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1. Introduction

This paper is concerned with identification of treatment effects in a population of individuals

each of whom is characterized by a response function yi(d) : d ∈ D where d is a treatment

that belongs to a finite set of mutually exclusive treatments D. Particular emphasis is placed

on identification of the average treatment response (ATR) of treatment d, which is

ATR(d) ≡ E(yi(d)),

and the average treatment effect (ATE) of treatment d′ versus treatment d, which is

ATE(d′, d) ≡ E(yi(d′))− E(yi(d)).

Observational data is subject to treatment selection bias (or treatment endogeneity) when

the response function is related to the realized treatment. For example, there can be concern

that treatment choice is correlated with unobservables that are also correlated with the

outcome. One possible solution to this is a randomized trial (RT) or randomized controlled

trial (RCT). RTs and RCTs have come to be commonly known as the “gold standard” for

statistical evidence. RTs are also used increasingly often in economics. See for example

Banerjee and Duflo (2009) for a review of the use of experiments in development economics.

The defining characteristic of an RT is that treatments are randomly assigned to participants,

eliminating treatment selection bias.

This paper studies identification of ATR and ATE with RT data under a variety of

assumptions. The focus is on selection into an RT. This concerns the way that individuals

are invited to participate in an RT, the way that individuals decide whether to participate

in an RT, and the population of interest. Even if the RT has internal validity, selective

participation threatens the generalizability of the results from an RT beyond the sample of

participants in the study, commonly known as the problem of external validity.

This paper builds on the fact that participation in an RT is a decision in the same way that

treatment selection is a decision in observational data. The decision to participate in an RT

may reflect an even more selective decision than the decision of which treatment to select in
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observational data because of ethical and legal requirements on experiments involving human

subjects. Indeed, the Declaration of Helsinki (e.g., World Medical Association (2013)) states

that in medical research “the physician or another appropriately qualified individual must

then seek the potential subject’s freely-given informed consent, preferably in writing” and

that “physicians who combine medical research with medical care should involve their patients

in research only to the extent that this is justified by its potential preventive, diagnostic

or therapeutic value and if the physician has good reason to believe that participation in

the research study will not adversely affect the health of the patients who serve as research

subjects.”

The ethics of medical RTs is not settled but one standard view is that “[p]hysicians who are

convinced that one treatment is better than another for a particular patient cannot ethically

choose at random which treatment to give, they must do what they think best for the patient.

For this reason, physicians who feel they already know the answer cannot enter their patients

into a trial” and “[a]n ethical physician must do what is best for his or her patients. She

cannot participate in a controlled trial if she is certain that one arm is superior to the others

and that some of her patients will receive an inferior treatment by participating in the trial”

(from the debate in Weijer, Enkin, Shapiro, and Glass (2000); note that one of these quotes is

from one side of the debate and the other quote is from the other side). Similarly, although

there does not yet exist a large literature on the ethics of RTs in economics, related ethical

concerns would seem to apply to RTs in economics. This suggests that participation in RTs is

selective because it is related to the response function. More generally, the same optimizing

behavior that leads to treatment selection suggests optimizing behavior that leads to selective

participation in RTs.

This paper focuses on external validity, which concerns identification of the ATR and

ATE defined on the population of interest. Under the maintained assumptions, the RT is

“ideal” in the sense that there are no threats to internal validity. Equivalently, the RT is

assumed to point identify the ATR and ATE for the subpopulation participating in the

RT. This means that possible problems relating to conducting an experiment for any given
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subpopulation of participants (e.g., treatment compliance) are assumed away in order to

focus on external validity. In other words, this paper is not concerned with the possible

problems in experiments relating to whether the ATR and ATE can be point identified for

the subpopulation participating in the RT.

Per the fundamental problem of causal inference, the identification problem studied in this

paper relates to missing data because counterfactual outcomes are missing data. However,

the model of an RT used in this paper results in a unique identification problem. Specifically,

the model makes it possible to distinguish different sources of missing data on counterfactual

outcomes. Those include 1) missing data due to the decision of whether an individual is

invited to participate in the RT, 2) missing data that is due to the decision of the invitee of

whether to participate in the RT, and 3) missing data due to the standard issue that any

given individual can be observed to receive at most one of the treatments. Therefore, the

setup and hence identification results differ from those in the related literature.

More specifically, this paper models the RT as a three step procedure, similar to the stylized

model presented by, for example, Gross, Mallory, Heiat, and Krumholz (2002). The first step

is the invitation step where researchers invite a group of individuals from the population of

interest. Invitation is observed with the key assumption that the response function is mean

independent of invitation. The second step is the participation step where invitees decide

whether to participate. The experiment is conducted only on the participants, which is the

source of the selection problem. The third step is the actual experiment involving random

assignment of treatment. Under these assumptions, the width of the identified set relates to

the fraction of invitees that participate, since invitees are assumed to be representative of the

overall population. Without distinguishing between invitation and participation, as in the

model of Manski (1996), the width of the identified set relates to the fraction of the population

that participates. This fraction can be extremely small in practice, and perhaps even unknown

by the econometrician. Therefore, that approach to RT data results in very wide, and perhaps

even uninformative, identified sets. Therefore, the three step formulation of the model is an
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important feature of the model, as it distinguishes between the “selection” that is under the

control of the experimenter and the “selection” that is under the control of potential subjects.

This can result in tighter identification, because it allows the econometrician to assume that

invitation is not selective while still allowing that participation is selective. Hence, the model

in this paper and the model in Manski (1996) contain complementary results on identification

from RT data under different models and sets of assumptions.

This paper also considers additional assumptions that tighten the identified set, and in

particular result in point identification. Specifically, the paper shows that the standard

estimator of an average treatment effect from RT data, namely the difference in average

outcomes between the groups of participants in the RT that are assigned different treatments,

is robust to certain failures of the standard assumption that participation in the RT is

not selective. The paper also provides an identification result based on an instrument for

participation that makes it possible to test for selective participation.

Other papers in economics also deal with evaluating the benefits of identification based on

experimental data, for example Heckman (1992, 1996). Of course, a fundamental difference

is the partial identification approach taken in this paper.

In addition, another feature of this paper is the comparison between identification based

on RT data and identification based on observational data. This question relates to research

design, specifically deciding whether to use RT data or observational data. RT data is subject

to selection bias due to selective participation in the RT, and observational data is subject to

selection bias due to treatment endogeneity. Hence, there is partial identification of treatment

effects from both types of data. Perhaps surprisingly, on the basis of the size of the identified

sets, RT data is not necessarily preferred to observational data, due to the fact that the two

types of data involve different types of selection (rather than one type of data necessarily

having less selection than the other type of data). Observational data is preferred when there

are few treatments and/or when there is low participation in the RT.
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This paper focuses on identification. Estimation and inference can follow by application of

existing results for partially identified models, summarized for example in Canay and Shaikh

(2017). The identification results are also illustrated using an analysis of RTs in the literature.

