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Abstract. Randomized controlled trials (RCTs) are routinely used in medicine and
are becoming more popular in economics. Data from RCTs are used to learn about
treatment effects of interest. This paper studies what one can learn about the
average treatment response (ATR) and average treatment effect (ATE) from RCT
data under various assumptions and compares that to using observational data. We
find that data from an RCT need not point identify the ATR or ATE because of
selection into an RCT, as subjects are not randomly assigned from the population of
interest to participate in the RCT. This problem relating to external validity is the
primary problem we study. So, assuming internal validity of the RCT, we study the
identified features of these treatment effects under a variety of weak assumptions
such as: mean independence of response from participation, an instrumental variable
assumption, or that there is a linear effect of participation on response. In particular
we provide assumptions sufficient to point identify the ATR or the ATE from RCT
data and also shed light on when the sign of the ATE can be identified. We then
characterize assumptions under which RCT data provide more information than
observational data.
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1. Introduction

This paper is concerned with identification of treatment response in a population of sub-

jects each of whom is characterized by a response function yi(d) : d ∈ D where d is a

treatment that belongs to a finite set of mutually exclusive treatments D. We are inter-

ested in functionals of the joint distribution of {yi(.)} and focus on the Average Treatment

Response (ATR) of treatment d which is

ATR(d) ≡ E(yi(d))

and the Average Treatment Effect (ATE) of treatment d′ versus treatment d which is

ATE(d′, d) ≡ E(yi(d
′))− E(yi(d)).

The problem is that we do not observe data on yi(d) for a subject i at all treatments d.

Rather, each subject is observed to experience only one treatment. In general, observational

data is subject to selection bias (or endogeneity) when response is not mean independent

of realized treatment. This is a ubiquitous problem in economics, but also in many other

settings like medicine. For example, there is a concern that treatment choice is correlated

with unobservables that are also correlated with outcome. The standard example of this

in economics is that achieved education is correlated with various unobservables like ability

that are also correlated with wages. Consequently, the average wage of people with a given

level of educational achievement is not equal to the counterfactual average wage of all people

were they all to achieve that level of education.

One possible solution to this problem is a randomized controlled trial (RCT). These have

been used since roughly the 1950s in medicine, although there are antecedents dating back
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perhaps as far as the middle of the 18th century (e.g., see Pocock (1983)), and have since

come to be commonly known as the “gold standard” for statistical evidence. They are

required, for example, in any application to the FDA to market a new drug. RCTs are also

used increasingly often in economics, for example in labor economics, and especially more

recently in development economics. See for example Banerjee and Duflo (2009) for a review

of the use of experiments in development economics. Effectively the defining characteristic

of an RCT is that treatments are assigned randomly to participants, overcoming the possible

selection bias problem of observational data relating to treatment selection.

This paper’s contribution is to analyze what can be learned about the ATR and ATE with

data from an RCT under certain maintained assumptions and then to contrast that with

what can be learned with observational data. The main issue we study is selection into an

RCT, an issue that depends on the way in which an experiment is ran, the way that subjects

decide whether to participate in an RCT, and the population of interest. This selection

problem threatens the generalizability of the results from an RCT beyond the sample of

participants in the study; this is commonly referred to as external validity.

The selection into an RCT problem arises because, in general, participation in an RCT is

a decision in much the same way that treatment selection is a decision in observational data.

Often times the decision to participate in an RCT reflects an even more deliberate thought

process than the decision of which treatment to select in observational data because of ethical

and legal requirements on experiments involving human subjects. Indeed, the Declaration

of Helsinki1 states that in medical research “the physician or another appropriately qualified

individual must then seek the potential subject’s freely-given informed consent, preferably in

1Available online at http://www.wma.net/en/30publications/10policies/b3/index.html.
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writing” and that “[t]he physician may combine medical research with medical care only to

the extent that the research is justified by its potential preventive, diagnostic or therapeutic

value and if the physician has good reason to believe that participation in the research study

will not adversely affect the health of the patients who serve as research subjects.”

The ethics of medical RCTs is not settled but one standard view is that “[p]hysicians

who are convinced that one treatment is better than another for a particular patient cannot

ethically choose at random which treatment to give, they must do what they think best

for the patient. For this reason, physicians who feel they already know the answer cannot

enter their patients into a trial” and “[a]n ethical physician must do what is best for his or

her patients. She cannot participate in a controlled trial if she is certain that one arm is

superior to the others and that some of her patients will receive an inferior treatment by

participating in the trial” (from the debate in Weijer, Shapiro, Glass, and Enkin (2000); note

that one of these quotes is from one side of the debate and the other quote is from the other

side). This suggests that, especially on ethical grounds, participation in a medical RCT is

statistically related to the outcome. Similarly, the same optimizing behavior that suggests

endogeneity in economic models of treatment-response suggest endogeneity of selection into

RCTs. Furthermore, although there does not yet exist a large literature on the ethics of

RCTs in economics, it seems that especially in the case of development economics in which

the subjects are potentially “a disadvantaged or vulnerable population or community” in the

language of the Declaration of Helsinki, similar ethical concerns apply to RCTs in economics.

So, generally, participation rates in an RCT from among a population of interest can be

much lower than in an observational study using the same population of interest, and this

participation is selective.
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We are interested in external validity, meaning the ability of data to identify the ATR and

ATE defined on the population of interest, and our results do not apply to experiments in

which one is interested in the ATR and ATE for just the sample of people in the experiment.

Indeed, in our assumptions we stipulate that the RCT is “ideal” in the sense that there

are no threats to internal validity; that is, the RCT is assumed to point identify the ATR

and ATE for the subpopulation actually participating in the RCT. So, issues of compliance,

blinding vs nonblinding, and matters relating to the conduct of the experiment are assumed

away, not because we do not believe these issues are important, but rather because we intend

to focus on the issue of external validity.

Our approach to identification is similar to the one used in Manski (1996) in his analysis of

learning about treatment effects from experimental data, in the sense that we study what one

can learn about these objects of interest under weak assumptions using a partial identification

approach. Manski (1996) studies the basics of treatment compliance (e.g., internal validity)

and external validity. We focus exclusively on the details of who participates and assume

full compliance. Our setup of the problem is different, as we assume that participation in an

RCT is a two step procedure, similar to the stylized model presented by, for example, Gross,

Mallory, Heiat, and Krumholz (2002) (henceforth GMHK). The first step is the invitation step

where researchers invite a group of subjects from the population. This we assume is observed

with the key condition that response is mean independent of whether a subject is invited.

The second step is the participation step where invitees decide whether to participate. We

only observe the participants. This is the source of the selection problem. His main model

of external validity is basically what we consider as model 2, where RCT data is effectively

completely uninformative. In contrast, in our model 1 RCT data can be informative. Manski
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(1996) briefly considers a sort of one stage version of our two stage model 1, but as we explain

in our discussion of our model, we view the two stage formulation as an important feature

of the model. In addition, an important feature of this paper is the comparison of what

one can learn from RCT vs observational data. Finally, we consider additional assumptions

that tighten the identified set. So, we view both papers as containing complementary results

on what one can learn from experimental data under different sets of assumptions. Similar

papers in economics that dealt with learning from experimental data and comparing that to

what one can learn from observational data are Heckman (1992) and Heckman (1996).

