problem
We are interested in inference on θ based on a random sample of
observations using the parametric likelihood

P ∈ Fθ

Issues:
I Standard inference is possible here under the usual conditions.
I With current data sets with large sample sizes, standard errors

tend to be small and the main issues become one of
misspecification.

I Acemoglu ...
I So, we want to formally account for this model uncertainty.
I So, heuristically, in addition to standard confidence intervals

that people report, we want to develop model uncertainty
intervals that give an idea of the sensitivity of our preferred
estimates to worrisome assumptions.

I The research agenda, described in this talk, tries to make
more progress on this.



Background, Motivation and Examples

I By now, it is well understood that inferences in models may
be sensitive to the assumptions made.

I Early advocates for formal sensitivity analysis such as Leamer
(“ Sensitivity Analysis Would Help”) have understood that
estimates that are fragile ”are not worth making”...

I This has led to a massive literature in econometrics on
semiparametric models that essentially considered almost the
weakest models (semiparametric nonlinear model, GMM with
unknown functions, ...) under conditions guaranteeing point
identification.

I The success of this literature did not translate into wide use
of these models.

I Instead, empirical work continues to either simple linear
models (or variants thereoff), or more complicated structural
and parametric models.



NOT SURE I LIKE THIS

I For Semiparametric models, we are told: 1) the assumptions
are hard to understand, 2) require restrictions that may not
hold in commonly used data sets, 3) not easy to compute, 4)
resulting estimands difficult to interpret,....

I On the other hand, fancy parametric models are easy to
interpret and simpler to compute (though not always), and
sensitivity when done, is ”checked” by adding higher order
terms, etc...



I The semiparametrics literature has focused on point
identification. Without strong assumptions, conditions for
point identification there entail strong requirements on the
data: Large support, continuous regressors, etc and/or some
limits on heterogeneity, correlation, etc. This has limited its
empirical appeal (do we really have data sets with continuous
regressors that admit large support conditional on other
variable...)

I Another literature has emerged (early with Manski’s work)
that gives up on point identification and the focus becomes
getting the identified set (or the tightest set) given a set of
conditions.



I The research I will describe today takes this partial
identification approach from the top down:

I start with a (fully) parametric model (typically a structural
model),

I designate the parameter of interest (policy response, elasticity
etc).

I identify what part of the parametric model that you are most
worried about? a parametric distribution or a functional form
restriction that is not motivated by economic theory, or a
behavioral assumption (like say Markov Perfect, or rational
expectation)

I Conduct formal sensitivity analysis with respect to that class:
See whether the parametric conclusions rely on the
specification of those suspect assumptions.

I The main issue is that if one were to relax the worrisome
assumption, point identification is likely to fail.

I So, the statistical work entails the construction of valid
inference procedures that work whether or not point
identification holds.



This is appealing because:

I The starting point of this is an applied economist’s preferred
model (can be a fancy structural model, etc)

I This is in contrast with starting with the most nonparametric
model

I We add to it formal -and valid- statistical approaches to
account for model uncertainty for that part of the model that
the analyst is most worried about,

I so, in addition to standard confidence intervals that people
report, think of this as a way to report model uncertainty
intervals that give an idea of the sensitivity of our preferred
estimates to worrisome assumptions.



Challenges of this program

I This should be done in a computationally tractable way so it
can be used; this seems to be the biggest challenge

I Must be theoretically attractive (and valid)

I Can this framework, developed initially for a likelihood setup
be used in moment based models?



Outline of Lecture

1. examples

2. inference approaches

3. more examples

4. variations

5. future work



Example 1: Dynamic Binary Choice Panel

Consider the model (studied in Honoré and Tamer (2006) and
Chen, Tamer, and Torgovitsky (2013))

yit = 1
{
x ′itβ + yi ,t−1γ + ηi + εit ≥ 0

}
I Observe a sample of N individuals for T time periods starting

with t = 1, to get a sample of{(yit , xit)}T
t=1 where we use the

notation xT
i = (xi1, ...., xiT ).

I Lagged dependent variable creates the Initial Condition
Problem, so let the function g(ηi , x

T
i ) ≡ P(yi0 = 1|ηi , x

T
i )

I Let ηi be independent of xT
i and εit for all t, and is distributed

as N(0, σ2) and let εit be a standard normal random variable
that is i.i.d. across t and i and statistically independent of xT

i

I The parameter of interest can be a marginal effect, or other
parameters.



The population log likelihood is

E
[
log
(
p
(
yi ; θ, g

(
·, xT

i

)
, xT

i

))]
= E

[
log

(∫ {
g
(
η, xT

)yi1
(

1− g
(
η, xT

))1−yi1
T∏

t=2

P
(
yit | xT

i , yit−1; θ, η
)}

dFη|xT

(
η| xT

i ; θ
))]

where
P
(

yit = 0| xT
i , yit−1; θ, η

)
= Φ(−x′i,tβ − γyi,t−1 − η)

This is a fully parametric likelihood (except for the initial condition
problem), and we are worried about specifying the initial condition
distribution.
We want to see whether our estimates of the parameters are
sensitive to specification of the condition distribution.



notes on this

I Without specifying the initial condition distribution, we know
that the parameters are not (point) identified.

