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Abstract

We provide methods for inference on a finite dimensional parameter of interest,
θ ∈ ℜdθ , in a semiparametric probability model when an infinite dimensional nuisance
parameter, g, is present. We depart from the semiparametric literature in that we do
not require that the pair (θ, g) is point identified and so we construct confidence regions
for θ that are robust to non-point identification. This allows practitioners to examine
the sensitivity of their estimates of θ to specification of g in a likelihood setup. To
construct these confidence regions for θ, we invert a profiled sieve likelihood ratio (LR)
statistic. We derive the asymptotic null distribution of this profiled sieve LR, which is
nonstandard when θ is not point identified (but is χ2 distributed under point identifica-
tion). We show that a simple weighted bootstrap procedure consistently estimates this
complicated distribution’s quantiles. Monte Carlo studies of a semiparametric dynamic
binary response panel data model indicate that our weighted bootstrap procedures per-
forms adequately in finite samples. We provide three empirical illustrations where we
compare our results to the ones obtained using standard (less robust) methods.
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1 Introduction

We consider inference on a finite dimensional parameter of interest θ in semiparametric

likelihood models when an infinite dimensional nuisance parameter g is present. Existing

semiparametric methods to estimate θ in the presence of g, such as sieve maximum likeli-

hood (ML), penalized ML or locally polynomial likelihood (e.g., Fan and Gijbels (1996)),

have become increasingly popular in applied econometrics. However, the existing work so far

on the asymptotic properties of these procedures rely on a key assumption that the model is

(globally) point identified, i.e., P0 = P (.; θ; g) = P (.; θ′, g′) means that (θ, g) = (θ′, g′) where

P0 is the true probability distribution of the data, and P (.; θ; g) is the model probability

distribution indexed by parameters (θ, g). The objective of this paper is to construct con-

fidence regions for θ allowing for violations of this assumption, i.e, for the case when point

identification does not hold: P0 = P (.; θ; g) = P (.; θ′, g′) but (θ, g) 6= (θ′, g′). Although this

paper focuses on likelihood based models, our approach can be extended to other contexts

such as semi/nonparametric moment conditions based models.1

There are at least three reasons that motivate our semiparametric likelihood based ap-

proach. The First motivation is sensitivity analysis. Empirical economists use parametric

likelihood methods routinely to do inference on some finite dimensional parameter of interest

(θ) in the presence of nuisance parameters g. Maximum likelihood is attractive, since under

point identification (and standard regularity conditions) it is efficient. The usual approach

is to use parametric assumptions on g and then to show that θ is point identified, and

hence standard likelihood based inference methods apply. However, typically, the assump-

tions made on g, such as functional forms or distributional assumptions, are not plausible

and are usually not derived from an economic model; rather they are used because of some

computational advantage or based on familiarity. Naturally then, one is worried whether

inferences using these parametric models are sensitive to specification of g. The second mo-

tivation for our approach is that the starting point of almost all standard semiparametric

models in which both θ and g are treated as unknown parameters, is the point identification

conditions where θ is assumed to be globally point identified. These assumptions are not

easy to verify outside of simple models, and when available, these point identification con-

ditions might be difficult to satisfy in standard data sets. In addition, available statistical

methods for inference in these semiparametric models are invalid when point identification

fails. Finally, in models where the parameter of interest is not point identified, an important

issue becomes one of finding the tightest set of observationally equivalent parameters. In

1See, e.g., Chen, Pouzo, and Tamer (2011) for inference on nonparametric conditional moment models
under partial identification using a sieve quasi likelihood ratio statistic.
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some cases, showing that one’s approach delivers estimates of this sharp set is not easy. So,

a third motivation for our approach is that a likelihood based model delivers the sharp set

which is by definition the argmax of the likelihood function of the observed data.

Current empirical approaches to address the issue of how robust is one’s estimate of θ to

potential misspecification of g in a likelihood model is to estimate θ given g and then examine

the change in this value of the θ’s estimate as one changes g. So, a “robust” model is then

one where estimates of the parameter of interest “do not change much” as one changes g. In

this paper we formalize this mostly heuristic exercise and provide valid methods for inference

on θ allowing for partial identification as g changes in its logical domain. This function g,

which is the object of this sensitivity analysis, is chosen as the piece in an empirical model

that causes the most unease among economists. These typically are functions or latent

distributions where economists have least prior information about their shape, are less likely

to be learned even with further data collection (as in equilibrium selection functions) and so

are a prime candidate for sensitivity analysis.

To build a confidence region for θ allowing for non-point identification, we exploit the

equivalence between testing and confidence region, and construct this confidence region by

collecting all the parameter values that we fail to reject using a profiled sieve likelihood

ratio statistic (LR). So, our construction is based on the distribution of the profiled sieve

LR statistic under non-point identification in which the unknown infinite dimensional nui-

sance functions are approximated by a sequence of finite dimensional sieves. There is a

recent literature on the large sample distribution of a parametric LR statistic when some

parameters are not point identified under the null; see for example Liu and Shao (2003).

Unfortunately, this Liu and Shao approach is no longer applicable in the presence of infinite

dimensional nuisance functions. For example, a direct generalization of Liu and Shao’s work

would require
√
n−consistent estimation of the nuisance parameter, g, which is not possible

in general when g is infinite dimensional and might belong to a non-compact function space

(see Section 4 for details). The first main contribution of our paper is to show that a profiled

sieve LR statistic, under a set of conditions, admits a tight asymptotic distribution when

the likelihood could depend on partially identified infinite dimensional nuisance parameters.

This asymptotic distribution holds whether or not the parameter of interest is point iden-

tified. For point identified models, our profiled sieve LR statistic converges to the usual χ2

distribution regardless of whether the parameter of interest is regular (i.e.,
√
n−estimable)

or irregular (i.e., slower than
√
n−estimable). For partially identified models, our statis-

tic has a complicated limiting distribution, which is a natural extension of that of Liu and

Shao (2003) to allow for unknown nuisance parameters belonging to infinite dimensional

non-compact function spaces.
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The asymptotic null distribution of the profiled sieve LR is difficult to simulate in general

partially identified problems. Our next contribution is to show that a simple weighted boot-

strap procedure consistently estimates quantiles of the asymptotic null distribution of the

profiled sieve LR statistic. This bootstrap procedure appears to behave adequately in small

sample numerical simulations. In our Monte Carlo, we simulate a dynamic (short) panel

data binary choice model where know that the parameters of interest are not point identified

due to the initial conditions problem.

We apply our methods to three empirical examples. In the first empirical example, we

consider the duration model with unobserved heterogeneity of Heckman and Singer (1984).

Economists typically have no information about the form of the unobserved heterogeneity

distribution and so we estimate the structural parameters of interest using NLSY data with-

out making any assumptions on this distribution. In this model, we know that the structural

parameter of interest can be point identified at infinity as the durations tend to zero. This

sufficient point identification condition does not appear to be valid in our data. Our confi-

dence region construction is robust to failure of point identification. In addition, this model

presents a case where even if the parameter is point identified, it can be really difficult to

estimate (since rates of convergence are slower than root n). Our confidence regions remain

valid in this case when the parameter is irregularly point identified. In the second empirical

example, we build a confidence regions for parameters in an intergenerational schooling ex-

ample as in Plug (2004) in which the dependent variable in a linear model is observed in bins,

and so our analysis examines the sensitivity of the estimates to functional form assumptions

on the distribution of the errors. The last empirical example estimates a version of the Berry

(1992) entry model using airline data by allowing for heteroskedasticity of unknown shape.

In all examples, we provide marginal and joint confidence regions on parameters and contrast

those to ones obtained from parametric likelihood models.

Literature Review: Our paper contributes to two literatures in econometrics, the par-

tial identification literature and the sieve semiparametric inference literature. There are

many recent papers in econometrics that deal with the question of inference in partially

identified models (without infinite dimensional nuisance parameters). See Imbens and Man-

ski (2004), Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), Andrews

and Soares (2010)2. In addition, Redner (1981) establishes consistency of the parametric

MLE without assuming that it is uniquely identified, and Liu and Shao (2003) obtain the

2See also the papers of Rosen (2008), Bugni (2010), Canay (2010), Chernozhukov, Lee, and Rosen (2009),
Andrews and Shi (2010) and other papers referenced therein. For a recent survey on partial identification
in econometrics, see Tamer (2010).
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limiting distribution of the parametric LR statistic under non-point identification. Andrews

and Cheng (2010) provide methods for constructing confidence regions and tests including

parametric likelihood models that are robust to lack of or weak identification. The sieve

literature for semiparametric models under point identification is exposited in Chen (2007).3

In particular, Murphy and Van der Vaart (2000) and Shen and Shi (2005) respectively es-

tablished that the profiled LR and sieve LR statistic converges to χ2 distribution for point

identified and regular parameters. Chen and Liao (2009) established that the sieve LR statis-

tic converges to a χ2 distribution for the case where the parameters are point identified and

irregular. Chen and Pouzo (2009) considered profiled sieve quasi likelihood ratio inference for

point identified semi-nonparametric conditional moment models where the problems could

be nonlinear and ill-posed. Finally, Santos (2011), in an interesting paper, considers testing

in a nonparametric instrumental variables (IV) regression model without requiring identifi-

cation. His paper also approximates the unknown functions by sieves but builds confidence

regions by inverting a Bierens’ type test statistic.

On the other hand, sensitivity analysis has a long history in econometrics. Formally, in

some setups, our sensitivity approach is mathematically equivalent to partial identification

analysis. See for example Manski (1995). In addition, our approach to sensitivity analysis

which constructs confidence regions that reflect model uncertainty in addition to accounting

for sampling noise, is similar in spirit to the “extreme bounds approach” as advocated by

Leamer (1985). See also Leamer (1987).

The paper is organized as follows. The next section provides some motivating examples.

These are likelihood based econometric models in which sensitivity analysis is desirable.

These models are mostly structural models that are empirically relevant where a likelihood

function is used to conduct policy simulations. Section 3 provides general results for consis-

tency and rates of convergence for a sieve MLE where the parameter belongs to a general

function space. We provide the main results of the paper in Sections 4 and 5. There, we

have conditions under which a profiled sieve LR statistic admits a tight asymptotic distribu-

tion. This limit distribution is difficult to characterize in general. In section 5, we provide

a bootstrap procedure that is empirically implementable and show that this procedure is

consistent. Section 6 examines the numerical properties of our sieve LR procedure in a

limited Monte Carlo experiment where we simulate a binary dynamic panel discrete choice

model. We apply our work in Section 7 to three empirical examples. Section 8 concludes

with questions for future research.

3See also this chapter for background material and other important references for the sieve semiparamet-
rics literature.
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2 General Setup and Motivating Examples

This section introduces a family of semiparametric probability models and provides a defi-

nition of the identified set for the parameters of interest. Then, we give several motivating

examples.

Let P ≡ {p(·; θ, g) : (θ, g) ∈ Θ × G} be a family of probability densities with respect

to a dominating sigma finite positive measure µ on a measurable space (Z,B). Let the

data {Zi = (Yi, Xi)}ni=1 be a random sample of Z = (Y,X) that has true (but unknown)

probability measure P0 ≡ PZ on (Z,B), with p0 ≡ dPZ

dµ
being its density wrt the dominating

measure µ. We assume that the true probability density p0 is unique. We say the family of

probability models P = {p(·; θ, g) : (θ, g) ∈ Θ × G} is correctly specified if p0 ∈ P, that is,

p0 ∈ P0 ≡ {p(·; θ, g) = p0(·) : (θ, g) ∈ Θ × G} = {p0}. In this paper we use E0() to denote

expectation under true probability density p0.
4

The family of probability models P is semiparametric in that the parameter of interest

θ is finite dimensional and the nuisance parameter g is infinite dimensional. In particular,

we assume that Θ is a compact subset in ℜdθ and G is a function space. We assume that

the semiparametric probability model P = {p(·; θ, g) : (θ, g) ∈ Θ× G} is correctly specified,

i.e., there is at least one (θ0, g0) ∈ Θ × G such that p(·; θ0, g0) ≡ p0(·). Complications arise

because the class of semiparametric models P could be partially identified, i.e., there are

(θ0, g0) and (θ1, g1) in Θ × G such that p0 ≡ p(·; θ1, g1) = p(·; θ0, g0) but (θ1, g1) 6= (θ0, g0);

Given a random sample {Zi = (Yi, Xi)}ni=1 and the class of models P, we are interested in

inference on θ ∈ Θ allowing for partial identification (although we initially focus on θ as the

parameter of interest, the formal results allow for the parameter of interest to be a finite

dimensional function of (θ, g)).

To conduct inference, we use maximum likelihood which is a natural approach in our

setting. The sample log-likelihood objective function is

Ln(θ, g) =
n∑

i=1

log p(Zi; θ, g).

We define the identified set ΘI for parameters of interest θ to be

ΘI ≡ arg sup
θ∈Θ

(
sup
g∈G

E0[log p(Zi; θ, g)]

)
(2.1)

This set can also be defined as

ΘI = {θ ∈ Θ : p(·, θ, g) = p0(·) for some g ∈ G} (2.2)

4Sometimes we also use EZ() or EPZ
() or Ep0() for E0().
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The above likelihood procedure would still be reasonable if the model is not correctly specified

(i.e., (2.2) is empty) although now the interpretation of (2.1) is the set of pseudo true

parameters minimizing the KL distance.

Next, we provide some motivating examples.

1) Unobserved Heterogeneity in a Heckman-Singer Model Accounting for unob-

served heterogeneity across individuals or firms has become a quintessential ingredient in

modern microeconometric models. An early work on this is that of Heckman and Singer

(1984) (HS) in the context of estimating a job duration distribution in the presence of unob-

served heterogeneity. There, the density of observed durations p0(t) is related to an economic

job search model via the following integral equation

p0(t) =

∫

u

f(t|u; θ)dg(u) (2.3)

where f(·|u; θ) is the density of duration conditional on unobserved heterogeneity u, and g(.)

is the distribution of u. Economic theory typically provides suggestions about the functional

form of f(·|u; θ) but on the other hand, it is rarely the case that economists have informa-

tion about the form of the distribution g of the unobserved heterogeneity. The empirical

question of interest is whether information about θ is sensitive to assumptions made about

the functional form of g(.).

For a given f(·|u; θ), HS provided conditions for point identification of θ when g(.) is non-

parametric, and these conditions show that this is possible in the limit as durations approach

zero.

It is common in empirical papers to derive the likelihood conditional on some unobserv-

able random variable (u here) that stands for unobserved heterogeneity, and then obtain

the observed likelihood by integrating out the unobserved heterogeneity56. It is not easy

to derive point identification conditions for θ in these models without making a functional

form restriction on the distribution of u. In addition, HS style sufficient conditions for point

identification of θ often times rely on this identification in the limit argument which creates

practical (and theoretical) difficulties, such as slower than root n rates of convergence. Our

approach to inference in this class of models 1) is valid whether or not θ is point identified,

and 2) remains valid if point identification of θ is non-regular. In Section 7 below, we esti-

5Typically, the unobserved heterogeneity is assumed to have discrete support with finite known support
points, and so the problem becomes one of inference in a discrete finite mixture model where the mixing prob-
abilities become parameters. It is hard in these models to establish conditions under which the parameters
are point identified.

6In recent empirical IO models, unobserved heterogeneity is motivated as a market level variable that is
observed by the players, but not the econometrician.
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mate a version of this duration model using NLSY data and compare our estimates of θ to

ones obtained from standard parametric approaches.