In section 2, we introduce the basic model and derive our identification results. We find

that data from an RCT need not point identify the ATR or ATE. We characterize assump-

tions sufficient for an RCT to point identify either the ATR or the ATE in the population

of interest. One such assumption is that response is mean independent of participation,

but others are that there are instruments for participation or that there is a linear effect of

participation on response. We also consider the identification of the sign of the ATE, which

is the object of interest when the experimenter wants to learn the “best” treatment and is

abstracting away from issues like different costs of different treatments. Section 3 considers

a slightly different model of an RCT that results in completely uninformative identification.

Section 4 compares identification with data from an RCT to observational data. We char-

acterize when RCT data results in a narrower identified set than does observational data.

Section 5 illustrates our identification results using an analysis of RCTs in medicine. Finally

section 6 concludes with some suggestions for reporting and interpreting the results of RCTs.

We illustrate our theoretical discussion throughout the paper by real-world examples from

RCTs in medicine and economics.
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2. Model 1: an RCT with observed invitation

The finite set of possible treatments is D, and each subject i in the population of interest

has a response function yi(·) : D → R. The stylized randomized controlled trial (RCT) we

study is conducted on some subpopulation of the population of interest, and is composed of

three decisions made at the subject level. The first decision is the decision by the experi-

menter of whether to invite the subject to participate in the RCT. The variable indicating

an invitation is Ii. We assume that invitation is observed. The second decision is the de-

cision by the invited subject of whether to participate in the RCT. The variable indicating

participation is Pi. We assume that participation is observed. By convention, if Ii = 0 we

set Pi = 0. Finally, the third decision is the randomized assignment of a treatment to each

subject participating in the RCT. The variable indicating assigned treatment is Di. We

assume that treatment is observed; further, in order to focus on “pre-assignment” biases we

abstract from many important issues that might threaten internal validity of an RCT and

in particular abstract away from issues related to treatment compliance and assume that all

subjects comply with their assigned treatment. The actual outcome of subject i is yi. Since

we consider the case of perfect compliance we have yi = yi(d) when Di = d. We assume that

there are known finite bounds on the possible outcomes, so that necessarily yi(d) ∈ [m,M ]

for all treatments d.

Note that for any RCT called 1 the information is effectively the same as for an RCT

called 2 in which all subjects in the population of interest are considered invited, but in

which subjects who were not invited in RCT 1 are considered to not participate in RCT

2. We separate the two decisions to make clear the meaning of our mean independence
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assumptions, since we view it as fruitful to distinguish between the invitation decision that

is under the control of the experimenter from the participation decision that is not under

the control of the experimenter, even though they collectively determine which subjects

“actually” participate in the RCT. This two step model of an RCT is similar to the stylized

model presented by, for example, GMHK.

We focus first on the case of identifying E(yi(d)), the average response to treatment d.

We abstract away from including regressors in the analyses for simplicity. In everything that

follows we could allow non-parametric conditioning on regressors. By the law of iterated

expectation we have that

E(yi(d)) = E(yi(d)|Ii = 1)︸ ︷︷ ︸
(1)

P (Ii = 1)︸ ︷︷ ︸
(2)

+E(yi(d)|Ii = 0)︸ ︷︷ ︸
(3)

P (Ii = 0)︸ ︷︷ ︸
=1−(2)

.

In other words, the average response to treatment d can be decomposed as the weighted

average of the average treatment responses for subjects invited, (1), and not invited, (3),

to the RCT where the weight is the probability of invitation, (2). The first substantiative

assumption we make is that response is mean independent of invitation to the experiment.

Assumption 2.1. Assume that E(yi(d)|Ii = 1) = E(yi(d)) = E(yi(d)|Ii = 0) for all treat-

ments d ∈ D. Also, P (Ii = 1) > 0.

Under this assumption it is enough to study the identification of E(yi(d)|Ii = 1). Note

that many experiments study the response to an experimental treatment that is not avail-

able to subjects not invited to participate in the RCT. Any possible data alone is completely

uninformative about E(yi(d)|Ii = 0) when d is such an experimental treatment, since no
8



subject not participating in the experiment experiences treatment d. In our model we main-

tain this condition in establishing sharpness of the bounds; in principle, other data could be

combined with data from the RCT to identify E(yi(d)|Ii = 0).

The credibility of assumption 2.1 depends on the relationship between the experimental

design and the population of interest. It is always logically possible to define the population

of interest to be exactly the invited population, in which case Ii = 1 for all subjects according

to our model. However, in many cases there is population of interest defined beyond the

limited scope of a particular RCT. For example, consider the case of heart failure. This

disease tends to affect the elderly, affects men and women in roughly equal proportion, and

has a significant incidence among non-white people. The most natural population of interest

for a treatment for heart failure is apparently the population of people with heart failure.

However, Heiat, Gross, and Krumholz (2002) find that RCTs of heart failure treatments

often explicitly do not invite the elderly and/or women. The result of this (and, possibly,

also participation rates captured by Pi in our model) is that the average age of participants

is about 60, even though the average age for patients with heart failure is about 80, only

about 20% of participants are women even though about 50% of patients with heart failure

are women, and only about 15% of participants are non-white even though about 30% of

patients with heart failure are non-white.2 Moreover, an overwhelming number of RCTs do

not invite participation by subjects with certain co-morbidities (i.e., based on left ventricular

2Note that it could be that these RCTs have low participation by these groups while not “explicitly”
rejecting the elderly, women, or minorities if, for example, they are run in settings with a non-representative
sample of patients. In particular, note that no RCT explicitly rejects non-whites, but still their participation
rate is lower than the fraction of heart failure patients who are non-white. We are not interested in the
precise details of heart failure RCTs, so do not speculate why this has happened. In our model this amounts
to not “inviting” these subjects, raising concerns about the credibility of the mean independence assumption.
Alternatively, it could be that certain groups have lower propensities to participate in the experiments. This
is accounted in our model with the variable Pi.
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ejection fraction and renal insufficiency). The result is that the subpopulation that tends

to be invited to participate in RCTs is not necessarily representative of the population of

patients with heart failure. In this case, the mean independence assumption seems not

credible. See also Van Spall, Toren, Kiss, and Fowler (2007) for a more general study of

invitation to medical RCTs.

The case for economics RCTs is similar. Some RCTs in economics by their very nature

effectively invite everyone in the population of interest. Other RCTs necessarily invite only

a subpopulation of the population of interest to participate. For example, many experiments

in development economics either implicitly or explicitly have as the population of interest

something like “developing countries” or “people living in developing countries” but are able

to run the experiment only in a geographically restricted area. Related to this point, Banerjee

and Duflo (2009) summarize that “experiments in development economics have often been

carried out by randomizing over a set of locations or cluster (villages, neighborhoods, schools)

where the implementing organization is relatively confident of being able to implement.”

This may imply that response is not mean independent of invitation, depending on why

implementation is possible in some areas but not in others. In general, the credibility of

assumption 2.1 depends on how the subjects are invited, and in particular whether they

are invited in a way that is correlated with their response. This is an issue that requires

knowledge of the details of a particular RCT, so no general discussion is possible here. See

also the closely related discussion of “environmental dependence” in Banerjee and Duflo

(2009).