I The identified set here can be defined through the likelihood
above.

I Why are we just worried about the initial condition
distribution, and not everything else?



Women’s Labor Supply: (more on this later)

I Sample consists of 1812 women who were aged 18 60 in 1980
and continuously married to an employed husband during each
year 1979 1985.

I Covariates: transitory and permanent nonlabor income,
number of children aged 0-2, 3-5 and 6-17, lagged number of
children aged 0-2, age and its square, highest reported level of
education over the sample period, and race.

I Permanent nonlabor income is defined as the average of the
husbands log earnings over the sample period. Transitory
nonlabor income in each period is defined as the deviation of
husbands log earnings in that period from permanent
nonlabor income.



Women’s Labor Supply: ctd

I There are a few benchmark parametric models that are used.

I The first approach is to simply assume that y1 is exogenous.

I The second approach, proposed by Heckman (1981), is to
model the initial period as

yi1 = 1[x ′i1λ+ ρηi + εi1 ≥ 0],

I The third approach, due to Wooldridge (2005), is to treat the
first period outcome as an explanatory variable:

yit = 1[γyi ,t−1 + x ′itβ + ψyi1 + ui + εit ≥ 0]



Ex 1: preview

Benchmark with T = 3

Exogenous Wooldridge Heckman
yit−1 1.909

[1.800,2.018]
.819

[.433,1.204]
1.054

[.781,1.326]

log ymp −.107
[−.208,−.00709]

−0.145
[−0.302,0.0108]

−0.289
[−0.462,−0.116]

log ymt −.201
[−0.369,−0.0340]

−0.230
[−0.456,−0.00449]

−0.241
[−0.450,−0.0328]

chi02 −.255
[−.402,−.107]

−0.359
[−0.562,−0.157]

−0.289
[−0.462,−0.116]

...

Standard parametric estimates using MLE with 95% CIs.



Ex1: preview

Benchmark with T = 3

Pref. Model Exogenous Wooldridge Heckman
yit−1 1.909

[1.800,2.018]
.819

[.433,1.204]
1.054

[.781,1.326]

[.435, 1.288] [.435, 1.288] [.435, 1.288]
log ymp −.107

[−.208,−.00709]
−0.145

[−0.302,0.0108]
−0.289

[−0.462,−0.116]

log ymt −.201
[−0.369,−0.0340]

−0.230
[−0.456,−0.00449]

−0.241
[−0.450,−0.0328]

chi02
...

We add here a third row to account for misspecification of initial
condition distribution:

P
(

yit = 0| xT
i , yit−1; θ, η

)
= Φ(−x ′i,tβ − γyi,t−1 − η)
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log ymp −.107

[−.208,−.00709]
−0.145

[−0.302,0.0108]
−0.289
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[−0.456,−0.00449]
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condition distribution:

P
(
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i , yit−1; θ, η

)
= Φ(−x ′i,tβ − γyi,t−1 − η)



Ex1: preview

Benchmark with T = 3

Pref. Model Exogenous Wooldridge Heckman
yit−1 1.909

[1.800,2.018]
.819

[.433,1.204]
1.054

[.781,1.326]

[.435, 1.288] [.435, 1.288] [.435, 1.288]
log ymp −.107

[−.208,−.00709]
−0.145

[−0.302,0.0108]
−0.289

[−0.462,−0.116]

[-0.679, -.382] [-0.679, -.382] [-0.679, -.382]
log ymt −.201

[−0.369,−0.0340]
−0.230

[−0.456,−0.00449]
−0.241

[−0.450,−0.0328]

chi02
...

We add here a third row to account for misspecification of initial
condition distribution:

P
(

yit = 0| xT
i , yit−1; θ, η

)
= Φ(−x ′i,tβ − γyi,t−1 − η)



Ex1: preview

Benchmark with T = 3

Pref. Model Exogenous Wooldridge Heckman
yit−1 1.909

[1.800,2.018]
.819

[.433,1.204]
1.054

[.781,1.326]

[.435, 1.288] [.435, 1.288] [.435, 1.288]
log ymp −.107

[−.208,−.00709]
−0.145

[−0.302,0.0108]
−0.289

[−0.462,−0.116]

[-0.679, -.382] [-0.679, -.382] [-0.679, -.382]
log ymt −.201

[−0.369,−0.0340]
−0.230

[−0.456,−0.00449]
−0.241

[−0.450,−0.0328]

[-1.051, .324] [-1.051, .324] [-1.051, .324]
chi02

...

We add here a third row to account for misspecification of initial
condition distribution:

P
(

yit = 0| xT
i , yit−1; θ, η

)
= Φ(−x ′i,tβ − γyi,t−1 − η)



Ex1: preview

Benchmark with T = 7

Pref. Model Exogenous Wooldridge Heckman
yit−1 1.733

[1.586,1.880]
1.122

[1.012,1.232]
1.167

[1.065,1.269]

[1.010, 1.246] [1.010, 1.246] [1.010, 1.246]

log ymp −.273
[−.368,−.179]

−0.283
[−0.401,−0.165]

−0.432
[−0.562,−0.303]

[-0.571, -0.427] [-0.571, -0.427] [-0.571, -0.427]

log ymt −.162
[−0.262,−0.0620]

−0.200
[−0.307,−0.0931]

−0.187
[−0.294,−0.0809]

[-0.332,-0.115] [-0.332,-0.115] [-0.332,-0.115]
chi02

...

