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Abstract: We introduce a notion of median uncorre-
lation that is a natural extension of mean (linear)  
uncorrelation. A scalar random variable Y is median 
uncorrelated with a k-dimensional random vector X if 
and only if the slope from an LAD regression of Y on 
X is zero. Using this simple definition, we characterize 
properties of median uncorrelated random variables, 
and introduce a notion of multivariate median uncor-
relation. We provide measures of median uncorrela-
tion that are similar to the linear correlation coefficient 
and the coefficient of determination. We also extend 
this median uncorrelation to other loss functions. As 
two stage least squares exploits mean uncorrelation 
between an instrument vector and the error to derive 
consistent estimators for parameters in linear regressi-
ons with endogenous regressors, the main result of this 
paper shows how a median uncorrelation assumption 
between an instrument vector and the error can simi-
larly be used to derive consistent estimators in these 
linear models with endogenous regressors. We also 
show how median uncorrelation can be used in linear 
panel models with quantile restrictions and in linear 
models with measurement errors.
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1  Introduction

We introduce a concept of quantile uncorrelation, or 
L1-uncorrelation, between two random variables that is a 
natural extension of the well-known mean uncorrelation, 
or L2-uncorrelation. We term this type of uncorrelation, 
“median uncorrelation,” which is the counterpart of the 
familiar mean (linear) uncorrelation, or simply uncorre-
lation. We characterize the relationship between random 
variables that are uncorrelated in this manner. We provide 
a series of properties that imply or are implied by median 
uncorrelation. Naturally, for example, independence of 
two random variables implies median uncorrelation (or in 
this case Lp-uncorrelation for any p≥1). Also, this uncor-
relation is not symmetric, and is nonadditive, but it retains 
an important invariance property.

We extend our definition to median uncorrelation 
between random vectors which results, indirectly, in a mul-
tivariate version of a quantile restriction. We also derive 
an asymmetric correlation measure, based on this notion 
of quantile uncorrelation, that takes values in [–1, 1] with 
a value of zero for uncorrelation. In addition, we provide 
another correlation measure that is the analog of the coef-
ficient of determination, or R2, in linear regressions. We 
also extend this concept to cover Lp-uncorrelation for p ≥ 1.

As two stage least squares is based on exploiting 
linear uncorrelation between the error and an excluded 
random variable (the instrument), we also show that this 
uncorrelation leads naturally, and under easily inter-
pretable conditions, to “instrumental” regressions with 
median uncorrelation. These are analogs of Basmann 
and Theil’s two stage least squares, or 2SLS, (Theil (1953) 
and Basmann (1960)) as derived from the usual mean 
uncorrelation between two random variables. As in the 
classical 2SLS, median uncorrelation leads to an estima-
tor that is derived by taking a “sample analogue” of the 
median uncorrelation measure. This estimator, similar 
to one used by Chernozhukov and Hansen (2006) (or 
CH), is consistent provided that this uncorrelation holds 
(along with other standard assumptions). Other applica-
tions are natural counterparts of existing least squares 
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methods. For example, by exploiting this uncorrelation 
further, we show that as instrumental variable methods 
can be used in mean-based models to remedy the problem 
of classical measurement error, variables obeying our 
median uncorrelation condition can be used as instru-
ments to obtain estimates of parameters in linear models 
with measurement error under quantile restrictions. 
Furthermore, panel data quantile regression of differ-
enced data delivers consistent estimates of parameters 
of interest without making assumptions on the individ-
ual effects under median uncorrelation restrictions. So, 
this uncorrelation gives support for running standard 
quantile regression of first differenced outcomes on first 
differenced regressors, under an absolute loss function 
to obtain consistent estimates of the slope parameters in 
linear models. 

An important feature of the concept of median uncor-
relatedness is the fact that it is defined in terms of the 
linear predictor, and hence is explicitly a “linear concept”. 
Basically, it shares this property with best linear predictors 
in that, heuristically, a random variable is median uncor-
related with another if the latter is not “useful” as a linear 
predictor of the former under absolute loss. Finally, this 
notion of median uncorrelation is general and is loss func-
tion based.

There is a large literature in econometrics on best 
predictor problems. Manski (1988) delineates estima-
tors derived from prediction problems from various loss 
functions. There, best linear predictors are derived and 
consistent estimators are provided that are based on the 
analogy principle. The linear model based on quantile 
restrictions is equally well studied starting with the work 
of Koenker and Bassett (1978); see also Koenker (2005). 
There has also been a series of papers dealing with the 
presence of endogenous regressors in models with quan-
tile restrictions. Amemiya (1981) proposed a two-staged 
least absolute deviation estimator. See also Powell (1983). 
Then, based on method of moments, Honoré and Hu 
(2004) provide methods that can be used to do inference 
on parameters defined though separable moment models 
(that can be nonlinear). CH (see also Chernozhukov  
and Hansen (2005)) in a series of papers shed new light 
on a general class of monotonic models with conditional 
quantile restrictions. They provide sufficient point identi-
fication conditions for these models, and also an estima-
tor that they show is consistent under those conditions. 
CH study also the asymptotic properties of their estimator 
and characterize its large sample distribution. The esti-
mator based on our median uncorrelation assumption 
is the same as the one used in CH. Finally, Sakata (2007) 
and Sakata (2001) in interesting work, provide estimators 

based on an L1 loss function for instrumental regression 
models1. Both these papers use a condition that is closer 
to conditional median independence, but the approach in 
spirit is similar to ours.

In Section 2, we provide first a few elementary defi-
nitions that lead to median uncorrelation. After defining 
median uncorrelation, Section 3 characterizes this uncor-
relation concept in terms of various properties of the joint 
distribution of random variables. Section 4 shows how 
median uncorrelation leads to natural estimators in linear 
models with endogenous regressors. Section 5 provides 
notions of median correlation among random variables. 
We provide in Section 6 simple applications of our median 
uncorrelation concept to linear quantile regression with 
measurement error and to panel data quantile regression. 
Section 7 concludes.

2  Definition and Properties
Let T be a scalar random variable and let S be a k-dimen-
sional random vector such that E||S||<∞. We are interested 
in the following optimization problem since it is key in 
defining our concept of median uncorrelation:

( ),
min | | .E T S

α β
α β- - ′

where we assume2 that E|T|<∞. This is done for simplicity 
of notation. Define M(T,S) ⊂ ℜk as the set of solutions to 
this optimization problem with respect to β:

( ) ( )
( ),

, :  such that , argmin | | .M T S E T S
α β

β α α β α β
  ≡ ∃ = - - ′ 

  ��

��

In general, one can find distributions in which M(T, S) 
is a set. However, under weak conditions, M(T, S) is a  
singleton; see part 3 of Proposition 2.1 below. Notice that 
for a fixed β,

( )| | min | |,E T S Med T S E T S
α

β β α β- - - = - -′ ′ ′

where

Med(z) ≡ inf {t : P (z≤t)≥0.5}.