Sections 2 and 3 introduce the model and derive the identification results. Because of

selective participation in an RT, data from an RT need not point identify the ATR or ATE.

However, under further assumptions an RT can point identify either the ATR or the ATE.

One such assumption is that the response function is mean independent of participation,

but others are that participation is non-selective conditional on observables or that there

is a separable effect of participation on response. These results specifically depend on this

particular model of an RT, and would not generically apply to other “one stage” missing

data and/or causal inference problems. These sections also consider identification of the sign

of the ATE, which is the object of interest when the experimenter wants to learn the “best”

treatment and is abstracting away from issues like different costs of different treatments, and

identification of whether participation is selective. Section 4 compares identification from

RT data to identification from observational data, characterizing when RT data results in a

narrower identified set than does observational data, and vice versa. Section 5 illustrates the

identification results using an analysis of RTs in the literature. Finally, Section 6 concludes

with some suggestions for reporting the results of RTs.

2. Identification in a three stage model of an RT

The finite set of possible treatments is D. Each individual i in the population has a

response function yi(·) : D → R. The randomized trial (RT) consists of three decisions at

the individual level. The first decision is the decision by the experimenter of whether to

invite individual i to participate in the RT. The binary variable indicating an invitation is Ii.

Invitation is observed. The second decision is the decision by an invited individual of whether

to participate in the RT. The binary variable indicating participation is Pi. Participation

is observed. By construction, if Ii = 0 then Pi = 0. Finally, the third decision is the

randomized assignment of a treatment to each subject participating in the RT. The variable

indicating assigned treatment is Di. Treatment is observed. Further, in order to focus on
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issues concerning external validity due to selection into the RT, the analysis will abstract

from many important issues that might threaten internal validity of an RT. In particular,

the analysis abstracts away from issues related to treatment compliance and assumes that

all subjects comply with their assigned treatment. The actual outcome of subject i is Yi.

Because of perfect compliance, Yi = yi(d) when Di = d. And there are known finite bounds

on the possible outcomes, so that necessarily yi(d) ∈ [m,M ] for all treatments d.

The population information that forms the basis for the identification analysis is the

distribution P (Ii, PiIi, DiPiIi, YiPiIi). In other words, for each individual in the population of

interest, the econometrician observes: whether that individual is invited to the RT, whether

an invited individual (with Ii = 1) elects to participate, and the treatment and outcome of

an individual that was invited and elects to participate (with Pi = 1 and Ii = 1).

Therefore, PiIi = 1 is the condition for information on the treatment and outcome of

individual i to be in the RT data. Invitation and participation collectively determine which

individuals “actually” participate in the RT. Despite that, it is useful to separate the invitation

and participation decisions to make clear the meaning of the assumptions that are used in

the analysis of the data, since it is useful to distinguish between the invitation decision that

is under the control of the experimenter and the participation decision that is not under the

control of the experimenter. This three step model of an RT is similar to the stylized model

presented by, for example, Gross, Mallory, Heiat, and Krumholz (2002).

The identification analysis begins with E(yi(d)), the average response to treatment d. This

analysis suppresses any regressors in the analyses for simplicity, but everything can involve

non-parametric conditioning on regressors. By the law of iterated expectations,

E(yi(d)) = E(yi(d)|Ii = 1)︸ ︷︷ ︸
(1)

P (Ii = 1)︸ ︷︷ ︸
(2)

+E(yi(d)|Ii = 0)︸ ︷︷ ︸
(3)

P (Ii = 0)︸ ︷︷ ︸
=1−(2)

.

In other words, the average response to treatment d can be decomposed as the weighted

average of the average treatment responses for individuals invited, (1), and not invited, (3),

to the RT where the weight is the probability of invitation, (2). The first substantiative

assumption is that the response function is mean independent of invitation.
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Assumption 1. Assume that E(yi(d)|Ii = 1) = E(yi(d)) = E(yi(d)|Ii = 0) for all treatments

d ∈ D. Also, P (Ii = 1) > 0.

Of course, an even stronger version of the assumption would involve full statistical ind-

pendence between the response function and invitation, but full statistical independence is

not needed for the identification result on average treatment response and average treatment

effect. Directly, and without using Assumption 1, the identification analysis establishes

sharp bounds for E(yi(d)|Ii = 1). Under Assumption 1, these bounds immediately imply the

same bounds are sharp also for E(yi(d)). In principle, if Assumption 1 were not assumed,

but other assumptions were made, sharp bounds on E(yi(d)) would additionally involve an

analysis of what the data and the maintained assumptions identify about E(yi(d)|Ii = 0).

The maintained definition in this paper is that the RT data has no information about the

response functions for individuals not participating in the RT. Such information could, in

principle, come from other data sources other than the RT data. But many RTs study the

response to an experimental treatment that is not available to individuals not invited to

participate in the RT. In that case, any possible data alone is completely uninformative

about E(yi(d)|Ii = 0) when d is such an experimental treatment, since no individual not

participating in the experiment experiences treatment d.

The credibility of Assumption 1 depends on the relationship between the experimental

design and the population of interest. It is always possible to define the population of interest

to be exactly the invited population, in which case Ii = 1 for all individuals. However, in

most cases there is a population of interest defined beyond the limited scope of the invitees for

a particular RT. In general, the credibility of Assumption 1 depends on how the individuals

are invited from the population of interest, and in particular whether they are invited in a

way that is correlated with their response function. Critically, this is under the control of

the experimenter, unlike the participation decision made by the invited individuals. See also

Spall, Toren, Kiss, and Fowler (2007) for a more general study of invitation to medical RTs,

in particular.



SELECTIVE PARTICIPATION IN A RANDOMIZED TRIAL 9

The identification power of this three stage model of an RT, and specifically the identification

power of Ii and associated Assumption 1, is to maintain that the subpopulation invited to

participate can be taken to be representative of the population of interest. Invitation is under

the control of the experimenter. Then, the possibility that participation among the invited is

selective is the focus of this paper. Participation among the invited is not under the control

of the experimenter. Without Assumption 1, or in a model that does not distinguish between

the invitation step and the participation step, the width of the identified set would relate to

the fraction of the population that participates in the RT. With Assumption 1, the width of

the identified set relates to the fraction of the invitees that participates in the RT. The latter

fraction can be much greater than the former fraction, resulting in much tighter identification

with Assumption 1 compared to without Assumption 1. Indeed, without Assumption 1, or

in a model that does not distinguish between the invitation step and the participation step,

the result would be an almost completely uninformative identified set, when the number of

subjects involved in the RT is very small compared to the size of the population of interest.

Another application of the law of iterated expectations implies that

E(yi(d)|Ii = 1) =E(yi(d)|Pi = 1, Ii = 1)︸ ︷︷ ︸
(1)

P (Pi = 1|Ii = 1)︸ ︷︷ ︸
(2)

+E(yi(d)|Pi = 0, Ii = 1)︸ ︷︷ ︸
(3)

P (Pi = 0|Ii = 1)︸ ︷︷ ︸
=1−(2)

.