2) Dynamic Binary Response Panel Data Model Consider the following dynamic

panel data binary response model with individual effects

yit = 1 {x′
itβ + yi,t−1γ + ui + εit ≥ 0} . (2.4)

We observe a sample of N individuals for T time periods starting with t = 1, to get a sample

of {(yit, xit)}Tt=1 where we use the notation xT
i = (xi1, ...., xiT ). For each i, ui is an individual

specific random variable that is unobserved. The presence of a lagged dependent variable

in the above model requires one to model the distribution of the first period of individual

i’s economic life, g(ui, x
T
i ) ≡ P (yi1 = 1|ui, x

T
i ). Here, let Fu(ui) be the distribution of ui

which is assumed here, as in Honoré and Tamer (2006), to be independent of xT
i and let the

parameter of interest be θ ≡ (β, γ, σ2) and the nuisance function is (g(., .), Fu(.)). Here, we

allow for the regressors x to be continuous. Finally, εit is a standard normal random variable

that is i.i.d. across t and i and statistically independent of xT
i (again, these assumptions are

all imposed here for simplicity and illustration).

The conditional probability density of yTi = (yi1, ...., yiT ) given xT
i can be written as follows

p(yTi |xT
i , θ, g, Fu)

=

∫
{g(u, xT

i )}yi1{1− g(u, xT
i )}1−yi1

T∏

t=2

P (yit|xT
i , yit−1; θ, u)dFu(u)

where

P
(
yit = 0|xT

i , yit−1; θ, u
)
= Φ(−x′

i,tβ − γyi,t−1 − u).

Economists rarely have any information about the shape of the initial distribution g() and

so inference on θ when using a parametric form for g might be sensitive to these ad-hoc

assumptions made on g. On the other hand, Honoré and Tamer (2006) show that without

making assumptions on g, the parameter θ is partially identified in a pure random effects

version of the above model in which Fu (the distribution of u) is assumed to be known up to

finite dimensional parameter. They provide a linear programming method for characterizing

the identified set on θ based on a minimum distance approach. Though sharp, the approach

is problematic when x contains a continuous regressor. In this paper, we replace g with

a sieve function and construct confidence regions for θ after profiling out the function g.

The size (and shape) of the confidence regions we obtain partially reflect the information

we have about θ. Though the model is meant to study the sensitivity of the parameters
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to specification of the initial condition distribution, one can in principle also study the

sensitivity to specification of the u or ǫ distribution also.

3) Inference in Discrete Games There has been a lot of work recently on inference in

discrete games. In the two player version of a discrete game, interest is focused on the finite

dimensional parameter θ in the two equation system

y1 = 1 [x′
1β1 +∆1y2 + ǫ1 + ν1 ≥ 0]

y2 = 1 [x′
2β2 +∆2y1 + ǫ2 + ν2 ≥ 0]

(2.5)

This is a representation of a bivariate discrete game with 2 decision makers and with a general

information structure: the public information that is unobservable to the econometrician

is the vector (ǫ1, ǫ2) while player 1’s private information is captured in ν1, and similarly

for player 2. The vector (ν1, ν2) is not observed by the econometrician. We allow the

ǫ’s to be correlated (and observed by the players), while the ν’s are independent. This

game was recently studied by Grieco (2011) and is termed a discrete game with incomplete

information (as opposed to games with pure incomplete information, this game allows one

to have incomplete information and unobserved heterogeneity). There can be multiple

equilibria in this game. Assuming that the epsilons are normally distributed, and that from

the perspective of the econometricians the ν’s are also normal, Grieco shows that one can

write the observed data distribution as

Py(x, θ, g(.)) =

∫ ∑

e∈E(ǫ,x,θ)
ge(ǫ, x)P e

y (ǫ, x; θ)dFǫ (2.6)

where θ is the finite dimensional vector of parameters that include (β1, β2,∆1,∆2) and the

parameters of the joint distribution of the ǫ’s, E(.) is the set of equilibria that is known

up to θ, P e
y (.) is the probability of the outcome y = (y1, y2) given equilibrium e, and g(.)

is the unknown selection function here. A likelihood approach to inference in this game is

attractive since it delivers the sharp set, which by definition is the argmax of the likelihood

of the observed data. Generally, economists have no information about the functional forms

of g and, without assumptions on g, it is hard to obtain sufficient conditions for point

identification of θ (see Grieco for some of these conditions). So, our approach in this model

is attractive, since we profile out the unknown selection functions g(.) and provide a way

to construct confidence regions on θ that hold whether or not θ is identified. Grieco uses

this approach to fully estimate a model of entry and exit of grocery stores. More generally,

studying inference in statistical structures as in the mixture model in (2.6) above is important

in any model with multiple equilibria, or multiple potential outcome because the likelihoods

of these models involve a selection function and since economists do not typically have any
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information about these functions. In Section 7, we estimate a simpler version of the model

where we restrict the information structure to a game of complete information and estimate

the entry decisions of airlines in various markets.

4) Schooling Model with Discretized Outcomes We estimate an intergenerational

schooling example where the aim is to examine the impact of parents’ schooling on a child’s

level of education. So, here, for parents whose child is still in school, this child’s final level of

education would be missing but known to belong to one of finitely many bins. In particular,

consider the problem of inference on a parameter θ in the linear regression model

y = x′θ + ǫ

where for some observations, y (a child’s education) is missing. All we know in these cases

is that y belongs to one of a finite number of ranges. For example, in a Tobit model, we

know that missing y are ones for which y is negative. A common approach to conduct

inference here is to assume a parametric functional form for the distribution Fǫ of ǫ (as in

an ordered probit/Tobit model). Estimates in such nonlinear parametric models are known

to be sensitive to the specification of such a distribution. Let d = 1 signify that y is missing,

and d = 0 otherwise, and when it is missing, we know that y belongs to one of k intervals

[yi, yi+1] for i = 1, . . . , k where the yi’s are fixed constants. Assuming that ǫ is independent

of x, with unknown distribution F (.) with mean zero, the likelihood of an observation is

(F (yj+1 − x′θ)− F (yj − x′θ))
[d=1]

f(y − x′β)[d=0]

for some j ∈ {1, . . . , k}. Notice here that this is a kind of an “ordered Tobit” model in

that when the outcome is not observed, it takes finitely many values, and the likelihood of

these values are uniquely determined by the distribution of ǫ. In Section 7, we use the same

data as in Plug (2004) to estimate this model and compare our results to other parametric

models.

3 Consistency and convergence rate of sieve MLE

In this section we present general consistency and rate of convergence results that allow for

partial identification in semiparametric likelihood models. These results extend the existing

set consistency results to cover cases where the parameter space is potentially infinite dimen-

sional non-compact. Also, we extend the consistency results for sieve MLE to cover cases

where the parameters are potentially partially identified. We first provide various definitions

needed for the statement of the results.
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Definition 3.1 Let p1 and p2 be two densities with respect to a σ-finite measure µ. Define

the following pseudo distances D(p1, p2) between p1 and p2:

1. Squared Hellinger distance: H2(p1, p2) ≡
∫
(
√
p1 −

√
p2)

2dµ = 2
[
1−

∫ √
p1p2dµ

]
=

Ep2

[(√
p1
p2

− 1
)2]

.

2. Pearson distance: χ2(p1, p2) ≡
∫ (

p1
p2

− 1
)2

p2dµ = Ep2

[(
p1
p2

− 1
)2]

which is also

called the χ2 distance.

3. γ-divergence: ργ(p1, p2) ≡
∫
γ−1

[(
p1
p2

)γ
− 1
]
p1dµ for γ ∈ (−1, 0) or (0, 1].

4. Kullback-Leibler divergence: K(p1, p2) ≡
∫
p1 log(p1/p2)dµ = Ep1 [log(p1)− log(p2)]

(if p1 << p2 and = +∞ otherwise).

Remark 3.1 From Definition 3.1, it is easy to see that

H2(p1, p2) = ρ−1/2(p1, p2), K(p1, p2) = ρ0+(p1, p2), χ2(p1, p2) = ρ1(p1, p2),

H2(p1, p2) ≤ K(p1, p2) ≤ ργ(p1, p2) ≤ χ2(p1, p2) for γ ∈ (0, 1].

Denote A ≡ Θ × G as the parameter space and P ≡ {p(·; θ, g) : (θ, g) ∈ A} as the

family of probability models. For any p1, p2 ∈ P, let D(p1, p2) be any one of the distances

in Definition 3.1. Then: D(p1, p2) ≥ 0, and D(p1, p2) = 0 iff p1 = p2 a.s.− µ. Under correct

specification, we can define the identified set for all the parameters as

AI ≡ ΘI × GI ≡ {α = (θ, g) ∈ A : p(·;α) = p0(·)}
= {α = (θ, g) ∈ A : D(p0, p(·;α)) = 0}

Also, ΘI defined in (2.1) could be expressed as

ΘI = {θ ∈ Θ : D(p0, p(·; θ, g)) = 0 for some g ∈ G}.

Let Ak(n) ≡ Θ × Gk(n). Let Pk(n) ≡ {p(·; θ, g) : (θ, g) ∈ Ak(n)} be a sequence of sieve

spaces that is dense in P ≡ {p(·; θ, g) : (θ, g) ∈ A} under one of the D(p1, p2) distances as

given in Definition 3.1. Denote p̂(·) ≡ p(·; θ̂, ĝ) as the ηn−sieve MLE which is defined as

follows:

1

n

n∑

i=1

log p(Zi; θ̂, ĝ) ≥ sup
(θ,g)∈Ak(n)

1

n

n∑

i=1

log p(Zi; θ, g)− ηn with ηn = oPZ
(1); (3.1)
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or equivalently,

1

n

n∑

i=1

log p̂(Zi) ≥ sup
p∈Pk(n)

1

n

n∑

i=1

log p(Zi)− ηn with ηn = oPZ
(1);

It is easy to see that the ηn−sieve MLE p̂(·) ≡ p(·; θ̂, ĝ) defined in (3.1) is numerically

equivalent to the following ηn−sieve profile MLE p̂(·) ≡ p(·; θ̂, g̃θ̂), computed in two steps

where in the Step 1 we get for each θ ∈ Θ,

1

n

n∑

i=1

log p(Zi; θ, g̃
θ) ≥ sup

g∈Gk(n)

1

n

n∑

i=1

log p(Zi; θ, g)− ηn with ηn = oPZ
(1).

and then in Step 2, compute

θ̂ ∈ Θ̂ = argmax
θ∈Θ

1

n

n∑

i=1

log p(Zi; θ, g̃
θ), ĝ = g̃θ̂ ∈

{
g̃θ̂ ∈ Gk(n) : θ̂ ∈ Θ

}
.

In the next assumption, we provide the various conditions that we need for consistency

of the sieve MLE estimators.

Assumption 3.1 Let the followings hold:

1. Parameter space and objective function: (i) A = Θ×G ⊆ A = ℜdθ ×G, Θ is a

compact, nonempty subset of a Euclidean space (ℜdθ , | · |e), and G is a closed, bounded

and nonempty subset of a separable infinite dimensional Banach space (G, || · ||G); (ii)
E0[log p(Z; θ, g)] is upper semicontinuous on A under ||α||A = |θ|e + ||g||G; (iii) the

identified set, AI = ΘI × GI = {α = (θ, g) ∈ A : D(p0, p(·;α)) = 0} is a nonempty,

closed and bounded strict subset of (A, || · ||A).

2. Sieve space (i) for each k ≥ 1, Ak = Θ × Gk ⊆ A, Gk is closed under || · ||G with

dim(Gk) < ∞; (ii) ∅ 6= Gk ⊆ Gk+1 ⊆ G for all k ≥ 1, and ∪∞
k=1Gk is dense in G under

|| · ||G. That is, for any g ∈ G, there is Πkg ∈ Gk such that ||g−Πkg||G → 0 as k → ∞.

3. Penalty function There is a function Pen : G → [0,∞) such that: (i) Pen(.) is a

measurable function such that supg∈GI
Pen(g) < ∞; (ii) the set {g ∈ G : Pen(g) ≤ M}

is compact under || · ||G for all M ∈ [0,∞); (iii) λn > 0, and λn supg∈GI
|Pen(Πng)−

Pen(g)| = O(λn) = o(1).

4. Uniform convergence on sieve space (i) the data {Zi = (Yi, Xi)}ni=1 are a ran-

dom sample of Z = (Y,X) from a unique density p0; (ii) E0{supα∈An
| log p(Z;α)|} is

12



bounded; there are a finite s > 0 and a random variable U(Z) with E0{U(Z)} < ∞
such that

sup
α,α′∈An:||α−α′||A≤δ

| log p(Z;α)− log p(Z;α′)| ≤ δsU(Z),

and logN(δ1/s,An, || · ||A) = o(n) for all δ > 0.

Assumption 3.1.1 is standard and provides conditions on the parameter space. We do

require that the identified set is a strict subset of the overall parameter space to avoid

cases for which the identified set is the whole parameter space. The assumption that Θ

is compact is not needed but we impose it since it is a standard one for semiparametric

models. Assumption 3.1.2 concerns conditions on the sieve approximation that are needed.

The penalty function is used to regularize the optimization problem as in Chen and Pouzo

(2011). Finally, Assumption 3.1.4 implies uniform convergence of the objective function over

the sieve space.

The next theorem presents consistency in the one sided Hausdorff metric.

Theorem 3.1 Let Assumption 3.1 hold. Let Ân be the collection of α̂n = (θ̂n, ĝn) ∈ Ak(n) =

Θ× Gk(n) that solves

1

n

n∑

i=1

log p(Zi; α̂n)− λnPen(ĝn) = sup
α∈Ak(n)

[
1

n

n∑

i=1

log p(Zi;α)− λnPen(g)

]
.

Then:

1. K(p0, p̂) = oas−Z(1);

2. dA(α̂n,AI) ≡ infα∈AI
||α̂n − α||A = oPZ

(1) and Pen(ĝn) = OPZ
(1).

In the Appendix, we provide and prove a more general consistency Theorem that holds

for semiparametric extremum estimators. Given the consistency result, the next Remark

provides information about the relationship between the various distances.

Remark 3.2 By our consistency result above, we know that p̂ is “close” to p0, the true

density, as sample size increases. For densities that are close, we provide below relations

among the various distances from Remark 3.1.

1) By Remark 3.1 we have [H(p, p0)]
2 ≤ K(p0, p) ≤ χ2(p1, p2) for all p ∈ P. When H(p, p0)

is small, using the Taylor expansion of log(1+ x) = x− 0.5x2(1+ o(1)) for small x, we have

the following:

K(p0, p) ≡ −E0[log p− log p0] = 2[H(p, p0)]
2(1 + o(1)) =

1

2
χ2(p, p0)(1 + o(1)).

13



2) Theorem 5 of Wong and Shen (1995) states that for all ǫ2 ≤ 0.5(1− e−1)2 and for some

γ ∈ (0, 1], we have

K(p0, p) ≤
[
const. +

8

γ
max

(
1, log

(mγ

ǫ

))]
× ǫ2

for all p ∈ Pǫ, where

Pǫ ≡
{
p ∈ P : H(p, p0) ≤ ǫ, m2

γ ≡ Ep0

[(
p0
p

)γ

× 1{
(
p0
p

)γ

≥ e}
]
< ∞

}
.