Therefore,

( ) ( ), argmin | – – – |.M T S E T S Med T S
β

β β= ′ ′

1 For other approaches to estimation in quantile regression with endo-
geneity, see Ma and Koenker (2006), Lee (2007), and Chesher (2003).
2 Without this assumption, we can rewrite the objective function as 

( )
}{

α β
α β α β- - - - -′ ′0 0,

min | | | |E T S E T S  for some fixed (α0, β0).
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The next proposition characterizes elements of the set 
M(T, S) and also gives conditions under which M(T, S) is 
a singleton. We collect Proofs to results in the Appendix.

Proposition 2.1 The following hold:
1.	 Let β*∈ℜk Then β*∈ M(T, S) if and only if for any α∈ℜ, 

β∈ℜk,

( ) ( )( )

( )( )

 ′ ′ ′α+ β β − − β 

 ′ ′ ′≤ α+ β − β − − β = 

* *

* *1 0

E S sgn T S Med T S

E S T S Med T S

-

� (2.1)

where here and in the rest of the paper we define sgn(⋅) 
as

( )
>= =

- <

1, 0
0, 0
1, 0

x
sgn x x

x

2. 	 Let β* ∈ℜk be such that P(T – S′β*–Med(T – S′β*) = 0) = 0. 
Then β*∈M(T, S) if and only if

E[S sgn(T – S′β*–Med(T – S′β*))]=0.� (2.2)

3.	 Suppose that any β ∈ℜk satisfies P(T–S′β–Med 
(T – S′β)=0)=0. Then M(T, S) is a singleton if and only 
if equation

E[S sgn(T – S′β–Med(T – S′β))]=0

has a unique solution. This solution is M(T, S).

We use Equation (2.2) as the basis for a measure of 
median correlation introduced in Section 5.

The next definition introduces the notion of median 
uncorrelation of a random vector with another random 
vector. Here, and in the remainder of the paper, we take 
M(T, S) = β* to mean that M(T, S) contains the single value β*.

Definition 2.1 (Median Uncorrelation) Let W denote an 
l-dimensional random vector. We will say that W is median 
uncorrelated with S if

M(c′W, S)=0 	 for all 	 c∈ℜl.	�  (2.3)

The definition above is loss function based. So, it nat-
urally carries over to quantiles other than the median, by 
simply changing the absolute loss to asymmetric loss by 
using the “check function.” Moreover, implicit in this defi-
nition, is a formulation for multivariate quantiles. In par-
ticular, when defining this uncorrelation property meant 
for scalar quantiles to the multivariate case, we require 
that median uncorrelation holds for any linear combina-
tion of the elements of the multivariate vector, as in (2.3). 
Finally, a key property that this “loss” function maintains 
is the invariance property below.

Lemma 2.1 (Invariance) For any constant vector b∈ℜk 
and any constant scalar a,

M(T + a + S′b, S)=M(T, S)+b.� (2.4)

This property plays a key role below. Linearity of 
T - α - S′β in the objective function is essential for this 
invariance property to hold. The concept of uncorrelation 
we introduced is intimately tied to linear models and is 
similar to the relationship between uncorrelation in the 
least squares setup and its relationship to linear models.
Median uncorrelation is median linear uncorrelation.

3  �Characterizations of Median 
Uncorrelation

In this section, we provide key insights that explore 
further the meaning of median uncorrelation in Definition 
2.1 above. The following characterization theorem collects 
a set of properties that are helpful in gaining intuition 
about median uncorrelation.

Theorem 3.1 (Properties of Median Uncorrelation) The 
following hold:
A. 	 A sufficient condition for an l-dimensional random 

vector W to be median uncorrelated with a  
random vector S is that Med(c′W|s)=Med(c′W)  
for all c∈ℜl.

B. 	 If W is median uncorrelated with S, it does not neces-
sarily follow that S is median uncorrelated with W.

C. 	 A sufficient condition for W to be median uncorrelated 
with S is that the conditional characteristic function of 
W given S is real.

D. 	 Consider a scalar random variable T and any random 
vector S. Assume that M(T,S) is a singleton. Then T can 
be written as

	 T=α0 + S′M(T, S) + δ,

	 where M(d, S) = 0, and a0 is any constant.
E.	 For a scalar random variable T and random vectors 

S and Z in ℜk, assume that P(T – Med(T) = 0) = 0 and 
M(T, S + Z) is a singleton. Then

	 M(T, S) = M(T, Z) = 0 ⇒ M(T, S + Z) = 0.

F. 	 Suppose that for a scalar random variable T and a 
non-degenerate binary random variable S the median 
of T|S = 1 and the median of T|S = 0 are unique. The 
following hold:

M(T, S) = 0 ⇐ Med(T|S = 1) = Med(T|S = 0);

Brought to you by | Harvard University
Authenticated

Download Date | 4/18/18 11:22 PM



� Komarova et al.: Quantile Uncorrelation and Instrumental Regressions   5

if P(T – Med(T) = 0) = 0, then

M(T, S)=0 ⇒ Med(T|S =1) = Med(T|S =0).

Property (A) can be directly derived from the defi-
nition and states median independence as a sufficient 
condition for median uncorrelation. (B) means that the 
definition of median uncorrelation is not symmetric. This 
is in direct contrast with mean uncorrelation which is a 
symmetric property. Property (D) is important and it states 
that any scalar random variable T can be decomposed into 
a linear combination of S’s and another random variable 
that is median uncorrelated with S. This is a direct result 
of the invariance property in (2.4) above. Moreover, this 
is similar to the linear mean decomposition in best linear 
prediction examples. See (3.1) below. Property (E) illus-
trates an additivity property of median uncorrelation: If 
T is median uncorrelated with S and Z, then it is median 
uncorrelated with their sum S + Z. Property (F) states that 
under weak restrictions, T is median uncorrelated with a 
binary variable S if and only if T is median independent 
of S.

Evidently, if W is median uncorrelated with S, then S 
is not useful in the L1 prediction of linear functions of W.

3.1 Comparison to mean uncorrelation

It is helpful to compare the median uncorrelation with the 
well-known mean uncorrelation.