If invitation does not satisfy assumption 2.1 it can be useful to “re-define” invitation in

the model in such a way that invitation does satisfy assumption 2.1, and that all selection is
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accounted for in the participation variable Pi. The identification power of Ii and associated

assumption 2.1 is to maintain that some reasonably sized subpopulation (e.g., the population

invited to participate) can be taken to be representative of the population of interest. So,

effectively assumption 2.1 maintains that the subjects who are invited to participate are a

random sample from the population of interest; the possibility that participation among the

invited is non-random is the focus of this paper. Without this assumption, in a model that

focuses on selective participation it is difficult to rule out the possibility that those who

are involved in the RCT are arbitrarily un-representative of the population of interest. The

result would be, when the number of subjects involved in the RCT is very small compared

to the size of the population of interest, an almost completely uninformative identified set.

Our model 2 in section 3 considers a similar issue.

Regardless of whether we maintain that response is mean independent of invitation to the

experiment, we can use the law of iterated expectation a second time to conclude that

E(yi(d)|Ii = 1) = E(yi(d)|Pi = 1, Ii = 1)︸ ︷︷ ︸
(1)

P (Pi = 1|Ii = 1)︸ ︷︷ ︸
(2)

+E(yi(d)|Pi = 0, Ii = 1)︸ ︷︷ ︸
(3)

P (Pi = 0|Ii = 1)︸ ︷︷ ︸
=1−(2)

.

In other words, the average response to treatment d among those invited to participate

can be decomposed as the weighted average of the average treatment response for subjects

participating, (1), and not participating, (3), in the RCT where the weight is the probability

of participation given invitation, (2). As before, the data alone is completely uninformative

about E(yi(d)|Pi = 0, Ii = 1) when d is an experimental treatment, since no subject not

participating in the experiment experiences treatment d. Also as before, in our model we

maintain this condition in establishing sharpness of the bounds. We assume that the RCT

is “ideal” in the sense that it point identifies E(yi(d)|Pi = 1, Ii = 1). A sufficient condition
11



for this is the usual mean independence of response from treatment assignment (and perfect

compliance) that usually defines an RCT.

Assumption 2.2. Assume that E(yi(d)|Pi = 1, Ii = 1) = E(yi(d)|Di = d, Pi = 1, Ii = 1).

Assume further that P (Pi = 1|Ii = 1) > 0 and P (Di = d|Pi = 1, Ii = 1) > 0 for all

treatments d ∈ D.

Under this assumption we have that E(yi(d)|Pi = 1, Ii = 1) = E(yi|Di = d, Pi = 1, Ii = 1).

In other words, the average response to treatment d is point identified for subjects actually

participating in the experiment. These two assumptions seem to exhaust the assumptions

that we can credibly make on a stylized RCT. The resulting identified set for E(yi(d)) is

given by the following theorem.

Theorem 2.1. Under assumptions 2.1 and 2.2, the sharp identified set for E(yi(d)) is that

E(yi(d)) ∈ E(yi|Di = d, Pi = 1, Ii = 1)P (Pi = 1|Ii = 1) + [m,M ]P (Pi = 0|Ii = 1). Further,

the sharp identified set for {E(yi(d))}d∈D is the Cartesian product of these sets.

Proof. The previous discussion establishes these bounds. Sharpness is obtained by consider-

ing the response functions

yi(d) =



yi if Di = d, Pi = 1, Ii = 1

E(yi|Di = d, Pi = 1, Ii = 1) if Di 6= d, Pi = 1, Ii = 1

[m,M ] if Pi = 0, Ii = 1

E(yi(d)|Ii = 1) if Ii = 0.

These response functions are consistent with the data by the first line of the definition,

are consistent with assumption 2.1 by the fourth line, and are consistent with assumption
12



2.2 by the second line. They also obviously achieve any point in the identified set by the

third line. �

Corollary 2.1. Under the same conditions, the sharp identified set for ATE(d′, d′) ≡

E(yi(d
′)−yi(d)) is ATE(d′, d′) ∈ (E(yi|Di = d′, Pi = 1, Ii = 1)− E(yi|Di = d, Pi = 1, Ii = 1))P (Pi =

1|Ii = 1) + [m−M,M −m]P (Pi = 0|Ii = 1).

This corollary follows from the theorem since the identified set for E(yi(d
′))×E(yi(d)) is

the Cartesian product of the marginal identified sets, since there are not restrictions across

treatments. The next corollary considers identification of the sign of the ATE, which may be

of independent importance in some cases. This is the case when the experimenter wants to

learn the “best” treatment and is abstracting away from issues like different costs of different

treatments, which would lead to the magnitude of the ATE mattering.

Corollary 2.2. Define the experimental ATE as ATEexp(d
′, d) ≡ E(yi|Di = d′, Pi = 1, Ii =

1)− E(yi|Di = d, Pi = 1, Ii = 1). Under the same conditions, ATE(d′, d) is point identified

to be positive (or non-negative, resp.) if ATEexp(d
′, d)P (Pi = 1|Ii = 1) + (m −M)P (Pi =

0|Ii = 1) > (≥)0, to be negative (or non-positive, resp.) if ATEexp(d
′, d)P (Pi = 1|Ii = 1) +

(M −m)P (Pi = 0|Ii = 1) < (≤)0, and is not identified and can be positive, negative, or zero

if ATEexp(d
′, d)P (Pi = 1|Ii = 1) + (m−M)P (Pi = 0|Ii = 1) < 0 and ATEexp(d

′, d)P (Pi =

1|Ii = 1) + (M −m)P (Pi = 0|Ii = 1) > 0.

The first key conclusion of this theorem is that this RCT is informative about the aver-

age treatment response as long as a positive fraction of invited subjects participate in the

experiment. The second key conclusion of this theorem is that unless the participation in
13



the RCT is 100 percent among those invited, i.e. P (Pi = 1|Ii = 1) = 1, there is not point

identification of the average treatment response. Note from the second corollary that even

though there is not point identification of the ATE when P (Pi = 1|Ii = 1) < 1 there can

be point identification of the sign of the ATE in many cases. Basically, the condition for

point identification of the sign of the ATE is that the ATE in the subpopulation of subjects

participating in the experiment is sufficiently large in magnitude relative to the fraction of

subjects participating in the experiment to outweigh any possible ATE in the subpopulation

of subjects not participating in the experiment. The width of the region of “ambiguity” as a

function of ATEexp where the sign of the ATE is not identified is 2(M−m)P (Pi = 0|Ii = 1):

the smaller this is, the more likely that the model will point identify the sign of the ATE.

Remark 2.1 (Justifying the assumptions). It is often the case that experimental studies

report summary statistics that are used to suggest that randomization has “worked” because

the observables of the subjects receiving each treatment (including perhaps the subjects in the

control group when applicable) have similar distributional properties. Note that while this

may bolster the case for assumption 2.2, it implies nothing about whether response is mean

independent of participation in an RCT. A useful measure of whether response is mean inde-

pendent of participation would be a comparison of the same distributional properties between

participants and non-participants; depending on the nature of these covariates, this compar-

ison may or may not be feasible.3 However, it is important to note even this cannot “prove”

that response is mean independent of participation because of the possibility of unobservables.

In the conclusions we discuss this issue further.