We add here a third row to account for misspecification of initial
condition distribution:

P
(

yit = 0| xT
i , yit−1; θ, η

)
= Φ(−x ′i,tβ − γyi,t−1 − η)



Ex 2: Discrete Game

Consider the following game:

y1 = 1
[
x ′1β1 + ∆1y2 + ε1 ≥ 0

]
y2 = 1

[
x ′2β2 + ∆2y1 + ε2 ≥ 0

]
We observe (y1, x

′
1, y2, x2) and given a set of assumptions (...) the

likelihood:

Py (x, θ, g(.)) =
∑

e∈E(x ,θ)

g e(x , θ)Pe
y (ε, x , θ)dF (ε, θ)

We can use (standard MLE). But, what if we are worried about
sensitivity of our estimates to specification of the equilibrium
selection function g e(x , θ)?
When using a semiparametric version of this likelihood (g e flexible)
we loose identification in general.



Ex2 Preview
Data: second quarter of 2010s Airline Origin and Destination
Survey (DB1B) - see Kline and Tamer (2015) (more on this later)

Pref. Model Logit Selection Fixed Probability selection

Market Presence - large 1.724
[1.112,1.233]

2.272
[2.112,2.432]

Market Size - large .23
[0.21,0.25]

0.85
[0.83,0.87]

Correlation 0.366
[.310,.422]

1.152
[0.144,0.156]

...

This is estimated using (standard MLE) where correlation is the
correlation between ε1 and ε2, assumed jointly normal.



Ex2 Preview

Pref. Model Logit Selection Fixed Probability selection

Market Presence - large 1.724
[1.112,1.233]

2.272
[2.112,2.432]

[.85, 2.201] [.85, 2.201]

Market Size - large .23
[0.21,0.25]

0.85
[0.83,0.87]

[.012, .865] [.012, .865]

Correlation 0.366
[.310,.422]

1.152
[0.144,0.156]

[.652, .99] [.652, .99]
...



Ex 3: Trade Model of HMR (2008)

I In an influential paper, Helpman, Melitz and Rubenstein
(2008) examine the extensive margin of trade using a
structural model estimated with current trade data.

I introduce a “cut-off” aL for productivity: if a random draw for
productivity from country i to j , aij > aL then i trades with j .
Otherwise, no trade occurs. So, in their notation:

mij = β01 + λj1 + χi1 + ...+ f (z∗ij ) + uij

z∗ij = β02 + λj2 + χi2 + β12 log distij + ...+ uij + νij

where λ1
i , λ

2
i , χ

1
i , χ

2
j are country fixed effects (> 200), (uij , νij )

is jointly normal and f (.) is a known nonlinear function. We
only observe mij when z∗ij > 1.



Ex3 assumptions

This is a structural model that is fully parametrized:

I Pareto distribution on productivity a (which leads to a
particular functional form for f (.))

I joint normality of the errors

I heteroskedasticity - which is well known to be a problem in
trade data (and is especially problematic in nonlinear selection
like models)

As above, we report below HMRs favorite model and also formal
sensitivity intervals.
The inference approach here will be described below.



Ex3 results

bivariate selection model estimated via MLE (similar estimates
using NLS - )

Pref. Model Outcome Equation Selection Equation

log distance −.03265
[−0.19,0.13]

−0.165
[−0.212,−0.1125]

border 1.9548
[1,4348,2.4747]

0.2527
[0.0927,0.41]

legal system 0.1747
[0.0369,0.3107]

−0.0532
[−0.0932,−0.0132]

...

Standard 95% confidence intervals (? fixed effects and ?
parameters)



Ex3 results
bivariate selection model estimated via MLE (similar estimates
using NLS - )

Pref. Model Outcome Equation Selection Equation

log distance −.03265
[−0.19,0.13]

−0.165
[−0.212,−0.1125]

[-0.1089, 0.0911] [-0.517, -0.8122]

border 1.9548
[1.4348,2.4747]

0.2527
[0.0927,0.41]

[0.262, 1.954] [-0.022, 1.073]

legal system 0.1747
[0.0369,0.3107]

−0.0532
[−0.0932,−0.0132]

[-0.549, -0.048]

...

Standard 95% confidence intervals (? fixed effects and ?
parameters)



Formal problem, Inference and Computations

Let the data {Zi = (Yi ,Xi )}n
i=1 be a random sample of

Z = (Y ,X ) that has true (but unknown) density p0 ∈ P0

Here, the applied economist uses (standard inference) his/her
preferred model (parametric):

p(θ) ≡ p(θ, g)

g ∈ G represents the piece of the parametrization that this applied
economist is most worried about.



Are estimates of θ sensitive to the particular specification used for
g (especially when there is loss of identification)?