3) Lemma 3.1 of Liu and Shao (2003) shows that for some small ǫ > 0, if the class of

functions

Dχ ≡
{
s =

p
p0

− 1

χ(p, p0)
: H(p, p0) ≤ ǫ, p ∈ P\{p0}

}
,

has a square integrable envelop function, i.e., E0

[(
sups∈Dχ |s|

)2]
< ∞, then:

lim
χ(p,p0)→0

4H2(p, p0)

χ2(p, p0)
= lim

H(p,p0)→0

4H2(p, p0)

χ2(p, p0)
= 1.

Next, we derive rates of convergence results under partial identification. We can directly

apply Wong and Shen (1995) or Birgé and Massart (1998) to obtain convergence rate of

H(p̂, p0) under mild conditions. In the following, we denote

en(γ) = inf
p∈Pk(n)

ργ(p0, p) for γ ∈ [0+, 1]; (3.2)

ǫn = inf

[
ǫ > 0 :

∫ √
2ǫ

2−8ǫ2

√
logN[](u, {p ∈ Pk(n) : H(p, p0) ≤ 2ǫ}, H())du ≤ const.

√
nǫ2

]
,

(3.3)

where en(γ) is the bias (or the sieve approximation error) under the distance ργ for γ ∈ [0+, 1]

(see Definition 3.1), and ǫn is the measure of sieve model complexity in terms of Hellinger

distance with bracketing. Next, we state results on rates of convergence in terms of Hellinger

(or Pearson) distance. These results are direct application of Wong and Shen (1995) and

hence we omit its proof.

Theorem 3.2 Let δn = max
[
ǫn,
√

en(γ)
]
for γ ∈ [0+, 1]. Under all the conditions of

Theorem 3.1 with ηn = O(λn) = O([δn]
2), we have: (1) H(p(·, α̂), p(·, α0)) = OPZ

(δn) for all

α̂ ∈ Ân and all α0 ∈ AI; (2) If δn = max
[
ǫn,
√
en(1)

]
, then χ(p(·, α̂), p(·, α0)) = OPZ

(δn)

for all α̂ ∈ Ân and all α0 ∈ AI.

14



We provide next a key point regarding characterization of the identified set. An important

insight in what follows is that although the likelihood can be maximized on a set, and

consistency is based on convergence of some set distances based on the norm || · ||A we define

above, all the elements of the identified set are “equivalent” in that they induce the same

density (P0), and so the identified set in some way is a singleton. We elaborate on this point

next. Let

D(α1, α2) = 2H(p(·, α1), p(·, α2)) or = χ(p(·, α1), p(·, α2))

denote either the rescaled Hellinger distance or Pearson distance induced metric on the

parameter space A. Then D(α, α0) = D(α, α′
0) for all α0, α

′
0 ∈ AI and all α ∈ A. So, AI is

a singleton (or unique {α0} in terms of equivalent class) under the distance D(·, ·) although
AI is not a singleton under || · ||A. To stress this difference, sometimes we use notations

{αD
0 } = (AI , D(·, ·)) and α0 ∈ (AI , || · ||A). Define

αD
0n ≡ arg min

α∈An

D(α, αD
0 ) = arg min

α∈An

D(α, α0). (3.4)

Then D(αD
0n, α0) ≤ const.

√
en(γ) = O(δn) for all α0 ∈ (AI , ||·||A). In the rest of the paper we

shall focus on the case ofD(α, α0) = χ(p(·, α), p(·, α0)) and δn = max
[
ǫn,
√

en(1)
]
, but given

Remark 3.2, all our asymptotic results remain valid with D(α, α0) = 2H(p(·, α), p(·, α0)).

Remark 3.3 (1) For any α0 ∈ (AI , || · ||A) let B(α0) ≡ {α ∈ A : D(α, α0) ≤ δn log log n}
and Bn(α0) ≡ {α ∈ Ak(n) : D(α, α0) ≤ δn log log n} = B(α0) ∩ Ak(n). Then it is clear that

B(α0) = B(αD
0 ) and Bn(α0) = Bn(α

D
0 ) for all α0 ∈ (AI , || · ||A). By Theorem 3.2 we have:

αD
0n ∈ Bn(α0) and α̂n ∈ Ân ⊂ Bn(α0) with probability approaching one (wpa1) uniformly in

α0 ∈ (AI , || · ||A).
(2) By Remark 3.2, there is a positive sequence ζn = o(1) such that

sup
α∈B(α0):D(α,α0)6=0

K(p(·, α0), p(·, α))
1
2
[D(α, α0)]2

= 1 + o(ζn).

The next Section provides the main results in the paper on the asymptotic distribution of

the LR statistic.

4 Sieve Likelihood Ratio Statistic

We derive the asymptotic distribution of the profiled sieve log-likelihood ratio statistic

LR(θ0) ≡ 2

[
sup

θ∈Θ,g∈Gk(n)

n∑

i=1

log p(Zi; θ, g)− sup
g∈Gk(n)

n∑

i=1

log p(Zi; θ0, g)

]
. (4.1)
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Our inference is criterion based, and so to build confidence regions that reflect the sensitivity

of the model with respect to specification of g, we use the LR test statistic to build confidence

regions for parameters of interest. This requires first that we show that the LR statistic

above admits a nondegenerate asymptotic distribution. Providing conditions under which

this holds constitute one of the main theoretical results of the paper.

Typically, for a regular parametric likelihood model {p(·, θ) : θ ∈ Θ} without unknown

functions g, deriving the asymptotic distribution of a parametric LR statistic, LR(θ0) =

2[supθ∈Θ Ln(θ)− Ln(θ0)], under the null of θ = θ0 ∈ int(Θ) uses a quadratic approximation

to the sample log-likelihood Ln(θ) =
n∑

i=1

log p(Zi; θ) in a Euclidean n−1/2 neighborhood of

the true parameter θ0:

Ln(θ)− Ln(θ0) = (θ − θ0)
′

n∑

i=1

s(Zi)−
n

2
(θ − θ0)

′Eθ0 [s(Z)s(Z)
′] (θ − θ0)(1 + oPZ

(1)),

where s(z) = d
dθ
log p (z; θ) |θ=θ0 is the score function and Iθ0 ≡ Eθ0 [s(Z)s(Z)

′] is the Fisher

information matrix. Suppose that Iθ0 is non-singular, then one immediately obtains that

|θ̂ − θ0|e = OPZ

(
n−1/2

)
, LR(θ0) = 2[Ln(θ̂) − Ln(θ0)] = OPZ

(1) and that LR(θ0) is asymp-

totically Chi-Square distributed under the null. See, e.g. Chernoff (1954). Without point

identification, this quadratic approximation in a n−1/2 Euclidean neighborhood of θ0 is not

natural since the ML estimator θ̂ may not converge to any fixed point θ0 in the identified

set ΘI and the Fisher information Iθ0 could be singular for some θ0 under the null. These

problems arise in finite mixture models, Markov switching models, and some other paramet-

ric models. Recently Liu and Shao (2003) use a novel approach to deriving the asymptotic

null distribution of the parametric LR statistic under partial identification. Whereas the

parameter θ is not unique under the null, the true parametric probability density is unique

(the density of the data). So Liu and Shao (2003) obtain a quadratic expansion to Ln(θ) in

a Hellinger (or Pearson) n−1/2 neighborhood of the true density p0(·) = p(·, θ0):

Ln(θ)− Ln(θ0) = 2H(θ, θ0)
n∑

i=1

[sH(Zi; θ)− E0(sH(Z; θ))]− 2n[H(θ, θ0)]
2(1 + oPZ

(1))

= χ(θ, θ0)

n∑

i=1

sχ(Zi; θ)−
n

2
[χ(θ, θ0)]

2(1 + oPZ
(1)),

where sH(z; θ) ≡ [
√
p(z, θ)/p0(z)−1]/H(θ, θ0) (or sχ(z; θ) ≡ [p(z, θ)/p0(z)−1]/χ(θ, θ0)) is a

so-called generalized score function. LetD(·, ·) denote Hellinger or Pearson distance. Under a

key assumption that the class of generalized score functions {sD(·; θ) : θ ∈ Θ, 0 < D(θ, θ0) ≤ δ}
is Donsker in L2(PZ) for a small δ > 0, Liu and Shao (2003) establish that D(θ̂, θ0) =

OPZ

(
n−1/2

)
and LR(θ0) = 2[Ln(θ̂) − Ln(θ0)] = OPZ

(1), which is then used to obtain the
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asymptotic null distribution of the parametric LR statistic LR(θ0). Without point identifi-

cation of the parameter θ0, the asymptotic null distribution of this parametric LR statistic

is very complicated; the existing literature has focused on characterizing this complicated

asymptotic null distribution for simple and specific parametric likelihood models; see, e.g.,

Liu and Shao (2003).

One might wish to directly generalize the approach of Liu and Shao (2003) to the semi-

parametric likelihood model P = {p(·;α) : α = (θ, g) ∈ Θ× G} with infinite dimensional

nuisance functions g, without assuming point identification of θ and g. By Theorem 3.2, any

sieve MLE α̂n ∈ argmaxα∈Ak(n)

∑n
i=1 log p(Zi;α) has the Hellinger (or Pearson) distance con-

vergence rate D(α̂n, α0) = O(δn). Under some regularity conditions, one can show that the

sample log-likelihood Ln(α) ≡
n∑

i=1

log p(Zi;α) admits the following expansion in a Hellinger

(or Pearson) δn−neighborhood of the true density p0(·) = p(·, α0) = p(·, θ0, g0):

Ln(α)− Ln(α0)

n
=

2H(α, α0)

n

n∑

i=1

[sH(Zi;α)−E0(sH(Z;α))]− 2[H(α, α0)]
2(1 + oPZ

(1))

=
χ(α, α0)

n

n∑

i=1

sχ(Zi;α)−
1

2
[χ(α, α0)]

2(1 + oPZ
(1)),

where

sH(z;α) ≡
√

p(z, α)/p0(z)− 1

H(α, α0)
, sχ(z;α) ≡

{p(z, α)/p0(z)} − 1

χ(α, α0)

is the generalized score function. Under the naive assumption that the class of generalized

score functions

Sk(n) ≡
{
sD(·;α) : α ∈ Ak(n), 0 < D(α, α0) ≤ δ

}
is L2(PZ)− Donsker

for a small δ > 0, one would immediately obtain that D(α̂, α0) = OPZ

(
n−1/2

)
and 2[Ln(α̂)−

Ln(α0)] = OPZ
(1). Unfortunately, the best convergence rate δn of any estimator (includ-

ing the sieve MLE α̂) for α0 in Hellinger (or Pearson) distance is slower than n−1/2 when

g ∈ G is infinite dimensional.7 This indicates that when g ∈ G is infinite dimensional the

class of generalized score functions Sk(n) fails to be L2(PZ)−Donsker in general. The above

expansion actually implies that 2[supα∈Ak(n)
Ln(α) − Ln(α0)] diverges to infinity whenever

D(α̂, α0)/n
−1/2 → ∞.

Let φ(α) ≡ (φ1(α), ..., φdφ
(α))′ : A → ℜdφ be a dφ− vector valued known functional

for a fixed and finite dφ. In this paper, we show that, even if 2[supα∈Ak(n)
Ln(α) − Ln(α0)]

7In fact, even if the class of density functions P = {p(·; θ, g) : (θ, g) ∈ Θ× G} is analytic, the best conver-
gence rate in Hellinger distance is still slower than n−1/2.
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and 2[supα∈Ak(n):φ(α)=r0 Ln(α)− Ln(α0)] may diverge, the following sieve log-likelihood ratio

statistic:

LR(r0) ≡ 2

[
sup

α∈Ak(n)

Ln(α)− sup
α∈Ak(n):φ(α)=r0

Ln(α)

]
(4.2)

has a tight limiting distribution under the null hypothesis H0 : φ(α0) = r0 ∈ ℜdφ for α0 ∈ AI .

This type of null accommodates testing for example “marginal effects” in Example 2 and

4 in Section 2 for example where the parameter of interest can be a (finite dimensional)

function of both g and θ. Of course, this result immediately implies that the profiled sieve

log-likelihood ratio statistic LR(θ0) defined in (4.1) has a tight limiting distribution under

the null hypothesis H0 : φ(α0) = θ0 ∈ ΘI . Note here that the constrained likelihood in

(4.2) above is at a finite dimensional constraint as opposed to evaluating the constrained

likelihood at some α0 where α0 = (θ0, g0) can be infinite dimensional as in what a naive

extension of Liu and Shao (2003) would do. The above sieve log-likelihood ratio statistic

(4.2) could still diverge to infinity when the constraint is infinite dimensional and we do not

consider it here.

To provide conditions that are needed for our results, we introduce some definitions and

notations. Define the unconstrained approximate sieve MLE α̂n ∈ Ân as

α̂n ∈ Ân ≡ arg max
α∈An

{
n∑

i=1

log p(Zi;α)− oPZ
(1)

}
.

Define the constrained approximate sieve MLE α̃n ∈ Ãn as

α̃n ∈ Ãn ≡ arg max
{α∈An: φ(α)=r0}

{
n∑

i=1

log p(Zi;α)− oPZ
(1)

}
.

Let Ar
I ≡ AI ∩ {α ∈ A : φ(α) = r0} 6= ∅. By Theorem 3.1 we have

inf
α0∈AI

||α̃n − α0||A ≤ inf
α0∈Ar

I

||α̃n − α0||A = dA(α̃n,Ar
I) = oPZ

(1),

and by Theorem 3.2 we have

D(α̃n, α0) = OPZ
(δn) for all α0 ∈ Ar

I ;

thus α̃n ∈ Bn(α0)∩{α ∈ A : φ(α) = r0} with probability approaching one (wpa1) uniformly

in α0 ∈ Ar
I , where Bn(α0) is defined in Remark 3.3.

Let 〈·, ·〉 denote the distance χ(·, ·) or || · ||L2(PZ) induced inner product. For αD
0n = αχ

0n

defined in (3.4) with distance D = χ, let

Vn = cl

{
v(z) =

p(z, α)− p(z, αD
0n)

p0(z)
: α ∈ Bn(α0), E0[v(Z)] = 0, E0

[
(v(Z))2

]
< ∞

}
.
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Then Vn ⊂ L2
0(PZ) ≡

{
v(z) : E0[v(Z)] = 0, E0

[
(v(Z))2

]
< ∞

}
which is a properly defined

Hilbert space. For any candidate α0 ∈ (Ar
I , || · ||A) and any λ ∈ Udφ ≡ {λ ∈ ℜdφ : |λ|e = 1},

if

sup

v=
p(·,α)−p(·,αD

0n
)

p0(·)
∈Vn:〈v,v〉6=0

∣∣∣λ′ ∂φ(α0)
∂α

[α− αD
0n]
∣∣∣
2

E0

[(
p(Z,α)−p(Z,αD

0n)

p0(Z)

)2] < ∞,

then there is some v∗n(α0, λ) ∈ Vn such that

0 < ||v∗n(·, α0, λ)||2 = sup

v=
p(·,α)−p(·,αD

0n)

p0(·)
∈Vn:〈v,v〉6=0

∣∣∣λ′ ∂φ(α0)
∂α

[α− αD
0n]
∣∣∣
2

E0

[(
p(Z,α)−p(Z,αD

0n)

p0(Z)

)2] < ∞

and

λ′∂φ(α0)

∂α
[α− αD

0n] = E0

[(
p(Z, α)− p(Z, αD

0n)

p0(Z)

)
v∗n(Z, α0, λ)

]

= E0

[(
p(Z, α)

p0(Z)
− 1

)
v∗n(Z, α0, λ)

]

A crucial point of a departure here from the semiparametric sieve literature is that for any

pair α0, α
′
0 ∈ (Ar

I , || · ||A), we have D(α0, α
′
0) = 0, but if ||α0 − α′

0||A 6= 0 then we could have

that λ′ ∂φ(α0)
∂α

[v] 6= λ′ ∂φ(α′

0)

∂α
[v] for some λ. Therefore for any candidate α0 ∈ (Ar

I , || · ||A) we use
a different representer 〈v, v∗n(α0, λ)〉 for λ′ ∂φ(α0)

∂α
[v]. If the model were point identified, then

the representer would be unique and correspond to the true and point identified parameter.

