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This is an interesting article that considers the question of inference on unknown linear index coefficients
in a general class of models where reduced form parameters are invertible function of one or more linear
index. Interpretable sufficient conditions such as monotonicity and or smoothness for the invertibility
condition are provided. The results generalize some work in the previous literature by allowing the
number of reduced form parameters to exceed the number of indices. The identification and estimation
expand on the approach taken in previous work by the authors. Examples include Ahn, Powell, and
Ichimura (2004) for monotone single-index regression models to a multi-index setting and extended by
Blundell and Powell (2004) and Powell and Ruud (2008) to models with endogenous regressors and
multinomial response, respectively. A key property of the inference approach taken is that the estimator
of the unknown index coefficients (up to scale) is computationally simple to obtain (relative to other
estimators in the literature) in that it is closed form. Specifically, unifying an approach for all models
considered in this article, the authors propose an estimator, which is the eigenvector of a matrix (defined in
terms of a preliminary estimator of the reduced form parameters) corresponding to its smallest eigenvalue.
Under suitable conditions, the proposed estimator is shown to be root-n-consistent and asymptotically

normal.
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1. ASSESSMENT

This is a very good and interesting article for a number
of reasons. It adds much needed identification results and a
new estimator for a class of models that have not been widely
considered in the semiparametric literature. This especially per-
tains to multinomial choice models under general conditions.
Multinomial choice models are extremely relevant in fields
such as industrial organization, labor, and development and
there has not been as much work on semiparametric estimation
of such models. Methods that are available, and used in practice
are often for parametric models, such as multinomial probit and
multinomial logit along with parametric random coefficients.
But parametric models are problematic for several reasons.
Most rely on questionable parametric assumptions, some such
as the probit model are hard to compute, and more importantly,
logit-based models suffer from the IIA property that imposes
unreasonably strong substitution patterns. The semiparametric
estimator proposed in this article addresses all of these prob-
lems. It does not rely on distributional assumptions, nor does
it require the independence within choice requirement that
leads to ITA. Furthermore, it is computationally very tractable,
so practitioners can implement the new methods. So overall,
we think this article does make a needed contribution to the
literature.

1

Having said that, we explain here why we are concerned with
the proposed approach for two main reasons.

1.1 Robustness to Heteroscedasticity

Our first concern is the assumed statistical relationship between
observed and unobserved variables. The independence/index
type assumption severely restricts the type of heteroscedasticity
allowed for, and this type of misspecification will result in the
proposed estimator being inconsistent. In nonlinear models
such as binary choice and censored regression models it is
well known that ignoring heteroscedasticity can be a much
more severe problem than distributional misspecification. That
appears to be the case for multinomial models as well. We
demonstrate this by conducting the following simulation study
of a trivariate multinomial profile model, with three choices
corresponding to observed outcome variables as 0,1,2. As a
standard normalization we set the latent utility of the first choice
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to be identically 0. For the other two choices, we generated
latent utilities for each individual from the model:

wj=x;po+e; j=1,2,

where (€1, €;) is drawn from a bivariate normal distribution
with means 0, scales 1, and correlation 0.5. For the first design,
X1, Xip was drawn independently of ¢;; with the same bivariate
normal distribution. The unknown parameter vector S is set
at (1, 1). Observed outcomes y; corresponded to utility maxi-
mization. From this setup, we generated outcomes of sizes 100,
200, 400, and 800 and replicated this dataset 500 times.

For the proposed estimator, we report mean bias and RMSE.
To implement the estimator there were two tuning parameters
to select—the first stage nonparametric estimator and the sec-
ond stage matching. For each one we used a Silverman rule of
thumb.

The results clearly demonstrate consistency of the new esti-
mator, though there are finite sample problems at 100 obser-
vations. This is to be expected with any method that relies on
nonparametric methods.

The second design introduces misspecification in the form of
heteroscedasticity. We model this by premultiplying the error
vector €; = €y;, €3; by the 2 x 2 matrix with 0.5 for off diag-
onal elements and diagonal elements consisting of (xj, X;1).
The statistics demonstrate the poor performance of the proposed
estimator in this setting. The biases can be large and not decline
with the sample size. We are wondering whether the simple
approach of the article can be altered to allow for some het-
eroscedasticity, while still allowing for correlation in observ-
ables across choices.

