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Abstract. Identification strategies concern what can be learned about the value of a param-

eter based on the data and the model assumptions. The literature on partial identification is

motivated by the fact that it is not possible to learn the exact value of the parameter for

many empirically relevant cases. A typical result in the literature on partial identification is

a statement about characterizing the identified set, which summarizes what can be learned

about the parameter of interest given the data and model assumptions. For instance, this

may mean that the value of the parameter can be learned to necessarily be within some set

of values. First, the review surveys the general frameworks that have been developed for

conducting a partial identification analysis. Second, the review surveys some of the more

recent results on partial identification.

1. INTRODUCTION

An important part of any empirical analysis in economics is the identification strategy:

how are the assumptions and the data used to answer the empirical question? Often, this

involves the empirical researcher telling a story that involves motivating key assumptions and

describing specific features of the data that are used or “exploited” to recover information

about the value of the relevant parameter of a statistical model. The parameter could be,

for instance, a coefficient in a regression model or an average treatment effect in a potential

outcomes model. This process of establishing the identification strategy can involve reference

to a formal theorem that characterizes the relationship between the parameter and the data,
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given a particular set of assumptions. Alternatively, it can involve a more informal discussion

surrounding considerations like “sources of exogenous variation” that identify the parameter.

The general presumption tends to be that an identification strategy should provide a way

to learn the exact value of the parameter. If so, then the parameter is said to be point

identified. Identification strategies concern what can be learned based on the population data.

This abstracts away from finite sample considerations that can be a different reason that the

exact value of the parameter is not learned in an empirical analysis. Results in the literature

on point identification that are motivated by this presumption often can be characterized as

an attempt to find a set of assumptions and features of the data that are sufficient for point

identification. In other words, the literature on point identification often takes the question

“under what assumptions and with what kind of data is it possible to learn the exact value of

the parameter?” as its motivation. This is an all-or-nothing approach, a binary of view of

identification: the parameter value is either (point) identified or it is not.

The literature on partial identification provides an alternative perspective on empirical

analysis that avoids this binary view. The literature on partial identification asks “what can

be learned about a parameter under a given set of assumptions and with a given kind of

data?” Unlike the literature on point identification, the literature on partial identification

does not prioritize searching for assumptions and data with the goal of a result of learning

the exact value of the parameter. Indeed, often the literature on partial identification does

not prioritize considerations relating to how much is learned about the parameter. Rather,

the literature on partial identification prioritizes working with a plausible set of assumptions

and data, and studying what can be learned about the value of the parameter. In other

words, with point identification, the starting point is the “goal” of learning the exact value;

with partial identification, the starting point is a set of model assumptions and data.

A typical result in the literature on partial identification is a statement that the value of

the parameter can be learned to necessarily be within some set of values that depends on the
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data and the assumptions. This set is known as an identified set. Sometimes this is referred to

as “bounds” on the value of the parameter. From the point of view of identification analysis,

learning an identified set is equivalent to learning about the value of the parameter.1 The

partial identification framework generalizes the point identification framework. By definition,

point identification is a special case of partial identification, and so an emphasis on point

identification is an unnecessary limiting restriction on empirical analyses.

This review complements the first review article published in this journal on the same

topic. See Tamer (2010). The review surveys some of the common identification strategies

(i.e., combinations of assumptions and data) that have led to partial identification results for

specific statistical models, including ideas relating to shape constraints and ideas related to

the observable implications of optimizing behavior. The review also discusses topics relating

to sensitivity analysis and data limitations, among other issues. This part of the review

explores how common identification strategies have been used in a variety of specific models,

including treatment effects models and choice models involving a single decision maker or

multiple decision makers.

This part of the review shows the sense in which point identification is an exceptional

special case, in that the core ideas of many standard identification strategies result in partial

identification rather than point identification. Point identification often requires additional

assumptions that are not directly motivated by the underlying core idea of the identification

strategy. As such, this part of the review emphasizes that partial identification can be viewed

as the rule rather than the exception for many standard identification strategies. Therefore,

partial identification methods provide the scope for an empirical analysis that more directly

follows the core idea of the identification strategy. In such cases, this would not be possible
1However, from the point of view of (finite sample) statistical inference, an issue this review does not emphasize,
there is a subtle difference between inference for the value of the parameter and inference for the identified
set. Essentially, this is because the identified set actually is a point identified object (given it can be learned
exactly) whereas by definition the value of the parameter is a partially identified object. However, since this
review focuses on identification analysis, this distinction does not arise.
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based on a presumption that an identification strategy needs to result in point identification

of the parameter.

Based on a presumption that the goal of an identifications strategy is point identification,

the empirical researcher can have any of multiple potential responses to finding that it is not

possible to learn the exact value of the parameter relevant for answering an empirical question.

All of them come with certain costs that can be avoided by taking a partial identification

approach instead. One possibility is to conclude that an empirical analysis is not possible

on the basis that the parameter is not point identified under a desired set of assumptions

and based on the available data. However, this may exaggerate the inability to answer the

empirical question. Partial identification allows the empirical researcher to learn something

about the parameter, which is more informative than concluding that an empirical analysis

is not possible. Another possibility is to conclude that stronger assumptions are needed to

answer the empirical question, and consequently base the empirical analysis in part on those

additional assumptions even if they were not initially part of the preferred analysis. However,

this can diminish the credibility of the resulting empirical analysis, to the extent that the

additional assumptions are difficult to motivate. Partial identification can avoid the use of

such assumptions, thereby resulting in a more credible analysis. Another possibility is to find

or generate alternative or additional data, for instance conducting a randomized experiment

to overcome endogeneity in observational data. This can be a particularly convincing response,

although it does not apply in all cases, and it can substantially raise the cost of the research,

and in many cases there is no plausible data that would be sufficient for point identification.

Partial identification can be based on the available data.

More generally, the review defines some of the general principles of an identification analysis,

and surveys the frameworks that have been developed for conducting a partial identification

analysis, including the moment inequality, criterion function, random sets, and generalized

instrumental variables approaches. Each provides a particular “language” in which to conduct
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an identification analysis. These frameworks are parallels to frameworks like generalized

method of moments or Z-estimation/M-estimation.

Because of the large size of the literature on partial identification, the review must be

selective in the topics it covers. In particular, this review does not discuss much about

the statistical inference issues associated with partial identification. Partial identification

raises unique statistical inference considerations, particularly relating to uniform validity of

inference, inference on components of the parameter of a statistical model, and the question

of the appropriate object of inference (e.g., the identified set or the partially identified

parameter). Other reviews with alternatives focuses or perspectives, some of which do cover

statistical inference, include Tamer (2010), Molchanov and Molinari (2014), Bontemps and

Magnac (2017), Canay and Shaikh (2017), Ho and Rosen (2017), Chesher and Rosen (2020),

Molinari (2020), and Kline, Pakes, and Tamer (2021). For reviews of the overall literature

on identification, often with a focus on point identification, see the comprehensive papers of

Matzkin (2007, 2013) and Lewbel (2019).

2. OVERVIEW OF IDENTIFICATION

It is necessary to set up some of the general principles of identification.

2.1. General Principles. A statistical model provides a connection between a parameter θ

and observable data w. The true value of the parameter is θ0, and identification of θ concerns

the question of what can be logically concluded about the value of θ0 on the basis of the

combination of a maintained set of assumptions and the observed data. The identification

analysis must be specialized for the particular statistical model, particularly relating to what

features of the distribution of the observable data are determined by the statistical model.

For instance, the statistical model can determine a complete specification of a data

generating process for w, resulting in a distribution Fθ(w) for each value of θ. A familiar

example is a parametric model of the sort that is estimated by maximum likelihood. The



6 RECENT DEVELOPMENTS IN PARTIAL IDENTIFICATION

observed distribution of the data F0 is equal to the distribution determined by the statistical

model at the true value of the parameter θ0, and thus F0 = Fθ0 . In such a case, an identification

analysis can concern the determination of the values of θ such that Fθ = F0. The set of values

{θ : Fθ = F0} is the set of values of θ that generate the observed distribution of the data.

The true value θ0 is in the set, by definition. Sometimes this set is referred to as the set of

“observationally equivalent” values of the parameter, in the sense that they all result in the

same distribution of the observed data. Consequently, the data cannot be used to distinguish

between them.

Typically, the statistical model concerns a relationship among the components of w. In

many cases, this involves an “outcome” y and “explanatory variables” x, so that w = (y, x).