The issue here and throughout the work is that there might be
pairs (θ1, g1) and (θ2, g2) s.t.

p(.; θ1, g1) = p(.; θ2, g2) = p0

So, all inference methods should allow for lack of identification.



notation

I The identified set for θ is

ΘI = {θ ∈ Θ ⊂ <dθ : p(.; θ, g) = p0 for some g ∈ G}

This is the set that characterizes the sensitivity of the model
to the inclusion of the infinite dimensional nuisance parameter
g . Similarly,

I The identified set for α = (θ, g) ∈ A = Θ× G is

AI ≡ {α = (θ, g) ∈ A : p(·;α) = p0}



I So, if G is small (parametric), then above becomes a
parametric likelihood with partial identification.

I When G is large (non-parametric), then this becomes a
semiparametric likelihood with partial identification.



Approaches to inference

I will explain three approaches to inference.

1. CIs based on inverting semiparametric LR statistics under lack
of point identification. This work, used in Example 1, is based
on work joint with Xiaohong Chen and Alex Torgovitsky.

2. In certain “separable” models, a Bayesian approach in finite
support models. This approach, used in Example 2, is based
on work with Brendan Kline.

3. A more general pseudo-Bayes (in progress) approach based on
establishing a type of Bernstein-VonMises Theorem for sets.
This more general approach, used in Example 3, is based on
ongoing work with Xiaohong Chen and Tim Christensen.



inference approach 1: intuition and some details

I Given a density p(θ, g) with θ ∈ Θ ⊂ Rdθ and g ∈ G, where
for a given n approximate this G by some (parametric) set Gk .

I Invert the following LR statistic

LR(θ0) ≡ 2

[
sup

(θ,gk )∈Θ×Gk(n)

n∑
i=1

log p(Zi ; (θ, gk ))− sup
g∈Gk(n)

n∑
i=1

log p(Zi ; (θ0, g))

]

I how to show that LR above has a tight limiting distribution
under the null hypothesis H0 : θ = θ0



I Typically, for a regular parametric likelihood model p(·, θ)
distribution of LR statistic under the null of θ = θ0 uses a
quadratic approximation to the sample log-likelihood

Ln(θ) =
n∑

i=1
log p(Zi ; θ) in a Euclidean n−1/2 neighborhood of

the “true parameter” θ0; see, e.g. Chernoff (1954).

I When the model is not point identified, this quadratic
approximation around the true value is not natural (there are
more than one observationally equivalent parameters θ0 under
the null).



I Even though it is possible for given n, θ is identified in the
sieve space, but in the limit, we have partial identification that
needs to be accounted for.

I We use the following insight: whereas the parameter θ is not
unique under the null, the true probability density, p0, is
unique (the density of the data). So, we can derive the
distribution of the LR statistic by expanding and centering
around p0 appropriately. See Liu and Shao (2003).



Asymptotic Null Dist. of Sieve LR Statistic

Theorem 1
Under the null hypothesis θ = θ0 (and assumptions ...)

LR(θ0) ≡ 2

[
sup

(θ,g)∈Θ×Gk(n)

n∑
i=1

log p(Zi ; (θ, g))− sup
g∈Gk(n)

n∑
i=1

log p(Zi ; (θ0, g))

]

= sup
d∈Deff

k(n)

(
max

{
1√
n

n∑
i=1

d(Zi ), 0

})2

+ oPZ (1)

= sup
d∈Deff

(
max

{
1√
n

n∑
i=1

d(Zi ), 0

})2

+ oPZ (1)

⇒ sup
d∈Deff

(max {W (d), 0})2 in distribution,

where {W (d) : d ∈ Deff } is a tight centered Gaussian process
with variance one and covariance function Γ(d1, d2) =

∫
d1d2p0µ

defined on Deff ×Deff and Deff is and appropriately defined set of
efficient scores.



comments

I distribution above is complicated (think of mixture models).
So, it is generally hard to use it directly.

I simplifies to the usual χ2 limit in regular cases.

I test can be shown to be consistent.



Weighted Bootstrap to do inference

Assumption 1

Let the following hold. (i) {ωi}n
i=1 is a positive, i.i.d. sequence

drawn from the distribution of a positive random variable ω with
E [ω] = 1, Var [ω] = σ2

ω ∈ [0,∞) and
‖ω‖2,1 ≡

∫∞
0

√
Pr(ω > t)dt <∞; (ii) {ωi}n

i=1 is independent of
{Zi}n

i=1.



Inference: Weighted Bootstrap

Theorem 2

Let p̂ ≡ p(·; θ̂, ĝ) = arg sup
n∑

i=1
log p(Zi ; (θ, g)) be the sieve MLE.

Let {ωi}n
i=1 be a positive, i.i.d. sequence drawn from the

distribution of a positive r.v. ω with E [ω] = 1, Var [ω] = 1. Then:
conditional on the data {Zi}n

i=1 satisfying the null hypothesis of
Ar

I 6= ∅,

LRω(r̂) ≡ 2

[
sup

(θ,g)∈Θ×Gk(n)

n∑
i=1

ωi log p(Zi ; (θ, g))− sup
g∈Gk(n)

n∑
i=1

ωi log p(Zi ; (θ̂, g))

]
⇒ sup

d∈Deff

(max {W (d), 0})2 in distribution.

where {W (d) : d ∈ Deff } is a tight centered Gaussian process with
variance one and covariance function Γ(d1, d2) =

∫
d1d2p0µ.