Assumption 4.1 Let it be known that uniformly in α0 ∈ (Ar
I , || · ||A), the following hold:

(i)
∂φj(α0)

∂α
is linear in α − α0 for all j = 1, ..., dφ, and is linearly independent across j; (ii)

uniformly in λ ∈ Udφ = {λ ∈ ℜdφ : |λ|e = 1},
∣∣∣λ′ ∂φ(α0)

∂α
[αD

0n − α0]
∣∣∣

||v∗n(α0, λ)||
= oPZ

(n− 1
2 ), (4.3)

and ∣∣∣λ′{φ(α)− φ(α0)} − λ′ ∂φ(α0)
∂α

[α− α0]
∣∣∣

||v∗n(α0, λ)||
= oPZ

(n− 1
2 ) (4.4)

uniformly in α ∈ Bn(α0).

The above Assumptions is simple to verify. For example, in cases where the null is of the

form H0 : φ(α) = θ0, it is trivially satisfied since this restriction is linear.
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Next, denote

u∗
n(z, α0, λ) ≡

v∗n(z, α0, λ)

||v∗n(α0, λ)||
=

v∗n(z, α0, λ)√
V ar0[v∗n(Z, α0, λ)]

.

Let also ℓ(Z, α) ≡ log p(Z, α), χ(α, α0) ≡ χ(p(·, α), p0) and for any α ∈ Bn(α0), let

R(Z;α, α0) ≡ ℓ(Z, α)− ℓ(Z, α0)− χ(α, α0)sχ(Z;α).

We now consider perturbation in probability density sieve space: for all α ∈ Bn(α0) and

t ∈ Tn ≡ {t ∈ [−1, 1] : |t| ≤ const.× n−1/2}, we let

p(z, α(t)) ≡ p(z, α) + t× u∗
n(z, α0, λ)× p0(z).

We denote an empirical process indexed by function f as µn(f) =
1
n

n∑
i=1

[f(Zi) − E0(f(Zi)].

This then leads us to the next assumption that we require on the remainder.

Assumption 4.2 Uniformly in α0 ∈ (Ar
I , || · ||A), λ ∈ Udφ , the following stochastic equicon-

tinuity holds:

sup
α∈Bn(α0),t∈Tn

µn {R(Z;α, α0)− R(Z;α(t), α0)} = oPZ
(n−1).

Define the set of efficient scores in the sieve space as

Deff
k(n) ≡

{
d(·) = u∗

n(·, α0, λ) : α0 ∈ (Ar
I , || · ||A), λ ∈ Udφ

}
(4.5)

This set of efficient scores, though well defined, has no explicit closed-form solution for par-

tially identified semiparametric models. In the following remark, we provide a link between

this set of efficient scores, and the set of efficient scores one would get in a point identified

model. This would give an intuition of what is involved.

Finally, let Deff denote the set of all limit points in L2(p0µ) of sequences of functions in

Deff
k(n), as k(n) → ∞. The last assumption which is the most substantial, requires that this

set of efficient scores be Donsker.

Assumption 4.3 Let the following hold: (i) µn {u∗
n(z, α0, λ)} = OPZ

(n−1/2) uniformly in

α0 ∈ (Ar
I , || · ||A), λ ∈ Udφ ; (ii) Deff is Donsker in L2(p0µ) and has a p0µ-square interable

envelope function F .

Under assumption 4.3(ii), Deff is a compact subset of the unit sphere of L2(p0µ). Note

that the set of efficient scores in (4.5) is defined as α0 ranges over the constrained null. So,

this Donsker assumption is more reasonable as the set of efficient scores under the null is

not as large.
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Remark 4.1 Although the set Deff
k(n) and its L2(p0µ)−limit set Deff are well-defined, they

have no closed-form expressions for partially identified semiparametric models in general. If

(Ar
I , || · ||A) = {α0} (a singleton), then we could use Fisher norm ||v|| =

√
E0

(
{dℓ(Z;α0)

dα
[v]}2

)

instead of the (rescaled Hellinger or Pearson) distance D(, ) to compute a Riesz representer

on the sieve space, which leads to an alternative yet equivalent expression for Deff
k(n). In

particular,

||v∗n(α0, λ)||2 = sup
α∈An:||α−αD

0n||6=0

∣∣∣λ′ ∂φ(α0)
∂α

[α− αD
0n]
∣∣∣
2

E0

(
dℓ(Z;α0)

dα
[α− αD

0n]
)2 ,

and

Deff
k(n) =

{
d(·) =

dℓ(·;α0)
dα

[v∗n(α0, λ)]

||v∗n(α0, λ)||
: λ ∈ Udφ

}
.

For example, when φ(α) = θ and φ(α0) = θ0 = r0 for {θ0} = ΘI ⊂ int (Θ), we have,

||v∗n(α0, λ)||2 = sup
α∈An:||α−αD

0n||6=0

|λ′(θ − θ0)|2

E0

(
dℓ(Z;α0)

dθ′
(θ − θ0) +

dℓ(Z;α0)
dg

[g − gD0n]
)2

= λ′ (Ik(n)

)−1
λ,

where

Ik(n) ≡ E0

([
dℓ(Z;α0)

dθ′
− dℓ(Z;α0)

dg
[w∗

n(α0)]

]′ [
dℓ(Z;α0)

dθ′
− dℓ(Z;α0)

dg
[w∗

n(α0)]

])
,

w∗
n(α0) =

(
w∗

n1(α0), ..., w
∗
ndθ

(α0)
)
, and for each j = 1, ..., dθ, w

∗
nj(α0) solves

inf
wj∈Gk(n)

E0

[(
dℓ(Z;α0)

dθj
− dℓ(Z;α0)

dg
[wj]

)2
]
.

Then

dℓ(z;α0)

dα
[v∗n(α0, λ)] =

dℓ(z;α0)

dθ′
v∗n,θ(α0, λ) +

dℓ(z;α0)

dg
[v∗n,g(α0, λ)]

=

[
dℓ(z;α0)

dθ′
− dℓ(z;α0)

dg
[w∗

n(α0)]

]
v∗n,θ(α0, λ)

=

[
dℓ(z;α0)

dθ′
− dℓ(z;α0)

dg
[w∗

n(α0)]

] (
Ik(n)

)−1
λ,

and

Deff
k(n) =



d(·) =

[
dℓ(·;α0)

dθ′
− dℓ(·;α0)

dg
[w∗

n(α0)]
] (

Ik(n)

)−1
λ

√
λ′ (Ik(n)

)−1
λ

: λ ∈ Udφ



 .

21



The following Theorem is the main result in this section.

Theorem 4.1 Suppose that all the assumptions of Theorem 3.2 hold with ηn = O(λn) =

o(n−1). In addition, let assumptions 4.1 and 4.3 hold. For any r0 ∈ ℜdφ, let ∅ 6= Ar
I ≡ {α ∈

AI : φ(α) = r0} ⊆ A. Then:
(1) If assumption 4.3(i) holds, then: under the null hypothesis of α0 ∈ Ar

I,

LR(r0) ≡ 2

[
sup

α∈Ak(n)

n∑

i=1

log p(Zi;α)− sup
α∈Ak(n):φ(α)=r0

n∑

i=1

log p(Zi;α)

]

= sup
d∈D

eff

k(n)

(
1√
n

n∑

i=1

d(Zi)

)2

+ oPZ
(1).

(2) If assumption 4.3(ii) holds, then: under the null hypothesis of α0 ∈ Ar
I ,

LR(r0) ⇒ sup
d∈Deff

(W (d))2 in distribution,

where {W (d) : d ∈ Deff} is a tight centered Gaussian process with covariance function

Γ(d1, d2) = E0[d1d2] defined on Deff ×Deff .

Remark 4.2 When φ(α) = θ and φ(α0) = θ0 = r0, Theorem 4.1 immediately yields a

limiting distribution for the sieve profile log-LR statistic LR(θ0) defined in (4.1): Under the

null hypothesis of θ0 ∈ ΘI ∩ int (Θ) and some regularity conditions, we have:

LR(θ0) = sup
d∈Deff

k(n)

(
1√
n

n∑

i=1

d(Zi)

)2

+ oPZ
(1) ⇒ sup

d∈Deff

(W (d))2 in distribution.

This result extends the profile likelihood ratio statistic result of Murphy and Van der Vaart

(2000) to partially identified semiparametric models. It also extends Theorem 3.1 of Liu and

Shao (2003) to allow for unknown nuisance functions belonging to non-compact parameter

spaces.

Remark 4.3 If the restriction φ(α) = r0 point identifies the parameter, i.e., if {α0} =

(Ar
I , ||·||A) (a singleton), and assumption 4.3 is automatically satisfied and supd∈Deff (W (d))2

will reduce to the usual Chi-squared distribution with degree of freedom dφ. Previously, under

point identification (i.e., {α0} = (AI , || · ||A)), the chi-squared distribution result has been

derived by Shen and Shi (2005) for the case of regular φ() (i.e., root-n estimable) and by

Chen and Liao (2009) for the case of irregular φ() (i.e., slower than root-n estimable).

When (Ar
I , || · ||A) is not a singleton, the limiting distribution in Theorem 4.1 no longer

has a simple closed-form expression. The next section provides a computationally attractive

approach to inference based on a weighted bootstrap approximation to this complicated

asymptotic null distribution under partial identification.
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5 Weighted bootstrap

Heuristically, the approach we take to consistently estimate the asymptotic distribution of

the sieve LR statistic is as follows. We generate n-size samples of positive “weights” from

a known distribution with mean 1, and for each of these samples, we compute the weighted

likelihood. We compute the value of LR statistic for each of these weighted likelihoods, and

we show that the empirical distribution of that sample of the weighted likelihood ratio values

consistently estimation the distribution of the (unweighted) LR statistic. This consistency

holds whether or not the parameter is on the boundary, the problem is ill-posed, or rates are

non standard. We first provide assumptions on the weights.

Assumption 5.1 (i) {ωi}ni=1 is a positive, i.i.d. sequence drawn from the distribution

of a positive random variable ω with E[ω] = 1, V ar[ω] = σ2
ω ∈ [0,∞) and ‖ω‖2,1 ≡∫∞

0

√
Pr(|ω| > t)dt < ∞; (ii) {ωi}ni=1 is independent of {Zi}ni=1.

We assume that the bootstrap weights {ωi}ni=1 defined on (W,Ω, PW ). For the joint

randomness involved, the product probability space is defined as

(Z∞,A∞, PZ)× (W,Ω, PW ) = (Z∞ ×W,A∞ × Ω, PZW ).

Since the bootstrap weights {ωi}ni=1 is independent of the data {Zi}ni=1, we have PZW =

PZ × PW .

We only need assumption 5.1 in bootstrap consistency theorem 5.1.

Theorem 5.1 Suppose that all the assumptions of Theorem 4.1 hold and assumption 5.1

holds. Let p̂ ≡ p(·; α̂) = argmaxα∈Ak(n)

n∑
i=1

log p(Zi;α) be the sieve MLE and φ(α̂) = r̂.

Then: conditional on the data {Zi}ni=1 satisfying the null hypothesis of α0 ∈ Ar
I ,

LRω(r̂) ≡ 2

[
sup

α∈Ak(n)

n∑

i=1

ωi log p(Zi;α)− sup
α∈Ak(n):φ(α)=r̂

n∑

i=1

ωi log p(Zi;α)

]

= sup
d∈Deff

k(n)

(
1√
n

n∑

i=1

(ωi − 1)d(Zi)

)2

+ oPZW
(1)

⇒ σ2
ω × sup

d∈Deff

(W (d))2 in distribution,

where {W (d) : d ∈ Deff} is a tight centered Gaussian process with covariance function

Γ(d1, d2) = E0[d1d2].

The following result directly follows from Theorem 5.1.
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Corollary 5.1 Suppose that all the assumptions of Theorem 4.1 hold and assumption 5.1

holds. Let p̂ ≡ p(·; θ̂, ĝ) = argmaxθ∈Θ,g∈Gk(n)

n∑
i=1

log p(Zi; θ, g) be the sieve MLE. Then: con-

ditional on the data {Zi}ni=1 and θ0 ∈ ΘI ∩ int (Θ),

LRω(θ̂) ≡ 2

[
sup

θ∈Θ,g∈Gk(n)

n∑

i=1

ωi log p(Zi; θ, g) − sup
g∈Gk(n)

n∑

i=1

ωi log p(Zi; θ̂, g)

]

⇒ σ2
ω × sup

d∈Deff

(W (d))2 in distribution.

We could apply Theorem 5.1 to construct confidence sets for θ0 ∈ ΘI . Recall that the

sieve profile log-likelihood ratio statistic for θ is

LR(θ) ≡ 2

[
sup

θ′∈Θ,g∈Gk(n)

n∑

i=1

log p(Zi; θ
′, g)− sup

g∈Gk(n)

n∑

i=1

log p(Zi; θ, g)

]
.

Our confidence set Cn is constructed by inverting the log likelihood ratio statistic:

Cn = {θ ∈ Θ : LR(θ) ≤ ĉn(θ, 1− τ )}

where ĉn(θ, 1 − τ) is the (1 − τ ) quantile using the weighted bootstrap with a weight such

that σ2
ω = 1:

ĉn(θ, 1− τ ) = inf

{
x :

1

Bn

Bn∑

j=1

I{LRω
j (θ̂) ≤ x} ≥ 1− τ

}
,

where Bn is the number of bootstrap replications, LRω
j (θ̂) is the j-th bootstrapped version

of the weighted likelihood ratio statistic LRω(θ̂) defined in Theorem 5.1.

6 Monte Carlo

To examine the finite sample behavior of our inferential procedures, we conduct a series of

Monte Carlo experiments. We consider two different versions of the binary dynamic discrete

choice model discussed in Example 2 in Section 2 above. The general model we consider is

yit = 1 {x′
itβ + yi,t−1γ + ui + εit ≥ 0} (6.1)

where we have ui ∼ N(0, σ2
0), with σ0 = 1 and γ0 = .8,. The random variable ǫit is standard

normal independent of the regressors at all time periods. Also, we set the initial condition

distribution g(ui, x
T
i ) ≡ P (yi1 = 1|ui, x

T
i ) ≡ 1

2
.

To build the sieve MLE, the sieve space Gk was taken to be the space of all Bernstein

polynomials of degree k = 4.8 We added penalties on the L2-norms of g and its derivative
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and took λ = .1. Numerical integration of the integral in the sample log likelihood Ln(θ, g) =
n∑

i=1

log p(yTi |xT
i , θ, g, Fu) where

p(yTi |xT
i , θ, g, Fu)

=

∫
{g(u, xT

i )}yi1{1− g(u, xT
i )}1−yi1

T∏

t=2

P (yit|xT
i , yit−1; θ, u)dFu(u)

where

P
(
yit = 0|xT

i , yit−1; θ, u
)
= Φ(−x′

i,tβ − γyi,t−1 − u).

was performed using Halton sequences of length 40. Bootstrap weights ωi were generated

as independent draws from an exp(1) distribution, however we obtained very similar results

using other distributions, including simple two-point distributions such as P [ωi = 1 − a] =

1/2 = P [ωi = 1 + a] for various choices of a ∈ (0, 1). All simulations were performed with

Bn = 500 bootstrap replications and 500 Monte Carlo repetitions.9

We first report results for the case where β = 0. So, the observed data are a vector of

binary choices of size T .