In such cases, often the parameter θ characterizes the relationship between y and x. In such a

case, the statistical model can result in a conditional distribution Fθ(y|x). A familiar example

is a parametric model of the sort that is estimated by conditional maximum likelihood. Many

discrete outcome models are of this kind. The set of values {θ : Fθ(·|x) = F0(·|x) w.p.1. x}

is the set of values of θ that generate the observed distribution of the data. The notation

“w.p.1. x” means with probability 1 with respect to x, and is practically the same as “for

all x”. Now, “observational equivalence” requires that the conditional distributions resulting

from θ result in the conditional distributions in the observed data.

Alternatively, the statistical model can determine specific features of the data generating

process for w. A common example is the expected value Eθ(w) for each value of θ. This

includes the familiar example of “non-parametric” estimation of moments of the data, where

θ can be simply defined to be the expected value (i.e., Eθ(w) = θ). In the case of expected

values, an identification analysis can concern the determination of the values of θ such that

Eθ(w) = E0(w) where E0 is the expected value in the observed data. The set of values

{θ : Eθ(w) = E0(w)} is the set of values of θ that generate the observed expected value

of the data. Sometimes this is also referred to as “observational equivalence” but it is
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important to recognize this is relative only to the expected value of the data, and not the

overall distribution of the data. More generally, when specific features of the data are used

to identify the parameter, it is important to recognize that “observational equivalence” is

relative to those features of the data, and not the overall distribution of the data. Sometimes,

the statistical model can determine features of the conditional distribution of y given x. A

familiar example is the linear model that results in a specification for Eθ(y|x) for each value

of θ. The set of values {θ : Eθ(y|x) = E0(y|x) w.p.1. x} is the set of values of θ that generate

the observed conditional expected values of the data.

Statistical models may determine features of the distribution of w other than the features

that are used in an identification analysis. In other words, in many cases, an identification

analysis is based only on a restricted set of implications of the model. For instance, a

particular identification analysis may be based only on selected expected values even though

the model also determines other expected values, or other features of the data.

Thus, identification analysis involves the question of which features of the data are used

to identify the parameter. In some cases, including the linear model under the standard

assumptions used by ordinary least squares, the statistical model only determines a specific

set of features of the data, like expected values. If so, then those features of the data (e.g.,

expected values) are the only feature of the data relevant for learning about θ, since θ

has no further implications. However, in other cases, the model actually does determine

other features of the data generating process for w. For instance, the linear model with

distributional assumptions on the unobservable term (e.g., normality assumptions used for

finite sample inference) determines the full distribution of the data, and not just expected

values. With such a model, the identification analysis could be based only on the expected

values or it could be based on the full distribution of the data. The logical conclusions about

θ that can be drawn from expected values could be different from the logical conclusions that

can be drawn from the full distribution of the data. More generally, the logical conclusions
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about θ can depend on the features of the data that are used in the identification analysis.

Therefore, when ambiguity is possible, it is important to be clear about which features

of the data are used by an identification analysis. It is common, for example, to base an

identification analysis only on specific expected values even though the model determines

additional expected values, or even a full distribution; it is important to be clear about this.

An important component of an identification analysis is the set of maintained assumptions.

Often, the assumptions are determinants of the functional forms of Fθ or Eθ. For instance,

consider a linear model y = xβ+ϵ. In the typical analysis, the parameter θ consists only of the

parameter β, so that θ = β. In other analyses, including some discussed below, θ may contain

additional components relating to the distribution of ϵ. It follows that Eθ(y|x) = xβ +Eθ(ϵ|x).

This depends on the unknown Eθ(ϵ|x). The typical exogeneity assumption used in an ordinary

least squares analysis that Eθ(ϵ|x) = 0 results in Eθ(y|x) = xβ. Then, based on the conditional

expected value E0(y|x) from the observed data, the identification analysis concerns the set

of β such that xβ = Eθ(y|x) = E0(y|x). This illustrates the common circumstance that the

assumptions determine the functional form for Eθ(y|x).

The parameter θ is point identified when the exact value of θ can be logically inferred

based on the assumptions and the data. The parameter θ is partially identified when the

value of θ can be logically inferred to be in some set of values, based on the assumptions and

the data.

An identified set in a partial identification analysis is the conclusion of a logical argument

about what can be learned about the parameter on the basis of the assumptions and the

data. In short, an identified set answers the question: “Based on the assumptions and the

data, what is something that can be logically concluded about the value of the parameter?”

Note this definition does not require that an identified set answer the more difficult question:

“Based on the assumptions and the data, what is the strongest possible logical conclusion

about the value of the parameter?”
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Therefore, by definition, any value of the parameter that is not in an identified set can

be ruled out as a candidate value of the parameter. In general, it is possible that there are

values of the parameter in an identified set that are not compatible with the assumptions and

the data. This can happen when it is difficult to derive all of the logical implications of the

model, assumptions, and data. Even though some values of the parameter in an identified

set may be incompatible with the assumptions and data, it may be difficult to actually prove

this. The definition of an identified set does not require that it corresponds to the strongest

possible logical conclusion that is implied by the setup. Rather, the definition of an identified

set implicitly accommodates the difficulty of actually deriving logical conclusions about the

parameter. In particular, there is not a unique identified set in a given setup.

However, if an identified set does have the property that all values of the parameter in the

identified set are indeed compatible with the assumptions and the data, then the identified

set is the sharp identified set. The sharp identified set answers the question: “Based on the

assumptions and the data, what is the strongest possible logical conclusion about the value

of the parameter?” Hence, there is a unique sharp identified set. Often, the literature on

partial identification uses the phrase the identified set (rather than an identified set) to refer

to the sharp identified set. Obviously, the derivation of the sharp identified set is preferred,

but in many cases the most that can be proved is the derivation of an identified set.

The fact that it is possible to work with an identified set rather than the sharp identified set

represents a subtle but important feature of the partial identification approach to empirical

analysis. It is difficult to derive the logical implications of a model, set of assumptions, and

data. In the partial identification framework, it is possible to work with a result that draws

some logical conclusions about the parameter even if the result does not exhaust all of the

possible logical conclusions that could be drawn. In contrast, in the point identification

framework, if it is not possible to establish conditions under which it is possible to prove

that the parameter is point identified then it is not possible to conduct an empirical analysis.
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This is about what is possible to prove, which is distinct from whether or not the parameter

actually is point identified under some reasonable set of conditions. Given the existence

of a literature on identification, it is obviously non-trivial to establish point identification

results. In the partial identification framework, as long as it is possible to come to some

logical conclusions about the parameter, it is possible to conduct an empirical analysis, even

if more conclusions could in principle be drawn about the parameter. This means that the

partial identification framework accommodates the difficult in proving identification results

in a way that the point identification framework does not.

Sometimes, an identified set that is known to not be the sharp identified set is called an

outer identified set. Establishing “sharpness” of an identified set should not be over-prioritized

relative to establishing an identified set under credible assumptions. Of course, for a given set

of assumptions, it is preferred to have the sharp identified set. But, the pursuit of “sharpness”

should not influence the choice of assumptions used in the identification analysis. This directly

parallels the perspective that the pursuit of “point identification” should not influence the

choice of assumptions used in the identification analysis.

Further, sharpness is necessarily relative to a specific set of formal assumptions. In

general, there is an important difference between the set of formal assumptions and the

set of assumptions actually “believed” by the empirical researcher. Typically, the empirical

researcher actually “believes” more than is represented by the set of formal assumptions. In

those cases, the sharp identified set actually answers the question “What is the strongest

possible logical conclusion about the value of the parameter on the basis of a subset of the

assumptions actually ‘believed’ by the empirical researcher.” It may be preferable to have a

potentially non-sharp identified set under a set of assumptions that more closely matches

those actually “believed,” compared to a sharp identified set that is sharp only under a

different set of assumptions.
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2.2. Example: The Linear Model. It is possible to illustrate these ideas in the familiar

context of a linear model. Identification in the “semi-parametric” linear model y = xβ + ϵ

with the exogeneity assumption Eθ(ϵ|x) = 0 is based on the implication that Eθ(y|x) = xβ.

There is point identification when there is a unique value of β that satisfies xβ = E0(y|x)

w.p.1. x, where E0(y|x) is the conditional expected value that is observed in the data.