In other words, the average response to treatment d among those invited to participate can

be decomposed as the weighted average of the average treatment response for individuals

participating, (1), and not participating, (3), in the RT where the weight is the probability of

participation given invitation, (2). As before, the RT data alone is completely uninformative

about E(yi(d)|Pi = 0, Ii = 1), since the RT data has no information about the response

functions for individuals not participating in the RT. The identification analysis maintains this

definition of RT data when establishing sharpness of the bounds. The identification analysis

also assumes that the RT is “ideal” in the sense that it point identifies E(yi(d)|Pi = 1, Ii = 1).
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A sufficient condition for this is the usual mean independence of the response function from

treatment assignment (and perfect compliance) that usually defines an “ideal” RT.

Assumption 2. Assume that E(yi(d)|Pi = 1, Ii = 1) = E(yi(d)|Di = d, Pi = 1, Ii = 1).

Assume further that P (Pi = 1|Ii = 1) > 0 and P (Di = d|Pi = 1, Ii = 1) > 0 for all treatments

d ∈ D.

Under this assumption, E(yi(d)|Pi = 1, Ii = 1) = E(Yi|Di = d, Pi = 1, Ii = 1). In other

words, the average response to treatment d is point identified for subjects actually participating

in the experiment. These two assumptions seem to exhaust the assumptions that can be

credibly made on RTs in general. The resulting identified set for E(yi(d)) is given by the

following theorem.

Theorem 1. Under Assumptions 1 and 2, the sharp identified set for E(yi(d)) is that

E(yi(d)) ∈ E(Yi|Di = d, Pi = 1, Ii = 1)P (Pi = 1|Ii = 1) + [m,M ]P (Pi = 0|Ii = 1).

Further, the sharp identified set for {E(yi(d))}d∈D is the Cartesian product of these sets.

Proof. The previous discussion establishes these bounds. Sharpness is obtained by considering

the response functions

yi(d) =



Yi if Di = d, Pi = 1, Ii = 1

E(Yi|Di = d, Pi = 1, Ii = 1) if Di 6= d, Pi = 1, Ii = 1

[m,M ] if Pi = 0, Ii = 1

E(yi(d)|Ii = 1) if Ii = 0.

These response functions are consistent with the data by the first line of the definition,

are consistent with Assumption 1 by the fourth line, and are consistent with Assumption 2

by the second line. They also obviously achieve any point in the identified set by the third

line. �
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Corollary 2. Under the same assumptions as Theorem 1, the sharp identified set for

ATE(d′, d) ≡ E(yi(d′)− yi(d)) is that

ATE(d′, d) ∈
(
E(Yi|Di = d′, Pi = 1, Ii = 1)− E(Yi|Di = d, Pi = 1, Ii = 1)

)
P (Pi = 1|Ii = 1)

+ [m−M,M −m]P (Pi = 0|Ii = 1).

This corollary follows from the theorem since the identified set for E(yi(d′))× E(yi(d)) is

the Cartesian product of the marginal identified sets, since there are not restrictions across

treatments. The next corollary considers identification of the sign of the ATE, which may be

of specific importance in some cases. This is the case when the experimenter wants to learn the

“best” treatment and is abstracting away from issues like different costs of different treatments,

which would lead to the magnitude of the ATE mattering. Define the experimental ATE as

ATEexp(d′, d) ≡ E(Yi|Di = d′, Pi = 1, Ii = 1)− E(Yi|Di = d, Pi = 1, Ii = 1).

Corollary 3. Under the same assumptions as Theorem 1, ATE(d′, d) is point identified

to be positive (or non-negative, resp.) if ATEexp(d′, d)P (Pi = 1|Ii = 1) + (m −M)P (Pi =

0|Ii = 1) > (≥)0, to be negative (or non-positive, resp.) if ATEexp(d′, d)P (Pi = 1|Ii =

1)+(M−m)P (Pi = 0|Ii = 1) < (≤)0, and is not identified and can be positive, negative, or zero

if ATEexp(d′, d)P (Pi = 1|Ii = 1) + (m−M)P (Pi = 0|Ii = 1) < 0 and ATEexp(d′, d)P (Pi =

1|Ii = 1) + (M −m)P (Pi = 0|Ii = 1) > 0.

The first key conclusion of Theorem 1 is that, under these assumptions, RT data is

informative about the average treatment response as long as a positive fraction of invited

individuals participate in the experiment. The second key conclusion is that unless the

participation in the RT is 100 percent among those invited, i.e. P (Pi = 1|Ii = 1) = 1, there

is not point identification of the average treatment response. Note from Corollary 3 that

even though there is not point identification of the ATE when P (Pi = 1|Ii = 1) < 1 there

can be point identification of the sign of the ATE in many cases. Basically, the condition

for point identification of the sign of the ATE is that the ATE in the subpopulation of

individuals participating in the experiment is sufficiently large in magnitude relative to the
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fraction of individuals participating in the experiment to outweigh any possible ATE in the

subpopulation of individuals not participating in the experiment. Note this contrasts with

identification with observational data, as in Section 4.

2.1. Why selective participation in RTs? The reason that there is not point identification

of the ATR and ATE in general is that the identified set accounts for the possibility that

the response function is not mean independent of participation in the RT. The reasons

for concern that the response function is not mean independent of realized treatment in

observational data are basically exactly the same reasons that there could be concern that

the response function is not mean independent of participation in an RT. The simple reason

is that participation in an RT amounts to a gamble relating to receiving the treatments in

the RT.

This claim is consistent with a simple economic theory of how individuals decide whether to

participate in an RT. Suppose that individuals (or their agents; for example, their caregivers

in a medical setting) have preferences over the treatments they receive. Suppose in particular

that the utility is the same as the actual outcomes that result from these treatments. This

abstracts away from, for example, differences in the costs of these treatments. It also requires

that the individuals perfectly know the outcome that results from each of the treatments. Of

course, the goal of the RT is to learn the outcome that results from the treatments, so this

assumption is almost certainly not literally true. But, it seems a good first approximation to

motivate why the assumption that the response function is mean independent of participation

in an RT is not necessarily credible for all RTs.

Suppose that treatments Dne ⊂ D are the non-experimental treatments available outside

of the experiment, treatments De ⊂ D are the experimental treatments available only in the

experiment, and that treatments DRT ⊂ D are the treatments available in the experiment,

which might include some non-experimental treatments. By assumption, De ⊂ DRT . Suppose

for simplicity that individuals are risk-neutral expected utility maximizers, with utility equal

to the outcome, and that they know the probability they will receive each treatment should
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they participate in the RT. Then individual i will participate if and only if ∑d∈DRT
pdyi(d) ≥

maxd∈Dne yi(d), where pd > 0 is the probability of receiving treatment d in the RT. A necessary

condition is that maxd∈De yi(d) ≥ maxd∈Dne yi(d), since otherwise participation in the RT

is dominated by not participating and being able to choose the optimal non-experimental

treatment.1 In particular, suppose that there is exactly one experimental treatment, de. Then

a necessary condition for participation is that yi(de) ≥ maxd∈Dne yi(d). Despite being a very

simplified model of the participation decision, this suggests that participants in an RT will

tend to not be representative of the population of all individuals invited to participate.