1.2 Robustness to Discrete Support

A second important issue that we mention is the required
conditions on the support of the covariates. Specifically, point
identification of the proposed models requires that at least
one of the regressors be continuously distributed. In one sense
such a condition is to be expected in semiparametric models if
point identification is the goal, and is often required for a large
class of univariate or multivariate “distribution free” models.
Interestingly, this does demonstrate that semiparametric models
do not actually nest parametric models such as multinomial
probit or multinomial logit under point identification.

An inference procedure based on sufficient conditions
for point identification is said to be point robust (to support
conditions) if said inference procedure delivers a nontrivial set
(by nontrivial set we mean an informative set) (or the identified
set) when these support conditions fail to hold in one’s data.
We view this point robust property in the context of support
conditions as attractive in many settings as continuity of support
is an idealization. In a binary choice model, the maximum score
(Manski, 1975) approach to inference is point robust since even
when all the regressors are discrete, the maximum score objec-
tive function is maximized on a nontrivial set. (The argmax of
the maximum score objective function coincides with the iden-
tified set for the model in (1.1) based on the usual conditional
median restriction only if P{x : xBy = 0} = 0. See Komarova
(2013).) This maximum score inference approach is adaptive to
the support conditions that are required for point identification.
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On the other hand, and on the other end of the spectrum, there
are inference approaches whereby when the support conditions
do not hold, no information can be gained about the parameter
of interest (even if the identified set in these cases is finite).

The approach in this article, based on matching when choice
probabilities are close, is not point robust to the support condi-
tions. For simplicity, we illustrate this point with a binary choice
model of the following form:

(1.1)

where the two observed regressors (xj;, xp;) are binary 1/—1
with probability % distributed independently of each other as
well as independently of the disturbance term ¢;. The parameter
of interest is the scalar By and the coefficient of x,; was set to 1
as a scale normalization.

A simple matching estimator for 8, was proposed in Ahn,
Powell, and Ichimura (2004). For the problem at hand it can
expressed as minimizing the following least-square objective
function, with respect to b:

yi = I[x1;80 + x2i + €; > 0],

ﬁ Z i (xX2i — X2j — (x1; — x1,)b)%,
i#]
where @ is an estimated weight function, @&;; ~ I[P, = P;] and
P = P(y; = 1|x;), P; = P(y; = 1|x;). Since the distribution of €
is unknown, P;, P; are also unknown and need to estimate in a
preliminary stage.

Clearly, this estimator is not designed for cases with dis-
crete covariates. This matching estimator is also not point
robust. For example, assume that P(y = 1|1,1) > Py = 1] —
1,1)>Py=1]—-1,1)> Py = 1| — 1, —1) which leads to
[0, 1] being the identified set (based on a rank order
property). In particular, let P(y =1|1,1) =0.5, Py = 1| —
1,1)=025, Py=1|1,-1)=02,and Py=1] - 1,—-1) =
0.05 (there are other values that will work). It is not immediately
clear how one would match in this case, but say we match obser-
vations with choice probabilities that are within 0.2. This means
that observations with covariate values (—1, 1) are matched
with ones with (1, —1) and observations (1, —1) are matched
with (—1, —1). We can see that the limit objective function
(it is simple to show that this limit will be 45?(0.05)(0.2) +

Table 1. Homoscedastic design

Sample size Bias RMSE
100 0.1250 0.6611
200 0.0288 0.3081
400 0.0264 0.2209
800 0.0177 0.1439
Table 2. Heteroscedastic design
Sample size Bias RMSE
100 0.6524 8.3992
200 —0.0597 15.7435
400 —0.5653 4.1657
800 0.1657 3.7240
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Table 3. Discrete design

0.01 0.1 1.0

Sample size Bias RMSE Bias RMSE Bias RMSE
100 —0.8600 0.8617 —0.8619 0.8633 —0.8712 0.8726
200 —0.8595 0.8603 —0.8631 0.8639 —0.8704 0.8711
400 —0.8642 0.8646 —0.8678 0.8682 —0.8735 0.8738
800 —0.8672 0.8675 —0.8691 0.8693 —0.8759 0.8760
Table 4. Cross-sectional estimator design 1 We note this estimator is defined as an objective function

. and does not have a closed form. Consequently, optimization

N Mean Median RMSE  methods, such as simulated annealing are used to construct the
50 0.1656 0.1900 0.5366 esqmator. én ﬂ}llat s;:lns?1 it Clls qot as 51mple1 (ails Fhe 'proplosed
100 0.0173 0.0100 0.4656 estlmator. n the other hand, leen 'ou'r sample .es1g'n 1nvo v1r'1g
200 0.0410 0.0500 0.3389 dlscr.eté regressors, .the MRC will limit to an 0b]§0t1V§ that Wl.ll
400 0.0001 —0.0010 0.2544 maximized on the identified set. So, the MRC in this case is

4(b — 1)*(0.2)(0.25), which is minimized at » = 0.05/(0.04 —
0.05) = —1.25. There is nothing special about this example, and
various combinations of probabilities and matching rules can
yield parameters outside the identified set) is minimized at a
point that is outside the identified set.