Because the true value necessarily satisfies the condition that xβ0 = E0(y|x) w.p.1. x,

given the model is correctly specified, it equivalently follows that point identification is the

condition that β0 is the unique solution to xβ = E0(y|x) w.p.1. x. More generally, the set

{β : xβ = E0(y|x) w.p.1. x} is the identified set for β.

In this “semi-parametric” specification of the linear model, there are no further implications

of the model, so this actually is the sharp identified set. This formulation is semi-parametric

because there is an infinite-dimensional unknown: the distribution of ϵ, an infinite-dimensional

object, is left unspecified and indeed is often viewed as not being a parameter of the model.

However, as discussed above, other specifications of “linear models” may involve further

assumptions. With further assumptions, the model may determine additional features of

the data generating process beyond expected values. Furthermore, other specifications may

involve the introduction of additional parameters. For instance, the specification may involve

distributional assumptions on ϵ, like the assumption that ϵ has a normal distribution with

mean zero and variance σ2(x), where σ2(·) is the variance as a function of x. Various additional

assumptions, like the homoskedasticity assumption that σ2(x) = σ2, could be further imposed.

If σ2(·) is unknown, it is an additional parameter of the model; hence, the parameter becomes

θ = (β, σ2(·)). This would imply that y|x has a normal distribution with mean xβ and

variance σ2(x). In such a specification of the linear model, {β : xβ = E0(y|x) w.p.1. x} is

still an identified set for β because logically the true value β0 must be in that set. Note that

this identified set is for a component of θ, since it concerns β but not σ2(·). This reflects a
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more general point that often identified sets are constructed for specific parameters of interest

rather than the full parameter.

However, {β : xβ = E0(y|x) w.p.1. x} may not be the sharp identified set, depending

on whether each value of β in that set also is compatible with the additional assumptions.

If the parameter is point identified based on the “typical” specification, then obviously

additional assumptions would not influence the identification result, since it is not possible

to be “more” than point identified in an identification analysis. But if the parameter is

partially identified based on the “typical” specification, additional assumptions may influence

the identification result. With the normality assumption, the sharp identified set for β

would be {β : FN (xβ,σ2(x))(·) = F0(·|x) w.p.1. x for some σ2(·)}. The notation FN (xβ,σ2(x))(·)

is the distribution of N (xβ, σ2(x)). This identified set again reflects the idea that often the

identified set for a component of the parameter is of interest.

Returning to the semi-parametric specification, the typical analysis of the linear model

provides conditions for point identification. For any value of the parameter such that xβ =

E0(y|x) w.p.1. x, it follows that x′xβ = x′E0(y|x) w.p.1. x and therefore E0(x′x)β = E0(x′y).

Therefore, under the “full rank” condition on the data that requires that E0(x′x) has a matrix

inverse, β̂ = (E0(x′x))−1 E0(x′y) is the unique solution to xβ = E0(y|x) w.p.1. x, which

implies that β is point identified. This full rank condition is a sufficient condition for point

identification, alongside the rest of the setup.

Certain deviations from this analysis of the linear model result in partial identification of

the parameter. It is possible to see this through two simple examples. The rest of the review

provides a range of other examples of partial identification.

2.2.1. Perfect Collinearity. Suppose that the “full rank” condition fails and instead that

there is a non-zero value β̃ of the parameter such that xβ̃ = 0 w.p.1. x. This can be

viewed as a particular version of a “perfect collinearity” problem. Although the use of partial

identification methods would probably not be the response to a “perfect collinearity” problem
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in practice, this can be used to provide an example of partial identification that is simple

and based on a familiar problem. By matrix algebra, the set of β that solve xβ = E0(y|x)

w.p.1. x can be expressed as {β : β = β̃ + β0 for some β̃ s.t. xβ̃ = 0 w.p.1. x}.2 Any value

of the parameter in this set results in the same conditional expected values. Obviously,

the true value β0 is in this set (taking β̃ = 0) but other values of the parameter can also

be in this set (for any non-zero values of β̃). Specifically, this means that the parameter

is partially identified when there is “perfect collinearity” and hence a non-zero β̃. This

set shows that the parameter is partially identified, but note that this set depends on the

unknown β0, and therefore does not immediately provide a way to learn about the value

of the parameter in empirical practice. However, it is trivial that an identified set for

β is {β : xβ = E0(y|x) w.p.1. x}. Another representation of the identified set for β is

{β : β = β̃ + (E0(x′x))+E0(x′y) for some β̃ s.t. xβ̃ = 0 w.p.1. x} where A+ is the Moore-

Penrose generalized inverse of A.3

It is possible to use this example to discuss the fact that there can be different identification

results for different specific features of a statistical model. If β(1) and β(2) are two values

of β in the identified set, then xβ(1) = xβ(2) = xβ0 w.p.1. x. Consequently, even though

β is partially identified, the “predictions” xβ0 are actually point identified on the observed

support of x. If the goal of the empirical analysis were to construct such predictions, then the

corresponding object of interest actually turns out to be point identified even with perfect

collinearity. This reflects a subtle but important point about identification: even if “the
2For any value β̃ such that xβ̃ = 0 w.p.1. x, it follows that x(β̃ + β) = E0(y|x) whenever xβ = E0(y|x).
Consequently, any parameter value of the form β∗ = β̃ +β0 is such that xβ∗ = E0(y|x) w.p.1. x. Furthermore,
for any value β∗ such that xβ∗ = E0(y|x) w.p.1. x, which can be always written as β∗ = β̃ + β0 with
β̃ = β∗ − β0, it follows that xβ̃ = x(β∗ − β0) = E0(y|x) − E0(y|x) = 0 w.p.1. x. Consequently, any
parameter value β∗ such that xβ∗ = E0(y|x) w.p.1. x is of the form β∗ = β̃ + β0 with xβ̃ = 0 w.p.1. x. The
same argument and result is true with β̃0 in place of β0 where β̃0 is any value of the parameter such that
xβ̃0 = E(y|x) w.p.1. x.
3Let A = E0(x′x). It holds E0((x(β0 − E0(x′x)+E0(x′y)))2) = E0((β0 − A+E0(x′y))′x′x(β0 − A+E0(x′y)))
= E0((β0 − A+Aβ0)′x′x(β0 − A+Aβ0)) = β′

0Aβ0 − β′
0AA+Aβ0 − β′

0AA+Aβ0 + β′
0AA+AA+Aβ0 = 0 since

AA+A = A as a property of the Moore-Penrose generalized inverse. Therefore, x(β0 − E0(x′x)+E0(x′y)) = 0
with probability 1. Therefore, β is of the form β = β̃ + β0 with xβ̃ = 0 w.p.1. x if and only if β is of the
form β = ˜̃β + E0(x′x)+E0(x′y) with x ˜̃β = 0 w.p.1. x, by taking ˜̃β = β̃ + β0 − E0(x′x)+E0(x′y).
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parameter” is partially identified, it is possible that the object of interest that answers the

empirical question is point identified. It is important to recognize, however, the nuances of

this fact. First, in this particular example, the “predictions” are point identified specifically

on the observed support of x. If the empirical analysis involved making predictions for novel

values of x, then the corresponding prediction would not be point identified. This follows since

β(1) ̸= β(2) implies that there is some x such that xβ(1) ≠ xβ(2). Therefore, it is important to

be very careful in defining the object to be identified, since subtle issues like “support” can

make a big difference. Second, in this particular example, even though these “predictions”

are point identified, the marginal effects are partially identified. This follows since β is the

marginal effect, and β itself is partially identified. In other words, identification properties

are specific to specific quantities in potentially surprising ways: in this case, there is point

identification of these “predictions” about the relationship between y and x, but only for x in

the observed support, and yet partial identification of marginal effects. It is common to see

statements like “the model is (partially) identified,” which usually refers to the identification

of the main parameter of the model θ, but it is important to keep in mind that identification

properties of θ are not necessarily directly relevant for every empirical question.