Weighted Bootstrap: the way it works

I For each b = 1, . . . ,B, generate a sample (ωib)N
i=1 from an

exponential distribution with mean 1 and variance 1.

I For each b sample, construct

LRb = 2

[
sup

θ,g∈Gk(n)

n∑
i=1

ωi log p(Zi , θ, g)− sup
g∈Gk(n)

n∑
i=1

ωi log p(Zi ; θ̂, g)

]

where θ̂ is the sieve MLE estimator of θ obtained from the
data.

I Repeat above for every b to get the distribution of the LR
statistic.



back to Ex1: labor supply
I to examine sensitivity, model the initial condition distribution

flexibly
yi1 = g(x ′i1β, αi ),

where g(.) is approximatedf with a fully-interacted
two-dimensional Bernstein polynomial of order 4 and x
contains all covariates as the main model (except for lagged
y).

Benchmark with T = 3

Pref. Model Exogenous Wooldridge Heckman
yit−1 1.909

[1.800,2.018]
.819

[.433,1.204]
1.054

[.781,1.326]

[.435, 1.288] [.435, 1.288] [.435, 1.288]
log ymp −.107

[−.208,−.00709]
−0.145

[−0.302,0.0108]
−0.289

[−0.462,−0.116]

log ymt −.201
[−0.369,−0.0340]

−0.230
[−0.456,−0.00449]

−0.241
[−0.450,−0.0328]

chi02
...



comments on inference approach 1:

I coverage for the true parameter (that is not identified)

I computationally hard to implement due to inversion of test
statistic



Inference Approach 2

I In certain classes of models, there is a more direct approach
to inference that is computationally very attractive.

I Examples:

1. Separable models: Example 2 above (more next)
2. Finite support models

I Approach taken is Bayesian - but that is not as important
(computationally tractable)



Inference Approach 2: examples
Consider the following game

a2 = 0 a2 = 1
a1 = 0 0, 0 0, x2β2 + ε2

a1=1 x1β1 + ε1, 0 x1β1 + ∆1 + ε1, x2β2 + ∆2 + ε2

Given data on (a1, a2, x1, x2) and assumptions, we get the
following:


Pr((0, 0))
Pr((1, 1))
Pr((1, 0))
Pr((0, 1))


︸ ︷︷ ︸

DATA

=


P(ε ∈ Sx,θ

1 )

P(ε ∈ Sx,θ
2 )

P(ε ∈ Sx,θ
3 ) + P(d = 1|ε ∈ Sx,θ

5 )P(ε ∈ Sx,θ
5 )

P(ε ∈ Sx,θ
3 ) + (1− P(d = 1|ε ∈ Sx,θ

5 ))P(ε ∈ Sx,θ
5 )



I (ε1, ε2) ∼ N(0,Ω)

I P(d = 1|ε ∈ Sx ,θ
5 ) is the equilibrium selection probability.



Inference Approach 2: examples


Pr((0, 0))
Pr((1, 1))
Pr((1, 0))
Pr((0, 1))


︸ ︷︷ ︸

DATA

=


P(ε ∈ Sx,θ

1 )

P(ε ∈ Sx,θ
2 )

P(ε ∈ Sx,θ
3 ) + P(d = 1|ε ∈ Sx,θ

5 )P(ε ∈ Sx,θ
5 )

P(ε ∈ Sx,θ
3 ) + (1− P(d = 1|ε ∈ Sx,θ

5 ))P(ε ∈ Sx,θ
5 )



I One can do standard MLE when the selection probability are
parametrized.

I To construct sensitivity analysis with respect to the selection
probabilities for example, we can exploit the separability
between the “data parameters” and the structural parameters
and then map inference on data parameters to θ: Construct
standard inference on (P(0, 0),P(1, 1),P(1, 0),P(0, 1)) and
map that via model above to θ.

I No need for inversion of any test statistic.

I Bayesian analysis has equivalent frequentist interpretations in
relevant cases.



Idea

The data provides information on (reduced form)
Pr(0, 0)
Pr(1, 1)
Pr(1, 0)
Pr(0, 1)


These can be conditional...

Idea: Getting a posterior distribution on this vector of multinomial
probabilities is instantaneous (more on this next).

Then, for every draw from this posterior, we “solve” for the set of
θs that satisfy the above model.

Posterior probability statements on the identified set are then
simple to deduce.



more generally (idea)

for a moment equality (or inequality) problem, and in cases with
finite support, the problem is similar:
Consider

EF [m(x , θ)] = 0

This is equivalent to:

EF [m(x , θ)] = 0

≡
K∑

j=1

m(xj , θ)pj = 0

above can be moment inequality.

Again, we can make standard inference on (p1, . . . , pK ) (get a
posterior) and map posterior draws to θ via above vector of
moment conditions.