3For example, if the measurement of the covariates is invasive and non-standard then almost by definition
of non-participation subjects who do not participate in the RCT will have missing data for these covariates.
It is possible, however, to consider combining many different datasets.
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2.1. Selective participation in RCTs. The reason that there is not point identification

of the ATR and ATE in general is that the identified set accounts for the possibility that

response is not mean independent of participation in the RCT. Indeed, the reasons for

concern that response is not mean independent of realized treatment in observational data

are basically exactly the same reasons that there should be concern that response is not

mean independent of participation in an RCT. The simple reason is that participation in an

RCT amounts to a gamble with the desire of selecting the experimental treatment.

This claim is consistent with a simple economic theory of how subjects decide whether to

participate in an RCT. Suppose that subjects (or their agents; for example, their caregivers

in a medical setting) have preferences over the treatment the subjects receive. Suppose

in particular that the utility is the same as the actual outcomes that result from these

treatments. This abstracts away from, for example, differences in the cost of treatments.

It also requires that the subjects perfectly know the outcome that result from each of the

treatments. Of course, the goal of the RCT is to learn the outcome that results from the

treatments, so this assumption is almost certainly not literally true. But, it seems a good

first approximation to motivate why the assumption that response is not mean independent

of participation in an RCT is not necessarily credible.4

Suppose that treatments Dne ⊂ D are the non-experimental treatments available out-

side of the experiment, treatments De ⊂ D are the experimental treatments available only

in the experiment, and that treatments Drct ⊂ D are the treatments available in the ex-

periment, which might include some non-experimental treatments. This abstracts away

from the complications of being invited to participate by many different RCTs, which can

4This perfect foresight assumption can certainly be weakened at the expense of a more complicated (and
realistic) model of decision making. This would be an interesting area of research to pursue.
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happen in medical RCTs. Suppose for simplicity that subjects are risk-neutral expected

utility maximizers, with utility equal to the outcome, and that they know the probability

they will receive each treatment should they participate in the RCT. Then subject i will

participate if and only if
∑

d∈Drct
pdyi(d) ≥ maxd∈Dne yi(d). A necessary condition is that

maxd∈De yi(d) ≥ maxd∈Dne yi(d), since otherwise participation in the RCT is dominated by

not participating and being able to choose the optimal non-experimental treatment.5 In

particular, suppose that there is exactly one experimental treatment, de. Then a necessary

condition for participation is that yi(de) ≥ maxd∈Dne yi(d).

This suggests that participants in an RCT will tend to not be representative of the popu-

lation of all subjects invited to participate, and indeed may tend to have greater treatment

effect of the experimental treatment relative to other treatments than does the population

of interest. But this does not necessarily imply anything about the response to the exper-

imental treatment. It could be, for example, that participants in an RCT tend to have

“bad” responses to all of the treatments, but just have a relatively better response to the

experimental treatment than to the other treatments.

2.2. Response is mean independent of participation: a necessary and sufficient

condition for the usual RCT estimate. If we maintain the assumption that response

is mean independent of participation in the RCT, we have the following point identification

result.

Assumption 2.3. Assume that E(yi(d)|Pi = 1, Ii = 1) = E(yi(d)|Ii = 1) = E(yi(d)|Pi =

0, Ii = 1) for all treatments d ∈ D.

5Let y∗i = maxd∈Dne
yi(d). Then re-write

∑
d∈Drct

pdyi(d) ≥ maxd∈Dne
yi(d) as

∑
d∈De

pd(yi(d) − y∗i ) +∑
d∈Drct∩Dne

pd(yi(d)−y∗i ) ≥ 0. The second sum is non-positive by definition of y∗i , so
∑

d∈De
pd(yi(d)−y∗i ) ≥

0 and consequently maxd∈De
yi(d) ≥ y∗i .
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Theorem 2.2. Under assumptions 2.1, 2.2, and 2.3, E(yi(d)) is point identified as E(yi|Di =

d, Pi = 1, Ii = 1).

Note that if there is no heterogeneity in response then the mean independence part of

assumption 2.3 holds. Note also that the resulting bound in theorem 2.2 is the same as the

bound in theorem 2.1 when P (Pi = 1|Ii = 1), so assuming that response is mean independent

of participation can be interpreted as being equivalent to “assuming” that the participation

rate among the invited is 100 percent. Also note that as the participation rate among the

invited tends to 100 percent the bound in theorem 2.1 converges to the bound in theorem

2.2, implying that reporting the usual RCT estimate is a reasonably good approximation to

the identified bound in theorem 2.1 when there is relatively high participation.

Moreover, suppose that the experimenter assumes that 2.1 and 2.2 hold, and then “as-

sumes” that the average treatment response is point identified as E(yi(d)) = E(yi|Di =

d, Pi = 1, Ii = 1). This is akin to assuming that the decision to participate in a trial among

invitees is random, in the sense that response is mean independent of participation. Recall

that under assumptions 2.1 and 2.2

E(yi(d)) =︸︷︷︸
2.1

E(yi(d)|Ii = 1)

= E(yi(d)|Pi = 1, Ii = 1)P (Pi = 1|Ii = 1) + E(yi(d)|Pi = 0, Ii = 1)P (Pi = 0|Ii = 1)

=︸︷︷︸
2.2

E(yi|Di = d, Pi = 1, Ii = 1)P (Pi = 1|Ii = 1) + E(yi(d)|Pi = 0, Ii = 1)P (Pi = 0|Ii = 1).

Therefore, by algebra, for the condition E(yi(d)) = E(yi|Di = d, Pi = 1, Ii = 1) to hold

it must be that either P (Pi = 1|Ii = 1) = 1, which seems non-generic, or E(yi(d)|Pi =

0, Ii = 1) = E(yi|Di = d, Pi = 1, Ii = 1) = E(yi(d)|Pi = 1, Ii = 1). But this is precisely
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assumption 2.3. So under assumptions 2.1 and 2.2 the conventional estimate used in an RCT

is equivalent to the assumption that response is mean independent of participation in the

RCT.

More generally, it is sufficient for the conventional interpretation of an RCT as point

identifying the average treatment response that three mean independence assumptions hold:

response is mean independent of invitation, participation, and treatment assignment. An

ideal RCT should satisfy the first and third assumptions but not necessarily the second

assumption; the first and third assumptions are under the control of the experimenter but

the second assumption is not.

2.3. The average treatment response with an instrument for participation. In this

section it is shown that if there is a suitable instrument for participation it is possible to point

identify the average treatment response. The instrument is a random variable Xi, which is

discrete (for simplicity), and is defined through the following assumption. This variable is

assumed observed.

Assumption 2.4. Assume that Xi is an observed instrument for all subjects who are invited

to participate and that E(yi(d)|Xi = x, Pi = 1, Ii = 1) = E(yi(d)|Xi = x, Ii = 1) =

E(yi(d)|Xi = x, Pi = 0, Ii = 1) for all treatments d ∈ D and all x in the support of X|I = 1.

Also assume that P (Pi = 1|Ii = 1) > 0. And assume also that P (Xi = x|Pi = 1, Ii = 1) > 0

and P (Xi = x|Pi = 0, Ii = 1) > 0 for all x in the support of X|I = 1.

In other words, response is mean independent of participation conditional on the instru-

ment. We also assume that response is still mean independent of treatment assignment

conditional now also on the instrument.
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Assumption 2.5. Assume that E(yi(d)|Xi = x, Pi = 1, Ii = 1) = E(yi(d)|Di = d,Xi =

x, Pi = 1, Ii = 1) and further that P (Di = d|Xi = x, Pi = 1, Ii = 1) > 0 for all treatments

d ∈ D and all x in the support of X|I = 1.