2.2.2. Interval Data. Alternatively suppose that the data does not contain y, but instead

contains (yL, yU) with the property that yL ≤ y ≤ yU . This can be viewed as a particular

version of “interval data” specifically concerning the outcome variable (e.g., Manski and

Tamer (2002)). Among other examples,4 interval data is a feature of survey data that asks

respondents to indicate in which of a set of ranges a particular numerical quantity lies (e.g.,

ranges of income). Although it remains true that the true value β0 necessarily satisfies

the condition that xβ0 = E0(y|x) w.p.1. x, the expected value E0(y|x) cannot be used in

the identification strategy because it is not observed in the data. However, it is true that
4The earliest examples in the partial identification literature in economics that can also be cast as an interval
data problem is the classic results of Manski in the context of the analysis of treatment response as a missing
data problem (e.g., Manski (1989, 1990)). See also Manski (2003) for a summary.
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E0(yL|x) ≤ E0(y|x) ≤ E0(yU |x), and therefore β0 necessarily satisfies the condition that

xβ0 = E0(y|x) ≤ E0(yU |x) w.p.1. x; similarly, xβ0 ≥ E0(yL|x) w.p.1. x. Consequently, β0

necessarily satisfies the moment inequality conditions that E0(yL|x) ≤ xβ0 ≤ E0(yU |x) w.p.1.

x. This means that it can be learned that β0 satisfies those moment inequality conditions, so

an identified set for β is {β : E0(yL|x) ≤ xβ ≤ E0(yU |x) w.p.1. x}.

Partial identification as a general principle shows that there can be cases where something

can be learned about a parameter, even if the exact value of the parameter cannot be learned.

In a linear model, the typical perspective is that there cannot be “perfect collinearity” and

that y must be observed in order for an empirical analysis to proceed; however, in the partial

identification framework, there is no reason to avoid an empirical analysis just because of

these issues. This is because the partial identification approach prioritizes learning about

the value of the parameter under reasonable conditions even if it does not result in learning

the exact value of the parameter. In particular, although empirical results based on partial

identification are often criticized as not being “informative” when “not enough” can be learned

about the parameter of interest, the partial identification perspective can actually result in

learning more about a parameter of interest compared to a perspective that avoids empirical

analysis of situations that do not result in point identification. In the above examples, it is

not possible to learn the exact value of the parameter, precluding an empirical analysis based

on a presumption of point identification. However, the partial identification approach shows

it is possible to conduct an empirical analysis and learn something about the value of the

parameter.

3. FRAMEWORKS

With the understanding that partial identification is an important basic principle of

empirical analysis, general frameworks that encompass partial identification have been

developed. These general frameworks can be viewed as attempts from the partial identification

literature to have equivalents to frameworks like generalized method of moments, maximum
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likelihood, or Z-estimation/M-estimation that are familiar in the analysis of point identified

models.

These frameworks provide general ways to conduct an identification analysis. Further,

these frameworks are associated with a substantial literature on finite sample estimation

and inference results. An important consideration in an identification analysis is to have

an identification result that can be implemented in empirical practice. If the identification

result can be put into one of the frameworks discussed below, then the existing literature

on finite sample considerations can be directly applied. Consequently, even from the point

of view of an identification analysis, it is useful to be aware of the estimation and inference

results. This can help guide the “form” of identification result. A familiar analogy is that it

is convenient to have a point identification result in terms of moment conditions, because the

generalized method of moments can then be used for estimation and inference. Here, the

question is what “forms” of a partial identification result have corresponding estimation and

inference results.

3.1. Moment Inequalities. The moment inequality framework encompasses the partial

identification results that can be represented as statements concerning (conditional) moments.

This framework allows for the possibility that the underlying statistical model implies

moment inequality conditions, such that the true value of the parameter θ0 satisfies the

moment inequality condition E0(m(w, θ0)) ≥ 0 where m(w, θ) is a known function of the

data w and parameter θ. In general, m is vector-valued. Correspondingly, the identified

set is {θ : E0(m(w, θ)) ≥ 0}. Typically there are multiple solutions to moment inequality

conditions, and hence typically there is partial identification of the parameter based on

moment inequality conditions. However, it is possible that the parameter is point identified

even with moment inequality conditions.

This compares to the generalized method of moments framework. In the generalized

method of moments framework, the main idea is that the true value of the parameter θ0
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satisfies the moment equality condition E0(m(w, θ0)) = 0. If θ0 is the unique value of the

parameter to satisfy E0(m(w, θ)) = 0, then the parameter is point identified.

Often, but not always, results in the moment inequality condition framework also allow

for moment equality conditions. In some cases, this is allowed by accommodating a moment

condition with mc(w, θ) = −mc+1(w, θ) for some components c and c + 1 of the vector-valued

m, in which case the moment inequality condition imposes that E0(mc(w, θ0)) = 0. Thus,

as a special case, the moment inequality approach allows for the case that the underlying

statistical model implies moment equality conditions with multiple solutions.

Some statistical models imply conditional moment inequality conditions. Although other

approaches are also possible, these can be converted into unconditional moment inequalities

using the result that E0(m(w, θ)|z) ≥ 0 implies that E0(α(z)m(w, θ)) ≥ 0 for any non-negative

function α(·).

There is a large literature of results that are focused on the finite sample issues of estimation

and inference. These results are typically intended to apply to a general setting. This literature

has been reviewed in particular for instance in Canay and Shaikh (2017), among the other

reviews of partial identification mentioned in the introduction.

A common issue in estimation and inference of partially identified models, and the moment

inequality approach in particular, is the failure of continuity conditions that are standard

in the analysis of point identified models. For instance, suppose the identified set can

be represented as {θ : θ ∈ [µL, µU ]} where µ = (µL, µU) is the vector-valued moment of

observable data. It might seem reasonable to estimate the identified set with the sample

analogue {θ : θ ∈ [µL,N , µU,N ]} where µN = (µL,N , µU,N) is an estimator of µ. However,

even if µN is a consistent estimator of µ, it is not necessarily the case that the estimate

of the identified set is a consistent estimate of the identified set. This is because the set

{θ : θ ∈ [µL, µU ]} is actually not a continuous mapping from µ. In particular, continuity can

fail as µN → µ0 with µL,0 = µU,0, since it can happen that µL,N > µU,N so the estimate of the
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identified set can be the empty set (for each sample size along the sequence) even though the

true identified set is not the empty set. The behavior of the estimated identified set depends

on the joint distribution of µN : it could be that µL,N ≤ µU,N w.p.1. or it could be that there

is a non-vanishing probability that µL,N > µU,N . As this review is focused on identification,

this review does not explore this issue further.

3.2. Criterion Functions. The criterion function framework encompasses the partial iden-

tification results that can be represented as statements concerning a criterion function. This

framework allows for the possibility that the underlying statistical model implies that the

true value of the parameter θ0 has some relation to a criterion function Q0(θ). The leading

case is that θ0 is such that Q0(θ0) = 0, in which case the identified set is {θ : Q0(θ) = 0}.

This compares to the Z-estimation and M-estimation frameworks. Similarly, there are

are multiple important special cases of the criterion function approach. For instance, if the

parameter satisfies the moment inequality conditions E0(m(w, θ0)) ≥ 0, then the parameter

satisfies the criterion function condition that Q0(θ) = ||[E0(m(w, θ0))]−]|| = 0, where a− =

min(a, 0) component-wise, and for any norm || · ||.5 With moment inequality conditions, other

criterion functions can be specified with the same property that Q0(θ) = 0 exactly when

E0(m(w, θ)) ≥ 0. Although moment inequalities are typically the motivation for the criterion

function approach, this framework allows for a more general identification strategy that does

not involve moment inequality conditions.

Related finite sample estimation and inference results include Chernozhukov, Hong, and

Tamer (2007) and Romano and Shaikh (2008, 2010). As with the results on Z-estimation and

M-estimation, the most general results in this literature are not based on the specific structure

of particular settings, like moment inequality models. Thus, the most general results tend

to be based on higher-level conditions which are more general but potentially more difficult
5Note that a− is 0 in a component c with ac ≥ 0 and is ac < 0 in components with ac < 0. Therefore,
[E0(m(w, θ))]− is the zero vector exactly when E0(m(w, θ)) ≥ 0 and otherwise [E0(m(w, θ))]− is a non-zero
vector. Consequently, Q0(θ) = 0 exactly when E0(m(w, θ)) ≥ 0.
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to establish in particular settings. In practice, often the papers do work out the details for

moment inequality models. Similar to above, a common issue in the literature on estimation

and inference in the criterion function framework is a failure of continuity conditions, and

therefore a failure of direct application of the analogy principle for estimation. In particular,

even if there is an estimator Qn(·) that converges to Q0(·), the set {θ : Qn(θ) = 0} need not

converge to {θ : Q0(θ) = 0}.

Somewhat similarly, in some models it is possible to express an identified set for a partially

identified parameter θ as a mapping from a (finite-dimensional) point identified parameter µ.