Also, Section 3.4 provides an identification result based on an instrument for participation

that makes it possible to test for selective participation.

3. Extra assumptions for identification in a three stage model of an RT

The next parts consider identification under additional assumptions.

3.1. Response function is mean independent of participation. If the response function

is mean independent of participation in the RT, there is the following point identification

result.

Assumption 3. Assume that E(yi(d)|Pi = 1, Ii = 1) = E(yi(d)|Ii = 1) = E(yi(d)|Pi =

0, Ii = 1) for all treatments d ∈ D.

Theorem 4. Under Assumptions 1, 2, and 3, E(yi(d)) is point identified as E(Yi|Di =

d, Pi = 1, Ii = 1).

Suppose that the experimenter maintains that Assumptions 1 and 2 hold, and then

“assumes” that the average treatment response is point identified as E(yi(d)) = E(Yi|Di =

d, Pi = 1, Ii = 1). This is akin to assuming that the decision to participate in the RT among

invitees is not selective, in the sense that the response function is mean independent of
1Let y∗i = maxd∈Dne yi(d). Then re-write

∑
d∈DRT

pdyi(d) ≥ maxd∈Dne yi(d) as
∑

d∈De
pd(yi(d) − y∗i ) +∑

d∈DRT∩Dne
pd(yi(d)−y∗i ) ≥ 0. The second sum is non-positive by definition of y∗i , so

∑
d∈De

pd(yi(d)−y∗i ) ≥
0 and consequently maxd∈De

yi(d) ≥ y∗i .
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participation, by the following argument. Recall that under Assumptions 1 and 2

E(yi(d)) =︸︷︷︸
1

E(yi(d)|Ii = 1)

= E(yi(d)|Pi = 1, Ii = 1)P (Pi = 1|Ii = 1)

+ E(yi(d)|Pi = 0, Ii = 1)P (Pi = 0|Ii = 1)

=︸︷︷︸
2

E(Yi|Di = d, Pi = 1, Ii = 1)P (Pi = 1|Ii = 1)

+ E(yi(d)|Pi = 0, Ii = 1)P (Pi = 0|Ii = 1).

Therefore, by algebra, for the condition E(yi(d)) = E(Yi|Di = d, Pi = 1, Ii = 1) to hold it

must be that either P (Pi = 1|Ii = 1) = 1, which seems non-generic, or E(yi(d)|Pi = 0, Ii =

1) = E(Yi|Di = d, Pi = 1, Ii = 1) = E(yi(d)|Pi = 1, Ii = 1). But this is precisely Assumption

3. So under Assumptions 1 and 2 the conventional estimate of the ATR used in an RT is

equivalent to the assumption that the response function is mean independent of participation

in the RT. Section 3.5 considers related questions for the conventional estimate of the ATE.

More generally, it is sufficient for the conventional interpretation of an RT as point

identifying the average treatment response that three mean independence assumptions

hold: the response function is mean independent of invitation, participation, and treatment

assignment. An ideal RT should satisfy the first and third assumptions, but not necessarily the

second assumption. The first and third assumptions are under the control of the experimenter

but the second assumption is not. Again, this is the motivation for the model that distinguishes

between these aspects of the RT data.

Remark 1 (Justifying the assumptions). It is often the case that experimental studies

report summary statistics that are used to suggest that randomization has “worked” because

the observables of the subjects receiving each treatment (including perhaps the subjects in

the control group when applicable) have similar distributional properties. Note that while

this may bolster the case for Assumption 2, it implies nothing about whether Assumptions

1 and/or 3 are true, which concern whether the response function is mean independent
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of invitation/participation. A useful measure of whether the response function is mean

independent of invitation/participation would be a comparison of the same distributional

properties between invitees and non-invitees, and between participants and non-participants

among the invitees; depending on the nature of these covariates, this comparison may or may

not be feasible. For example, if the measurement of the covariates is invasive and non-standard

then almost by definition of non-participation, individuals who do not participate will have

missing data for these covariates. It is possible, however, to consider combining many different

datasets. It is also important to note even this cannot “prove” that the response function

is mean independent of invitation/participation because of the possibility of unobservables.

Section 5 includes further discussion on this issue.

3.2. Participation is non-selective conditional on observables. If there is a suitable

observable such that participation is non-selective conditional on the observable, it is possible

to point identify the average treatment response. This observable random variable Xi is

discrete (for simplicity), and is characterized by the following assumption.

Assumption 4. Assume that Xi is an observed variable for all individuals who are invited to

participate and that E(yi(d)|Xi = x, Pi = 1, Ii = 1) = E(yi(d)|Xi = x, Ii = 1) = E(yi(d)|Xi =

x, Pi = 0, Ii = 1) for all treatments d ∈ D and all x in the support of X|(I = 1). Also

assume that P (Pi = 1|Ii = 1) > 0. And assume also that P (Xi = x|Pi = 1, Ii = 1) > 0 and

P (Xi = x|Pi = 0, Ii = 1) > 0 for all x in the support of X|(I = 1).

In other words, the response function is mean independent of participation conditional on

the control. The analysis also assumes that the RT is “ideal” in the sense that the response

function is mean independent of treatment assignment conditional now also on the control.

Assumption 5. Assume that E(yi(d)|Xi = x, Pi = 1, Ii = 1) = E(yi(d)|Di = d,Xi = x, Pi =

1, Ii = 1) and further that P (Di = d|Xi = x, Pi = 1, Ii = 1) > 0 for all treatments d ∈ D and

all x in the support of X|(I = 1).
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Then

E(yi(d)|Pi = 1, Ii = 1) =
∑
x

E(yi(d)|Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 1, Ii = 1)

=
∑
x

E(Yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 1, Ii = 1)

and similarly

E(yi(d)|Pi = 0, Ii = 1) =
∑
x

E(yi(d)|Xi = x, Pi = 0, Ii = 1)P (Xi = x|Pi = 0, Ii = 1)

=
∑
x

E(yi(d)|Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 0, Ii = 1)

=
∑
x

E(Yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 0, Ii = 1).

This establishes the following theorem.

Theorem 5. Under Assumptions 1, 4, and 5, E(yi(d)) is point identified as ∑xE(Yi|Di =

d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Ii = 1).