Table 1 shows the actual sizes for individual and joint confidence regions of (γ, σ), defined

as the proportion of Monte Carlo repetitions in which the confidence region contained γ0, σ0

or (γ0, σ0) (Marginal Confidence Regions in the Table). The results show that the actual

sizes are quite accurate even in small samples. This accuracy is not affected by whether

the identified set is large (T = 3) or small (T = 4). For the sake of comparison, k and λ

were kept fixed across different values of sample size n, contrary to the prescription of our

theory. This is manifest in the bias that starts to appear for n = 800, 1600 and is completely

consistent with our results. The filled contour plot, Figure 1, shows the coverage function for

the joint confidence region of (γ, σ) overlaid on the identified set, which is delimited by the

solid white line. In this diagram, the color at any (γ, σ) on the graph corresponds, via the

key on the right, to the actual size of the confidence interval at that point. Additionally, for

8See Chen (2007) for the definitions of all sieve spaces used in this paper. The jth Bernstein polynomial
of degree k is given by

Bk
j (x) =

(
k

j

)
xj(1− x)k−j

and is defined for x ∈ [0, 1] and j = 0, 1, . . . , k. (To build a basis for a function defined outside of [0, 1], one
can scale the evaluation points to lie in [0, 1].) A helpful property of the Bernstein polynomials is that if

g =
∑k

j=0 φjB
k
j , then g ∈ [0, 1] if and only if φ ∈ [0, 1]k+1. This property means that simple lower and upper

bounds in maximizing over φ will guarantee that g is a proper probability over its entire domain.
9The programwas written in the AMPL modeling language and optimizations were solved using KNITRO.

Each Monte Carlo replication takes approximately 1, 3 or 12 minutes on a 2.4Ghz Intel Core 2 Quad for
T = 2, 3 or 4, respectively.
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Table 1: MC Results for Dynamic Discrete Choice with No Regressors

γ T=3
level n=1600 n=800 n=400 n=200
0.500 0.604 0.532 0.500 0.532
0.900 0.954 0.928 0.882 0.898
0.950 0.986 0.966 0.942 0.948
0.990 0.994 0.990 0.992 0.986

γ T = 4
level n=1600 n=800 n=400 n=200
0.500 0.560 0.548 0.468 0.536
0.900 0.940 0.926 0.906 0.878
0.950 0.956 0.960 0.950 0.942
0.990 0.996 0.994 0.990 0.980

σ T=3
level n=1600 n=800 n=400 n=200
0.500 0.534 0.530 0.500 0.504
0.900 0.904 0.904 0.908 0.900
0.950 0.950 0.958 0.944 0.938
0.990 0.988 0.990 0.988 0.986

σ T = 4
level n=1600 n=800 n=400 n=200
0.500 0.504 0.500 0.480 0.518
0.900 0.882 0.908 0.868 0.902
0.950 0.938 0.964 0.936 0.946
0.990 0.980 0.994 0.978 0.990

Joint Confidence Regions
T=3

level n=1600 n=800 n=400 n=200
0.500 0.592 0.544 0.494 0.502
0.900 0.960 0.928 0.894 0.898
0.950 0.972 0.954 0.956 0.942
0.990 0.994 0.982 0.992 0.990

T = 4
level n=1600 n=800 n=400 n=200
0.500 0.550 0.526 0.494 0.524
0.900 0.908 0.932 0.900 0.886
0.950 0.960 0.964 0.946 0.940
0.990 0.990 0.996 0.976 0.984
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Table 2: MC Results for Dynamic Discrete Choice with Regressors: n = 200, T = 3

Marginal CI Joint CI
level β γ (β, γ)
0.500 .442 .464 .462
0.900 .866 .87 .87
0.950 .934 .93 .942
0.990 .984 .982 .986

any given value of n, the results were fairly insensitive to different values of λ and k. Figure

1 shows the coverage functions (one less the power function) obtained from our Monte Carlo

experiment with T = 3 and n = 200, 400, 800 and 1600.

We also investigated a similar dynamic binary response model with a single continuous,

time-invariant, covariate xi ∼ N(0, 1), independently of ui and ǫit with coefficient β0 = 1

in (6.1) above. This model is especially interesting because of the presence of a continuous

regressor. Due to computational concerns, in this case we assumed that the distribution

of ui was known to be discrete with equal probability on support points .2, .4, .6, .8.10 The

actual sizes when n = 200 and T = 3 are shown in Table 2 and the one and two dimensional

coverage functions are shown in Figure 3.

As we can see from above for the design we have, the Monte Carlo experiments show ad-

equate small sample performance and more importantly a reasonable computational burden.

7 Empirical Applications

We applied our methods to three interesting economic applications. In the first,we study a

duration model with unobserved heterogeneity as in Heckman and Singer. There, it is not

clear whether the structural parameters are point identified, and even if they are, the iden-

tification is at infinity and the parameter is estimated slower than root-n rate. We provide

confidence region using our approach and contrast ours to the ones commonly implemented

in empirical work assuming the estimated parameter is root-n asymptotic normal. In the

second example, we examine a model of intergenerational schooling where a child’s schooling

level is explained by the parents’. The regression suffers from a censoring problem since we

do not observe the full schooling of some of the children due to the fact that those children

10These issues arise from the computational difficulties involved with numerical integration. As our em-
pirical examples show, our method is applicable to much more computationally complex models than we
investigated in our Monte Carlo studies. However, in Monte Carlo simulations, where the model must be
estimated several hundred times, simpler models are more manageable.
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Figure 1: Confidence Regions for γ, σ
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Figure 2: Coverage Functions for γ

Figure 3: Confidence Regions for γ, β for Model (6.1)
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were still enrolled in school at the time of survey. This is an example of linear regression

with interval data on the outcome.

7.1 Length of Unemployment Spells

We estimated a duration model of the type described in Example 1 of Section 2 with a

Weibull hazard function,

log λ(t|x, u) = α′x+ β log t+ u,

where t is time until becoming employed, X are covariates, u is an unobservable, assumed

to be independent of X , and β > −1 is a shape parameter for the Weibull distribution. The

observable density of spell lengths in is then

p(t|x; θ, g) =
∫

u

tβ exp

(
α′β+1

(
eα

′x+u

β + 1

))
dg(u),

where θ = (α, β) and g() is a parameter corresponding to the distribution of unobserved

heterogeneity. Theoretically, it is rare that one has any information about the heterogeneity

distribution, and so the empirical literature has used various distributions g(.) based on

computational ease and familiarity. Heckman and Singer (1984) in important work showed

that under certain support conditions, the parameter of interest θ is point identified in

the limit without making assumptions on g, and provided a non-parametric likelihood type

estimator for it. This identification of θ in this model (with unknown g) is fragile because

point identification is reached in the limit as durations approach zero. This is an example

of a model that is “identified at infinity” (See Ishwaran (1996)). More generally, it is a

semiparametric mixture model with a structural parameter and in these models, it is difficult

to provide sufficient point identification conditions. Regardless, our inference procedure is

consistent whether or not θ is point identified, or whether or not in case of point identification,

it can be estimated at a regular
√
n rate of convergence.

Our sample is drawn from the 1979 youth cohort National Longitudinal Survey of Labor

Market Experience. A detailed description of this data set can be found for example in

Keane and Wolpin (1997). We follow 1,119 young men who were 16 years old in 1977

and appear in the survey every year between 1980 and 1986, inclusive, restricting attention

only to those who were unemployed with 12 years of schooling or less in 1980 and who

did not re-enter school during the sample. For covariates we use an indicator for black,

years of schooling and an indicator for having completed high school (12 years of schooling).

Approximately half of the sample remained unemployed for the entire time period and are

thus considered to be censored in our construction of the likelihood. In the left hand side of

Table ??, we provide first confidence regions for the parameters constructed marginally using
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our bootstrap procedure. This top half uses the semiparametric Heckman/Singer like model

with a nonparametric g(.) while the bottom half uses uses a standard normal distribution

for the heterogeneity distribution and is there for comparison. We see that the estimates are

close but with important differences. Compare for example the effect of education. Both

the coefficients on education and high school seem to be higher in magnitude in the normal

model, while Figure 4 shows the joint confidence regions for pairs of parameters. One can

see that upper and lower endpoints of these confidence regions change and are different than

the marginal cases as to be expected. The shape of these confidence regions reflect first the

shape of the identified set. Also, these confidence regions reflect a slight departure from

asymptotic normality (in case we think the model parameters are point identified). These

confidence regions again are robust to both departures from normality and regular rates,

and to failure of point identification. In the figure in Table 3 below, we plot the “estimated”

density of g(.) using the estimated sieve coefficients. It shows departures from normality11

As we can see in this example, using a normal density for the unobserved heterogeneity

provides a slightly biased estimates in this sample.

Table 3: Sensitivity with respect to heterogeneity distribution

Nonparametric g
Parameter Marginal Confidence Region

β [−.0488, .0798]
Black [−.83,−.429]

Education [−.0813,−.0369]
High School [.868, 1.352]

Standard Normal g
Parameter Marginal Confidence Region

β [−.0035, .135]
Black [−.88,−.465]

Education [−.20,−.167]
High School [1.205, 1.704]

11It is not clear whether the density of g(.) is identified. Moreover, this paper does not contain a theory for
inference on infinite dimensional parameters that are not point identified. So, a comparison of the estimate
of density of g() constructed using estimated sieve coefficients is an approximation at best.
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Figure 4: Joint Confidence Regions
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7.2 Intergenerational Schooling Mobility with Discretized Sam-
ples

Censoring occurs frequently in applied work and often causes practitioners to adopt ad hoc

functional forms especially in cases when the dependent variable is interval measured. One

such situation arises when trying to determine the impact of a parent’s schooling level on

that of their children. But, if at the time of the survey, some of the children are still in school,

schooling for those children will belong to a predefined interval (is censored). Given that

schooling is discrete, then, for the censored observations, we observe that these belong to a

bin, as in higher than highschool, or more than a college, etc. So, the dependent variable when

it is censored can take finitely many values. So, this is an example where the likelihood for

the econometrics model depends on the specification of the error distribution. An interesting

data set that we use is the most recent wave of the Wisconsin Longitudinal Study (WLS)

which contains data on the completed levels of schooling for adults who graduated from

high school in 1957 and their children for the years 1975, 1992 and 2004. In the 1992 data,

children’s schooling level is censored for some observations, whereas in the 2004 data it is

not since the survey updated the censored observations. De Haan and Plug (2011) and

Plug (2004) exploit this unique feature of the WLS to evaluate the effectiveness of various

approaches for censored data by comparing these approaches applied to the 1992 data to the

estimates from the uncensored 2004 data. Our motivation is similar to that of De Haan and

Plug (2011) in that we want to evaluate the effectiveness of our semiparametric approach in

solving this censoring problem by comparing its performance to the results obtained using

the uncensored data.

Consider a simple linear regression of the form

Yi = α + βXi + ǫi,

where Xi is parent’s completed level of schooling and Yi is their child’s level of schooling

which is either censored or uncensored depending on the sample. We also controlled for age

and gender. Here, since when Y is unobserved, we know that it must belong to a finite

number of ranges, so the likelihood of the observed data can be written easily as a function

of the distribution of ǫ. The Tobit model assumes that Xi ⊥ ǫi and ǫi ∼ N(0, σ2). The

model we estimate is a semiparametric generalization of this,

Yi = α+ βXi + σcσ(Xi)ǫi = α + βXi + ui,

where ǫi|Xi is distributed according to some unknown G that has mean zero, variance 1 and

density g. Here σ denotes an unknown heteroskedasticity function and σc is a common scalar
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Table 4: Sensitivity in Censored Model of Schooling

Nonparametric G(.) and σ(.)
Parameter Marginal Confidence Region

β [.292, .453]
Age [−.1975,−.058]

Gender [−.12, .185]
Intercept [11.82, 14.71]

Uncensored
Parameter Marginal Confidence Region

β [.324, .372]
Age [−.099,−.067]

Gender [−.24, .226]
Intercept [11.35, 12.56]

Comparing CI’s for β under Various Assumptions
Model β
Tobit [.366, .421]

Normal and Heteroskedastic [.368, .426]
NonNormal and Homoskedastic [.267, .382]

scale parameter (which is unnecessary but we use it for ease of computations). It follows that

ui|Xi ∼ σcσ(Xi)ǫi, so that E(ui|Xi) = 0 and V ar(ui|xi) = σ2
cσ(Xi)

2. Letting di = 1 if the

observation is censored and 0 otherwise and writing θ = (α, β, σc), the sample log-likelihood

for this model is

Ln(θ, σ, g) =
n∑

i=1

(1− di) log

(
1

σcσ(Xi)
g

(
Yi − α− βXi

σcσ(Xi)

))

+

n∑

i=1

di log

(
1−G

(
Yi − α− βXi

σcσ(Xi)

))
.

We approximated σ by a second degree polynomial spline with a knot at Xi = 12 years

(completed high school) and g by a fifth degree Hermite polynomial constrained to be a

proper density with zero mean and variance one. Penalties were added on the L2-norms of

σ, σ′ and g with λσ = 1 and λg = .01. We took Xi to be father’s schooling and added a

small amount of mean zero measurement error to Yi to make it continuous.12 We also added

controls for age and gender. The program was written in AMPL, used SNOPT as the solver

and took about six hours to run.

12Note that the fully parametric Tobit model applied to unadjusted schooling data is vulnerable to the
same objection.
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The results are presented in Table 4. The estimates from the uncensored data should be

viewed as the benchmark to which the other models are compared. The uncensored model

is a linear regression and so is consistent under arbitrary heteroskedasticity, while our model

restricts the model to multiplicative heteroskedasticity. The results in Table 4 for our esti-

mator reports “marginal” confidence regions for every parameter, i.e., say for β, a marginal

CI is defined as the CI constructed while we profile out the rest of the parameters (along

with the unknown function). As we can see, the results are close across regressors. The Tobit

model without heteroskedasticity shows some bias. While this is corrected somewhat by the

Tobit model with unknown heteroskedasticity, some bias remains. When we relax the nor-

mality assumption and continue to allow for heterogeneity, the resulting confidence interval

for schooling contains that from the uncensored model. These results show that while spe-

cific functional forms on unobservables introduce misspecification bias, our semiparametric

estimator does not, albeit at the cost of wider confidence intervals. In addition, and for the

semiparametric results, we obtained confidence regions as we varied the parameters for the

Sieve and the penalizations and found that varying these tuning parameters did not have a

noticeable impact13. The conclusion here is that in this sample, the estimates of β are not

very sensitive to specifying a distribution for the errors. Finally, in Figure 5, we plot the

estimated distribution Ĝ and also the heteroskedasticity function σ̂(.) using the estimated

sieve parameters.