Consider the optimization problem

( )
( )2

,
min ,E T S

α β
α β- - ′

where ET2 < ∞, E||S||2 < ∞. Under the usual rank condition 
on S, this problem has a unique solution. Denote its solu-
tion with respect to β as L(T, S). This is the L2 analogue of  
M(T, S).

It is easy to show that, for scalar S, for example, L(T, S) =  
Cov(T, S)Var(S)–1. In addition, W with the values in ℜl and 
S are (mean) uncorrelated if, for any c ∈ℜl, L(c′W, S) = 0 
since

L(c′W, S) = Var(S)–1Cov(S, W)c.

Properties in Theorem 3.1 have the following L2 versions.

L2 Properties. The following hold:
A. 	 A sufficient condition for an l-dimensional random 

vector W to be (mean) uncorrelated with a k- 
dimensional random vector S is that E(c′W|S) = 
E(c′W) for all c∈ℜl. This holds, in particular,  
if W is mean independent of S.

B.	 If W is uncorrelated with S, then S is uncorrelated 
with W.

C. 	 A sufficient condition for W to be uncorrelated with 
S is that the conditional characteristic function of W 
given S is real.

D. 	 For a scalar random variable T and a k-dimensional 
random vector S, variable T can be represented as 
follows:

T  =  α0+S′L(T, S)+d*,� (3.1)

where L(d*,S) = 0 and α0 is any constant.

Clearly, if W is uncorrelated with S, then S is not useful 
in the L2 prediction of linear functions of W.

The main technical differences between median 
uncorrelation and uncorrelation are that (1) median 
uncorrelation is not symmetric, (2) if W1 and W2 are both 
uncorrelated with S, then the vector (W1, W2) is uncorre-
lated with S, while the same is not true for median uncor-
relation, (3) a condition for W and S to be uncorrelated can 
be given in terms of W alone (i.e., Cov(W, S) = 0) without 
reference to linear functions and (4) the additivity of 
L(W,  S), i.e., L(W1 +W2, S) = L(W1, S) + L(W2, S), which often 
greatly simplifies technical arguments. This latter differ-
ence basically means that if W1 is uncorrelated with S and 
W2 is uncorrelated with S, then W1 +W2 is uncorrelated with 
S. Two simple results in Proposition 3.1 below compare the 
median uncorrelation with the usual mean uncorrelation.

Proposition 3.1 Let T be a scalar random variable and S be 
a random vector in ℜk.
1.	 If V, a scalar random variable, is independent of S, 

then

cov(T +V, S) = cov(T, S),

but, in general,

M(T +V, S)≠M(T, S).

2.	 If V, a random vector in ℜk, is independent of T, then

cov(T, S +V) = cov(T, S),

but, in general,

M(T, S +V) ≠ M(T, S).

4  �Median Uncorrelation and  
Instrumental Regression

This is the main section of the paper in which we exploit 
the median uncorrelation concept to define estimators for 
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6   Komarova et al.: Quantile Uncorrelation and Instrumental Regressions

parameters in linear models with endogenous variables. 
The estimator (and the model) is defined via the uncor-
relation assumption in the same way as some versions of 
2SLS are defined from the mean uncorrelation.

Consider the following model:

Y=α0+X′β0+ε,� (4.1)

where Y and ε are real-valued random variables, X is a 
k-dimensional random vector with a positive definite 
covariance matrix, α0 is an unknown scalar parameter, 
and β0 is an unknown slope vector. The parameter of  
interest is β0. Assume that ε has median 0, but that

Med(ε|x)≠0,

where Med(⋅|⋅) denotes the conditional median. The 
problem here is that this conditional median is allowed to 
depend on X. There are many reasons for this type of “endo-
geneity” in economic models. Classical work on demand 
and supply analysis in linear (in parameter) models moti-
vate many early works in linear models with mean restric-
tions where instrumental variables assumptions were used 
to eliminate least squares bias that arises from this endo-
geneity. See Theil (1953), Basmann (1960) and Amemiya 
(1985) and references therein. There are a set of papers that 
deal with endogeneity in linear quantile based models. See 
for example Amemiya (1981) for a 2 stage interpretation 
of the 2SLS, and Chernozhukov and Hansen (2005) for 
an approach to inference in quantile based models, both 
linear and nonlinear, in the presence of endogenous 
regressors. Finally, also, Sakata (2007) provides a similar 
approach to ours for estimating models based on L1 loss 
which also involves instrumental variables.

Recall that the 2SLS strategy is based on finding an 
instrument vector Z such that E[Zε] = 0, and using this 
uncorrelation (moment) condition to derive a consist-
ent estimator for β0. In this section, we extend this intui-
tion to median uncorrelation whereas we assume the 
presence of a random vector Z, which we call a vector of 
instruments, that obeys a median uncorrelation assump-
tion (see Assumption A.1 below). This median uncorrela-
tion property, similarly to its counterpart E[Ze] = 0, leads 
naturally to a simple estimator for β0. So, the intuition for 
obtaining an instrument here, is similar to 2SLS in that 
one looks for an excluded variable that is median uncor-
related with the outcome, i.e., cannot linearly explain 
the outcome based on a linear median regression (here 
the outcome means the outcome after projection on the 
other regressors). Finally, our approach is closely related 
also to Sakata (2007) who provides a novel approach 
to inference in this setup. There, the IV estimator is 
defined through an implication of a conditional median  

independence assumption. Below, we state the main 
assumption here.

Assumption A.1 Let there be a d-dimensional random 
vector Z such that:
1.	 There exists a k × d constant matrix of full rank g, with 

d≥k, such that

X = gZ+δ

for some random vector δ.
2.	 (δ, ε)′ is median uncorrelated with Z.

First, we require that the dimension of Z be at least 
equal to the dimension of X. This is the necessary condi-
tion for point identification. The key assumption is part 2 
of A.1 where we require that not only ε be median uncorre-
lated with Z and d be median uncorrelated with Z, but also 
that (δ, ε)′ = (X–gZ, ε)′ be jointly median uncorrelated with Z 
(since the fact that M(ε, Z) = 0 and M(δ, Z) = 0 does not imply 
that (d, ε)′ is median uncorrelated with Z.)

Given Assumption A.1, we are able to easily prove the 
following theorem, which constitutes the main result in 
this section.

Theorem 4.1 (Main Result) Consider the function

y(β) = M(Y–X′β, Z).� (4.2)

Let assumption A.1 hold. Then

y(β) = 0 ⇔ β = β0.

Proof: Note that by assumption A.1, we have

Y = a0+Z′g′β0+δ′β0 + ε.

Let

m∈M(Y – X′β, Z) = M(a0 + Z′g′(β0– β)+d′(β0– β) +ε, Z).

