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means model under additional assumptions on the social interaction, mainly that
this interaction is a result of a particular economic game. These assumptions that
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should be taken when estimating and especially when interpreting coefficients from
linear in means models.
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1. Introduction

Models of social interactions allow a “social interaction effect” or “peer effect”

through which the outcome of any given individual is related to the outcomes, choices,

treatments, and/or characteristics of the other individuals in that individual’s refer-

ence group. The standard model used in applications is the linear-in-means model.

There are a number of possible specifications of this model, and in this paper, we

focus on the specification that the outcome yig for individual i in group g is given by

yig = xigβ + zgγ +
φ

Ng − 1

Ng
∑

j=1,j 6=i

yjg + ǫig,

where Ng is the number of individuals in group g. The observed exogenous covariates

xig are individual specific, while the observed exogenous covariates zg are common to

all individuals in the same group. All exogenous covariates for group g are collected

in wg, and it is assumed that E(ǫg|wg) = 0. We define wg to be an Ng × (K + L)

matrix where K is the dimension of xig and L is the dimension of zg, and where

the ith row of wg contains xig in the first K columns and zg in the last L columns.

The parameter φ gives the “social interaction effect” of the average outcome in the

reference group on an individual’s own outcome; this effect is the key methodological

departure of this model from a typical model in econometrics.

The identification of the linear-in-means model has been previously addressed by

Manski (1993), Graham and Hahn (2005), Lee (2007), Graham (2008), Bramoullé,

Djebbari, and Fortin (2009), Davezies, D’Haultfoeuille, and Fougère (2009), De Giorgi,

Pellizzari, and Redaelli (2010) and Blume, Brock, Durlauf, and Ioannides (2011). A

related model for binary outcomes is studied by Brock and Durlauf (2001). Manski

(1993) establishes the lack of identification in the general linear-in-means model1, but

subsequent papers provide additional conditions on the model under which the pa-

rameters are point identified. We consequently assume point identification2 3 in order

1Manski considers a variant of the model we study in that he assumes that outcomes depend on
the population average in one’s group.

2In our specification of the model, for the parameters to be point identified, it is enough for each
individual to have an individual specific covariate that is excluded from the equations explaining
the outcomes of each other individual in the group, in addition to the standard full rank condition.
This result is in analogy to results on identification in simultaneous equations models.

3In order to focus on the interpretation of the model, we also rule out “contextual effects” by

which yig also depends on 1

Ng−1

∑Ng

j=1,j 6=i xjg.
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to focus on the interpretation of the model. A recent review of identification results

can be found in Blume, Brock, Durlauf, and Ioannides (2011).

This model is applicable to a variety of settings of interest, in the same sense

that the ordinary linear model is applicable to a variety of settings of interest. For

example, the outcome yig might be the test score of student i, in which case the

social interaction is the commonly studied “peer effect” in educational outcomes.

The extensive application of the linear-in-means model to education is reviewed in

Sacerdote (2011). More generally, this model is used to make statements like: an

individual whose peers have some characteristic is “caused” or “induced” to also tend

to have that characteristic.

This paper studies the interpretation of the “social interaction” parameter φ in

particular, but also the interpretation of the linear-in-means model in general. In the

ordinary linear model

yi = xiβ + ǫi

where it is assumed that E(ǫi|xi) = 0, the interpretation of the parameter β is

standard. This model implies that E(yi|xi) = xiβ, so that β gives the marginal

effect of x on the average outcome of y given x (See Goldberger (1991) for more on

the interpretation of the linear model). Under some assumptions, the linear model

justifies the use of estimates of β to make statements like: a change in x tends on

average to “cause” a response in y. Note that if instead E(ǫi|xi) = f(xi) and f(·) is

not identically zero, then E(yi|xi) = xiβ + f(xi), and this is not identically equal to

xiβ. Then the marginal effect of x on the average outcome of y given x is β + f ′(xi),

assuming f(·) is differentiable for simplicity, so β is not the “effect” of x on y. Also,

under the alternative assumption that Qα(ǫi|xi) = 0, β has the interpretation as the

marginal effect of xi on the α quantile of the distribution of yi|xi. It is also possible

to interpret β in this model as the ceteris paribus effect of xi on yi holding fixed ǫi,

but without a structural functional form assumption on ǫi as a function of xi this

interpretation may be dubious4.