Then we can write that

E(yi(d)|Pi = 1, Ii = 1) =
∑
x

E(yi(d)|Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 1, Ii = 1)

=
∑
x

E(yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 1, Ii = 1)

and similarly

E(yi(d)|Pi = 0, Ii = 1) =
∑
x

E(yi(d)|Xi = x, Pi = 0, Ii = 1)P (Xi = x|Pi = 0, Ii = 1)

=
∑
x

E(yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 0, Ii = 1)

where the second expression uses assumption 2.4. This establishes the following theorem.

Theorem 2.3. Under assumptions 2.1, 2.4, and 2.5, E(yi(d)) is point identified as
∑

xE(yi|Di =

d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Ii = 1).

Proof. Simplify(∑
x

E(yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 1, Ii = 1)

)
P (Pi = 1|Ii = 1)

+

(∑
x

E(yi|Di = d,Xi = x, Pi = 1, Ii = 1)P (Xi = x|Pi = 0, Ii = 1)

)
P (Pi = 0|Ii = 1)

�

In other words, the average response to treatment d is the weighted average of the average

responses to treatment d for subjects participating in the experiment and assigned treatment
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d who have covariates x, weighted by the probability that a subject invited to participate has

covariates x. In the special case that P (Xi = x|Di = d, Pi = 1, Ii = 1) = P (Xi = x|Ii = 1)

so that the distribution of the instrument is independent of participating in the experiment

(and receiving treatment d) then this simplifies to the usual RCT result that E(yi(d)) =

E(yi|Di = d, Pi = 1, Ii = 1) like in theorem 2.2. Otherwise the average treatment response

needs to be re-weighted by the distribution of the instruments among all subjects invited to

participate, not the distribution of the instruments among those actually participating.

2.4. The average treatment effect with a “linear participation effect”. In this sec-

tion it is shown that under a functional form assumption on the response function even if

response is not mean independent of participation in the RCT it is possible to point identify

the average treatment effect by “differencing out” the effect of participation. Suppose that

yi(d) = yi0(d) +αi. This so far can always be done as we have not made any assumptions on

αi. We will introduce an assumption implying that αi captures all of the “endogeneity,” or

the selection effect of participation in the RCT, and so given these assumptions the linearity

of αi plays a crucial role. One can think of y0 as the “regression” part and the α as the

“error term” where the regression part is “exogenous” and all the selection is going through

α which we can difference out since it does not depend on the treatment d. Then we can

write that yi(d
′) − yi(d) = yi0(d

′) − yi0(d), so the treatment effect does not depend on αi.

The key identifying assumption is hence the following.

Assumption 2.6. There exists yi0(d) : d ∈ D and αi with yi(d) = yi0(d) + αi such that

E(yi0(d)|Pi = 1, Ii = 1) = E(yi0(d)|Ii = 1) = E(yi0(d)|Pi = 0, Ii = 1) for all d.
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In other words, αi captures all of the “endogeneity” of participation in the RCT. The re-

striction imposed by this assumption is that this endogeneity affects the response to all treat-

ments equally. Then under the assumption that response is mean independent of treatment

assignment, assumption 2.2, we have that E(yi|Di = d, Pi = 1, Ii = 1) = E(yi(d)|Pi = 1, Ii =

1) = E(yi0(d)|Pi = 1, Ii = 1)+E(αi|Pi = 1, Ii = 1) = E(yi0(d)|Ii = 1)+E(αi|Pi = 1, Ii = 1).

Consequently, under the assumption that response is mean independent of invitation, as-

sumption 2.1, ATE(d′, d) ≡ E(yi(d
′)− yi(d)) = E(yi(d

′)− yi(d)|Ii = 1) is point identified by

E(yi|Di = d′, Pi = 1, Ii = 1)−E(yi|Di = d, Pi = 1, Ii = 1) = E(yi0(d
′)|Ii = 1)−E(yi0(d)|Ii =

1) = E(yi(d
′)− yi(d)|Ii = 1). This establishes the following theorem.

Theorem 2.4. Under assumptions 2.1, 2.2, and 2.6, the average treatment effect ATE(d′, d) ≡

E(yi(d
′)−yi(d)) is point identified as ATE(d′, d) = E(yi|Di = d′, Pi = 1, Ii = 1)−E(yi|Di =

d, Pi = 1, Ii = 1). However, the sharp identified set for E(yi(d)), for any one treatment d,

remains the same as in theorem 2.1.

Proof. The identification of ATE(d′, d) follows from the previous discussion. The result

that the sharp identified set for E(yi(d)) remains the same as in theorem 2.1 is obtained by

considering the response functions

yi0(d) =



yi if Di = d, Pi = 1, Ii = 1

E(yi|Di = d, Pi = 1, Ii = 1) if Di 6= d, Pi = 1, Ii = 1

E(yi|Di = d, Pi = 1, Ii = 1) if Pi = 0, Ii = 1

E(yi(d)|Ii = 1) if Ii = 0.

and
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αi =



0 if Di = d, Pi = 1, Ii = 1

0 if Di 6= d, Pi = 1, Ii = 1

[m,M ]− E(yi|Di = d, Pi = 1, Ii = 1) if Pi = 0, Ii = 1

0 if Ii = 0.

These response functions yi0(·) and αi add up to the same response function used to

establish sharpness in the proof of theorem 2.1. Therefore they are consistent with the data,

and assumptions 2.1 and 2.2, and achieve any point in the identified set. They also satisfy

assumption 2.6.6 �

Note that this provides a justification for running an RCT with a control group even when

the average response in the population of interest to the treatment given to the control group

is already known from previous experiments, since the average response in the subpopulation

of subjects that participate in the RCT to the treatment given to the control group is likely

not known. It is useful to note that this does not require a control group that receives only a

placebo, and indeed the medical ethics of placebo control groups is in question (i.e., Rothman

and Michels (1994)). If the average treatment effect of treatment 1 versus a placebo is already

known, it is enough by the linearity of expectations to point identify the average treatment

effect of treatment 2 versus treatment 1 in order to point identify the average treatment

effect of treatment 2 versus a placebo. The approach in this section can be used on an RCT

6Note that the restriction imposed by assumption 2.6 is that αi is the same across treatments, so there is
a restriction in the identified sets for E(yi(d)) across different d; intuitively if the αi required to rationalize
the data for some point in the identified set for E(yi(d)) for some d is one unit bigger it means that the
response to all treatments d′ is one unit bigger among the subpopulation with Pi = 0, Ii = 1. So as the
previous discussion shows this is a sufficient restriction to point identify the ATE.
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involving only treatments 1 and 2, and then by this argument the average treatment effect

of treatment 2 versus a placebo can be inferred logically.

Note that this result places a strong functional form assumption on the response function.

Unless the participation effect enters the response function linearly, differencing does not re-

move the participation effect. In many cases a non-linear effect of participation on response

is plausible. For example, in an economics RCT it could be that the participation effect cap-

tures the “motivation” of the subject and that the response to some treatments depends on

motivation while the response to other treatments does not depend on motivation. Similarly,

in a medical RCT it could be that participation captures the baseline health status (e.g.,

“performance status” in the case of chemotherapy) of the subject and that some treatments

like chemotherapy provide good outcomes for subjects who come into the experiment already

reasonably healthy, but provide bad outcomes for subjects who come into the experiment

less healthy. So as with any assumption, it is important to consider whether the assumption

of a linear participation effect is credible in any given RCT.