By the invariance property in Lemma 2.1, there exists 
m0∈M(δ′(β0– β) + ε, Z)

such that

m=g′(β0– β)+m0.

Note that δ′( β0– β) = ( β0– β)′δ. Hence, since (δ, ε)′ is median 
uncorrelated with Z, m0 = 0. It follows that m = g′( β- β0) 
and, hence, that

y( β) = g′( β–β0).

Since d ≥ k and g is full column rank by assumption A.1, 
we have
y(β) = 0 ⇔ β=β0,
which proves the theorem.  
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The theorem can be used as the basis for an estima-
tion method for β0. Note that in case we use the least 
squares function L(⋅,⋅) instead of M(⋅,⋅), we get exactly 
Basmann’s interpretation of the 2SLS estimator of β0. 
Moreover, note that the estimator based on the result in 
Theorem 4.1 is the same as the one used by Chernozhukov 
and Hansen (2005). Let Ŷ denote an n×1 vector of realiza-
tions of Y , let X̂  denote an n×k matrix of realizations of X 
and let Ẑ  denote an n×d matrix of realizations of Z. Define 

( )ˆ ˆ ˆ,M Y Z  to be the vector c∈ℜd that minimizes

- - ′∑ ˆ ˆ| |j j
j

Y a Z c

when minimizing over (a, c). Then, β̂  is defined as the 
solution in b to

( )- =ˆ ˆ ˆ ˆ, 0.M Y Xb Z

β̂  can be obtained, as in CH, by minimizing

( )ˆ ˆ ˆ ˆ ˆargmin|| , || ,
k

A
b

M Y Xb Zβ
∈ℜ

= -

where ||⋅||A is the weighted by A Euclidian norm.
It is interesting to note that the sufficient condition for 

identification in CH adapted to the linear model is (in our 
notation) that for all Z the following has a unique solution 
at the true parameter β0:

( ) [ ]0 0
1| 1 | ,
2

P Y X Z E Y X Zα β α β < + = < + =′ ′ 

while our median uncorrelation condition requires that 
the moment condition

E[Z sgn(Y – X′β – Med(Y–X′β))] = 0� (4.3)

has a unique solution at β0.
CH’s condition above can be written as

E[sgn(Y – X′β0– Med(Y–X′β0))|Z] = 0,

which obviously implies (4.3) when it is calculated at β0. 
Clearly, it is a conditional statement, as opposed to an 
unconditional statement. But, our approach requires an 
(unconditional) uncorrelation assumption on the joint 
distribution of (δ, ε, Z).

We next state the asymptotic distribution without 
any conditions and refer the reader to Chernozhukov and 
Hansen (2005) who derived these results for details, and 
for ways to compute the estimator and its standard errors. 
Under the conditions in CH, as n→∞, we have

( ) ( )1 1ˆ  0, ,
d

n C D Cβ β - - ′- →   N

where C=E[fε(0|X, Z)XZ′] and [ ]1
4

D E ZZ= ′  and ε=y-α0–
X′β0.

4.1 Relationship to the 2SLS Assumptions

In the usual model with endogeneity we have

Y=α0+X′β0+ε,

Cov(ε, X)≠0.

Here, a random vector Z is an instrument if Cov(X, Z) and 
Cov(Z, Z) have full rank and Cov(Z, ε) = 0, or E[Zε] = 0 with a 
mean zero assumption on ε.

Let g = Cov(X, Z)Cov(Z, Z)–1 and define δ = X – gZ. Then,

X = gZ + δ.

Here (δ, ε)′ is uncorrelated with Z because δ is uncorre-
lated with Z by construction and ε is uncorrelated with Z 
by definition. This is not true in the median case, where 
we need to impose the joint median uncorrelation condi-
tion in part 1 of A.1. This is the key difference between the 
mean and the median formulations.

4.2 Empirical illustration

We illustrate our approach above by estimating a wage 
regression similar to Griliches (1976) using an extract from 
the 1980 NLSY which contains data on wages, school-
ing and many other variables3. We are interested in the 

3 For information about this sample, see Blackburn and Neumark 
(1992).

log Wage S IQ Experience Tenure Age

Least Squares .057(7.4) .0041(3.5) .0138(3.11) .0054(1.9) .014(2.76)
2SLS .015(.84) .017(3.47) .013(2.88) .003(1.21) .02(3.26)
Quantile Reg (.5) .05(4.75) .005(2.75) .008(1.43) .008(2) .018(2.4)
MIR -.000(-.08) .024(7.18) .014(2.39) .0032(.77) .019(2.32)

Table 1: Returns to Schooling when Controlling for Endogenous Ability.
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8   Komarova et al.: Quantile Uncorrelation and Instrumental Regressions

relationship between schooling and wages allowing for 
Ability proxied here with IQ to be endogenous. We use the 
following regression as the benchmark:

Ln(Wage)�=α + β1S+β2IQ + β2Experience + β4Tenure 
+ β5 Age + ε,

where S is completed years of schooling, IQ is the IQ score 
and here stands for Ability, Experience is years of expe-
rience and Tenure is years of tenure. In this regression, 
the variable IQ is endogenous, and so, we use KWW, or 
“knowledge of the world” test, as an instrument for it. 
Above, Table 1 provides estimates for the parameter vector 
β0 using a set of estimators, each imposes various assump-
tions on the underlying distribution of ε conditional  
on the regressors and the instruments.

We report least squares and two stage least square 
results, a median quantile regression results and MIR, 
which is median instrumental regression results. The 
Table also presents the t-stat in parentheses. In least 
squares, all the coefficient are significant and are useful 
in predicting wages. This story changes somehow 
when we consider 2sls: now, it appears that schooling 
becomes much less important (and the result holds if we 
use efficient GMM). The median regression results are 
similar qualitatively to the least squares results. So, the 
interesting result to note is that the returns to schooling 
when we control for ability is statistically and economi-
cally significant when we do not correct for endogene-
ity of IQ (either least squares or median regression) and 
is roughly around 5%. When we control for endogeneity 
of IQ using KWW as an instrument, schooling becomes 
both economically and statistically insignificant even 
when we use MIR, or median uncorrelated regressions. 
So, the MIR results in particular show that schooling is 
not useful in linearly predicting wage under absolute 
loss when we include IQ (and other regressors) and when 
we allow for endogeneity as defined through the MIR 
model assumptions.

5  �Some Measures of Median 
Correlation

In the case when two random variables are not median 
uncorrelated, we would like to be able to measure the 
degree of their median correlation. Two such measures are 
presented below. The first generalizes the usual (mean) 
correlation; the second generalizes the idea of the coef-
ficient of determination.