Proof. Using the prior expressions,

E(yi(d)|Ii = 1)

= E(yi(d)|Pi = 1, Ii = 1)P (Pi = 1|Ii = 1) + E(yi(d)|Pi = 0, Ii = 1)P (Pi = 0|Ii = 1)

=
(∑

x

E(Yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 1, Ii = 1)
)
P (Pi = 1|Ii = 1)

+
(∑

x

E(Yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 0, Ii = 1)
)
P (Pi = 0|Ii = 1)

=
(∑

x

E(Yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x, Pi = 1|Ii = 1)
)

+
(∑

x

E(Yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x, Pi = 0|Ii = 1)
)

=
(∑

x

E(Yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Ii = 1)
)

�
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In other words, the average response to treatment d is the weighted average of the average

outcomes for subjects participating in the experiment and assigned treatment d who have

covariates x, weighted by the probability that an individual invited to participate has

covariates x. In the special case that P (Xi = x|Di = d, Pi = 1, Ii = 1) = P (Xi = x|Ii = 1)

so that the distribution of the control is independent of participating in the experiment

(and receiving treatment d) then this simplifies to the usual RT result that E(yi(d)) =

E(Yi|Di = d, Pi = 1, Ii = 1) like in Theorem 4. Otherwise, identification of the average

treatment response needs to involve re-weighting by the distribution of the controls among all

individuals invited to participate, not the distribution of the controls among those actually

participating.

3.3. Participation is selective conditional on excluded instrument. Section 3.2 re-

quires the existence of observables such that participation is non-selective conditional on

observables. In some settings, a more credible identification strategy may rest on the existence

of an instrument such that the instrument has no direct effect on the response function,

while allowing that participation is possibly selective conditional on the instrument. If the

instrument shifts the probability of participation in the RT, an identification strategy that

uses the instrument can result in a tighter identified set.

Specifically, suppose that Zi is an instrumental variable that satisfies the standard conditions

for being an instrument for participation in the RT:

Assumption 6. Assume that Zi is an observed variable for all individuals who are invited

to participate and that E(yi(d)|Zi = z, Ii = 1) = E(yi(d)|Ii = 1) for all treatments d ∈ D and

all z in the support of Z|(I = 1).

Note that this implicitly involves the assumption of an exclusion restriction, in the sense

that the instrument is “excluded” from affecting the average response to the treatment. The

analysis also assumes that the RT is “ideal” in the sense that the response function is mean

independent of treatment assignment conditional now also on the instrument.
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Assumption 7. Assume that E(yi(d)|Zi = z, Pi = 1, Ii = 1) = E(yi(d)|Di = d, Zi = z, Pi =

1, Ii = 1) and further that P (Di = d|Zi = z, Pi = 1, Ii = 1) > 0 for all treatments d ∈ D and

all z in the support of Z|(I = 1).

Under those assumptions, for any z in the support of Z|(I = 1), it follows that

E(yi(d)) =︸︷︷︸
1

E(yi(d)|Ii = 1)

=︸︷︷︸
6

E(yi(d)|Zi = z, Ii = 1)

= E(yi(d)|Zi = z, Pi = 1, Ii = 1)P (Pi = 1|Zi = z, Ii = 1)

+ E(yi(d)|Zi = z, Pi = 0, Ii = 1)P (Pi = 0|Zi = z, Ii = 1)

=︸︷︷︸
7

E(Yi|Di = d, Zi = z, Pi = 1, Ii = 1)P (Pi = 1|Zi = z, Ii = 1)

+ E(yi(d)|Zi = z, Pi = 0, Ii = 1)P (Pi = 0|Zi = z, Ii = 1).

Theorem 6. Under Assumptions 1, 6, and 7, the sharp identified set for E(yi(d)) is that

E(yi(d)) ∈ ∩z{E(Yi|Di = d, Zi = z, Pi = 1, Ii = 1)P (Pi = 1|Zi = z, Ii = 1)+[m, M ]P (Pi = 0|Zi = z, Ii = 1)}.

Further, the sharp identified set for {E(yi(d))}d∈D is the Cartesian product of these sets.

Proof. The previous discussion establishes these bounds. Sharpness is obtained by considering

the response functions

yi(d) =



Yi if Di = d, Pi = 1, Ii = 1

E(Yi|Di = d, Zi = z, Pi = 1, Ii = 1) if Di 6= d, Zi = z, Pi = 1, Ii = 1

tzd if Zi = z, Pi = 0, Ii = 1

E(yi(d)|Ii = 1) if Ii = 0,

where tzd = ψd−E(Yi|Di=d,Zi=z,Pi=1,Ii=1)P (Pi=1|Zi=z,Ii=1)
P (Pi=0|Zi=z,Ii=1) , for a given ψd ∈ ∩z{E(Yi|Di = d, Zi =

z, Pi = 1, Ii = 1)P (Pi = 1|Zi = z, Ii = 1) + [m,M ]P (Pi = 0|Zi = z, Ii = 1)}.
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These response functions are consistent with the data by the first line of the definition, are

consistent with Assumption 1 by the fourth line, are consistent with Assumption 7 by the

second line, and consistent with Assumption 6 by the first, second, and third lines. They

also obviously achieve any point in the identified set by the third line. �

3.4. Testing for selective participation. It is also possible to point identify the average

treatment responses (and therefore average treatment effects) for the subpopulation of

individuals whose participation decision is manipulatable by the instrument. This is similar

to the local average treatment effect of Imbens and Angrist (1994), except the instrument

is for participation rather than the treatment. This provides scope for testing for selective

participation in the RT.

Let Z be the support of the instrument, which is assumed to be an ordered set. Also suppose

that each individual i in the population has a participation decision function pi(·) : Z → {0, 1}

that describes the binary participation decision of individual i as a function of the value of

the instrument assigned to individual i. The assumptions needed for this result are essentially

the same as used in Imbens and Angrist (1994), except for participation rather than the

treatment, and adapted to account for the assumption of random assignment of treatment in

the RT.

Assumption 8. The participation decision function pi(z) is a weakly increasing function

of z, for all individuals i. The instrument for participation and the random assignment of

treatment in the RT satisfy the condition that ((yi(·), pi(·)) ⊥ (Zi, Di))|(Ii = 1). The invitation

decision similarly satisfies the condition that (yi(·), pi(·)) ⊥ Ii. Further, P (Ii = 1) > 0 and

P (Di = d|Zi = z, Pi = 1, Ii = 1) > 0 for all treatments d ∈ D and all z in the support of

Z|(I = 1).

This assumption basically subsumes Assumptions 1, 6, and 7. Note that it requires that

treatment assignment be defined for all invitees, even invitees that do not actually participate

in the experiment.
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Theorem 7. Under Assumption 8, for any z ∈ Z and z′ ∈ Z with z′ > z,

E(yi(d)|pi(z′) = 1, pi(z) = 0) = E(PiYi|Di = d, Zi = z′, Ii = 1)− E(PiYi|Di = d, Zi = z, Ii = 1)
E(Pi|Zi = z′, Ii = 1)− E(Pi|Zi = z, Ii = 1) ,

as long as the denominator is non-zero.