3. Model 2: an RCT with unobserved invitation

The analysis in the previous section has been of a model in which the participation rate and

invitation rate is observed. This is a reasonable modeling assumption for some RCTs, but is

not a reasonable modeling assumption for other RCTs. For example, consider an RCT that

is run at a job training center. In this setting the experimenter observes which people elect

to participate conditional on being invited to participate in an RCT, but does not observe

the fraction of the population of interest that never show up to the job training center. This

is because the experimenter does not observe anything about the people who do not come to
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the job training center. It could be, for example, that the people who come to the job training

center are an arbitrarily small fraction of the population of interest. In order to model this

we introduce another decision that occurs before any of the three decisions of the previous

model. This is the decision of the subject to attend whatever “meeting” is necessary to get

an invitation to participate in the RCT. The variable indicating attendance is Ai. This may

partially capture things like the motivation, ability, or other baseline characteristics of the

subject that are correlated with the response. For example, this is the decision of the subject

to go to a job training center. The previous model is a special case of this model in which

Ai = 1 for all subjects i. This is reasonable, for example, in a medical setting where patients

must receive some level of medical care for their disease and so all patients have Ai = 1, and

also in certain types of economics RCTs, especially those where the experimenter actively

invites participation directly from the population of interest.

Again using the law of iterated expectation we get that

E(yi(d)) = E(yi(d)|Ai = 1)︸ ︷︷ ︸
(1)

P (Ai = 1)︸ ︷︷ ︸
(2)

+E(yi(d)|Ai = 0)︸ ︷︷ ︸
(3)

P (Ai = 0)︸ ︷︷ ︸
=1−(2)

.

So, as before, the average response to treatment d can be decomposed as the weighted

average of the average treatment responses for subjects attending, (1), and not attending, (3),

the meeting where the weight is the probability of meeting, (2). It is not credible to assume

that response is mean independent of attendance for the same reasons that it is not credible

to assume that response is mean independent of participating conditional on participating.

The difference now is that the experimenter does not even observe subjects with Ai = 0, so

does not know P (Ai = 1). Therefore, we have the result that this type of RCT is (basically)
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completely uninformative about the average treatment response. This is because P (Ai = 1)

could be arbitrarily small, and the data reveals nothing about E(yi(d)|Ai = 0).

Theorem 3.1. In this model the (closure of the) identified set for E(yi(d)) is that E(yi(d)) ∈

[m,M ].

On the other hand, if for some reason it is credible to assume that E(yi(d)|Ai = 0) =

E(yi(d)|Ai = 1) then informative identification can proceed by using the model of the previ-

ous section on E(yi(d)|Ai = 1) and extrapolating to E(yi(d)|Ai = 0) using this assumption

that response is mean independent of attendance. For more about this situation in which

the population of interest is not observed see Manski (1996).

4. Comparing RCTs to observational data

This section compares RCTs to observational data. Obviously since the RCT of model

2 is (basically) completely uninformative about the response functions, observational data

cannot be worse than an RCT of model 2. Therefore this section focuses on the RCT of

model 1. Further, we consider the identification of the model with data from an RCT as

derived in theorem 2.1 since with the additional assumptions we entertain the RCT point

identifies the objects of interest so necessarily is better than observational data.

Theorem 4.1. Under no assumptions, with observational data the identified set for E(yi(d))

is E(yi(d)) ∈ E(yi|Di = d)P (Di = d) + [m,M ]P (Di 6= d).

Further, the identified set for ATE(d′, d) is ATE(d′, d) ∈ E(yi|Di = d′)P (Di = d′) −

E(yi|Di = d)P (Di = d) + [mP (Di 6= d′)−MP (Di 6= d),MP (Di 6= d′)−mP (Di 6= d)].
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These are the same bounds as derived in the general case of observational data; see Manski

(2007).

4.1. Identifying the sign of the ATE. By algebra the lower bound on the identified

set for ATE(d′, d) with observational data can be written as (E(yi|Di = d′) −M)P (Di =

d′) + (m−E(yi|Di = d))P (Di = d) + (m−M)(1− P (Di = d′)− P (Di = d)) and the upper

bound can be written as (E(yi|Di = d′) − m)P (Di = d′) + (M − E(yi|Di = d))P (Di =

d) + (M − m)(1 − P (Di = d′) − P (Di = d)). Assuming that m < M , which is generic

since otherwise there is no uncertainty about outcomes, these expressions make it clear that

the sign of ATE(d′, d) is not point identified with observational data except possibly in

the special case that 1 − P (Di = d′) − P (Di = d) = 0. Otherwise, for the lower bound

the first two terms are non-positive and the last term is negative, and similarly for the

upper bound the first two terms are non-negative and the last term is positive. Therefore

both strictly positive and strictly negative values for ATE are in the identified set. In case

1−P (Di = d′)−P (Di = d) = 0 and P (Di = d) > 0 and P (Di = d′) > 0 then a non-negative

ATE is point identified exactly in case E(yi|Di = d′) = M and E(yi|Di = d) = m. A non-

positive ATE is point identified exactly in case E(yi|Di = d′) = m and E(yi|Di = d) = M .

Note in particular that it is never the case that a zero ATE can be ruled out with observational

data, since it is always consistent with the data that yi(d
′) = yi = yi(d) for all d′, d.

On the other hand, recall that under reasonable conditions the sign of the ATE is point

identified with data from an RCT. Therefore under the assumptions of theorem 2.1, the RCT

is valuable above observational data for the purposes of identifying the sign of the ATE.
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4.2. The width of the identified sets. Note also that the width of the identified set for

the average treatment response E(yi(d)) with RCT data is (M −m)P (Pi = 0|Ii = 1) while

with observational data it is (M − m)P (Di 6= d). The width depends on the treatment

considered with observational data but does not with RCT data. This makes it difficult to

give a general comparison of identification with RCT data and observational data in terms

of average treatment response, because the comparison depends on the treatment considered

and the details of how treatments are selected in the observational data.

So, in order to compare the two types of data in an apparently general way we consider

the sum of the widths of identified sets across all treatments, which is a measure of the total

“uncertainty” that remains about the average treatment responses. With RCT data this is

(M−m)|D|P (Pi = 0|Ii = 1) while with observational data this is
∑

d∈D(M−m)(1−P (Di =

d)) = (M −m)|D|(1− 1
|D|). Therefore the RCT is as good as observational data if and only

if P (Pi = 0|Ii = 1) ≤ 1 − 1
|D| or equivalently |D|P (Pi = 1|Ii = 1) ≥ 1. That is, the RCT

is preferred when there are many treatments and/or when there is high participation in the

RCT among those invited.

A similar result obtains for the sum of the widths of the identified sets for the average

treatment effects. The identified sets for ATE(d′, d) is the difference in the identified sets

for E(yi(d
′)) and E(yi(d)) under any of the assumptions entertained here since there are

no restrictions across treatments. Therefore the width of the identified set for ATE(d′, d)

is the sum of the widths of the identified sets for E(yi(d
′)) and E(yi(d)). Let H(·) be the

identified set for its argument. Therefore we have that
∑

d∈D
∑

d′>dwidth(H(ATE(d′, d))) =∑
d∈D

∑
d′>dwidth(H(E(yi(d

′))))+width(H(E(yi(d)))) = (|D|−1)
∑

d∈D width(H(E(yi(d))).