First, we review the L2 case. For scalar random vari-
ables T and S, introduce the normalized random variables

( )* ,
T

T E TT
σ

-=

( )* .
S

S E SS
σ

-=

Correlation between T and S is measured by the correla-
tion coefficient corr(T, S):

corr(T, S)=E[|T*||S*|sgn(T*)sgn(S*)].

This definition requires T and S to have finite variances.
A second way to measure the linear relationship 

between two scalar random variables is to consider the 
extent to which a linear function of one random variable 
is useful in the prediction of the other; when applied to 
data, this measure is the coefficient of determination, 
often denoted by R2. Thus, let

( ) ( ) ( )
( )( )

2
,2

2

min
, 1 .

E T S
R rsq T S

E T E T
α β α β- -

≡ = -
-

It is well-known that rsq(T, S) = corr(T, S)2.
Now, consider the L1 case; we begin by considering 

the analogue of corr. Suppose that E|T|< ∞ and4 E|S|< ∞. 
Define T�  and S�  as

( )
( )

,
| |
T Med TT

E T Med T
-=
-

�

( )
( )

.
| |
S Med SS

E S Med S
-=
-

�

Let medcorr(T, S) denote a measure of median correlation 
between T and S defined as

( ) ( ) ( ), | | sgn sgn .medcorr T S E S T S ≡  
� ��

Note that, in general, medcorr(T, S) is different from M(T, S).
The theorem below establishes some important prop-

erties of the medcorr measure.

Theorem 5.1 Consider the random variables T and S such 
that E|S|<∞. The following hold:
1.	 medcorr(T, S)∈[– 1, 1].

4 We can avoid assuming E|T|<∞ if medcorr (T,S) is defined in the 
following way: 

medcorr (T, S) = E[|S~|sgn(T–Med(T))sgn(S~)]. 

When E|T|<∞, these two definitions give the same numerical value.
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� Komarova et al.: Quantile Uncorrelation and Instrumental Regressions   9

2.	 Suppose that M(T, S) is a singleton and P(T – M(T, S) S  -  
Med(T – M(T, S)S) = 0) = 0 and P(T – Med(T ) = 0) = 0. 
Then
sgn(medcorr(T, S)) = sgn(M(T, S)).

In addition, we can show5 that medcorr(T, S) is increasing 
in |M(T,S)|. So, for example, if M(T,S) > 0, we know that 
medcorr(T, S) is also positive, and a higher M(T, S) results 
in a higher medcorr(T, S). In the extreme case where M(T, 
S) = + ∞, it is easy to see that medcorr(T, S) = 1.

The L1 analogue of rsq is

( ) ( )
( )

min | |
, 1 .

| |
E T S Med T S

medrsq T S
E T Med T

β β β- - -
≡ -

-

Note that

( ) ( )
( )

0 0| |
, 1 ,

| |
E T S Med T S

medrsq T S
E T Med T
β β- - -

= -
-

where β0 is an arbitrary element of M(T, S). This method 
was used in Koenker and Machado (1999) to measure 
the goodness of fit for quantile regressions. Koenker 
and Machado (1999) explain why medrsq is bounded 
between 0 and 1. They also show that this correlation 
measure takes the value of 1 where the random variable 
T and the random vector S are linearly perfectly corre-
lated.

We collect some results about medrsq and about 
the relationship between medcorr and medrsq in the  
following theorem.

Theorem 5.2 Consider random variables T and S such that 
E|S| <∞ and E|T| < ∞. The following hold:
1.	� If M(T, S) = 0 then medrsq(T, S) = 0; if medrsq 

(T, S) = 0 then 0 ∈M(T, S).
2.	� Suppose that P(T–Med(T) = 0) = 0. Then medrsq 

(T, S) = 0 if and only if medcorr(T, S) = 0.

Part (1) shows that medrsq takes the value of zero when T 
is median uncorrelated with S. This is similar to the usual 

5 A sketch of a proof for this is as follows. Since, medcorr 

( ) ( ) ( ) ≡  
� � �� �, | |sgn sgnT S E S T S , replace T~ with ( )α d= + +′ � �� �,T SM T S  to get  

( )( ) ( )α d + +′ 
� � � ��| |sgn , sgnE S SM T S S  which is in turn equal to 

( )( )α d + +′ 
� � ��sgn ,E S SM T S . The derivative of the latter with respect 

to ( )��,M T S  is equal to ( )( )d
α- -′∫ � �

� � ��2
|2 ,S SS f SM T S dF , which is positive.

R2 in linear models. Part (2) says that this median R2 is 
equal to zero when the median correlation is zero.

Also, Blomqvist (1950) introduced the following 
measure of median correlation between random variables 
T and S:

k(T, S) = E[sgn(T – Med(T))sgn(S – Med(S))],

or, in terms of normalized variables,

( ) ( ) ( ), sgn sgnk T S E T S =  
��

if E|T| <∞, E|S| <∞. As we can see, this measure is different 
from ours. In particular, k(T, S) is symmetric and does not 
satisfy the invariance property. The value of medcorr(T, S) 
measures the degree of linear relationship between T and 
S while k(T, S) represents an analog of Kendall’s rank cor-
relation because

k(T, S) = Pr((T – Med(T))(S – Med(S)) > 0) – Pr((T – Med(T))(S –  
Med(S)) < 0).

Next, we generalize the concept of L1-correlation to 
other loss functions. This will be a natural extension to 
the above results.

5.1 Lp-correlation for any p ≥ 1

The notion of L1-correlation can be generalized to the case 
of Lp-correlation for any p≥1.

Definition 5.1 For a random variable Y and for any p, 
1≤p<∞, define Medp(Y ) as follows:

Medp(Y)≡inf{d:E[|Y–d|p–1 sgn(Y–d)]≤0}.

Note that Med1(Y ) = Med(Y ) and Med2(Y ) = E(Y ).
Let T be a random variable and S be a random 

vector with values in ℜk such that E|T|p < ∞ and E||S||p < ∞.  
Consider the optimization problem

( ),
min | | .pE T S

α β
α β- - ′

We are interested in the solutions to this problem with 
respect to β. Denote the set of these solutions as Mp(T, S):

( ) ( )
( ).

, :  such that , argmin | | .p
pM T S E T S

α β

β α α β α β
  ≡ ∃ = - - ′ 

  ��

��

Notice that for a fixed β,

( )| | min | | .p p
pE T S Med T S E T S

α
β β α β- - - = - -′ ′ ′

Therefore,
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10   Komarova et al.: Quantile Uncorrelation and Instrumental Regressions

( ) ( ), argmin | | .p
p pM T S E T S Med T S

β
β β= - - -′ ′

The next definition introduces the notion of Lp-
uncorrelation of a random vector with another random 
vector.