Proof. By definition of the response function and participation decision function, and then

by two applications of Assumption 8, E(PiYi|Di = d, Zi = z, Ii = 1) = E(pi(z)yi(d)|Di =

d, Zi = z, Ii = 1) = E(pi(z)yi(d)|Ii = 1) = E(pi(z)yi(d)). Therefore, E(PiYi|Di = d, Zi =

z′, Ii = 1)−E(PiYi|Di = d, Zi = z, Ii = 1) = E((pi(z′)− pi(z))yi(d)). Because pi(·) is weakly

increasing by Assumption 8, and z′ > z, E((pi(z′)− pi(z))yi(d)) = E(yi(d)|pi(z′) = 1, pi(z) =

0)P (pi(z′) = 1, pi(z) = 0). By similar arguments, E(Pi|Zi = z, Ii = 1) = E(pi(z)|Zi =

z, Ii = 1) = E(pi(z)|Ii = 1) = E(pi(z)), so E(Pi|Zi = z′, Ii = 1) − E(Pi|Zi = z, Ii = 1) =

E(pi(z′)− pi(z)) = P (pi(z′) = 1, pi(z) = 0). �

This result makes it possible to test for selective participation in the RT. If E(yi(d)|pi(z′) =

1, pi(z) = 0) 6= E(yi(d)|pi(z′′′) = 1, pi(z′′) = 0), for some z′ > z and z′′′ > z′′, then that is

evidence for selective participation in the RT, since it means that the participation decision

function is related to the response function. More specifically, it means that individuals

that are induced to participate in the RT at different levels of the instrument experience

different responses to the treatment d. For example, the instrumental variable could be a

monetary incentive that an individual receives for participating in the RT. If the response

to the treatment is different for individuals induced to participate at different levels of the

monetary incentives, then that is evidence for selective participation in the RT.

This test is related to the fact that overidentification tests in standard instrumental variables

models are implicitly tests of treatment effect homogeneity. However, this test concerns

selectivity of participation (“endogeneity” of participation). The difference is because the

instrument in this setup is an instrument for participation, rather than an instrument for the

treatment as in the standard instrumental variables setup.

3.5. A separable participation effect. Under a functional form assumption on the re-

sponse function, even if the response function is not mean independent of participation in
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the RT it is possible to point identify the average treatment effect by “differencing out” the

effect of participation.

Suppose that yi(d) = yi0(d) + αi. Under a suitable assumption, αi captures all selectivity

of participation in the RT. Then, yi(d′)− yi(d) = yi0(d′)− yi0(d), so the treatment effect does

not depend on αi. The key identifying assumption is as follows.

Assumption 9. There exists yi0(·) and αi with yi(d) = yi0(d) + αi for all d ∈ D and all

individuals, and such that E(yi0(d)|Pi = 1, Ii = 1) = E(yi0(d)|Ii = 1) = E(yi0(d)|Pi = 0, Ii =

1) for all d ∈ D.

In other words, αi captures all of the selectivity of participation in the RT. The restriction

imposed by this assumption is that any selectivity of participation affects the response to

all treatments equally. Then under the assumption that the response function is mean

independent of treatment assignment, Assumption 2, E(Yi|Di = d, Pi = 1, Ii = 1) =

E(yi(d)|Pi = 1, Ii = 1) = E(yi0(d)|Pi = 1, Ii = 1) + E(αi|Pi = 1, Ii = 1) = E(yi0(d)|Ii =

1) + E(αi|Pi = 1, Ii = 1). Consequently, under the assumption that the response function is

mean independent of invitation, Assumption 1, ATE(d′, d) ≡ E(yi(d′)− yi(d)) = E(yi(d′)−

yi(d)|Ii = 1) is point identified by E(Yi|Di = d′, Pi = 1, Ii = 1)− E(Yi|Di = d, Pi = 1, Ii =

1) = E(yi0(d′)|Ii = 1) − E(yi0(d)|Ii = 1) = E(yi(d′) − yi(d)|Ii = 1). This establishes the

following theorem.

Theorem 8. Under Assumptions 1, 2, and 9, the average treatment effect ATE(d′, d) ≡

E(yi(d′) − yi(d)) is point identified as ATEexp(d′, d) ≡ E(Yi|Di = d′, Pi = 1, Ii = 1) −

E(Yi|Di = d, Pi = 1, Ii = 1). However, the sharp identified set for E(yi(d)), for any one

treatment d, remains the same as in Theorem 1.

Proof. The identification of ATE(d′, d) follows from the previous discussion. The result

that the sharp identified set for E(yi(d)) remains the same as in Theorem 1 is obtained by
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considering the response functions

yi0(d) =



Yi if Di = d, Pi = 1, Ii = 1

E(Yi|Di = d, Pi = 1, Ii = 1) if Di 6= d, Pi = 1, Ii = 1

E(Yi|Di = d, Pi = 1, Ii = 1) if Pi = 0, Ii = 1

E(yi(d)|Ii = 1) if Ii = 0.

and

αi =



0 if Di = d, Pi = 1, Ii = 1

0 if Di 6= d, Pi = 1, Ii = 1

[m,M ]− E(Yi|Di = d, Pi = 1, Ii = 1) if Pi = 0, Ii = 1

0 if Ii = 0.

These response functions yi0(·) and αi add up to the same response function used to

establish sharpness in the proof of Theorem 1. Therefore they are consistent with the data,

and Assumptions 1 and 2, and achieve any point in the identified set. They also satisfy

Assumption 9. �

It is useful that ATEexp(d′, d) identifies the average treatment effect either under the

standard assumption that participation is not selective (Assumption 3) or under the alternative

assumption that participation is selective but has an additively separable effect on the response

function (Assumption 9). Consequently, the standard estimate of the treatment effect in an

RT is automatically robust to certain failures of the assumption that participation is not

selective.

The result in this section places a functional form assumption on the response function. If

instead the participation effect enters the response function non-separably, differencing as in

this section may not remove the participation effect from the treatment effect. In some cases,

a non-separable effect of participation on response is plausible. For example, it could be that

the participation effect captures characteristics of the subjects that interact differently with
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the different treatments. For example, it could be that participation captures the “motivation”

of the subject and that the response to some treatments depends on motivation while the

response to other treatments does not depend on motivation.

4. Comparing RT data to observational data

This section compares identification based on RT data to identification based on observa-

tional data. Specifically, this section considers the identification of the model with RT data as

derived in Theorem 1. Therefore, this section compares the “no assumptions” identification

with RT data to the “no assumptions” identification with observational data.

Theorem 9 (Manski (2007)). Under no assumptions, with observational data the identified

set for E(yi(d)) is E(yi(d)) ∈ E(Yi|Di = d)P (Di = d) + [m,M ]P (Di 6= d).

Further, the identified set for ATE(d′, d) is ATE(d′, d) ∈ E(Yi|Di = d′)P (Di = d′) −

E(Yi|Di = d)P (Di = d) + [mP (Di 6= d′)−MP (Di 6= d),MP (Di 6= d′)−mP (Di 6= d)].