Bayesian Bootstrap idea here
I Under a limiting uninformative Dirichlet prior for p (where the

parameters of this prior all approach 0), the posterior for p
approaches the Dirichlet posterior Dir(n1, . . . , nJ), where
nj =

∑n
i=1 1[Ti = Tj ].

I Standard results that connect the Gamma and Dirichlet
distributions, a draw p(s) from the posterior for p can be

approximated by: for each j , p̃
(s)
j ∼ind . Gamma(nj , 1) if nj > 0

and p̃
(s)
j = 0 if nj = 0; and then taking for each j ,

p
(s)
j =

p̃
(s)
j∑J

j=1 p̃
(s)
j

.

I But also (additivity of Gamma distribution) we have:

J∑
j=1

m(xj , θ)p
(s)
j =

∑
j :nj>0

m(xj , θ)p
(s)
j =distr.

∑n
i=1 m(xi , θ)w

(s)
i∑

i w
(s)
i

,

where w
(s)
i ∼ind. Gamma(1, 1)!

See Chamberlain and Imbens (2004) for a point identified version
of this.



Computation - Big Advantage for this Approach

1. Generate copies of identified set:

(Step 1) Take a draw (ps) from posterior of reduced form parameter.
This is instantaneous via say the bayesian bootstrap.

(Step 2) Compute the identified set at p(s), {ΘI (p(s))}.
2. Based on {ΘI (p(s))}S

s=1, compute an approximation to the
desired posterior probability over the identified set.



Step 2- (hard) How do we get Θ(p(s)) for a given p(s)

I This is a nonstochastic problem. Essentially, it is one of
finding all solutions in θ to a mapping Q(θ, p) = 0 for a given
p with Q(.) being some nonnegative function (like
Q(θ, p) = ‖(Epm(T , θ))2‖ or ‖(Epm(T , θ))2

+‖).

I One simple and useful approach to this computational
problem is to use stochastic simulation methods to draw from
the pseudo-density:

f̃ΘI (p(s)),T (θ) = exp

(
−Q(θ, p(s))

T

)

with T a tuning parameter that goes to zero (we have used
T = 10−4).

I Hwang(82) shows that {f̃ΘI (p(s)),T (θ)} converges to a
distribution that is supported over the set of argmin of Q.



comments:

In these “separable problems” or models with finite support the
above provides:

1. Valid posterior probability statements about the identified set.

2. Easy to compute in standard empirical models with a large
number of parameters

3. Priors are innocuous since they are concerned with reduced
form parameters

4. Paper contains Bernstein vonMises type results for the
Bayesian credible sets to have frequentist interpretation.



Ex3: empirical model of entry

I We use data from from the second quarter of 2010’s Airline
Origin and Destination Survey (DB1B) to estimate a version
of the binary game above where the payoff for firm i from
entering market m is

βi + βx
i xim + ∆iy3−i + εim i = 1, 2

The data contains 7882 markets which are formally defined as
trips between two airports...

I The kinds of firms are “LCC” (low cost airlines) and OA
(other airlines).

I X ’s: market presence and market size. Market presence is
market/airline specific and is important here since it acts as
the “excluded” variable.



connecting reduced form to structure


Pr((0, 0)|x)
Pr((1, 1)|x)
Pr((1, 0)|x)
Pr((0, 1)|x)


︸ ︷︷ ︸

DATA

=


1 0 0 0 0
0 1 0 0 0

0 0 1 0 P(d = 1|ε ∈ Sx,θ
5 )

0 0 0 1 1− P(d = 1|ε ∈ Sx,θ
5 )



P(ε ∈ Sx,θ

1 )

P(ε ∈ Sx,θ
2 )

P(ε ∈ Sx,θ
3 )

P(ε ∈ Sx,θ
1 )

P(ε ∈ Sx,θ
5 )



=


P(ε ∈ Sx,θ

1 )

P(ε ∈ Sx,θ
2 )

P(ε ∈ Sx,θ
3 ) + P(d = 1|ε ∈ Sx,θ

5 )P(ε ∈ Sx,θ
5 )

P(ε ∈ Sx,θ
3 ) + (1− P(d = 1|ε ∈ Sx,θ

5 ))P(ε ∈ Sx,θ
5 )



=


P(ε1 ≥ −β0

1 − x1β
1
1 −∆1; ε2 ≥ −β0

2 − x2β
1
2 −∆2)

P(ε1 ≤ −β0
1 − x1β

1
1 ; ε2 ≤ −β0

2 − x2β
1
2 )

P(ε ∈ Sx,θ
3 ) + P(d = 1|ε ∈ Sx,θ

5 )P(ε ∈ Sx,θ
5 )

P(ε ∈ Sx,θ
3 ) + (1− P(d = 1|ε ∈ Sx,θ

5 ))P(ε ∈ Sx,θ
5 )





Sensitivity with respect to what:

So, above is the applied economist’s prefered specification. It can
be estimated via MLE.

Assumptions it is built on:

1. Economics: linear variable profits, Nash equilibrium, ...

2. functional forms/distributional: joint normality on the errors,
a parametrized form for equilibrium selection

So, we can choose what piece of the model is worrisome. Here, we
usually have little information about equilibrium selection.