4 For example, in the case of multiplicative heteroskedasticity, where ǫi = σ(xi)νi
and νi|ǫi satisfies E(νi|xi) = 0, the “ceteris paribus effect” (but not the average
marginal effect) of xi on yi depends also on the unobservable ǫi since in this model
the unobservable necessarily depends on the observable, and so the ceteris paribus
interpretation is not possible.
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Applications of the linear-in-means model tend to give a similar average marginal

effect interpretation to the “social interaction” parameter φ. For example, in a recent

review of the application of the linear-in-means model to education, Sacerdote (2011)

reports the “effect of a 1.0 move in average peer score” from a variety of papers.

Bramoullé, Djebbari, and Fortin (2009, p. 50) interprets the estimate in the context

of recreational activity participation among high school students as implying that an

“increase in the mean recreational activities index of student’s friends induces him

to increase his recreational activities index [...].” And Gaviria and Raphael (2001,

p. 262) interpret the estimate in the context of drug use as implying that “moving

a teenager from a school where none of his classmates use drugs to one where half

use drugs would increase the probability that she will use drugs by approximately

thirteen percentage points.” These seem to be representative uses of the linear-in-

means model.

However, this interpretation is not necessarily justified under the assumptions of

the linear-in-means model. We discuss this in section 2 and derive a basic result

that shows that without further assumptions, deriving policy relevant parameters

in the linear-in-means model is complicated and non-standard. We then provide an

alternative interpretation of the parameters in section 3 which provides a justification

for the more “standard” partial effect interpretation. This relies on treating the

above models as generated by a particular economic game in which the outcome

equation above becomes a best response function from that game. We illustrate

our results in the specific context of educational achievement in section 4 where we

show that the class of games that lead to the above formulation might not cover

some economically relevant models. Finally, we conclude with some views about the

econometric modeling of social interactions in section 5.

2. Policy relevant parameters in the linear-in-means model

Following the same approach as with the ordinary linear model, conditioning on

all of the observed exogenous variables, the assumptions of the linear-in-means model

imply that E(yig|wg) = xigβ + zgγ + φ

Ng−1

∑Ng

j=1,j 6=iE(yjg|wg). However, this is not

sufficient to interpret φ in the same way as β is interpreted in the ordinary linear

model. This is because the outcomes y·g are endogenous and simultaneously deter-

mined in the linear-in-means model. Rather, this shows that φ is the marginal effect

of 1
Ng−1

∑Ng

j=1,j 6=iE(yjg|wg) on E(yig|wg). Thus, φ is the “average marginal effect” of

the group average outcome at the average outcomes in a group with observables wg.
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So, if wg changes in such a way that 1
Ng−1

∑Ng

j=1,j 6=iE(yjg|wg) increases by one unit,

then E(yig|wg) is caused to change by φ units as a “partial” effect through the social

interaction process. But, since y·g are endogenous, this approach does not provide

a way to interpret this coefficient in terms of a policy experiment that manipulates

some part of the environment, because the effect of wg on E(yjg|wg) is part of the

model. If the object of interest is the effect of wg on average outcomes, then as shown

below the appropriate object of interest is a known function of β and φ. Thus, this

approach does not seem to provide a useful interpretation of φ.

An alternative approach is to consider also conditioning on the outcomes of in-

dividuals other than i, as in E(yig|wg, y−i,g) = xigβ + zgγ + φ

Ng−1

∑Ng

j=1,j 6=i yjg +

E(ǫig|wg, y−i,g). In this expression, although yjg now appears unconditionally as part

of the “social interaction” effect term that depends on φ, potentially providing a jus-

tification of the interpretation of φ as the “effect” of others’ outcomes, it also appears

in the conditioning set on the expectation of ǫig. This is to be expected because y−i,g

is endogenous. The assumption that E(ǫg|wg) = 0 does not necessarily imply that

E(ǫig|wg, y−i,g) = 0. Indeed, unless the unobservables ǫig are distributed in a very

precise way within a group conditional on wg, especially related to the correlation

of unobservables, then the condition that E(ǫig|wg, y−i,g) = 0 fails. But, potentially

surprisingly, at least with multivariate normally distributed unobservables, that con-

dition is not the independence of the unobservables across individuals in the same

group.