For example, in a choice model, the statistical model often takes the form P0(·|x) = Pθ(·|x),

where P0(·|x) is the observed choice probabilities and Pθ(·|x) are the choice probabilities

according to the model. The identified set for θ is {θ : P0(·|x) = Pθ(·|x) w.p.1. x}, which

can be viewed as a mapping from a point identified “parameter” µ, which in this case is

the stacked values of P0(·|x) across x. More generally, it can be possible to express the

identified set as ΘI(µ), where ΘI(µ) is known based on the statistical model and assumptions.

This can be viewed as related to the criterion function representation, with the functional

form Q0(θ) = 1 − 1[θ ∈ ΘI(µ0)]. In this setting, Kline and Tamer (2016) provide results for

Bayesian inference. It is also possible to do Bayesian inference in a setting with moment

inequalities, see Kline (2011), Liao and Jiang (2010), Moon and Schorfheide (2012), and Liao

and Simoni (2019). See also Poirier (1998), Giacomini and Kitagawa (2021), and Giacomini,

Kitagawa, and Read (2022).

Finally, Chen, Christensen, and Tamer (2018) consider the question of inference with

optimal criterion functions, such as likelihood or optimally-weighted GMM under partial

identification. The paper proposes to use quasi-Bayes methods by building a confidence

set for the identified set using simulations (such as MCMC) drawn from an appropriately

constructed (pseudo) posterior. These methods are computationally simple to use and are

amenable to inference on components of θ, especially for a scalar parameter of interest.
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3.2.1. Identified Sets as Solutions to Linear Programs. In some cases, the identified set can be

characterized as the set of values of θ that solve a linear program (LP). A generic example of

this case would be the interval outcome regression above where the support of x is discrete, i.e.,

the case where the identified set is characterized as {β : E0(yL|x) ≤ xβ ≤ E0(yU |x) w.p.1. x}

where the support of x is discrete and finite. This identified set has the feature that it can be

viewed as the feasibility constraints in a linear program. One early example of posing the

computational problem as an LP is Honoré and Tamer (2006) in the context of a nonlinear

panel data model. More recently, Syrgkanis, Tamer, and Ziani (2021) used an LP as the main

approach for inference on auction fundamentals and counterfactuals. For inference, a defining

feature of the model is again this mapping between a finite-dimensional parameter (i.e., the

stacked values of E(y|x)) that is point identified (and can be consistently estimated), to the

identified set which is the set of parameters for which the linear program is feasible. Hence,

one can use the computationally attractive Bayesian approaches in Kline and Tamer (2016).

Leveraging the LP structure, Syrgkanis, Tamer, and Ziani (2021) provided (frequentist) finite

sample methods to construct confidence sets for identified sets. These sets control size. For

recent other approaches for this problem, see also Fang, Santos, Shaikh, and Torgovitsky

(2021).

3.3. Random Sets and Generalized Instrumental Variables. The random sets frame-

work for partial identification is based on the observation that “sets” are central to partial

identification. This recognition goes beyond the idea that the identification result concerns

a set of parameter values, to the recognition that the identification analysis itself can be

usefully conducted as involving sets of random variables. The review of partial identification

in Molinari (2020) emphasizes the random sets framework.

As an example, consider a “non-parametric” version of interval data. That is, suppose

that the data is w = (yL, yU , x) with the property that yL ≤ y ≤ yU where y is the “true”

outcome variable. This setting implies that y is a selection from the random set [yL, yU ]. The
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formal definitions of terms like “selection” and “random set” can be found in sources like

Molchanov (2005), Beresteanu, Molchanov, and Molinari (2012), Molchanov and Molinari

(2014, 2018), and Molinari (2020). Generally, the definitions formalize intuitive ideas, an

important aspect of the random sets approach. For instance, [yL, yU ] is a random set because

it is a set (obviously) and random (slightly less obviously, to formalize the measurability

condition). Similarly, y is a selection from [yL, yU ] because each realization of y is necessarily

an element of (and hence a selection from) the corresponding realization of [yL, yU ].

Suppose the identification analysis concerns learning about the distribution of y given x.

The observed data reveals the distribution of the random set [yL, yU ], and so the identification

analysis concerns what the distribution of [yL, yU ] implies about the distribution of y. A

central result in the theory of random sets, the Artstein (1983) inequality, directly gives the

result. The result is that the distribution of y given x can be any distribution that satisfies

the inequality that P (y ∈ K|x) ≤ P0([yL, yU ] ∩ K ≠ ∅|x) for all compact sets K. Therefore,

using the random sets framework provides the identification result almost immediately, an

advantage of the random sets framework.

Intuitively, this says that the probability that y is in some set K can be no larger than

the probability that [yL, yU ] is observed to “intersect” with that set K. The fact that P (y|x)

must satisfy this inequality is intuitive: y ∈ K implies that y ∈ [yL, yU ] ∩ K since always

y ∈ [yL, yU ], so y ∈ K implies in particular that [yL, yU ] ∩ K ̸= ∅, implying the probability

inequality holds.

Molinari (2020, Section 2.3) provides additional details on this specific identification

analysis, and other examples of partial identification analysis in the random sets framework.

Molchanov (2005) and Molchanov and Molinari (2014, 2018) provide comprehensive treatments

of random sets. Beresteanu, Molchanov, and Molinari (2012) particularly focuses on the

application to partial identification. Beresteanu, Molchanov, and Molinari (2011) use random

set theory to derive the sharp identified set in a large class of models with set-valued outcomes.
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Galichon and Henry (2011) use optimal transport theory to derive identified sets, covered

comprehensively in Galichon (2018). Beresteanu and Molinari (2008) provide estimation

and inference results for identified sets in the random sets framework. Galichon and Henry

(2009) provide estimation and inference results for identified sets in the optimal transport

framework.

The generalized instrumental variables framework uses random set theory as applied to

statistical models that imply that the observed data w = (y, z) can be partitioned into

endogenous y (quantities determined by the model) and exogenous z, with an unobservable ϵ,

that satisfies an equation f(y, z, ϵ) = 0. The unknowns of the model are f and the distribution

Pϵ|z of ϵ|z. A main point of the generalized instrumental variables framework is to work with

statistical models for which there is a set of values of the unobservable that are compatible

with the observed data, rather than a single value as in traditional instrumental variables

analysis. As such, the assumptions on how the unobservable relates to the observable (e.g.,

“exclusion restrictions”) that are used in the identification analysis must deal with these sets.

Chesher and Rosen (2020) provide a review of the results that have been derived in the

generalized instrumental variables framework.

As an example, consider again the idea of interval data, except now the interval data

concerns a right hand side variable. In particular, suppose that y1 = xβ + ϵ with β ≥ 0.

Suppose that x is endogenous, with corresponding instrumental variable z. Further, suppose

that x is not observed, but (xL, xU) is observed with xL ≤ x ≤ xU . That is, the data is

w = (y, z) = (y1, xL, xU , z) where y = (y1, xL, xU) are the “endogenous” quantities and z is

the only “exogenous” quantity. The set of values of y that are consistent with the model for a

given value of β and a given realization of ϵ is {y : xLβ+ϵ ≤ y1 ≤ xUβ+ϵ}. Overall, this setup

implies that f(y, z, ϵ) = 0 for instance for f(y, z, ϵ) = 2−1[y1−xLβ−ϵ ≥ 0]−1[xUβ+ϵ−y1 ≥ 0].
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The set of values of ϵ that are consistent with the model for a given value of β and a given

realization of y is {ϵ : y1 − xUβ ≤ ϵ ≤ y1 − xLβ}. Therefore, ϵ must be a selection from the

random set [y1 − xUβ, y1 − xLβ].

The generalized instrumental variable framework makes it possible to use a variety of as-

sumptions about the distribution of the unobservable. For instance, suppose that ϵ is indepen-

dent of z. Then, again applying Artstein’s inequality similarly to above, the identified set for

(β, Pϵ) is {(β, Pϵ) : P0([y1−xUβ, y1−xLβ] ⊆ K|z) ≤ Pϵ(ϵ ∈ K) for all compact sets K w.p.1. z}.

Note that P0 is the true distribution of the observed data, whereas Pϵ is a candidate value of the

distribution of ϵ. The intuition is that if [y1−xUβ, y1−xLβ] ⊆ K (and ϵ ∈ [y1−xUβ, y1−xLβ])

then it must be that ϵ ∈ K.