Figure 5: Estimated density and heteroskedasticity function in Example 4.2

7.3 Entry in the Airline Industry

Berry (1992) examined several models of entry in the airline industry with a general profit

13The results for these runs can be obtained from the authors upon request.
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function of the form

πik(N) = c+Xiβ − δ logN + Zikα + ρui0 +
√

1− ρ2uik, (7.1)

where πik(N) is the profit of the kth firm in the ith market when there are N other firms

present, Xi are observed market-specific covariates, Zik are observed firm-market covariates,

ui0 ∼ N(0, 1) is market-specific unobserved heterogeneity and uik is unobserved firm-specific

heterogeneity. Berry (1992) proved that under this profit function all pure strategy Nash

equilibria involve a unique number of firms N∗
i , which is assumed to be what is observed. We

consider a special case of (7.1), also considered by (Berry 1992), where there is no unobserved

firm heterogeneity, i.e. ρ = 1, and hence the model reduces to an ordered probit. While

Berry (1992) assumed homoskedasticity across markets, we will allow for heteroskedasticity

to enter in an unknown way so that our profit equation becomes

πik(N) = c+Xiβ − δ logN + Zikα + σ(Xi)ui0, (7.2)

where σ is an unknown function that is positive and bounded away from zero. Although

with enough variation in the regressor the above model might be point identified, it is not

clear that with the data we have, the model parameters are point identified when we allow

for heteroskedasticity of unknown forms.

To start, let φik = Xiβ + Zikα and order the firms from most to least profitable so that

φi1 > φi2 > · · · > φiKi
. The probability that N or more firms enter in market i is the

probability that the N th
i most profitable firm entered, or

Prob[N∗
i ≥ N ] = Prob [πiNi

(N) > 0] = Φ

[
δ logN − c− φiNi

σ(Xi)

]
.

It is then straightforward to construct the corresponding likelihood function of θ = (c, α, β, δ)

and σ by differencing these probabilities.

The data come from the Origin and Destination Survey of Air Passenger Traffic for the

first and third quarters of 2001. Markets i = 1, . . . , N = 1028 are defined as city-city pairs

of routes and k indexes firm identities.14 Like Berry (1992), we model the entry decision as

a 6 month (two quarter) process and we define the number of potential entrants for market i

in the third quarter, Pi, as all firms who served a route originating or ending in one or both

of the cities corresponding to pair i in the first quarter and we use distance between markets

(Xi) and market presence (Zik) as covariates.

Let Gk be the collection of all second degree polynomial splines with a knot at the

median of Xi. In practice we take gk ∈ Gk and let σk = exp(gk), which ensures that

14These firm identities are American Airlines, Continental, Delta, Northwest, USAir, medium airline and
low-cost airline.
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σk > 0. We also place an L2 penalty on the norm of gk and its derivative and set λ = .01,

although the results were fairly insensitive to this choice. The 500 bootstrap draws are

taken from an exp(1) distribution. The program was written in AMPL and the likelihood

was optimized with SNOPT. Estimation takes about 2 hours with the same processor used

for the simulations. The marginal confidence regions are presented in Table 5 and compared

alongside the parametric case where σ(Xi) ≡ ρ. Also, joint confidence regions are presented

in Figure 6.

There, we also present results as a function of the various tuning parameters that we

chose. Overall, these suggest that the homoskedastic model considerably understates the

impact on profits of the number of firms in the market relative to distance, but is approx-

imately accurate on the relative import of number of firms to market presence (compare

the CI for δ between our model and the parametric homoskedastic MLE). This is important

since the parameter δ measures the relative impact of competition (having an extra entrant).

Overall, though, and looking across the estimates, in these data, the impact of the various

tuning parameters seems minimal15.

8 Conclusion

Empirical economic models are built upon a set of assumptions that define the model. Some

of these assumptions are motivated by economic theory such as optimizing behavior but other

assumptions are made solely for the purpose of “closing the model”, or to obtain a complete

econometric structure and are motivated by simplicity, familiarity and ease of computation.

On the one hand, these assumptions allow economists to use standard methods for inference

that rely on simple computational procedures to obtain estimates of the key parameters. On

the other hand, these estimates suffer from the serious criticism that they are sensitive to

the ad-hoc assumptions made. A response to this criticism is to weaken these extraneous

assumptions. But often times this weakening leads to partial identification of the parameter

of interest and (sufficient) conditions for point identification, when available, rely on support

conditions that are hard to satisfy in typical data.

The loss of point identification can have serious consequences on the way one conducts

inference since standard asymptotic distribution theory results derived under point identi-

fication are no longer valid. We fill an important gap here by examining the question of

inference in likelihood models in the presence of unknown nuisance functions, allowing for

the parameter of interest to be partially identified or irregular even if point identified. A

15We ran more specifications with more tuning parameters. We are only reporting a smaller, but repre-
sentative set.
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Table 5: Sensitivity in Entry Model to Fixed Cost Distribution

Semiparametric Results (marginal CI)a. Homoskedastic
2, 1, 10−4 2, 1, 10−3 2, 1, 10−2 2, 1, 10−4 2,2, 10−4 2,3, 10−4 3,3, 10−2 MLE

Int [−1.707,−.792] [−1.691,−.805] [−1.621,−.857] [−1.59, .89] [−1.78,−.78] [−1.87,−.77] [−1.95,−.73] [−1.62,−.98]
δ [1.005, 1.511] [1.007, 1.515] [1.013, 1.492] [.98, 1.311] [.97, 1.538] [.94, 1.52] [.97, 1.56] [.92, 1.12]

MktPres [2.291, 3.920] [2.23, 3.902] [2.38, 3.78] [2.54, 3.76] [2.23, 4.1] [2.22, 4.38] [2.16, 4.15] [2.70, 3.75]
Dist [.811, 1.163] [.815, 1.153] [.82, 1.11] [.848, 1.096] [.78, 1.24] [.78, 1.31] [.71, 1.31] [.835, 1.108]

aThe parameters in the third row correspond to various combinations of tuning parameters: (2,1, 10−4) signifies a second degree polynomial, with
1 knot, and the penalty parameter is set to 10−4
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Figure 6: Confidence Regions for the Berry Entry Model
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semiparametric likelihood approach is attractive since it automatically leads to efficiency

and chi-square inference when the parameter of interest happens to be point identified. Our

weighted bootstrap procedure is very easy to implement and performs well in finite sample

Monte Carlo studies.

Although our semiparametric approach is more robust, our model might still be mis-

specified. In this case, the identified set can be interpreted as the pseudo true identified set

and represents the set of parameters that minimize the KL distance between the data dis-

tribution and the model implied distribution. More generally, the issue of misspecification

in partially identified models is delicate, especially in terms of interpreting the identified

set, and so we leave that for future research. Finally, our theoretical results in this paper,

specifically Theorem 4.1, hold at a fixed distribution P0, i.e. pointwise. It is not clear that

this limit distribution holds uniformly over all P0 in some space of implied distributions.

This might be relevant in some cases, such as models where φ(.) or θ0 lie on the boundary

of the parameter space. Though our asymptotic distribution still holds pointwise, it might

suffer from uniformity issues. This is difficult even in parametric likelihood models such as

Liu and Shao’s (See Andrews and Cheng (2010)). We view this as an important problem

that we leave for future work.
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A Consistency of penalized sieve extremum estimation

under partial identification

In this section, we provide a set consistency result for general extreme estimation prob-

lems where the parameter is defined in a general function space and where point identification

is relaxed. The result stated in Theorem 3.1 is clearly a subset of the result below and hence

we skip its proof.

Assumption A.1 Let the followings hold:

1. Parameter space and objective function: (i) A = Θ×G ⊆ A = ℜdθ ×G, Θ is a

compact, nonempty subset of a Euclidean space (ℜdθ , | · |e), and G is a closed, bounded

and nonempty subset of a separable infinite dimensional Banach space (G, || · ||G); (ii)
Q : A → [0,∞) is lower semicontinuous on A under ||α||A = |θ|e + ||g||G; (iii) the

identified set, AI = ΘI × GI = {α ∈ A : Q(α) = 0}, is a nonempty, closed, bounded

strict subset of A under || · ||A.

2. Sieve space (i) for each k ≥ 1, Ak = Θ × Gk ⊆ A, Gk is closed under || · ||G with

dim(Gk) < ∞; (ii) ∅ 6= Gk ⊆ Gk+1 ⊆ G for all k ≥ 1, and ∪∞
k=1Gk is dense in G under

|| · ||G. That is, for any g ∈ G, there is Πkg ∈ Gk such that ||g−Πkg||G → 0 as k → ∞.

3. Penalty function There is a function Pen : G → [0,∞) such that: (i) Pen(.) is a

measurable function such that supg∈GI
Pen(g) < ∞; (ii) the set {g ∈ G : Pen(g) ≤ M}

is compact under || · ||G for all M ∈ [0,∞); (iii) λn > 0, and λn supg∈GI
|Pen(Πng)−

Pen(g)| = O(λn) = o(1).

4. Uniform convergence on sieve space

max
{
supα∈Ak(n)

|Qn(α)−Q(α)| , sup(θ,g)∈AI
Q(θ,Πng)

}
= Op0(λn) = oP0(1).

Theorem A.1 Let Ân be the collection of α̂n = (θ̂n, ĝn) ∈ Ak(n) = Θ× Gk(n) that solves

Qn(α̂n) + λnPen(ĝn) = inf
α∈Ak(n)

[Qn(α) + λnPen(g)] .

Let Assumption A.1 hold. Then:

dA(α̂n,AI) ≡ inf
α∈AI

||α̂n − α||A = op0(1),

and Pen(ĝn) = Op0(1).
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Proof of Theorem A.1: Under assumption A.1, Âk(n) is non-empty, compact under

|| · ||A for any given data. Take any α̂n ∈ Âk(n), it is well-defined and measurable. In the

following we denote ĉQn ≡ supα∈Ak(n)
|Qn(α)−Q(α)| and Πnα ≡ (θ,Πng). For any ε > 0,

Pr (dA(α̂n,AI) > ε)

≤ Pr

(
inf

α∈Ak(n):dA(α,AI)≥ε
[Qn(α) + λnPen(g)] ≤ sup

α∈AI

[Qn(Πnα) + λnPen(Πng)]

)

≤ Pr

(
infα∈Ak(n):dA(α,AI )≥ε {Q(α) + λnPen(g)− |Qn (α)−Q (α)|}
≤ supα∈AI

[Q(Πnα) + λnPen(Πng) + |Qn (Πnα)−Q (Πnα)|]

)

≤ Pr

(
inf

α∈Ak(n):dA(α,AI)≥ε
{Q(α) + λnPen(g)} ≤ sup

α∈AI

[Q(Πnα) + λnPen(Πng)] + 2ĉQn

)

≤ Pr

(
infα∈Ak(n):dA(α,AI )≥ε {Q(α) + λnPen(g)}

≤ supα∈AI
{Q(Πnα)}+ λn supg∈GI

Pen(g) + 2ĉQn

)

≤ Pr

(
inf

α∈Ak(n):dA(α,AI)≥ε
{Q(α) + λnPen(g)} ≤ ∆n

)
where ∆n = O(λn).

We divide Ak(n)(ε) ≡ {α ∈ Ak(n) : dA(α,AI) ≥ ε} into two disjoint sets: A+
k(n)(ε) ≡ {α ∈

Ak(n)(ε) : Pen(g) ≤ 2λ−1
n ∆n +M} for any M > 0, and A−

k(n)(ε) ≡ Ak(n)(ε) \ A+
k(n)(ε). Note

that

inf
α∈A−

k(n)
(ε)

{Q(α) + λnPen(g)} ≥ 2∆n + λnM > ∆n

Thus Pr
(
infα∈A−

k(n)
(ε) {Q(α) + λnPen(g)} ≤ ∆n

)
= 0; hence

Pr (dA(α̂n,AI) > ε) ≤ Pr

(
inf

α∈A+
k(n)

(ε)
{Q(α) + λnPen(g)} ≤ ∆n

)

≤ Pr

(
inf

α∈A+(ε)
{Q(α) + λnPen(g)} ≤ ∆n

)
,

where A+(ε) ≡
{
α ∈ A : dA(α,AI) ≥ ε, Pen(g) ≤ 2λ−1

n ∆n +M
}
.

Given that assumption A.1.3(ii), the fact that {α ∈ A : dA(α,AI) ≥ ε} is closed, and that

∆n = O (λn), we have that the set A+(ε) is compact under || · ||A. Moreover, Q(α) is lower

semicontinuous on A under || · ||A (assumption A.1.1(ii)). Theorem 38.B of Zeidler (1985)

now implies that the minimization problem,

inf
α∈A+

k(n)
(ε)

{Q(α) + λnPen(g)}

has a solution, αn, which belongs to the set A+(ε). Therefore, the sequence {αn} must

have a further subsequence, denoted as {αnk
}, that converges to a limit α∞ in || · ||A and

α∞ ∈ {α ∈ A : dA(α,AI) ≥ ε, Pen(g) ≤ M} for some M ∈ [0,+∞). By assumption
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A.1.1(ii)(iii) and Pen(g) ≥ 0, we have:

0 ≤ Q(α∞) ≤ lim inf
n

{Q(αn)} ≤ lim inf
n

∆n = 0.

This implies that α∞ ∈ AI , which contradicts α∞ ∈ {α ∈ A : dA(α,AI) ≥ ε, Pen(g) ≤ M}.
Thus dA(α̂n,AI) = oP (1). Next, by definition, there is a α∗ ∈ AI such that

0 ≤ λnPen(ĝn) ≤ Qn(Πnα
∗) + λnPen(Πng

∗)

≤ Qn(Πnα
∗)−Q(Πnα

∗) + λn[Pen(Πng
∗)− Pen(g∗)] +Q(Πnα

∗) + λnPen(g∗)

≤ sup
α∈Ak(n)

|Qn(α)−Q(α)|+ λn sup
g∈GI

|Pen(Πng)− Pen(g)|+ sup
α∈AI

Q(Πnα) + λn sup
g∈GI

Pen(g) = O(1)

thus Pen(ĝn) = Op0(1). Q.E.D.

B Proof of Theorem 4.1

Denote ℓ(Z, α) ≡ log p(Z, α), χ(α, α0) ≡ χ(p(·, α), p0) and

s(z;α) = sχ(z;α) ≡
p(z,α)
p(z,α0)

− 1

χ(α, α0)
; E0 [s(Z;α)] = 0; E0

[
(s(Z;α))2

]
= 1.

For all α ∈ B(α0), using the fact log(1 + u) = u − 0.5u2[1−rem(u)] with rem(u) → 0 as

u → 0, we have, with u = χ(α, α0)s(Z;α),

ℓ(Z, α)− ℓ(Z, α0) = log

(
1 +

[
p(Z, α)

p(Z, α0)
− 1

])
= log [1 + χ(α, α0)s(Z;α)] = log(1 + u)

= χ(α, α0)s(Z;α)−
1

2
[χ(α, α0)s(Z;α)]

2 {1− rem(χ(α, α0)s(Z;α))}

Then, we have

E0[ℓ(Zi, α)− ℓ(Zi, α0)]

= −K(α0, α) = −1

2
[χ(α, α0)]

2 +
1

2
[χ(α, α0)]

2E0[s(Z;α)
2rem(χ(α, α0)s(Z;α))].

By Remark 3.3, K(α0, α) =
1
2
[χ(α, α0)]

2(1+ o(1)) uniformly in α when χ(α, α0) is small, we

have:

1

n

n∑

i=1

[ℓ(Zi, α)− ℓ(Zi, α0)]

= −K(α0, α) + χ(α, α0)µn {s(Z;α)} −
1

2
[χ(α, α0)]

2µn

{
s(Z;α)2[1− rem(χ(α, α0)s(Z;α))]

}

= −1

2
[χ(α, α0)]

2(1 + o(1)) + χ(α, α0)µn {s(Z;α)}+ µn {R(Z;α, α0)}
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where

R(Z;α, α0) = −1

2
[χ(α, α0)s(Z;α)]

2 {1− rem(χ(α, α0)s(Z;α))} .