Ex2: equilibrium selection sensitivity

Pref. Model Logit Selection Fixed Probability selection

Market Presence - large 1.724
[1.112,1.233]

2.272
[2.112,2.432]

[.85, 2.201] [.85, 2.201]

Market Size - large .23
[0.21,0.25]

0.85
[0.83,0.87]

[.012, .865] [.012, .865]

Correlation 0.366
[.310,.422]

.151
[0.144,0.156]

[.652, .99] [.652, .99]
...

we can transform these interval estimates into partial effects.



sensitivity of correlation coefficient to equilibrium selection

Figure: Posterior Probability that a particular parameter value belongs to
the identified set - general equilibrium selection



other results

Figure: Posterior Probability that a particular parameter value belongs to
the identified set



inference approach 3

this is work in progress with Xiaohong Chen and Tim Christensen.

we combine ideas from top two projects to propose an inference
theory for identified sets based on simulations in semiparametric
likelihood models.

question: given a likelihood function where the parameter is not
identified, can we use simulations from this likelihood to build
confidence regions for the identified set?



again,

we are interested in inference on θ in p(θ, g).

in particular, when g is parametric, standard inference is possible,
but happens to our baseline estimates of θ as less assumptions are
made on g? i.e., in the baseline model, g ∈ G, a parametric class;
what happens as we enlarge G?

idea: just embed/approximate G with a sieve space G(k) and then
use draws from the overall density to build a confidence region for
θ.



interesting because:
start with a fully parametric model, provide misspecification robust
confidence regions with respect to a subset of suspect assumptions
(that we pick)

can harness the recent advances in computational statistics (and
economics) to simulate possibly complicated models with a large
number of parameters.



ideas

Inference on a set ΘI that maximizes (minimizes) a (general)
objective function Q(θ) has been examined in Chernozhukov, Hong
and Tamer (2007) and Romano and Shaikh (2010) among others.

in the case when Q(θ) is a likelihood, and we draw a large sample
from “Qn(θ)′′ (more on “”Qn(.)” later), can we show that this
sequence of simulated θ’s are useful in building a confidence region
for the identified set ΘI ? (why? ... easy to compute)

The question is: can draws from a (flat in the limit) posterior have
a frequentist interpretation in terms of coverage of the identified
set?

even in parametric problems, we do not know of Bernstein
VonMises like results for partially identified likelihoods. We try and
do this here.



some technical insights
(some definitions): parametric model

P = {pθ : θ ∈ Θ ⊂ Rd}

X1, . . . ,Xn ∼ p0 ∈ P iid

θ 7→ pθ not injective

ΘI = {θ ∈ Θ : pθ = p0} identified set

Pnf = n−1
n∑

i=1

f (Xi ) and Ln(p) ∼ log likelihood

Θ̂CHT
α = {θ ∈ Θ : Qn(θ) ≤ ξn,α}

where ξn,α quantile of LR statistic (which has a nonstandard and
tedious distribution...)



what we do and show in parametric settings (first)

I use following “posterior” to generate (via simulations) sample
of θ’s (θ1, . . . , θS )

Πn(dθ|X1, . . . ,Xn) =
eLn(pθ)Π(dθ)∫
Θ eLn(pθ)Π(dθ)

I Show that this simulated sample of θ’s, under some
conditions, provide a confidence like regionΘ̂α (frequentist
sense) for ΘI . Think of it as

Θ̂α = {θ ∈ Θ : Qn(θ) ≤ ξmc
n,α}



simple to show in standard point identified models

since heuristically,

Ln(p0) = Ln(θ̂)− 1

2
n(θ0 − θ̂)′I0(θ0 − θ̂) + oP0(1)

This expansion is not available here since argmax of likelihood is
not unique.



idea for our approach
I (from inference method 2), if we have a separable model (a

standard reduced form connected to the structural
parameters), then inference on ΘI can be easily obtained
through the model by mapping standard confidence regions on
reduced form to confidence regions on ΘI .

I here, the reduced form is p0 ∈ P, the true density of Xi ; this
density is well identified.

I we know that the posterior contracts to p0 (in the KL
divergence metric) and so even if θ is not point identified, pθ̂
approaches p0 (appropriately).

I So, we embed the parametric model class P into a
manageable class of parametric pseudo-true models for which
we derive a Bernstein Von Mises type result for the likelihood
ratio of this pseudo true model (this is simpler)... and then
revert back to P to get correct coverage.

I key difficulty: ensuring that the map of the (flat) prior π in
the pseudo-true space is “proper...”



result

Result 1
under ...,

lim
n→∞

P(ΘI ⊆ Θ̂α) = α

Here, Θ̂α is easily constructed using simulations.



same approach for semiparametric models

which is the important piece of this research agenda... as the main
requirement for applications is how user friendly the methods are.



world of mcmc here

it matters... and we are still working on this but for complicated
likelihoods with many parameters, tuning the sampler and using
clever combinations of various mcmc procedures is key. more on
this in the context of our application is next.