Therefore the comparison on the basis of the sums of the widths of the identified sets for
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the average treatment effects is the same as on the basis of the sums of the widths of the

identified sets for the average treatment responses.

Remark 4.1 (Combining RCT and observational data). We have derived above various

bounds on treatment response using RCT data. If one has access to observational data, then

bounds can be combined. A simple way to do that is to obtain bounds on, for example,

the ATR using both RCT and observational data and then form the intersection of these

bounds to get the overall bound on ATR. This would be a simple and effective approach to

combining both data sources, although the resulting intersection of bounds may not be sharp.

The sharp bounds will in general depend on potentially subtle issues relating to how the RCT

and observational populations “overlap” in their relationship to the population of interest;

deriving these bounds is left to future work.

5. Empirical illustration

In this section we illustrate our identification results using a recent analysis of recruitment

into medical RCTs in GMHK. As far as we know there is no similar analysis of economics

RCTs, perhaps because of the relatively young age of experiments in economics. Nevertheless

we suppose, as we have done throughout the paper, that at least as a stylized fact the conduct

of experiments in medicine and in economics is similar, and so our results for medical RCTs

are informative also for economics RCTs.

GMHK study 172 medical RCTs published over the course of a year in four major medical

journals. In these RCTs the median eligibility fraction, the fraction of the potential partici-

pants who are eligible to enroll in the study after screening (roughly analogous to invitation

in our model), is 65%. The interquartile range is 41-82. These figures are based on the 48
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studies that report the necessary data in the publication. The median enrollment fraction,

the fraction of eligible participants who actually enroll (roughly analogous to participation

among the invited in our model), is 93%. The interquartile range is 79-100. These figures

are based on the 74 studies that report the necessary data.7 They note that 20 studies report

an enrollment fraction of 100%, which they suggest is implausible and may be due to stud-

ies which conflate eligibility and participation in their reporting. The median recruitment

fraction, the product of these two fractions, is 54%. The interquartile range is 32-77. These

figures are based on 81 studies that report the necessary data.

We suppose in our empirical illustration that the outcome is binary. In an economics RCT

this might be school attendance or employment, and in a medical RCT this might be survival

at 6 months. Consequently we take m = 0 and M = 1 in our model above.8 In table 1 we con-

sider how the participation rate among those invited, P (Pi = 1|Ii = 1), relates to the identi-

fication of the sign of the average treatment effect. We suppose that there are two treatments

of interest, and that some RCT satisfying the conditions of theorem 2.1 reveals the exper-

imental ATE, ATEexp(d
′, d′) ≡ (E(yi|Di = d′, Pi = 1, Ii = 1)− E(yi|Di = d, Pi = 1, Ii = 1)).

Recall this is the ATE on the subpopulation that actually participates in the experiment.

We study the smallest experimental ATE such that according to corollary 2.2 the ATE in

7Note that this implies less than one-half of studies report this data; it is not obvious which direction the
resulting median is biased from the median in the population. Ironically, this is itself because of a partial
identification issue. It could be that studies with a low enrollment fraction are more likely to report that,
because it may threaten the validity of the study and so it is worth reporting. Alternatively, it could be that
studies with a low enrollment fraction are less likely to get published in a major medical journal, exactly
because a low enrollment fraction may threaten validity.

8Note that the additional assumption of a discrete outcome rather than a continuous outcome does not
affect the sharpness of the bounds. In proving sharpness we exhibited response functions that are the same
for all people in certain subpopulations (e.g., the response to treatment d is the same for everybody with
Ii = 0). These exhibited response functions in general will not take values compatible with discreteness of
the outcome, but necessarily the response functions take values in the convex hull of the set of outcomes. It
is trivial to simply partition any given subpopulation further and assign people in that sub-subpopulation to
have outcomes compatible with the discreteness of the outcome, and such that on average that subpopulation
has the same outcome as does the subpopulation in our sharpness proofs.
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the population is point identified to be non-negative. If the participation rate is too low it

is never possible to point identify the population ATE to be non-negative, and we indicate

this in the table by “n.p.” for not possible.

Each row of the table provides a possible participation rate among the invited and the

corresponding smallest experimental ATE that point identifies the population ATE to be

non-negative. So if the participation rate among invited is 60%, for example, then the

experimental ATE must be at least as great as 2
3

in order to point identify the population ATE

to be non-negative. If the participation rate is strictly less than 50% then it is not possible

to point identify the population ATE to be non-negative, because even if the experimental

ATE were 1, the largest possible, the ATE in the subpopulation that does not participate

but is invited could be −1, which would result in a negative population ATE. Note that the

marginal gain in identifying power is greatest when the participation rate among the invited

is low, in the sense that the derivative of the smallest ATEexp implying the population ATE

is non-negative is (when it exists) −P (Pi = 1|Ii = 1)−2, and so is decreasing in magnitude

in the participation rate among the invited. Consequently, there is relatively less gain from

increasing participation among the invited from 90% to 100% and relatively more gain from

increasing participation from 50% to 60%.

Recall that the median recruitment fraction is 54%, and that the 25th quantile of the

recruitment fraction is 32%. Although the recruitment fraction accounts for both eligibility

and enrollment, recall from the discussion above in the context of RCTs of heart failure

treatments that many RCTs have selective eligibility standards, and so the assumption that

response is mean independent of invitation (or, analogously, eligibility in the context of

GMHK) may not be appropriate for all RCTs. In those cases, as discussed before, it is
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Participation rate among invited Smallest ATEexp implying ATE ≥ 0

10% n.p.

20% n.p.

30% n.p.

40% n.p.

50% 1

60% 2
3
≈ .67

70% 3
7
≈ .43

80% 1
4

= .25

90% 1
9
≈ .11

100% 0

Table 1. Effect of participation rate on identification of the sign of the aver-

age treatment effect; n.p. = not possible, there is no ATEexp implying ATE ≥

0.

useful to re-define invitation and participation in our model so that all selection happens

exclusively through participation. Moreover, only roughly one-half of the RCTs studied by

GMHK report the recruitment fraction. Overall, these concerns point to the possibility,

translated to our model, that many medical RCTs effectively have a participation rate that

is less than 50%. And in those cases the results in table 1 show that it is not possible to

point identify the sign of the average treatment effect for a binary outcome, no matter what

the experimental data reveals.
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This means that as a practical matter it is important to think carefully about the as-

sumptions maintained about participation in RCTs. Per the discussion above in section 2.2

the usual RCT estimate is equivalent to “assuming” that the participation rate among the

invited is 100 percent, and so implicitly entails stronger assumptions when the participation

rate among the invited is substantially less than 100 percent as in many of the RCTs studied

by GMHK. Of course it is possible that response is mean independent of participation, an

assumption that depends on the details of the RCT, in which case the usual RCT estimate is

credible. When that assumption is not credible the usual RCT estimate fails to account for

the selectivity of participation, and in many RCTs this effect is potentially strong enough

to imply that not only is the ATE not point identified, but even the sign of the ATE is not

point identified. We suggest that RCTs should either report the sorts of bounds from theo-

rem 2.1 in addition to point estimates, or use our alternative identification strategies based

on an instrument for participation or a functional form assumption of a linear participation

effect. If this is not possible it is useful to at least provide evidence for why the usual RCT

estimate is justified in terms of the selectivity of participation. We discuss this further in

the conclusions.