Recall that

u∗
n(z, α0, λ) ≡

v∗n(z, α0, λ)

||v∗n(α0, λ)||
=

v∗n(z, α0, λ)√
V ar0[v∗n(Z, α0, λ)]

.

Then

E0 [u
∗
n(z, α0, λ)] = 0; E0

[
(u∗

n(z, α0, λ))
2
]
= 1.

We now consider perturbation in probability density sieve space: for all α ∈ Bn(α0) and

tn ∈ Tn ≡ {t ∈ [−1, 1] : |t| ≤ const.× n−1/2},

p(z, α(tn)) = p(z, α) + tnu
∗
n(z, α0, λ)p0(z).

Thus

[χ(α(tn), α0)]
2 − [χ(α, α0)]

2

= E0

[(
p(Z, α(tn))

p0(Z)
− 1

)2
]
− E0

[(
p(Z, α)

p0(Z)
− 1

)2
]

= E0

[(
p(Z, α)

p0(Z)
− 1 + tnu

∗
n(Z, α0, λ)

)2
]
−E0

[(
p(Z, α)

p0(Z)
− 1

)2
]

= 2tnE0

[(
p(Z, α)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
+ t2n.

µn {χ(α(tn), α0)s(Z;α(tn))} − µn {χ(α, α0)s(Z;α)}

= µn

{
p(Z, α(tn))

p(Z, α0)
− p(Z, α)

p(Z, α0)

}

= tn × µn {u∗
n(Z, α0, λ)} .

Therefore, uniformly over α0 ∈ (AI , || · ||A), λ ∈ Udφ , α ∈ Bn(α0) and tn ∈ Tn, we have:

1

n

n∑

i=1

[ℓ(Zi, α(tn))− ℓ(Zi, α)]

=
1

n

n∑

i=1

[ℓ(Zi, α(tn))− ℓ(Zi, α0)]−
1

n

n∑

i=1

[ℓ(Zi, α)− ℓ(Zi, α0)]

= − [χ(α(tn), α0)]
2 − [χ(α, α0)]

2

2
(1 + o(1)) + µn {χ(α(tn), α0)s(Z;α(tn))− χ(α, α0)s(Z;α)}+ oPZ

(n−1)

= −
2tnE0

[(
p(Z,α)
p0(Z)

− 1
)
u∗
n(Z, α0, λ)

]
+ t2n

2
(1 + o(1))

+tn × µn {u∗
n(Z, α0, λ)}+ oPZ

(n−1).
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Theorem B.1 Suppose that Assumptions 4.1 and 4.2 hold and that α̂n is a sieve MLE.

Then: (1) uniformly over α0 ∈ (AI , || · ||A), λ ∈ Udφ , α ∈ Bn(α0) and tn ∈ Tn,

1

n

n∑

i=1

[ℓ(Zi, α(tn))− ℓ(Zi, α)]

= tn

(
µn {u∗

n(Z, α0, λ)} − E0

[(
p(Z, α)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
(1 + o(1))

)

−t2n
2
+ oPZ

(n−1);

(2) Uniformly over α0 ∈ (Ar
I , || · ||A) and λ ∈ Udφ ,

∣∣∣∣E0

[(
p(z, α̂n)

p0(z)
− 1

)
u∗
n(z, α0, λ)

]
− µn {u∗

n(z, α0, λ)}
∣∣∣∣ = oPZ

(n− 1
2 ).

Thus under assumption 4.3(i), we have: uniformly over α0 ∈ (Ar
I , || · ||A) and λ ∈ Udφ ,

∣∣∣∣E0

[(
p(Z, α̂n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]∣∣∣∣ = OPZ
(n− 1

2 ).

(3) Uniformly over α0 ∈ (Ar
I , || · ||A) and λ ∈ Udφ ,

sup
α∈Bn(α0)∩{α:φ(α)=r0}

∣∣∣∣E0

[(
p(Z, α)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]∣∣∣∣ = oPZ
(n− 1

2 ).

Proof of Theorem B.1: Result (1) is already proved before the statement of the

theorem.

For Result (2). Let εn = o(n− 1
2 ). For any α ∈ Bn(α0) ⊂ An, consider a local perturba-

tion

p(z, α(εn)) = p(z, α)± εn × u∗
n(z, α0, λ)× p0(z) ∈ Pk(n).

By assumption 4.2: uniformly over α0 ∈ (Ar
I , || · ||A) and λ ∈ Udφ ≡ {λ ∈ ℜdφ : |λ|e = 1},

and by the definition of α̂n, we have

−oPZ
(n−1) ≤ 1

n

n∑

i=1

ℓ(Zi, α̂n)−
1

n

n∑

i=1

ℓ(Zi, α̂(εn))

=
±2εnE0

[(
p(Z,α̂n)
p0(Z)

− 1
)
u∗
n(Z, α0, λ)

]
+ ε2n

2
(1 + o(1))

∓εn × µn {u∗
n(Z, α0, λ)}+ oPZ

(n−1).

By the definition of u∗
n(α0, λ) and εn = oPZ

(n− 1
2 ), we obtain

∣∣∣∣E0

[(
p(Z, α̂n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
− µn {u∗

n(Z, α0, λ)}
∣∣∣∣ = oPZ

(n− 1
2 ).
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Since

E0

[(
p(Z, αD

0n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
= 0,

we also have

E0

[(
p(Z, α̂n)− p(Z, αD

0n)

p0(Z)

)
u∗
n(Z, α0, λ)

]
= µn(u

∗
n(Z, α0, λ)) + oPZ

(n− 1
2 )

holds uniformly in α0 ∈ (Ar
I , || · ||A) and λ ∈ Udφ .

For Result (3). Under Assumption 4.1.(ii), we have uniformly over α0 ∈ Ar
I ≡ {α ∈

AI : φ(α) = r0}: ∣∣∣λ′ ∂φ(α0)
∂α

[αD
0n − α0]

∣∣∣
||v∗n(·, α0, λ)||

= o(n− 1
2 ). (B.1)

For all α ∈ Bn(α0) ∩ {α : φ(α) = r0} and for all α0 ∈ Ar
I ≡ {α ∈ AI : φ(α) = r0}, under

Assumption 4.1.(ii), we have, uniformly over α0 ∈ Ar
I :

∣∣∣λ′ ∂φ(α0)
∂α

[α− α0]
∣∣∣

||v∗n(·, α0, λ)||
= o(n− 1

2 )

∣∣∣∣E0

[(
p(Z, α)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]∣∣∣∣

=

∣∣∣∣E0

[(
p(Z, α)− p(Z, αD

0n)

p0(Z)

)
u∗
n(Z, α0, λ)

]∣∣∣∣

=

∣∣∣λ′ ∂φ(α0)
∂α

[α− αD
0n]
∣∣∣

||v∗n(·, α0, λ)||

≤

∣∣∣λ′ ∂φ(α0)
∂α

[α− α0]
∣∣∣

||v∗n(·, α0, λ)||
+

∣∣∣λ′ ∂φ(α0)
∂α

[αD
0n − α0]

∣∣∣
||v∗n(·, α0, λ)||

= oPZ
(n− 1

2 ).

Thus Result (3) is true. Q.E.D

Recall that the unconstraint sieve MLE α̂n is

α̂n ∈ Ân ≡ arg max
α∈An

{
n∑

i=1

log p(Zi;α)− oPZ
(1)

}
,

and the constraint sieve MLE α̃n is

α̃n ∈ Ãn ≡ arg max
{α∈An: φ(α)=r0}

{
n∑

i=1

log p(Zi;α)− oPZ
(1)

}
.

Theorem 4.1 immediately follows from the following Theorem B.2 and assumption 4.3(ii):
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Theorem B.2 Suppose that assumptions 4.1, 4.2 and 4.3(i) hold. Then under null of α0 ∈
Ar

I, we have

LR(r0) ≡ 2

[
n∑

i=1

ℓ(Zi, α̂n)−
n∑

i=1

ℓ(Zi, α̃n)

]

= sup
α0∈Ar

I
,λ∈Udφ

[√
nµn {u∗

n(·, α0, λ)}
]2

+ oPZ
(1)

= sup
d∈Deff

k(n)

[√
nµn {d(·)}

]2
+ oPZ

(1).

Proof of Theorem B.2: The proof consists of several steps. Let c > 0 denote a finite

constant in the following proof.

Step 1: By the definitions of α̂n and α̃n, we have:

1

n

n∑

i=1

[ℓ(Zi, α̂n)− ℓ(Zi, α̃n)]

≥ max

{
sup

tn∈Tn,α̃n(tn)∈Bn(α0)

1

n

n∑

i=1

[ℓ(Zi, α̃n(tn))− ℓ(Zi, α̃n)]− oPZ
(n−1), 0

}

where α̃n(tn) ∈ Bn(α0) ⊂ Ak(n) satisfies

p(z, α̃n(tn))

p0(z)
=

p(z, α̃n)

p0(z)
+ tnu

∗
n(z, α0, λ).

By definitions of α̃n(tn) and α̃n, and by Theorem B.1(1), under the null, we have:

1

n

n∑

i=1

[ℓ(Zi, α̃n(tn))− ℓ(Zi, α̃n)]

= tn

(
µn {u∗

n(Z, α0, λ)} −E0

[(
p(Z, α̃n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
(1 + o(1))

)

−t2n
2
+ oPZ

(n−1).

Since α̃n ∈ Bn(α0) ∩ {α : φ(α) = r0} wpa1, by Theorem B.1(3), we have:

E0

[(
p(Z, α̃n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
= oPZ

(n−1/2).

Then, for all tn ∈ Tn we have:

1

n

n∑

i=1

[ℓ(Zi, α̃n(tn))− ℓ(Zi, α̃n)] = tn × µn {u∗
n(Z, α0, λ)} −

t2n
2
+ oPZ

(n−1),
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which is maximized at tn = µn {u∗
n(Z, α0, λ)}, and hence

sup
tn∈Tn

1

n

n∑

i=1

[ℓ(Zi, α̃n(tn))− ℓ(Zi, α̃n)]− oPZ
(n−1)

=
[µn {u∗

n(Z, α0, λ)}]2
2

+ oPZ
(n−1).

Thus

1

n

n∑

i=1

[ℓ(Zi, α̂n)− ℓ(Zi, α̃n)] ≥ max

{
[µn {u∗

n(Z, α0, λ)}]2
2

+ oPZ
(n−1), 0

}
.

Step 2. By the definition of α̃n, we have:

1

n

n∑

i=1

ℓ(Zi, α̃n) ≥ sup
tn∈{t∈Tn,α̂n(t)∈Bn(α0),φ(α̂n(t))=r0}

1

n

n∑

i=1

ℓ(Zi, α̂n(tn))− oPZ
(n−1)

≥ 1

n

n∑

i=1

ℓ(Zi, α̂n(t
∗
n))− oPZ

(n−1)

for any t∗n ∈ {t ∈ Tn, α̂n(t) ∈ Bn(α0), φ(α̂n(t)) = r0}.
By definition of α̂n, we have: uniformly over α0 ∈ (Ar

I , || · ||A) and for all λ ∈ Udφ ,

0 ≤ 1

n

n∑

i=1

[ℓ(Zi, α̂n)− ℓ(Zi, α̃n)]

≤ max

{
1

n

n∑

i=1

[ℓ(Zi, α̂n)− ℓ(Zi, α̂n(t
∗
n))] + oPZ

(n−1), 0

}
,

where α̂n(t
∗
n) ∈ Bn(α0) ⊂ Ak(n) satisfies

φ(α̂n(t
∗
n)) = φ(α0) = r0 = φ(α̃n) for all α0 ∈ Ar

I , (B.2)

and
p(Z, α̂n(t

∗
n))

p0(Z)
=

p(Z, α̂n)

p0(Z)
+ t∗n × u∗

n(Z, α0, λ). (B.3)

By Theorem B.1(1)(2), we have: for all t∗n ∈ Tn satisfying (B.3),

1

n

n∑

i=1

[ℓ(Zi, α̂n)− ℓ(Zi, α̂n(t
∗
n))]

= −t∗n

(
µn {u∗

n(Z, α0, λ)} −E0

[(
p(Z, α̂n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
(1 + o(1))

)

+
t∗2n
2

+ oPZ
(n−1)

=
t∗2n
2

+ oPZ
(n−1),
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we could let

t∗n = −E0

[(
p(Z, α̂n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
+ ε∗n (B.4)

for some ε∗n = oPZ
(n−1/2) to be specified later. Then

1

n

n∑

i=1

[ℓ(Zi, α̂n)− ℓ(Zi, α̂n(t
∗
n))] =

[µn {u∗
n(Z, α0, λ)}]2

2
+ oPZ

(n−1)

and

0 ≤ 1

n

n∑

i=1

[ℓ(Zi, α̂n)− ℓ(Zi, α̃n)] ≤
[µn {u∗

n(Z, α0, λ)}]2
2

+ oPZ
(n−1).

It remains to find an ε∗n = oPZ
(n−1/2) satisfying (B.4), (B.2) and (B.3). By Restriction (B.2),

α̂n(t
∗
n) ∈ Bn(α0)∩{α : φ(α) = r0} wpa1, by Theorem B.1(3), we have: uniformly in α0 ∈ Ar

I

and λ ∈ Udφ ,

E0

[(
p(Z, α̂n(t

∗
n))

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
= oPZ

(n−1/2).

This, (B.3) and (B.4) together imply that such an ε∗n = oPZ
(n− 1

2 ) exists:

oPZ
(n− 1

2 ) = E0

[(
p(Z, α̂n(t

∗
n))

p0(z)
− 1

)
u∗
n(Z, α0, λ)

]

= E0

[(
p(Z, α̂n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
+ t∗n = ε∗n

Step 3. Combining Steps 1 and 2, we obtain:

LR(r0) = 2

[
n∑

i=1

ℓ(Zi, α̂n)−
n∑

i=1

ℓ(Zi, α̃n)

]

= sup
α0∈Ar

I
,λ∈Udφ

[√
nµn {u∗

n(Z, α0(α̂n), λ)}
]2

+ oPZ
(1)

= sup
d∈Deff

k(n)

[√
nµn {d(·)}

]2
+ oPZ

(1).

Now the conclusion follows. Q.E.D.

C Proof of Theorem 5.1

Proof of Theorem 5.1: Denote ℓω(Z, α) ≡ ω log p(Z, α). By assumption 5.1, we have

EZW ((ωi − 1)v∗n(z, α0, λ)) = 0 and

EZW [ℓω(Zi, α)− ℓω(Zi, α0)] = EZ [ℓ(Zi, α)− ℓ(Zi, α0)] = −K(α0, α).
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ℓω(Z, α)− ℓω(Z, α0) = ω log

(
1 +

[
p(Z, α)

p(Z, α0)
− 1

])
= ω log [1 + χ(α, α0)s(Z;α)]

= ωχ(α, α0)s(Z;α)−
ω

2
[χ(α, α0)s(Z;α)]

2 {1− rem(χ(α, α0)s(Z;α))}
≡ ωχ(α, α0)s(Z;α) + ωR(Z;α, α0).

Thus

1

n

n∑

i=1

[ℓω(Zi, α)− ℓω(Zi, α0)]

= −K(α0, α) + µn {ωχ(α, α0)s(Z;α)}+ µn {ωR(Z;α, α0)}

= −1

2
[χ(α, α0)]

2(1 + o(1)) + µn {ωχ(α, α0)s(Z;α)}+ µn {ωR(Z;α, α0)} .