Definition 5.2 (LP-uncorrelation) Let W denote an 
l-dimensional random vector. We say that W is Lp-uncor
related with S if

Mp(c′W, S) = 0 	 for all 	 c∈ℜl.

To measure Lp-correlation of a scalar random vari-
able T with a scalar random variable S, let us normal-
ize these variable and define T�  and S�  in the following  
way:

( )

( )( )
1 ,

| |

p

p p
p

T Med T
T

E T Med T

-
=

-
�

( )

( )( )
1 .

| |

p

p p
p

S Med S
S

E S Med S

-
=

-
�

Define a measure of Lp-correlation of T with S as 
follows:

( ) ( ) ( )1, | || | sgn sgn .p
pmedcorr T S E S T T S- =  

� �� �

The value of medcorrp(T, S) lies in the interval [–1, 1], and it 
can be shown that under weak restrictions, similar to the 
ones in Theorem 5.1,

sgn(medcorrp(T, S)) = sgn(Mp(T, S)).

Note that if for some c2, T = c1 + c2S with probability 1, then 
medcorrp(T, S) = sgn(c2 ). It is easy to see that medcorr2(T, 
S) coincides with the familiar correlation coefficient corr 
(T, S).

The Lp analogue of medrsq is defined as follows:

( ) ( )
( )

β β β- - -
≡ -

-
min | |

, 1 ,
| |

p
p

p p
p

E T S Med T S
medrsq T S

E T Med T

and obviously,

( ) ( )
( )

0 0| |
, 1 ,

| |

p
p

p
p

E T S Med T S
medrsq T S

E T Med T
β β- - -

= -
-

where β0 is an arbitrary element of Mp(T, S).

6  �Other Applications of Median 
Uncorrelation

We provide two other applications of this median uncor-
relation by mimicking implications of mean uncorrelation 
when dealing with measurement error in linear models 
under quantile restrictions, and in panel data models with 
quantile restrictions.

6.1 �Quantile regression with measurement 
error

We apply the idea of median uncorrelation to linear quan-
tile regressions with classical measurement error in the 
regressors. In particular, consider the model

Y = α0 + X*′β0+ε, 	 Med(ε) = 0,� (6.1)

where we assume that M(ε, X*) = 0 or that ε is median 
uncorrelated with a k-dimensional random vector X*. We 
do not observe X* directly, but we observe an error-ridden 
version of it, X, such that

X=X*+n,� (6.2)

where we assume that M(v,X*) = 0. We also observe Y.  
To remedy the identication problem that results from the 
measurement error, we follow the treatment of the linear 
model under the mean uncorrelation and use instruments. 
Let there exist a d-dimensional random vector Z and a k × d  
constant matrix g, with d≥k, such that

X*=gZ+ψ�  (6.3)

for some random vector ψ, and M(ψ, Z) = 0. Then

X=gZ+ψ+n.

Given the results of the previous section, we can show the 
following result.

Theorem 6.1 For model (6.1) suppose that we observe (Y,X) 
such that (6.2) holds with M(v, X*) = 0. Moreover, assume 
that (ε, n, ψ) is median uncorrelated with Z and that g in 
(6.3) has full rank. Then,

M(Y–X′β, Z)=0 ⇔ β=β0.

Note that the requirements of the above model are 
that the vector (ε, n, ψ) is jointly median uncorrelated with 
Z. The real assumption here is that the vector of unob-
servables is required to be median uncorrelated with Z. 
In contrast, in the mean uncorrelation model, Z is mean 
uncorrelated with ψ by construction. So, again, as in the 
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� Komarova et al.: Quantile Uncorrelation and Instrumental Regressions   11

2SLS generalization, it is the joint median uncorrelation 
that is needed.

6.2 Quantile regression with panel data

We are interested in inference on β0 in the following  
model:

0 , =1, 2,it it i ity x tβ α ε= + +′ �  (6.4)

where αi is the individual effect that is arbitrarily corre-
lated with ( )1 2,i ix x= ′′ ′xi . Denote ∆yi=yi1– yi2, ∆xi = xi1– xi2 and 
∆εi = εi1– εi2. Suppose that we have a data set of iid observa-
tions (yi, xi) for i = 1,…,n, where yi=(yi1,yi2)′. If we maintain 
the assumption that εi=(εi1,εi2)′ is median uncorrelated 
with xi, then

β0=M(∆yi, ∆xi).

Indeed, this follows from

E|∆yi – a –∆x′i  β| = E|∆εi– a –∆x′i ( β – β0)|

and the definition of the median uncorrelation of the 
vector εi with xi. We want to emphasize that we require 
not only εit be contemporaneously median uncorrelated 
with xit, t = 1,2, but also that the vector εi be jointly median 
uncorrelated with the vector xi of explanatory variables in 
both periods. On the other hand, it is possible to relax this 
joint median uncorrelation condition in the panel setup to 
requiring that the random variable ∆εi be median uncor-
related with ∆xi.

7  Conclusion
The paper considers an analogue of the 2SLS estimator 
which is commonly used in econometrics for estimating 
regressions with endogenous variables. The 2SLS estima-
tor is based on the assumption that even though a regres-
sor is correlated with the error, there exists an excluded 
exogenous regressor that is (linearly) uncorrelated with 
the error. This regressor is called an instrument. And so, 
2SLS exploits implications of this (linear) uncorrelation 
between the instrument and the error in the main regres-
sion to obtain a consistent estimator for the slope. This 
paper tries to follow the same model, but uses median 
uncorrelation instead. This median uncorrelation is new 
to our knowledge and is exactly similar to mean uncor-
relation, except that it uses the absolute loss function, 
as opposed to the squared loss function used with the 
mean. We characterize properties of two vectors that are 

linearly median uncorrelated and then provide a measure 
of median uncorrelation which is bounded between -1 and 
1. This is meant to mirror the typical correlation coefficient 
in linear models. We also provide counterparts to R2 the 
coefficient of determination. Most importantly, we show 
that in a linear regression model where the regressors are 
correlated with the errors, a median uncorrelation assump-
tion between a set of instruments and the error provides 
the basis for inference on the linear slope parameter β that 
is akin to what the 2SLS approach does under mean uncor-
relation. We apply this uncorrelation concept to other 
examples like linear models with measurement error and 
quantile restrictions, and panel data quantile models.