Chesher and Rosen (2020) provides additional details on this specific identification analysis,

and other examples of partial identification analysis in the generalized instrumental variables

framework. Chesher and Rosen (2017) provide many of the main ideas. Chesher, Rosen, and

Smolinski (2013) focus on discrete choice models.

Often, the identified sets from the generalized instrumental variable framework can be

represented in terms of moment inequality conditions, so that estimation and inference

proceeds based on the existing literature for moment inequality conditions. For instance,

continuing the above example of interval data, E(ϵ|z) must be an element of [E0(y1 −

xUβ|z), E0(y1 − xLβ|z)]. The intuition is that ϵ must be a selection from [y1 − xUβ, y1 −

xLβ], and so the (conditional) expected value must be an element of the expected value of

[y1 − xUβ, y1 − xLβ]. Formally, this uses results on the Aumann expectation of a random set.

Suppose the assumption is that E(ϵ|z) = 0; then, the statistical model implies the conditional

moment inequality conditions E0(y1 − xLβ|z) ≥ 0 and E0(xUβ − y1|z) ≥ 0 w.p.1. z.

4. MAIN IDEAS AND EXAMPLES

4.1. Shape Restrictions and Sign Restrictions. Partial identification is relevant for

statistical models involving shape restrictions. A shape restriction can be viewed as restricting
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a quantity to be an element of some set, a circumstance that is particularly amenable to a

partial identification analysis. Alternatively, a shape restriction can be viewed as a “weak”

assumption that does not suffice for point identification, also a circumstance that is particularly

amenable to a partial identification analysis.

Shape restrictions are commonly implied by economic theory or are suggested by informal

empiricism. One common shape restriction is a sign restriction, or a monotonicity restric-

tion: the assumption that some feature of a model entails a monotone relationship. In a

parametric model, this can be that some “slope” coefficient has a particular sign. Economic

theory provides many monotonicity results, like results that supply/demand curves are

upward/downward sloping.

Economic theory also involves many other shape restrictions. In some cases, economic

theory commonly assumes shape restrictions in order to correspond to a credible assumption

on model primitives or because the absence of those shape restrictions can allow for results

that are viewed as unreasonable, like the assumption of concavity of a utility function

to impose risk aversion or the assumption of concavity of a production function to avoid

increasing returns to scale.

Informal empiricism also provides many shape restriction claims, like claims that wages

are increasing in education or that wages are concave in education (decreasing returns).

In some cases, shape restriction assumptions can be used to establish a point identification

result, or improve the behavior of the finite sample estimator in a case that would be point

identified even without the shape restriction. These uses have been reviewed for instance in

Matzkin (1994) and Chetverikov, Santos, and Shaikh (2018).

Shape assumptions are common in potential outcomes models. In these models, each

observational unit is characterized by a response function y(d) which gives the outcome y(d)

that the unit would experience in response to treatment d. These models are central in the
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analysis of treatment effects. Generally, the observed data consists of an observed outcome y

and an observed treatment x, and potentially other quantities.

In some cases, the shape restriction is placed directly on the response function. Manski

(1997) uses the assumption that the response functions are non-decreasing. Okumura and

Usui (2014) use the assumption that the response functions are concave. Twinam (2017) uses

the assumption that the response functions (involving multiple treatments) are supermodular.

Kim, Kwon, Kwon, and Lee (2018) use the assumption that the response functions satisfy

smoothness conditions. Ishihara (2021) uses the assumption that the response functions are

monotone and concave in a setting with instruments with limited support. Often, multiple

shape restrictions assumptions are used jointly. The potential outcomes model by itself implies

that a given observational unit’s response function must be in the set {yi(·) : yi(xi) = yi},

since the observed outcome is the response to the observed treatment. Shape restrictions

directly restrict this set further, for instance to contain only monotone response functions

or concave response functions. In that way, shape restrictions can directly result in partial

identification.

In other cases, the shape restriction is placed on other quantities. Manski and Pepper (2000,

2009) use the assumption of “monotone treatment selection” that the expected response

E(y(d)|x) is a monotone function of x, where x is the observed treatment. Giustinelli (2011)

uses a similar assumption on a quantile of the distribution of responses. Chalak (2019) uses

assumptions on the sign (and magnitude) of confounding. In a regression with interval data,

Manski and Tamer (2002) use the assumption of monotonicity in the variable subject to

interval observation. Lee (2009) assumes that the function that relates treatment to selection

is monotone in a sample selection model. Nevo and Rosen (2012) assumes the sign of the

correlation between an instrumental variable and the unobservable.

Sign restrictions are also used in the identification of structural vector autoregressions,

an idea developed in Faust (1998), Canova and De Nicolo (2002), and Uhlig (2005) among
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other parts of a large literature. See for instance Fry and Pagan (2011) and Uhlig (2017)

for reviews and perspectives. Common sign restrictions concern the slope of supply and/or

demand curves. Used alongside other assumptions, a typical result is that the object of

interest is partially identified. The typical empirical implementation is from a Bayesian

perspective, which can result in complications related to the use of Bayesian methods in

partially identified models in general, as in Poirier (1998) or Moon and Schorfheide (2012).

In particular, seemingly “uninformative” priors can (even asymptotically) actually have a

substantial impact on the empirical results. Results for (Bayesian or classical) inference in

such settings has been developed in Rubio-Ramirez, Waggoner, and Zha (2010), Baumeister

and Hamilton (2015), Granziera, Moon, and Schorfheide (2018), Arias, Rubio-Ramírez, and

Waggoner (2018), Gafarov, Meier, and Olea (2018), Giacomini and Kitagawa (2021), and

Giacomini, Kitagawa, and Read (2022), as representative of a larger literature.

In other cases, the identification result rather than the assumptions concerns the sign of

a parameter, or whether the parameter satisfies some other shape restriction. Given any

identification result for a parameter θ, it is possible to use the identification result to check

what can be learned about the sign of θ, or indeed what can be learned about other qualitative

features of θ. For instance, if the identified set for a scalar θ contains only non-negative

values, then it is possible to conclude that θ is non-negative. This can be particularly relevant

if θ represents a treatment effect. Even if an identified set used in an empirical analysis is

not sharp, it may still be possible to make “sharp” conclusions about qualitative features

of the parameter; for instance, an identified set may not be sharp, and yet contain only

non-negative values of the parameter, so the sign of the parameter is “sharply” identified to

be non-negative.

From the point of view of conducting an identification analysis, it is worth noting that it

may be difficult to think through a (partial) identification result for the underlying model

parameter, but easier (in some sense) to think through the logic of an identification result



RECENT DEVELOPMENTS IN PARTIAL IDENTIFICATION 27

directly for the sign of the parameter, or some other qualitative feature of the parameter.

Alternatively, it may be useful to characterize features of the data that imply a parameter

has a particular qualitative feature, for instance because of ease of interpretation of those

features of the data. For instance, Manski and Tamer (2002), Abrevaya, Hausman, and

Khan (2010), Kline (2016b), and Kline and Tamer (2018) have results that emphasize the

identification of the sign of a parameter of interest. A similar question also arises in the

context of identification of the sign of an interaction effect in a model with multiple decision

makers, discussed below.

4.2. Optimizing Behavior, Equilibrium Behavior, and Revealed Preference. Partial

identification is relevant for statistical models involving decision makers making choices

with optimizing behavior or equilibrium behavior. Data from such models can be viewed as

providing revealed preference information.

For a simplified unifying framework, suppose that a choice y is made from among the

potential options in a set Y . This choice could be made by an individual decision maker, or

this choice could be made “jointly” (in some way that is specified by a model) by multiple

decision makers. Each decision maker might make a single choice, or multiple choices. Suppose

that the decision maker(s) are assumed to have utility function(s) u from a space U . If there

are multiple decision makers, then u is a vector of the utility functions across the decision

makers. Suppose that the empirical researcher has a “theory” CY : U → 2Y , interpreted as a

generalized “choice correspondence,” which implies that the choice from Y given a particular

u must be in the set CY(u). This “choice correspondence” could be utility maximization in

the case of a single decision maker, or a solution concept for a game in the case of multiple

decision makers (e.g., the set of Nash equilibrium outcomes for given utility functions).