Ex 3: Application: are HMR’s results sensitive to
heteroskedasticity?

I again, HMR study the extensive margin of trade using a
structural model estimated with current trade data.

I introduce a “cut-off” aL for productivity: if a random draw for
productivity from country i to j , aij > aL then i trades with j .
Otherwise, no trade occurs. So, in their notation:

mij = β01 + λj1 + χi1 + ...+ f (z∗ij ) + uij

z∗ij = β02 + λj2 + χi2 + β12 log distij + ...+ uij + νij

where λ1
i , λ

2
i , χ

1
i , χ

2
j are country fixed effects (> 200), (uij , νij )

is jointly normal and f (.) is a known nonlinear function. We
only observe mij when z∗ij > 1.



Ex3 assumptions

This is a structural model that is fully parametrized:

I Pareto distribution on productivity a (which leads to a
particular functional form for f (.))

I joint normality of the errors

I heteroskedasticity - which is well known to be a problem in
trade data (and is especially problematic in nonlinear selection
like models)

As above, we report below HMRs favorite model and also formal
sensitivity intervals.
The inference approach here will be described below.



Ex3 results

bivariate selection model estimated via MLE (similar estimates
using NLS - )

Pref. Model Outcome Equation Selection Equation

log distance −.03265
[−0.19,0.13]

−0.165
[−0.212,−0.1125]

border 1.9548
[1,4348,2.4747]

0.2527
[0.0927,0.41]

legal system 0.1747
[0.0369,0.3107]

−0.0532
[−0.0932,−0.0132]

...

Standard 95% confidence intervals (? fixed effects and ?
parameters)



our mcmc procedure

here, we can write down the full likelihood of the model.

we are worried about heteroskedasticity. so we allow for
multiplicative heteroskedasticity as a flexible function (use a
polynomial of order 4).

there is evidence in the literature that generally, parametric
selection models may be sensitive to heteroskedasticity and that
also point identification is not simple to get.



our mcmc procedure

I similar to HMR, we have 27 parameters, in addition to a full
set of fixed effects (ran country fixed effects ¿200 and then
continent fixed effects).

I We tried a set of various implementations of mcmc algorithms
starting with random block random walk metropolis hastings
algorithm.

I But, we ended up using a Equi-Energy mcmc method
proposed by Kou, Zhou and Wong (2006) with random block
random walk metropolis-hasting local moves. The EE-MCMC
algorithm is designed to overcome simulating a target
distribution when it is multidimensional and multimodal where
the modes can be far away from each other.



comments on computational mcmc

I requires many tuning parameters - energy levels (H’s) at
which density (energy function) is truncated, temperatures
(used to “flatten” truncated densities) proposal density for
local MH algorithm, and jump probabilities. The tuning seems
to be problem specific and it may be that other mcmc
algorithm may work better in different problems.

I The EE algorithm we use ....



Ex3 results WHAT IS LEGAL SYSTEM HERE
bivariate selection model estimated via MLE (similar estimates
using NLS - )

Pref. Model Outcome Equation Selection Equation

log distance −.03265
[−0.19,0.13]

−0.165
[−0.212,−0.1125]

[-0.1089, 0.0911] [-0.517, -0.8122]

border 1.9548
[1.4348,2.4747]

0.2527
[0.0927,0.41]

[0.262, 1.954] [-0.022, 1.073]

legal system 0.1747
[0.0369,0.3107]

−0.0532
[−0.0932,−0.0132]

[-0.549, -0.048]

...

Standard 95% confidence intervals (? fixed effects and ?
parameters)



conclusion and future directions

I the message is that incorporating model uncertainty in a
theoretically valid and computationally attractive way is
worthy.

I Empirical economists recognize the fact that data alone are
not informative. Data + model are.

I Then, our job is to understand the sensitivity of our result at
least to the part of the model that some experts and/or policy
makers are most worried about.

I the agenda formalizes inference approaches in semiparametric
models with lack of point identification.

I This is another approach in that direction.



likelihoods, moment conditions,...

I why likelihood?: starting point, provides sharp
characterizations, etc

I possible to extend this to moment conditions. some work in
this direction is: Chen, Pouzo and Tamer (2013) and Tao
(2014).

I other relevant areas for future development is work at the
intersection of stochastic computations/algorithms and
inference and statistics.



Future Work

I Chen, Pouzo and Tamer extend the methods here to moment
(equality) based models with unknown functions and partial
identification.

I Need to investigate whether our inference procedures are
uniformly valid over any DGP p0.

I Also need to address choice of sieve dimensions (smoothing
parameters)

I It might be possible to use parametric bootstrap for inference
where we generate data from the estimated (sieve) density
under the null. This procedure might have better small
sample performance.



Takeways for Empirical work with Semiparametric
Likelihoods

I Using Criterion Based Sieve LR statistic as the basis for
inference (tests and CI’s) has a robustness property to point
identification, non-regular rates.

I Negatives: 1) Computational (perhaps just stick to a few
extra elements in the expansion; 2) gives impression that
identification does not matter - you get what you have flavor.
But, this is dangerous because of potential misspecification +
costly computation!
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