8  Appendix

Proof of Proposition 2.1

1.	 First, suppose that β*∈ℜk satisfies inequality (2.1) for 
any α∈ℜ, β∈ℜk. Denote m*(S) = Med(T–S′β*)+S′β*. Choose 
any a∈ℜ, b∈ℜk and denote m(S) = a +S′b. Then

E |T –  m*(S)|  –E |T–m(S)|  =E[(T–m*(S))sgn(T –m*(S))] 
–E|T – m(S)|

=�E[(T–m(S))sgn(T–m *(S))]+E[(m(S)–m*(S))sgn 
(T–m*(S))]

–E|T – m(S)|
≤ E[(T – m(S))sgn(T – m*(S))⋅1(T – m*(S)≠0)]
+ E[|m(S)–m*(S)|⋅1(T – m*(S)=0)] – E|T – m(S)|� (8.1)
≤E[|T– m(S)|⋅1(T–m*(S)≠0)]
+ E[|m(S)–T|⋅1(T–m*(S) = 0)]–E|T–m(S)|
≤E|T – m(S)|– E|T – m(S)| = 0,

where the first term in (8.1) is obtained using  
inequality (2.1). Thus, β*∈M(T, S).

Now suppose that β*∈M(T, S). Then for any r∈ℜ,

E|T – m*(S)+rm(S)|–E|T – m*(S)|≥0,

and therefore,

( ) ( ) ( )* *

0

| | | |lim inf 0.
r

E T m S rm S E T m S
r↓

- + - - ≥

( ) ( ) ( )

( ) ( )(

− + − −

 = ⋅ − = + − 

+ − − ⋅ − ≠

* *

* *

* *

| | | |Note that  

1| | 1 0) [(| ( )

( ) | | ( ) |) 1( ( ) 0)]

E T m S rm S E T m S
r

E m S T m S E T m S
r

rm S E T m S T m S

When T–m*(S)≠0,
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− + − −

− +
=

− + + −

* *

* 2

* *

| ( ) ( ) | | ( ) |

2( ( )) ( ) ( ) ,
| ( ) ( ) | | ( ) |

T m S rm S T m S
r

T m S m S rm S
T m S rm S T m S

and

↓

− + − −

−
= = − ⋅

−

* *

0

*
*

*

| ( ) ( ) | | ( ) |lim

2( ( )) ( ) ( ( )) ( )
2| ( ) |

r

T m S rm S T m S
r

T m S m S sgn T m S m S
T m S

Taking into account that
* *| ( ) ( ) | ( ) | | ( ) |,T m S rm S T m S m S

r
- + - - ≤

and applying Lebesgue’s dominated convergence 
theorem, we obtain

* *

0

* *

0

| ( ) ( ) | | ( ) |lim inf

| ( ) ( ) | | ( ) |lim 

r

r

E T m S rm S E T m S
r

E T m S rm S E T m S
r

↓

↓

− + − −

− + − −
=

*[| ( ) | 1( ( ) 0)]E m S T m S= ⋅ - =

* *| sgn( ( )) ( ) 1( ( ) 0)]E T m S m S T m S+ - ⋅ - ≠ ⋅

Then

–E [sgn(T–m *(S))m(S)⋅1(T–m *(S)≠0)]≤E [ |m(S) |⋅1 
(T–m*(S)=0)].

If the same technique is applied to E|T–m*(S)–rm(S)|– 
E|T–m*(S)|, then

E [sgn(T–m *(S ) )m (S )⋅1(T–m *(S )≠0)] |≤E [ |m (S ) |⋅1 
(T–m*(S)=0)].

Therefore,

|E [sgn(T–m *(S))m(S)⋅1(T–m *(S)≠0)]|≤E [ |m(S) |⋅1 
(T–m*(S)=0)],

which concludes the proof of part 1.
2.	 Use the result of part 1 of this proposition. Under given 
conditions, for any α∈ℜ,

E[α sgn(T–S′β*–Med(T–S′β*))]=0,

and the right-hand side in (2.1) is 0. This gives

E[S′β sgn(T–S′β*–Med(T–S′β*))]=0

for any β∈ℜk. Choosing β = (1,0,….,0), we obtain that

E[S1 sgn(T–S′β*–Med(T–S′β*))]=0.

In a similar way we can show that for any i = 1,…,k,

E[Si sgn(T–S′β*–Med(T–S′β*))]=0,

which means that

E[S sgn(T–S′β*–Med(T–S′β*))]=0.

3.	 This result is obvious from part 2 of this proposition.

Proof of Lemma 2.1

We prove this lemma in two steps. In the first step we show 
that M(T, S) + b⊂ M(T + a + S′b, S). In the second step, we 
establish that M(T + a + S′b, S)⊂ M(T, S) + b.

First of all, note that for a given b and any a,

( , ) argmin | '( ) ( ( )) | .
kq

M T a S b S E T S b q Med T S b q
∈ℜ

+ + ′ = + - - + ′ -

Let m1∈M(T, S). This implies that for any q∈ℜk

E|T  +  S′(b–q)–Med(T  +  S′(b – q))|≥E|T–S′m1–Med(T – S′m1)|.

Obviously, the inequality becomes the equality if  
q = m1  +  b. Therefore, m1  +  b∈M(T  +  a  +  S′b, S).

Now let m2 ∈ M(T + a + S′b, S). This implies that for any 
β∈ℜk

E |T–S ′β –Med (T–S ′β ) |≥ E |T+ S ′ (b–m 2)–Med (T+ S ′ 
(b–m2))|.

The inequality becomes the equality if β=m2–b. Therefore, 
m2–b∈M(T, S) and, hence, m2∈M(T, S) + b.

Proof of Theorem 3.1

(A):	Suppose Med (c′W|s)≡c*. Then, we know that c* mini-
mizes the following problem over all (measurable) func-
tions g(S):

E|c′W – c*|≤E|c′W – g(S)|.

In particular, this holds for any linear function of S, a + S′β 
with β≠0.
(B):	Consider independent random variables S and Z such 

that P(S = 1) =  7
16 ,P(S = –1) = 9

16 , and P(Z  = 1) =  1
6 , P(Z = 0) =  1

2 ,  

P(Z = –1) =  1
3 . Define random variable W as W = SZ. Since 

Med(W|S = 1) = Med(W|S = -1) = 0,
then from part (A) we conclude that W is median uncor-
related with S.