Consider then a stylized identification analysis: What can be learned about u (or the

distribution thereof) based on observed choices (or the distribution thereof)? As a starting

point, a central idea is that for any observed choice y, the corresponding u is “partially
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identified” (used informally here) to be in C−1
Y (y) = {u : y ∈ CY(u)}, the set of u such that

y could be chosen for that u given the potential options in Y. Since in general there can

be multiple utility functions that result in the choice y, there is “partial identification” of

the utility function. Often, as detailed below, the result is that observation of a particular

choice y implies that the corresponding utility function satisfies a particular set of inequality

constraints.

4.2.1. Single Decision Maker. The main idea that observed choice of a single decision maker

can be used to learn about utility or other fundamental objects is due to Samuelson (1938),

with an important subsequent literature. In many cases, this idea is used in economic theory.

This idea is also central to a related literature in identification and econometrics. Crawford

and De Rock (2014) and Echenique (2020) review revealed preference.

As a simplified but unifying example, Manski (2009, Section 7.5) considers identification in

a potential outcomes framework under the assumption that the decision maker makes a choice

that maximizes the outcome. This implies the partial identification result that, for each

decision maker, each other choice results in a potential outcome that is weakly less than the

observed (maximized) outcome. By the same logic, if each decision maker has a utility function

u(y, x, ϵ) that depends on the choice y, other observed determinants of utility x (“explanatory

variables”), and unobservable determinants of utility ϵ, then the assumption of utility

maximization implies that the observed choice yi will satisfy the restriction ui(yi, xi, ϵi) ≥

ui(t, xi, ϵi) for all possible alternative choices t. Therefore, an observed choice y implies that

the utility function satisfies these inequality constraints. Specifically, for each possible choice

ỹ, it must be that P0(y = ỹ|x) ≤ P̃ (u(ỹ, x, ϵ) ≥ u(t, x, ϵ) for all t ∈ Y|x) w.p.1. x. Here, P̃ is

a distribution for ϵ|x, which might be assumed to be known or which might be an unknown

parameter of the statistical model. Thus, as illustrated here to make a more general point,

identification strategies based on the assumption of optimizing behavior (revealed preference)

are likely to result in partial identification.
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Because of the centrality of optimizing behavior in economics, such revealed preference

ideas have been the source of partial identification results in a series of specific settings in

Blundell, Browning, and Crawford (2008), Pakes (2010), Blundell, Kristensen, and Matzkin

(2014), Manski (2014), Cherchye, De Rock, Lewbel, and Vermeulen (2015), Pakes, Porter, Ho,

and Ishii (2015), Barseghyan, Molinari, and Teitelbaum (2016), Hausman and Newey (2016),

Cherchye, Demuynck, and De Rock (2019), Cattaneo, Ma, Masatlioglu, and Suleymanov

(2020), Mourifie, Henry, and Meango (2020), Barseghyan, Coughlin, Molinari, and Teitelbaum

(2021), and Allen and Rehbeck (2022) among other examples. The settings range from

demand models, to models with limited attention, to Roy models, among other settings.

Although not all of these results fit directly into the basic outline above, the basic outline

above suggests why revealed preference arguments result in partial identification in general. In

some instances, the identification analysis concerns objects of interest concerning optimizing

behavior itself, as in tests of “consumer rationality,” with specific results in Hoderlein and

Stoye (2014), Kitamura and Stoye (2018), and Aguiar and Kashaev (2021) among other

examples. In early results, Marschak and Andrews (1944) and Leamer (1981) use economic

theory to develop results that partially identify the parameter of a production function and/or

supply and demand functions.

4.2.2. Multiple Decision Makers. Statistical models involving multiple decision makers (e.g.,

“games”) are commonly used to illustrate new ideas in the partial identification literature, and

many of the frameworks papers cited above discuss the applications to this setting. Different

aspects of this literature, often with reference also to point identification results, have been

the focuses of reviews in de Paula (2013), Aradillas-López (2020), Kline and Tamer (2020),

and Kline, Pakes, and Tamer (2021).

An important consideration in an identification analysis of a model involving multiple

decision makers is the assumption about the solution concept. The solution concept provides

the theory for how the interaction among the decision makers “works” and can include
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the assumption of Nash equilibrium (“mutual best response”) or weaker assumptions like

iterated best response or level-k rationality. Different solution concepts imply different “choice

correspondences.” The basic idea of Nash equilibrium is that each decision maker “best

responds” to the other decision makers, based on what the decision maker knows. Other

solution concepts are based on other descriptions of how decision makers behave. Every

solution concept must address the fact that the decision makers cannot simply maximize

utility because they do not know the choices of the other decision makers when they make

their choice (at least in a simultaneous move game).

Suppose for instance the utility function for decision maker i is of the form ui(y, x, ϵ), where

y = (yi, y−i) is the vector of choices for all decision makers, x are observed determinants of

utility (“explanatory variables”), and ϵ are unobservable determinants of utility. The decision

makers can be individual people, in which case this basic model reflects the idea of “peer

effects” or “social interactions,” whereby the choices of some people have an impact on the

utility of other people. The decision makers can be firms, with utility understood to be profit,

in which case this basic model reflects ideas like “competitive effects,” whereby the choices of

some firms influence the profits of other firms.

If ϵ is common knowledge among the decision makers, as in a complete information game,

and the decision makers have no ex post regret as in a pure strategy Nash equilibrium (so

that observed choices are best responses to observed choices, rather than to a mixture over

choices as in a mixed strategy Nash equilibrium), then the choice of each decision maker

yi will satisfy the restriction that ui(yi, y−i, x, ϵ) ≥ ui(ti, y−i, x, ϵ) for all possible alternative

choices ti. Consequently, an observation of y implies that the utility function satisfies these

inequality constraints. Specifically, for each possible vector of choices ỹ, it must be that

P0(y = ỹ|x) ≤ P̃ (ui(ỹi, ỹ−i, x, ϵ) ≥ ui(ti, ỹ−i, x, ϵ) for all i and for all ti|x) w.p.1. x. Here, P̃

is a distribution for ϵ|x, which might be assumed to be known or which might be an unknown

parameter of the statistical model. It is worth noting that a pure strategy Nash equilibrium
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may not even exist in some games, and so the “assumption” that observed choices come

from a pure strategy Nash equilibrium can be provably false in some games. In other words,

although these inequality constraints are intuitively appealing properties of a choice, the

question of whether such a choice actually exists with multiple decision makers is related to

the existence of a pure strategy Nash equilibrium. In a model with a single decision maker,

the “assumption” that a utility maximizing choice exists is much more innocuous in general.

Different information conditions on ϵ or different solution concepts would mean that a

given observed choice would have different logical implications for the utility functions. From

the point of view of identification analysis, the general idea is that economic theory can be

used to conclude that observation of a particular vector of choices ỹ implies that the utility

functions must have satisfied certain restrictions in order to have possibly generated that

choice. This is a source of partial identification of the utility functions.

For a variety of specific models, and with a variety of specific identification strategies, partial

identification results have been derived in Aradillas-López and Tamer (2008), Ciliberto and

Tamer (2009), Grieco (2014), Aradillas-López and Gandhi (2016), Ciliberto, Murry, and Tamer

(2021), and Aradillas-López and Rosen (2022). Further, this setting is a common example

used in the frameworks papers mentioned above. Of course, under sufficient conditions,

(features of) the utility functions are point identified, as in Tamer (2003), Aradillas-López

(2010, 2012), Bajari, Hong, Krainer, and Nekipelov (2010), Bajari, Hong, and Ryan (2010),

Wan and Xu (2014), Xu (2014), Kline (2015, 2016a), Liu, Vuong, and Xu (2017), and Xiao

(2018). Often, the point identification results rely on support conditions for the observable

determinants of utility, or assumptions on the selection mechanism (how a choice is realized

when |C(u)| ≥ 2), that are not used in the partial identification results.

This approach to identification analysis accommodates the possibility that the model does

not make a unique prediction about the choice that results from a given utility function, as

in “multiple equilibria.” In the “choice correspondence” setup this means the identification
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analysis accommodates the possibility that |C(u)| ≥ 2 for some u. This is because the

identification analysis is based on what an observed choice logically implies about the utility

function, but not what a utility function implies about the resulting choice. The latter would

involve dealing with multiple choices potentially arising from a given utility function.