We now consider perturbation in probability density sieve space: for all α ∈ Bn(α0) and

tn ∈ Tn

p(z, α(tn)) ≡ p(z, α) + tnu
∗
n(z, α0, λ)p0(z).

Thus

µn {ωχ(α(tn), α0)s(Z;α(tn))} − µn {ωχ(α, α0)s(Z;α)}

= µn

{
ω

[
p(Z, α(tn))

p(Z, α0)
− p(Z, α)

p(Z, α0)

]}
= tn × µn {ωu∗

n(Z, α0, λ)} .

Therefore, uniformly over α0 ∈ (AI , || · ||A), λ ∈ Udφ , α ∈ Bn(α0) and tn ∈ Tn, we have:

1

n

n∑

i=1

[ℓω(Zi, α(tn))− ℓω(Zi, α)]

=
1

n

n∑

i=1

[ℓω(Zi, α(tn))− ℓω(Zi, α0)]−
1

n

n∑

i=1

[ℓω(Zi, α)− ℓω(Zi, α0)]

= −
2tnEZ

[(
p(Z,α)
p0(z)

− 1
)
u∗
n(Z, α0, λ)

]
+ t2n

2
(1 + o(1))

+tn × µn {ωu∗
n(Z, α0, λ)}+ oPZW

(n−1).

Define the unconstraint weighted sieve MLE α̂ω
n as

α̂ω
n ∈ Âω

n ≡ arg max
α∈An

{
n∑

i=1

ωi log p(Zi;α)− oPZW
(1)

}

= arg max
α∈An

{
n∑

i=1

ℓω(Zi, α)− oPZW
(1)

}
,
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and the constraint weighted sieve MLE α̃ω
n as:

α̃ω
n ∈ Ãω

n ≡ arg max
{α∈An: φ(α)=r̂}

{
n∑

i=1

ωi log p(Zi;α)− oPZW
(1)

}

= arg max
{α∈An: φ(α)=r̂}

{
n∑

i=1

ℓω(Zi, α)− oPZW
(1)

}
.

Theorem C.1 Suppose that Assumptions 4.1 and 4.2 hold and that α̂n is a sieve MLE.

Then: (1) uniformly over α0 ∈ (AI , || · ||A), λ ∈ Udφ , α ∈ Bn(α0) and tn ∈ Tn,

1

n

n∑

i=1

ωi[ℓ(Zi, α(tn))− ℓ(Zi, α)]

= tn

(
µn {ωu∗

n(Z, α0, λ)} − EZ

[(
p(Z, α)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
(1 + o(1))

)

−t2n
2
+ oPZW

(n−1);

(2) Uniformly over α0 ∈ (Ar
I , || · ||A) and λ ∈ Udφ ,

∣∣∣∣EZ

[(
p(Z, α̂ω

n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
− µn {ωu∗

n(Z, α0, λ)}
∣∣∣∣ = oPZW

(n− 1
2 ).

∣∣∣∣EZ

[(
p(Z, α̂ω

n)

p0(Z)
− p(Z, α̂)

p0(Z)

)
u∗
n(Z, α0, λ)

]
− µn {(ω − 1)u∗

n(Z, α0, λ)}
∣∣∣∣ = oPZW

(n− 1
2 ).

Thus under assumptions 4.3(i) and 5.1, we have: uniformly over α0 ∈ (Ar
I , || · ||A) and

λ ∈ Udφ , ∣∣∣∣EZ

[(
p(Z, α̂ω

n)

p0(Z)
− p(Z, α̂)

p0(Z)

)
u∗
n(Z, α0, λ)

]∣∣∣∣ = OPZ
(n− 1

2 ).

(3) Uniformly over α0 ∈ (Ar
I , || · ||A) and λ ∈ Udφ ,

sup
α∈Bn(α0)∩{α:φ(α)=φ(α̂)}

∣∣∣∣EZ

[(
p(Z, α)

p0(Z)
− p(Z, α̂)

p0(Z)

)
u∗
n(Z, α0, λ)

]∣∣∣∣ = oPWZ
(n− 1

2 ).

Proof of Theorem C.1: Result (1) is already proved before the statement of the

theorem.

For Result (2). Let εn = o(n− 1
2 ). For any α ∈ Bn(α0) ⊂ An, consider a local perturba-

tion

p(·, α(εn)) = p(·, α)± εnu
∗
n(·, α0, λ)p0(·) ∈ Pk(n).
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By assumption 4.2: uniformly over α0 ∈ (Ar
I , || · ||A) and λ ∈ Udφ , and by the definition of

α̂ω
n, we have

−oPZ
(n−1) ≤ 1

n

n∑

i=1

ℓω(Zi, α̂
ω
n)−

1

n

n∑

i=1

ℓω(Zi, α̂
ω
n(εn))

=
±2εnEZ

[(
p(Z,α̂ω

n)
p0(Z)

− 1
)
u∗
n(Z, α0, λ)

]
+ ε2n

2
(1 + o(1))

∓εn × µn {ωu∗
n(Z, α0, λ)}+ oPZW

(n−1).

By the definition of u∗
n(Z, α0, λ) and εn = oPZ

(n− 1
2 ), we obtain

∣∣∣∣EZ

[(
p(Z, α̂ω

n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
− µn {ωu∗

n(Z, α0, λ)}
∣∣∣∣ = oPZ

(n− 1
2 ).

For Result (3). For all α ∈ Bn(α0)∩{α : φ(α) = φ(α̂)} and for all α0 ∈ Ar
I ≡ {α ∈ AI :

φ(α) = r0}, under Assumption 4.1.(ii), we have, uniformly over α0 ∈ Ar
I :

∣∣∣λ′
(
φ(α)− φ(α0)− ∂φ(α0)

∂α
[α− α0]

)∣∣∣
||v∗n(·, α0, λ)||

= o(n− 1
2 )

∣∣∣λ′
(
φ(α̂)− φ(α0)− ∂φ(α0)

∂α
[α̂− α0]

)∣∣∣
||v∗n(·, α0, λ)||

= o(n− 1
2 )

For all α ∈ Bn(α0) ∩ {α : φ(α) = φ(α̂)} we have

∣∣∣λ′ ∂φ(α0)
∂α

[α− α̂]
∣∣∣

||v∗n(·, α0, λ)||
=

∣∣∣λ′
(
φ(α)− φ(α̂)− ∂φ(α0)

∂α
[α− α̂]

)∣∣∣
||v∗n(·, α0, λ)||

= o(n− 1
2 )

∣∣∣∣EZ

[(
p(Z, α)

p0(Z)
− p(Z, α̂)

p0(Z)

)
u∗
n(Z, α0, λ)

]∣∣∣∣ =

∣∣∣λ′ ∂φ(α0)
∂α

[α− α̂]
∣∣∣

||v∗n(·, α0, λ)||
= oPZW

(n− 1
2 ).

Thus Result (3) is true. Q.E.D

Theorem C.2 Suppose that assumptions 4.1, 4.2 and 4.3(i) hold. Then under null of α0 ∈
Ar

I, we have

LRω(r̂) ≡ 2

[
n∑

i=1

ℓω(Zi, α̂
ω
n)−

n∑

i=1

ℓω(Zi, α̃
ω
n)

]

= sup
α0∈Ar

I
,λ∈Udφ

[√
nµn {(ω − 1)u∗

n(·, α0, λ)}
]2

+ oPZW
(1)

= sup
d∈Deff

k(n)

[√
nµn {(ω − 1)d(·)}

]2
+ oPZW

(1).
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Proof of Theorem C.2: The proof consists of several steps. Let c > 0 denote a finite

constant in the following proof.

Step 1: By the definitions of α̂ω
n and α̃ω

n, we have:

1

n

n∑

i=1

[ℓω(Zi, α̂
ω
n)− ℓω(Zi, α̃

ω
n)]

≥ max

{
sup

tn∈Tn,α̃ω
n(tn)∈Bn(α0)

1

n

n∑

i=1

[ℓω(Zi, α̃
ω
n(tn))− ℓω(Zi, α̃

ω
n)]− oPZW

(n−1), 0

}

where α̃ω
n(tn) ∈ Bn(α0) ⊂ Ak(n) satisfies

p(Z, α̃ω
n(tn))

p0(Z)
=

p(Z, α̃ω
n)

p0(Z)
+ tnu

∗
n(Z, α0, λ).

By definitions of α̃ω
n(tn) and α̃ω

n , and by Theorem C.1(1), under the null, we have:

1

n

n∑

i=1

[ℓω(Zi, α̃
ω
n(tn))− ℓω(Zi, α̃

ω
n)]

= tn

(
µn {ωu∗

n(Z, α0, λ)} − E0

[(
p(Z, α̃ω

n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
(1 + o(1))

)

−t2n
2
+ oPZW

(n−1)

= tn

(
µn {(ω − 1)u∗

n(Z, α0, λ)} −E0

[(
p(Z, α̃ω

n)

p0(Z)
− p(Z, α̂n)

p0(Z)

)
u∗
n(Z, α0, λ)

]
(1 + o(1))

)

−t2n
2
+ oPZW

(n−1),

where the last equality is due to the fact that tn ∈ Tn and by Theorem B.1(2),

E0

[(
p(Z, α̂n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
(1 + o(1))− µn {u∗

n(Z, α0, λ)} = oPZ
(n−1/2).

Since α̃ω
n ∈ Bn(α0) ∩ {α : φ(α) = φ(α̂n)} wpa1, by Theorem C.1(3), we have:

E0

[(
p(Z, α̃ω

n)

p0(Z)
− p(Z, α̂n)

p0(Z)

)
u∗
n(Z, α0, λ)

]
= oPZ

(n−1/2).

Then, for all tn ∈ Tn we have:

1

n

n∑

i=1

[ℓω(Zi, α̃
ω
n(tn))− ℓω(Zi, α̃

ω
n)] = tn × µn {(ω − 1)u∗

n(Z, α0, λ)} −
t2n
2
+ oPZW

(n−1),

which is maximized at tn = µn {(ω − 1)u∗
n(Z, α0, λ)}, and hence

sup
tn∈Tn

1

n

n∑

i=1

[ℓω(Zi, α̃
ω
n(tn))− ℓω(Zi, α̃

ω
n)]− oPZW

(n−1)

=
[µn {(ω − 1)u∗

n(Z, α0, λ)}]2
2

+ oPZW
(n−1).
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Thus

1

n

n∑

i=1

[ℓω(Zi, α̂
ω
n)− ℓω(Zi, α̃

ω
n)] ≥ max

{
[µn {(ω − 1)u∗

n(Z, α0, λ)}]2
2

+ oPZW
(n−1), 0

}
.

Step 2. By the definition of α̃ω
n, we have:

1

n

n∑

i=1

ℓω(Zi, α̃
ω
n) ≥ sup

tn∈{t∈Tn:α̂ω
n(t)∈Bn(α0),φ(α̂

ω
n(t))=φ(α̂n)}

1

n

n∑

i=1

ℓω(Zi, α̂
ω
n(tn))− oPZW

(n−1)

≥ 1

n

n∑

i=1

ℓω(Zi, α̂
ω
n(t

∗
n))− oPZW

(n−1)

for any t∗n ∈ {t ∈ Tn : α̂ω
n(t) ∈ Bn(α0), φ(α̂

ω
n(t)) = φ(α̂n)}.

By definition of α̂n, we have: uniformly over α0 ∈ (Ar
I , || · ||A) and for all λ ∈ Udφ ,

0 ≤ 1

n

n∑

i=1

[ℓω(Zi, α̂
ω
n)− ℓω(Zi, α̃

ω
n)]

≤ max

{
1

n

n∑

i=1

[ℓω(Zi, α̂
ω
n)− ℓω(Zi, α̂

ω
n(t

∗
n))] + oPZW

(n−1), 0

}
,

where α̂ω
n(t

∗
n) ∈ Bn(α0) ⊂ Ak(n) satisfies

φ(α̂ω
n(t

∗
n)) = φ(α̂n) = r̂ = φ(α̃ω

n) for all α0 ∈ Ar
I , (C.1)

and
p(Z, α̂ω

n(t
∗
n))

p0(Z)
=

p(Z, α̂ω
n)

p0(Z)
+ t∗n × u∗

n(Z, α0, λ). (C.2)

By Theorem C.1(1)(2), we have: for all t∗n ∈ Tn satisfying (C.2),

1

n

n∑

i=1

[ℓω(Zi, α̂
ω
n)− ℓω(Zi, α̂

ω
n(t

∗
n))]

= −t∗n

(
µn {ωu∗

n(Z, α0, λ)} − E0

[(
p(Z, α̂ω

n)

p0(Z)
− 1

)
u∗
n(Z, α0, λ)

]
(1 + o(1))

)

+
t∗2n
2

+ oPZW
(n−1)

=
t∗2n
2

+ oPZW
(n−1),

we could let

t∗n = −E0

[(
p(Z, α̂ω

n)

p0(Z)
− p(Z, α̂n)

p0(Z)

)
u∗
n(Z, α0, λ)

]
+ ε∗n (C.3)

= −µn {(ω − 1)u∗
n(Z, α0, λ)}+ oPZW

(n−1/2) (C.4)
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for some ε∗n = oPZW
(n−1/2) to be specified later. Then

1

n

n∑

i=1

[ℓω(Zi, α̂
ω
n)− ℓω(Zi, α̂

ω
n(t

∗
n))] =

[µn {(ω − 1)u∗
n(Z, α0, λ)}]2
2

+ oPZW
(n−1)

and

0 ≤ 1

n

n∑

i=1

[ℓω(Zi, α̂
ω
n)− ℓω(Zi, α̃

ω
n)] ≤

[µn {(ω − 1)u∗
n(Z, α0, λ)}]2
2

+ oPZW
(n−1).

It remains to find an ε∗n = oPZW
(n−1/2) satisfying (C.3), (C.1) and (C.2). By Restriction

(C.1), α̂ω
n(t

∗
n) ∈ Bn(α0) ∩ {α : φ(α̂ω

n(t
∗
n)) = φ(α̂n) = φ(α̃ω

n)} wpa1, by Theorem C.1(3), we

have: uniformly in α0 ∈ Ar
I and λ ∈ Udφ ,

E0

[(
p(Z, α̂ω

n(t
∗
n))

p0(Z)
− p(Z, α̂n)

p0(Z)

)
u∗
n(Z, α0, λ)

]
= oPZW

(n−1/2).

This, (C.2) and (C.3) together imply that such an ε∗n = oPZW
(n− 1

2 ) exists:

oPZW
(n− 1

2 ) = E0

[(
p(Z, α̂ω

n(t
∗
n))

p0(Z)
− p(Z, α̂n)

p0(Z)

)
u∗
n(Z, α0, λ)

]

= E0

[(
p(Z, α̂ω

n)

p0(Z)
− p(Z, α̂n)

p0(Z)

)
u∗
n(Z, α0, λ)

]
+ t∗n = ε∗n

Step 3. Combining Steps 1 and 2, we obtain:

LRω(r̂) ≡ 2

[
n∑

i=1

ℓω(Zi, α̂
ω
n)−

n∑

i=1

ℓω(Zi, α̃
ω
n)

]

= sup
α0∈Ar

I
,λ∈Udφ

[√
nµn {(ω − 1)u∗

n(·, α0, λ)}
]2

+ oPZW
(1)

= sup
d∈Deff

k(n)

[√
nµn {(ω − 1)d(·)}

]2
+ oPZW

(1).

Now the conclusion follows. Q.E.D.
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