6. Conclusions

This paper studies the question of what we can learn about the average treatment response

(ATR) and average treatment effect (ATE) with data from a randomized controlled trial

under weak assumptions, and compares the results to what we can learn about these same

objects with observational data. We focus on the problem of selection into an RCT, which

happens because subjects are not randomly assigned from the population of interest to
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participate in the RCT. This is similar to the usual selection problem that treatments are

not randomly assigned in observational data.

The key difference between the selection into an RCT problem and the usual selection

problem is that, once a subject does participate in the RCT, it is randomly assigned a

treatment. So there is at least some subpopulation for whom we can assume that response is

mean independent of treatment. This is not true with observational data. On the other hand

observational data has the potential advantage of providing information about all subjects

in the population of interest, albeit subject to the selection problem. We show that this

tradeoff for a given treatment may favor either the RCT or observational data in terms of

the width of the identified set for the ATR. The intuition for this result is that while RCT

data is stipulated to have high internal validity on the subpopulation of interest, when there

is heterogeneity in the ATR, it could be that the subjects who do not participate in the RCT

have different ATR. It is possible that even though observational data has the usual selection

problem it has data on a greater fraction of the population of interest so that it has narrower

identified sets.

We have also provided three conditions under which RCT data does point identify the

object of interest. These conditions are that response is mean independent of participation,

or that there are instruments for participation, or that there is a linear effect of participation

on response. Depending on the particular data one has, other sets of assumptions can be

used such as monotonicity of response functions, or other assumptions common in the partial

identification literature.

Of course, the key population quantities that determine whether to prefer RCT or ob-

servational data are the probability that a subject that is invited to participate in an RCT
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actually does participate and the difference in the mean response between those who partic-

ipate and those who do not participate. In case all invited subjects do participate, there is

point identification and hence RCT data allows to fully learn the treatment effects. Similarly,

if participation is sufficiently random that response is mean independent of participation,

so assumption 2.3 holds, there is also point identification. These two conditions depend on

the details of a particular RCT so no generic statements can be given here. However, there

is suggestive evidence that in many RCTs there is low participation and those who partici-

pate are different from those who do not participate. Rothwell (2005) suggests that as few

as 0.001 percent of the population of interest may participate in a certain type of medical

RCT. This figure accounts for subjects who do not participate, for example, because they

are (roughly, translating to our model) not “invited” to participate, so this may understate

P (Pi = 1|Ii = 1). Nevertheless this suggests considerable non-participation of subjects.9

Low participation rates are also characteristic of some RCTs in economics. For example,

Banerjee and Duflo (2009) report an experiment of a “no legal strings attached” gift of “be-

tween $25 and $100” as part of the Bandhan microfinance program in India. Approximately

20% of the invited subjects (translating roughly to our model) rejected the gift. Another

example is the experimental study of the Job Training Participation Act (JTPA) conducted

by the Manpower Demonstration Research Corporation. In this experiment, Doolittle and

Traeger (1990) and Heckman (1992) report that more than 90% of invited training centers

refused to participate.

9Recall also that we assume that response is mean independent of invitation; the analysis in Rothwell
(2005) suggests this may not always be a credible assumption. Consequently the 0.001 figure may be closer
to the “true” non-participation after accounting for the fact that invitation is correlated with response.
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A low participation rate does not necessarily imply, however, that response is not mean

independent of participation, although perhaps it does raise questions. In many cases by

definition of not participating in the RCT limited data is available on subjects who do not

participate. Nevertheless, it may be possible to compare the characteristics of subjects who

participate with, for example, population data from other sources, in order to get a sense

of whether participation seems likely to be related to response. This sort of analysis is

conducted by Steg, Lopez-Sendon, Lopez de Sa, Goodman, Gore, Anderson Jr, Himbert,

Allegrone, and Van de Werf (2007) in a meta-analysis of RCTs of treatments for acute

myocardial infarction (“heart attack”). They find that the characteristics of patients who

are eligible for an RCT but do not participate are “worse” than of patients who actually

participate. The same pattern holds for the observed outcomes.10 Rothwell (2005) provides

data that suggests that even this comparison may not be enough because of characteristics

that are unobserved in the data but are related to participation. He reports that in a

RCT of endarterectomy to prevent stroke that roughly 3% of the patients were randomized

into receiving the endarterectomy but “did not have surgery because their surgeon and/or

anesthetist judged them to be too frail.” This group had a distribution of observables similar

to that for the rest of the participants in the RCT but did have a much higher subsequent

rate of stroke compared to the patients participating in the RCT but not receiving the

endarterectomy. This suggests that showing that observable characteristics of participants

in an RCT are similar to those not participating may not be enough to establish that response

is mean independent of participation.

10Their analysis also suggests that invitation does not satisfy the response mean independent of invitation
assumption.
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A similar conclusion that response is not mean independent of participation can be drawn

about the experimental study of the JTPA using the data reported by Doolittle and Traeger

(1990, Tables 5.4-5.5). In that study the training centers that participated tended to, among

other things, be geographically un-representative of all centers, serve a smaller number of

terminees from Title IIA of the JPTA, and had greater adult employment rates.

There is further suggestive evidence of a selection into an RCT problem provided by exper-

iments which have a non-random procedure for assigning subjects to treatments. Of course,

this violates in general assumption 2.2, but provides evidence about how and why subjects

come to participate in an RCT. An example of such a procedure is to assign treatment ac-

cording to whether the day admitted is even or odd. Pocock (1983) reports some medical

experiments with such a procedure where there is a considerable imbalance in the number of

patients receiving each treatment, suggesting that patients (or their agents) had preferences

over which treatment to receive and manipulated their participation in the RCT accordingly.

It stands to reason the same motivations would result in selection into an RCT.

Note that these examples depend on covariates, and if there are observed covariates that

suitably explain participation then the instrumental variable strategy of section 2.3 can be

used.

The analysis of this paper suggests that in reporting the results of an RCT it is useful to

consider reporting the bounds on the ATR and ATE as derived in this paper. If this is not

possible then it is useful to report information to the extent possible on the invitation rate;

how subjects are invited to participate; the characteristics of those who are invited, and

are not invited; the participation rate of those invited; and the characteristics of those who

participate, and are invited but do not participate. This view is partly seen in the CONSORT
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statement (i.e., Moher, Hopewell, Schulz, Montori, Gotzsche, Devereaux, Elbourne, Egger,

and Altman (2010) and Schulz, Altman, and Moher (2010)), a major set of guidelines for

medical RCTs, which states that “[a] comprehensive description of the eligibility criteria

used to select the trial participants is needed to help readers interpret the study” and “[a]

description of the method of recruitment, such as by referral or self selection (for example,

through advertisements), is also important in this context.”

It is also worth noting that, for the purposes of identification, it is the invitation and

participation rates that matters, not the absolute number of participants. This suggests

that the emphasis in designing RCTs should be on high participation rates, not simply a

large number of participants. This is because participants in a large RCT can be equally or

less representative of the population of interest than participants in a small RCT if the two

RCTs differ in their emphasis on recruitment of a representative subpopulation. Of course,

statistical precision is improved with a larger sample. But a statistically precise estimate of

a less informative identified set may be less preferred than an imprecise estimate of a more

informative identified set.
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