Let us now analyze whether S is median uncorrelated 
with W. Consider the optimization problem
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β
β β- - -min | ( )|.E S W Med S W

Since Med(S) = -1, then the value of the objective function 

when β = 0 is E|S+1| = 7
8 . Let us find the value of this objec-

tive function when β = -1. Since Med(S + W) = Med(S + SZ) = 0, 

then E|S + W-Med(S + W)| = E|S + SZ| = E|1 + Z| = 5
6 , which is 

smaller than 7
8 . Thus, β = 0 cannot be a solution to the 

optimization problem. This implies that S is not median 
uncorrelated with W.
(C): 	This means that the conditional characteristic func-
tion of c′W given S is real, which in part means that the 
conditional distribution of c′W given S is symmetric 
around 0. Hence, Med(c′W|s) = 0 = Med(c′W) for all s.
(D):	Let δ = T–a0–S′M(T, S), where a0 is any constant. 
Showing that M(δ, S) is equal to 0 is a direct result of the 
invariance property in (2.4).
(E):	 Since by assumption P(T–Med(T) = 0)= 0, Proposi-
tion 2.1 and conditions M(T, S) = 0 and M(T, Z) = 0 imply 
that

E[S sgn(T – Med(T))] = 0, E[Z sgn(T – Med(T))]=0.

Then

E[(S + Z) sgn(T – Med(T))] = E[S sgn(T – Med(T))] + E[Z sgn(T –  
Med(T))] = 0,

that is, 0∈ M(T, S + Z). Since M(T, S + Z) is assumed to be a 
singleton, M(T, S + Z) = 0.
(F):	The first part of the statement follows from (A). For 
the second part of the statement, note that Proposition 2.1 
implies

E[S sgn(T–Med(T))] = 0.

Given that the conditional median of T|S = 1 is unique, we 
have:

E[S sgn(T–Med(T))] = 0 �⇒ E[sgn(T–Med(T))|S  = 1] = 0 
⇒Med(T) = Med(T|S  = 1).

Because E[sgn(T–Med(T))] = 0,

E[sgn(T – Med(T))|S = 1] = 0 ⇒ E[sgn(T – Med(T))|S= 0] = 0.

Taking into account that that the conditional median of 
T|S = 0 is unique, we obtain that Med(T) = Med(T|S = 0).

Proof of Theorem 5.1

(1): 	This follows from

| ( , ) | | [  sgn( ( ))sgn( )]| |S|=1.medcorr T S E S T–Med T S E= ≤� � �

(2): 	First, let us prove that M(T, S) = 0 ⇔ medcorr(T, S) = 0. 
Taking into account the conditions of this theorem and 
applying Proposition 2.1, obtain that 

M(T, S) = 0 ⇔ E [S sgn(T – Med(T))] = 0

( ) sgn( ( )) 0
| ( ) |
S Med SE T Med T

E S Med S
- ⇔ - = - 

sgn( ( )) 0E S T Med T ⇔ - = 
�

⇔medcorr(T, S)=0.

Note that medcorr(T, S) = medcorr(T–Med(T), S)̴ and

( ( ), )
( , ) ,

| ( ) |
M T Med T S

M T S
E S Med S

-
=

-

�

and, hence, sgn(M(T, S)) = sgn(M(T – Med(T), S̴)). Thus, it is 
enough to show that

sgn(medcorr (T–Med(T), S̴)) = sgn(M(T – Med(T), S̴)).

Denote b* = M(T – Med(T), S̴). For b*=0 the result is already 
proven.

Suppose b*≠ 0. Notice that

sgn(medcorr(T – Med(T), S ̴))=sgn(b*)sgn(E[b* S̴  sgn(T –  
Med(T))]),

and therefore, the result will be proven if we establish that 
E[b*S̴ sgn(T–Med(T))] >0.

Denote

a* = Med(T–Med(T)–b*S̴) = Med(T–b*S̴)–Med(T).

According to Proposition 2.1, b* satisfies

* * sgn( ( ) ) 0E S T Med T b S a - - - = 
� �

Then

E|b*S̴ sgn(T–Med(T))]=E[(b*S̴+a*)sgn(T–Med(T))]
=E[(b*S̴+a*)(sgn(T–Med(T))–sgn(T–Med(T)–b*S~–a*))]
=2E[(b*S̴+a*)1(T–Med(T)>0)1(T–Med(T)–b*S̴–a*<0)]
-2E[(b*S̴+a*)1(T–Med(T)<0)1(T–Med(T)–b*S̴–a*>0)].

Notice that both terms in the last sum are non-negative. 
Moreover, at least one of them is strictly positive  
because

Pr(sgn(T–Med(T))sgn(T–Med(T)–b*S̴–a*)=–1)>0,

or equivalently,

Pr(sgn(T–Med(T))sgn(T–b*S̴–Med(T–b*S̴))=–1)>0.
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This follows from the assumptions of the theorem and part 

2 of Proposition 2.1, according to which 
*

| ( ) |
bb

E S Med S
=

-
 

solves the equation

E[S sgn(T–bS–Med(T–bS))]=0,

while b = 0 does not.
Thus, E[b*S̴ sgn(T–Med(T))]>0.

Proof of Theorem 5.2

(1):	 If M(T, S) = 0, then

| ( ) |( , ) 1 0.
| ( ) |

E T Med Tmedrsq T S
E T Med T

-= - =
-

If medrsq(T, S) = 0, then

min | ( ) | | ( ) |,E T S Med T S E T Med T
β

β β- - - = -

so that, clearly, 0 ∈ M(T,S).
(2):	 If medrsq(T, S) = 0, then, from part (1), 0∈ M(T, S). 
From Proposition 2.1 it follows that E[S sgn(T – Med(T))] = 0 
and, hence, medcorr(T, S) = 0. If medcorr(T, S) = 0, then  

E[S sgn(T – Med(T))] = 0 so that by Proposition 2.1, 0∈M(T, 
S). It follows that

min | ( ) | | ( ) | .E T S Med T S E T Med T
β

β β- - - = -

Proof of Theorem 6.1

The proof of this theorem is analogous to the proof of 
Theorem 4.1.
Let

m∈M(Y–X′β, Z)=M(α0+Z′g′( β0–β)+ψ′( β0–β)+ε–n′β, Z).

By the invariance property in Lemma 2.1, there exists 
m0∈M(ψ′(β0–β)+ε–n′β, Z) such that

m=g′(β0–β)+m0.

Note that ψ′(β0–β)=(β0–β)′ψ and n′β=β′n. Hence, since (ε, 
n, ψ)′ is median uncorrelated with Z, m0 = 0. It follows that 
m = g′( β0–β), and hence, that

M(Y–X′β, Z)=g′( β0–β).

Since d ≥ k and g is full column rank by assumption, then

M(Y–X′β, Z)=0⇔β=β0.
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