It is possible to conduct an identification analysis for other features of the model, including

specific features of the utility functions. For instance, de Paula and Tang (2012) for incomplete

information and Kline (2016a) for complete information establish how it is possible to identify

whether the utility functions are increasing (“strategic complements”) or decreasing (“strategic

substitutes”) functions of the choices of the other decision makers, under particularly weak

assumptions. This can be viewed as partial identification of the utility function, and

specifically partial identification of the interaction effect feature of the utility function, where

the identified sets are either the utility functions with positive interaction effects or the utility

functions with negative interaction effects. Aradillas-López (2011) partially identifies the

probability that a given outcome is a Nash equilibrium. Kline and Tamer (2012) partially

identifies the best response functions.

Also, partial identification approaches have been used to examine the question of robustness

to information structures. In most empirical work in games, strong assumptions are made

on what the decision makers know about their own utility functions and also about the

utility functions of the other decision makers. For instance, most work on auctions makes

assumptions on what bidders know about the value of the object and what other bidders know.

Also, bidders obtain signals that may be informative about valuations and modeling these

signals affects the identification analysis. Building on the recent progress in the mechanism

design literature (see for instance Bergemann and Morris (2013)), Syrgkanis, Tamer, and

Ziani (2021) characterize the identified sets for valuation distributions, welfare counterfactuals

and other relevant objects in auctions that are robust to information structures. These
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identified sets are solutions to linear programs and hence are simple to compute. See also a

similar exercise in the context of entry games in Magnolfi and Roncoroni (2022).

In many applications, each decision maker has a single choice. In empirical research, the

specific choices that are analyzed often parallel the sorts of choices typically analyzed by

standard discrete choice models but allowing for the possibility of spillovers. However, in other

applications, each decision maker has multiple choices. A particularly important example is

the case of network formation models.

In a typical network formation model, the choices of each pair of decision makers determines

whether or not that pair is connected in the network. Thus, each decision maker has multiple

choices, corresponding to potentially connecting to each of the other decision makers. A

connection can be a friendship, some other social relationship, or some sort of economic

relationship. In these models, the solution concept of Nash equilibrium is often viewed as

unreasonable. For instance, Nash equilibrium can allow for the possibility that a pair is not

connected despite a connection being mutually beneficial (and therefore “expected” to form),

in that both decision makers best respond to the other in the pair having “not connected” by

“not connecting” in return. Therefore, alternative solution concepts are used, but the basic

logic of the identification strategy can follow that outlined above.

For instance, the solution concept of pairwise stability from Jackson and Wolinsky (1996)

requires that: if a connection exists between two decision makers, then both get utility with

that connection that is weakly greater than the utility they would get without that connection;

and, if a connection does not exist between two decision makers, then at least one would get

less utility with that connection compared to the utility without that connection. In other

words, each observed choice implies that the utility functions must have satisfied a certain set

of inequality constraints. As with the example of pure strategy Nash equilibrium, this can

be used to derive a partial identification result for the utility functions. For more on these

solution concepts, see for instance Jackson (2010, Chapter 6). Related partial identification
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results have been derived in Miyauchi (2016), de Paula, Richards-Shubik, and Tamer (2018),

Sheng (2020), and Gualdani (2021).

There are also non-strategic network formation models that emphasize different consid-

erations, and de-emphasize the choice considerations emphasized above. Overall, network

formation models have been a focus of reviews in Graham (2015, 2020a,b), Chandrasekhar

(2016), de Paula (2017, 2020a,b), and Bonhomme (2020).

4.3. Misspecification and Sensitivity Analysis. This review primarily takes the per-

spective of an identification analysis that “believes” the assumptions. Another important

perspective within the partial identification literature concerns the case of misspecification

analysis or sensitivity analysis.

In one version of this perspective, the empirical researcher conducts a baseline analysis

under a certain set of assumptions, and then investigates the “sensitivity” of the empirical

results to the assumptions. This can result in a sort of partial identification result with

respect to the relaxed assumptions. Many partial identification results can be viewed from

either of these perspectives. Partial identification results that intentionally take some version

of this latter perspective include Kline and Santos (2013) and Masten and Poirier (2018,

2020, 2021). Assumptions that are relaxed vary from assumptions about missing data to

exogeneity assumptions to exclusion restrictions.

A closely related question concerns the behavior of empirical results when the assumptions

used in a partial identification result themselves are wrong. Ponomareva and Tamer (2011)

show that misspecification can essentially be a “source” of identification, in the sense that

estimation of a misspecified model can result in the false appearance of learning more about

the parameter than actually is possible.

4.4. Data Limitations and Semiparametric Models. This review primarily focuses on

cases where the assumptions are the focus of the partial identification analysis. However,

there are many important cases where the data is the focus of the partial identification
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analysis. Obviously, the identification result depends on both the assumptions and the data,

so this is a somewhat arbitrary distinction.

Partial identification analysis is commonly used in cases of missing data or mismeasured

data or contaminated data or interval data or combined data, with examples in Manski

(1989, 2003, 2009), Horowitz and Manski (1995), Manski and Tamer (2002), Khan and Tamer

(2009), Stoye (2010), Fan, Sherman, and Shum (2014), and Khan, Ponomareva, and Tamer

(2016) among other contributions to this large part of the partial identification literature.

Often, the results are in cases where the absence of these specific data limitations would

imply the point identification of the parameter of interest. In that sense, the focus of the

partial identification analysis is on the data. In fact, some of the earliest examples of partial

identification results in Gini (1921) and Frisch (1934), among others, are for a linear model

with measurement error. Also an early example, Hoeffding (1940) and Fréchet (1951) develop

results that partially identify a joint distribution for given marginal distributions, which can

be viewed as a sort of data combination question.

One way to think about these settings is that there could be “complete” data that, if

observed by the empirical researcher, would suffice for point identification. The “complete”

data would not be subject to missing data, or measurement error, or other data limitations.

However, the observed data is subject to data limitations. As such, the observed data is

compatible with multiple “complete” data. For instance, observed data subject to missing

data is compatible with any “complete” data that can result from “filling in” the missing data

with particular values. Consequently, there is partial identification. The partial identification

result accounts for the fact that the distribution of the “complete” data cannot be uniquely

determined by the distribution of the observed data.

In particular, identification in semiparametric models is often based on conditions on the

data that may not be credible. Consider the binary choice model where y = 1[ϵ ≤ xβ] and

(y, x) is observed. A sufficient condition for point identification of β under a (conditional)
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median independence assumption (i.e., Med(ϵ|x) = 0) is the existence of an explanatory

variable with large support as in Manski (1975). Without this condition on the data, for

instance allowing for the case that x takes on finitely many values, the median independence

assumption can be used to construct the identified set for β. This identified set uses the median

independence assumption to get the representation {β : xβ ≥ 0 iff P (y = 1|x) ≥ 1
2 w.p.1. x}

as in Komarova (2013). Also, in discrete outcomes models with fixed effects that includes

dynamic models, there is a set of results that derive identified sets on slope parameters

relaxing the distributional assumptions that are typically used, such as the logit restriction

on the unobservables. See for instance Khan, Ponomareva, and Tamer (2020) that construct

the sharp identified set under stationary errors and Pakes, Porter, Shepard, and Calder-Wang

(2021) that construct identified sets under mean restrictions. For bounds on partial effects

in discrete choice models see Chernozhukov, Fernández-Val, Hahn, and Newey (2013) and

Torgovitsky (2019). For results on identification in censored models (that can allow for

endogeneity) in panel models, see for instance Khan, Ponomareva, and Tamer (2016).

5. CONCLUSIONS

The partial identification approach emphasizes an approach to empirical research that

begins with data, a set of assumptions (motivated by an economic model, for example),

and a statistical model, and then asks what can be logically concluded about the value of

the parameter that is relevant for answering an empirical question. Practically, it allows

for empirical research in settings in which it is not possible to learn the exact value of

the parameter (as in point identification), and therefore the partial identification approach

substantially expands the universe of empirical questions that can be addressed. The partial

identification approach substantially increases the credibility of empirical research, because it

eliminates the need to make not-credible assumptions in order to fit an empirical analysis into

a particular identification result. Unlike the point identification framework that necessarily
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only applies to sets of assumptions that result in point identification, the partial identification

framework applies to any set of assumptions.

Partial identification still requires the empirical researcher to use a set of assumptions.

The assumptions to use and how far to weaken these assumptions is an important question

that empirical research either in the partial identification or point identification approaches

needs to take a stand on. Standard models are sets of assumptions that the community of

researchers are comfortable with. The strength of the partial identification approach is that

it is robust to the distributional, functional form, and other assumptions on which economic

theory is silent and where existing data are not helpful.
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