The question then becomes, can one obtain a point robust esti-
mator in this setting? Consider a maximum rank type estimator
as proposed by Han (1987):

, 1 /
B = arg max prP— Zl[yi > y;U[xb > x}b],

point robust.

1.3 Point Robustness in the Multinomial Choice Model

Now, let us consider a particular version of the multinomial
choice model studied in the article where we will suggest a point
robust rank-based estimation approach. In particular, consider
the three choice 0, 1, 2 multinomial choice model with the fol-
lowing utilities:

o =0

n(n oy Vi =x1fo+ e
where here x; = (xy;, x;). ys = x,B0 + €.
0.1015 . ;
o
0.101} Joar ""ﬂm_'p_ i
& g
0.1005} & By 7
rl -]
s -v ‘ﬁ'-.h
01f o L’ ]
; e
: o
- g
0.0995! 7
0.099 ' :
0.5 1 15 2

Figure 1. Objective function for cross-sectional model 1.
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Figure 2. Objective function for cross-sectional model 2.

So by utility maximization,

yo =1lyy > ¥1. ¥ > ¥51
yi =1l > y5. v > ¥3]
y2 =1[y; > y5,¥5 > yil-

Notice, for example, that, conditional on (x; = X;) (say), the
choice probability for choice 1

P(er +x1Bo > 0; €1 +x] B0 > €2+ x2'Bo)

is increasing in x) By and so we can use a maximum rank cor-
relation estimator to get By local to x,. This type of conditional
rank estimator has better robustness properties to failure of the
support conditions than the matching estimator. But, of course,
such an estimator is tedious to compute. The table below indi-
cates favorable finite sample properties of our proposed condi-
tional MRC estimator, which, assuming all the regressors for the
second choice utility function are discrete. The MRC procedure
here only assigns positive weight to pairs of observation whose
regressors match for the section choice utility match up.

Tables 1-4 and Figures 1-2 demonstrate the relative finite
sample properties of the proposed rank-based procedure. We
consider two designs—in the first, there are three choices;
Y0, Y1, ¥2. Corresponding latent utilities are

Yo=0, y=xpote, ¥ =xp+e.

X1, Xp are each two-dimensional, as is By. For scale normal-
ization, the first component of Sy is set to 1, and the second
component of By was set to 1.25. For x; the first component
was standard normal, the second component to be Bernoulli,
with p = 0.5.

For x, each of the two components had a Bernoulli distribu-
tion, with p = 0.5 €1, €; were bivariate normal, mean 0, variance
1, correlation 0.5.

For design 2, the distributions is the same as in design 1 with
one change. The first component of x; was discrete instead of
standard normal. Specifically it took the values —2, —1, 1, 2
each with probability 0.25.

Note that under design 1, the regression coefficient is point
identified. The table below reports mean bias, median bias, and
RMSE for samples sizes of 50, 100, 200, 400 using 401 repli-
cations. We also plot the objective function for one draw of 800
observations. As these results indicate our proposed procedure
is constant with RMSE declining at the parametric (root-n rate).
The objective function appears to be approximately globally
concave.

Under design 2, the regression coefficients are not point iden-
tified. The figure plots the objective function for one draw of 800
observations. This illustrates the advantage of our procedure, as
even though point identification is lost in the model, the rank
procedure produces a set estimator of (1, 1.5), which contains
the true parameter value for gy = 1.25.

2. CONCLUSION

The article discussed makes progress on a central problem in
econometrics. It provides closed-form estimators for parameters
in multinomial choice models with general error structures. In
our comment, we highlight an aspect of this matching estimator
that may not be desirable when data are heteroscedastic or dis-
crete. A rank-based procedure may be more desirable in discrete
designs.

[Received June 2017. Revised September 2017.]
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