4.1. On the basis of identifying the sign of the ATE. The lower bound on the identified

set for ATE(d′, d) with observational data can be written as (E(Yi|Di = d′) −M)P (Di =

d′) + (m − E(Yi|Di = d))P (Di = d) + (m −M)(1 − P (Di = d′) − P (Di = d)). The upper

bound can be written as (E(Yi|Di = d′) − m)P (Di = d′) + (M − E(Yi|Di = d))P (Di =

d) + (M −m)(1− P (Di = d′)− P (Di = d)).

If m < M , which is generic since otherwise there is no variation in outcomes, these

expressions make clear that the sign of ATE(d′, d) is completely unidentified with observational

data except possibly in the case that 1−P (Di = d′)−P (Di = d) = 0. Otherwise, for the lower

bound the first two terms are non-positive and the last term is negative, and similarly for the

upper bound the first two terms are non-negative and the last term is positive. Therefore

both strictly positive and strictly negative values for ATE are in the identified set, so the

sign of ATE(d′, d) is completely unidentified. In case 1− P (Di = d′)− P (Di = d) = 0 and

P (Di = d) > 0 and P (Di = d′) > 0 then a non-negative ATE is point identified exactly in

case E(Yi|Di = d′) = M and E(Yi|Di = d) = m. A non-positive ATE is point identified

exactly in case E(Yi|Di = d′) = m and E(Yi|Di = d) = M . It is never the case that a zero
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ATE can be ruled out with observational data, since it is always consistent with the data

that yi(d′) = Yi = yi(d) for all d′, d.

On the other hand, recall from Corollary 3 that the sign of the ATE can be point identified

with RT data. Therefore, for an RT satisfying the conditions of Theorem 1, and specifically

the conditions of Corollary 3, RT data can have better identification power than does

observational data for the purposes of identifying the sign of the ATE.

4.2. On the basis of the widths of the identified sets. The width of the identified set

for the average treatment response E(yi(d)) with RT data is (M −m)P (Pi = 0|Ii = 1) while

with observational data it is (M − m)P (Di 6= d). The width depends on the treatment

considered with observational data but does not with RT data. Therefore, comparison

of identification with RT data and identification with observational data depends on the

participation rate, and the treatment considered and the details of how treatments are selected

in the observational data.

In order to compare the two types of data in a general way, consider the sum of the widths

of identified sets across all treatments, which is a measure of the total “ambiguity” (lack

of knowledge) that remains about the average treatment responses. With RT data this is

(M −m)|D|P (Pi = 0|Ii = 1). With observational data this is ∑d∈D(M −m)(1 − P (Di =

d)) = (M −m)|D|(1− 1
|D|).

Therefore, the RT data is better than the observational data if and only if P (Pi = 0|Ii =

1) < 1− 1
|D| or equivalently |D|P (Pi = 1|Ii = 1) > 1. That is, the RT data is preferred when

there are many treatments and/or when there is high participation in the RT among those

invited.

Conversely, the observational data is better than the RT data if and only if |D|P (Pi =

1|Ii = 1) < 1. That is, the observational data is preferred when there are few treatments

and/or when there is low participation in the RT among those invited. The intuition for this

result is that while RT data point identifies the ATR on the subpopulation of participants, it

could be that there is highly selective participation. It is possible, even though observational

data has the usual treatment selection problem, that the observational data has information
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on a greater fraction of the population of interest, compared to the fraction of participants in

the RT, in which case the observational data may result in narrower identified sets.

A similar result obtains for the sum of the widths of the identified sets for the average

treatment effects. The identified sets for ATE(d′, d) is the difference in the identified sets for

E(yi(d′)) and E(yi(d)) for RT data and for observational data since there are no assumptions

that involve restrictions across treatments. Therefore the width of the identified set for

ATE(d′, d) is the sum of the widths of the identified sets for E(yi(d′)) and E(yi(d)). Let

H(·) be the identified set for its argument, and let |H(·)| be the width of the identified

set. Therefore ∑d∈D
∑
d′>d |H(ATE(d′, d))| = ∑

d∈D
∑
d′>d(|H(E(yi(d′)))|+ |H(E(yi(d)))|) =

(|D| − 1)∑d∈D |H(E(yi(d)))|.

Therefore the comparison between RT data and observational data on the basis of the

sums of the widths of the identified sets for the average treatment effects is the same as

the comparison on the basis of the sums of the widths of the identified sets for the average

treatment responses.

Remark 2 (Combining RT and observational data). This paper has derived various bounds

on treatment response using RT data. If the econometrician has access to RT data and

other (observational) data, then bounds can be combined. A simple way to do that is to

obtain bounds on, for example, the ATR using both RT data and observational data and

then forming the intersection of these bounds to get an overall bound on ATR.

5. Empirical illustration

This section illustrates the identification results using some facts about randomized trials

from the literature. In this illustration, it is supposed that the outcome is binary. Consequently,

m = 0 and M = 1.2 Table 1 shows how the participation rate among those invited,
2The additional assumption of a discrete outcome rather than a continuous outcome does not affect the
sharpness of the bounds. In proving sharpness, the proof exhibited response functions that are the same
for all people in certain subpopulations (e.g., the response to treatment d is the same for everybody with
Ii = 0). These exhibited response functions in general will not take values compatible with discreteness of
the outcome, but necessarily the response functions take values in the convex hull of the set of outcomes. It
is trivial to simply partition any given subpopulation further and assign people in that sub-subpopulation to
have outcomes compatible with the discreteness of the outcome, and such that on average that subpopulation
has the same outcome as does the subpopulation in the sharpness proofs.
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P (Pi = 1|Ii = 1), relates to the identification of the sign of the average treatment effect.

It is supposed that there are two treatments of interest, and that some RT satisfying the

conditions of Theorem 1 reveals the experimental ATE, ATEexp(d′, d) ≡ E(Yi|Di = d′, Pi =

1, Ii = 1)− E(Yi|Di = d, Pi = 1, Ii = 1). Recall this is the ATE on the subpopulation that

actually participates in the experiment. The table shows the smallest experimental ATE such

that according to Corollary 3 the ATE in the population is point identified to be non-negative.

If the participation rate is too low it is never possible to point identify the population ATE

to be non-negative, and this is indicated in the table by “n.p.” for not possible.

Each row of the table provides a possible participation rate among the invited and the

corresponding smallest experimental ATE that point identifies the population ATE to be non-

negative. So if the participation rate among invited is 60%, for example, then the experimental

ATE must be at least as great as 2
3 in order to point identify the population ATE to be

non-negative. If the participation rate is strictly less than 50% then it is not possible to

point identify the population ATE to be non-negative, because even if the experimental ATE

were 1, the largest possible, the ATE in the subpopulation that does not participate but

is invited could be −1, which would result in a negative population ATE. Note that the

marginal gain in identifying power from increasing the participation rate is greatest when the

participation rate among the invited is low, in the sense that the derivative of the smallest

ATEexp implying the population ATE is non-negative is (when it exists) −P (Pi = 1|Ii = 1)−2,

and so is decreasing in magnitude in the participation rate among the invited. Consequently,

there is relatively less gain from increasing participation among the invited from 90% to 100%

and relatively more gain from increasing participation among the invited from 50% to 60%.

For context, consider an analysis of recruitment into medical RTs in Gross, Mallory, Heiat,

and Krumholz (2002). Gross, Mallory, Heiat, and Krumholz (2002) study 172 medical RTs

published over the course of a year in four major medical journals. In these RTs the median

eligibility fraction, the fraction of the potential participants who are eligible to enroll in the

study after screening (roughly analogous to invitation in the model in Section 2), is 65%.

The interquartile range is 41-82. These figures are based on the 48 studies that report the
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Participation rate among invited Smallest ATEexp implying ATE ≥ 0
10% n.p.
20% n.p.
30% n.p.
40% n.p.
50% 1
60% 2

3 ≈ .67
70% 3

7 ≈ .43
80% 1

4 = .25
90% 1

9 ≈ .11
100% 0

Table 1. Effect of participation rate on identification of the sign of the average
treatment effect; n.p. = not possible, there is no ATEexp implying ATE ≥ 0.

necessary data in the publication. The median enrollment fraction, the fraction of eligible

participants who actually enroll (roughly analogous to participation among the invited in the

model in Section 2), is 93%. The interquartile range is 79-100. These figures are based on

the 74 studies that report the necessary data.3 The median recruitment fraction, the product

of these two fractions, is 54%. The interquartile range is 32-77. These figures are based on

81 studies that report the necessary data. With this enrollment fraction (participation rate

among invited), a modest experimental average treatment effect is sufficient to point identify

that the population average treatment effect is non-negative. Therefore, in such studies, even

without any assumptions about selectivity of participation, it may be realistically possible to

point identify the existence of a positive treatment effect, as long as the treatment indeed

does have a positive effect. Similar conclusions could be drawn when Banerjee and Duflo

(2009) report an experiment of a “no legal strings attached” gift worth “between $25 and

$100” as part of the Bandhan microfinance program in India. Approximately 18% of the

invited individuals (translating roughly to the model) rejected the gift, a participation rate

similar to the above.
3Note that this implies less than one-half of studies report this data. It is not obvious which direction the
resulting median is biased from the median in the population. It could be that studies with a low enrollment
fraction are more likely to report that in the research paper, because it may threaten the validity of the study
and so it is worth reporting in the research paper. Alternatively, it could be that studies with a low enrollment
fraction are less likely to get published in a major medical journal, exactly because a low enrollment fraction
may threaten validity.
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In other RTs, the participation rate is even lower. One such example is the experimental

study of the Job Training Participation Act (JTPA) conducted by the Manpower Demonstra-

tion Research Corporation. In this experiment, Doolittle and Traeger (1990) and Heckman

(1992) report that more than 90% of invited training centers refused to participate. With a

participation rate of less than 10%, such data cannot even identify the sign of the average

treatment effect, unless the econometrician is willing to assume something about selectivity

of participation.

This analysis of the identification of the sign of the average treatment effect involves

no assumptions on selectivity of participation, but if the econometrician does assume that

participation is not selective, then the experimental average treatment effect is the population

average treatment effect (Theorem 4). Therefore, a key question is whether it is credible

to assume that participation is not selective, and the participation rate by itself does not

necessarily imply anything about selectivity of participation. In many cases by definition of

not participating in the RT limited data is available on individuals who do not participate.

Nevertheless, it may be possible to compare the characteristics of subjects who participate

with, for example, population data from other sources, in order to get a sense of whether

participation seems likely to be related to the response function. This sort of analysis is

conducted by Steg, Lopez-Sendon, Lopez de Sa, Goodman, Gore, Anderson Jr, Himbert,

Allegrone, and Van de Werf (2007) in a meta-analysis of RTs of treatments for acute myocardial

infarction (“heart attack”). They find that the characteristics of patients who are eligible for

an RT but do not participate are “worse” than of patients who actually participate. The

same pattern holds for the observed outcomes.4 Rothwell (2005) provides results that suggest

that even this sort of comparison may not be enough because of characteristics that are

likely unobserved in the data (at the time of the recruitment into the RT) but are related to

participation. Rothwell (2005) reports that in an RT of endarterectomy to prevent stroke

that roughly 3% of the patients were randomized into receiving the endarterectomy but “did

not have surgery because their surgeon and/or anesthetist judged them to be too frail.” This

group had a distribution of observables (that appear in the dataset) similar to that for the
4Their analysis also suggests that invitation in these RTs may not satisfy Assumption 1.
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rest of the participants in the RT but did have a much higher subsequent rate of stroke

compared to the patients participating in the RT but not receiving the endarterectomy. This

suggests that showing that observable characteristics of participants in an RT are similar to

those not participating may not be enough to establish that the response function is mean

independent of participation, depending on the nature of the observables.

Similarly in the case of the Job Training Participation Act (JTPA) experiment there is

suggestive evidence that participation by training centers is selective. Relevant data is reported

by Doolittle and Traeger (1990, Tables 5.4-5.5). The training centers that participated tended

to, among other things, be geographically un-representative of all centers, serve a smaller

number of terminees from Title IIA of the JPTA, and had greater adult employment rates.

Some of these examples depend on covariates, and if there are observed covariates that

suitably explain participation then the strategy of Section 3.2 can be used.

6. Conclusions

This paper studies the question of what is identified about the average treatment response

(ATR) and average treatment effect (ATE) with data from a randomized trial. The paper

focused on the problem of selective participation in an RT.

The analysis of this paper suggests that in reporting the results of an RT it is useful to

consider reporting the bounds on the ATR and ATE as derived in this paper. If this is not

possible then it is useful to report information to the extent possible on the invitation rate;

how individuals are invited to participate; the characteristics of those who are invited, and

are not invited; the participation rate of those invited; and the characteristics of those who

participate, and are invited but do not participate. This view is partly seen in the CONSORT

statement (i.e., Moher, Hopewell, Schulz, Montori, Gøtzsche, Devereaux, Elbourne, Egger,

and Altman (2010) and Schulz, Altman, and Moher (2010)), a major set of guidelines for

medical RTs, which states that “[a] comprehensive description of the eligibility criteria used to

select the trial participants is needed to help readers interpret the study” and “[a] description

of the method of recruitment, such as by referral or self selection (for example, through

advertisements), is also important in this context.”
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It is also worth noting that, for the purposes of identification, it is the participation rate that

matters, not the absolute number of participants. This suggests that the emphasis in designing

RTs should be on high participation rates, not simply a large number of participants. This is

because participants in a large RT can be equally or less representative of the population of

interest than participants in a small RT if the two RTs differ in their emphasis on recruitment

of a representative subpopulation. Of course, statistical precision is improved with a larger

sample. But a statistically precise estimate of a less informative identified set may be less

preferred than an imprecise estimate of a more informative identified set.
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