We obtain the following theorem on the average effect of y−i,g on yig under the

assumption of multivariate normally distributed unobservables. The next Theorems

take as given that (β, γ, φ) are “known,” fixes a group g and hence interprets these

parameters within the model for members of group g.

Theorem 2.1. Suppose the model is yig = xigβ + zgγ + φ

Ng−1

∑Ng

j=1,j 6=i yjg + ǫig as

before. Further, suppose that ǫg are distributed according to a multivariate normal

distribution with mean 0, unit variances, and covariance ρ ∈ (−1, 1), independently

of wg. Suppose that φ 6= 1−Ng and φ 6= 1. Then, E(yig|wg, y−i,g) is linear in yj,g for

j 6= i, and has slope equal to

η =
φ(2(Ng − 1)− φ(Ng − 2)) + (Ng − 1)ρ(Ng − 1 + φ2)

(Ng − 1)((Ng − 1)(1 + (Ng − 2)ρ+ 2φρ) + φ2)
.

Equivalently, the slope on 1
Ng−1

∑

j 6=i yjg is ζ = (Ng − 1)η. In general, ζ 6= φ.
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Proof. Let Σ be the covariance matrix for the unobservables and let Υ be the Ng ×

Ng matrix with 1 on the diagonal and −φ

Ng−1
on the off diagonal. Then, yg =

Υ−1(wgτ + ǫg). Consequently, yg|wg is distributed as multivariate normal with mean

Υ−1wgτ and covariance S = Υ−1ΣΥ−1. Then by standard facts about the multivari-

ate normal distribution, yig|wg, y−i,g is normally distributed with mean [Υ−1wgτ ]i −

[S]i,−i([S]−i,−i)
−1[Υ−1wgτ ]−i+[S]i,−i([S]−i,−i)

−1y−i,g. Then, write Υ = u1INg
+u21Ng×Ng

and Σ = s1INg
+ s21Ng×Ng

where u1 = 1 + φ

Ng−1
and u2 = − φ

Ng−1
and s1 =

1 − ρ and s2 = ρ. Then, Υ−1 = 1
u1

INg
− u2

u1(u1+Ngu2)
1Ng×Ng

, so S = Υ−1ΣΥ−1 =

k1INg
+ k21Ng×Ng

, where k1 = s1
u2

1

and k2 =
(

s2
u1

− u2s1+Ngu2s2
u1(u1+Ngu2)

)

1
u1

− s1
u1

u2

u1(u1+Ngu2)
−

(

s2
u1

− u2s1+Ngu2s2
u1(u1+Ngu2)

)

u2Ng

u1(u1+Ngu2)
. This implies that [S]i,−i = k211×(Ng−1) and [S]−i,−i =

k1INg−1+k21(Ng−1)×(Ng−1). Consequently, ([S]−i,−i)
−1 = 1

k1
INg−1−

k2
k1(k1+(Ng−1)k2)

1(Ng−1)×(Ng−1).

Therefore, [S]i,−i([S]−i,−i)
−1 = k2

k1+k2(Ng−1)
11×(Ng−1). This gives the claimed expression

for η after substitution back in terms of the model primitives. �

Also, note that the fact that E(yig|wg, y−i,g) is linear in y−i,g depends on the extra

assumption that ǫg are distributed according to a multivariate normal distribution,

and is not implied by the linear-in-means model alone. Some other distributions share

this property (e.g., the multivariate student t distribution as in Kotz and Nadarajah

(2004)), while others do not (e.g., the skewed multivariate normal distribution of

Azzalini and Valle (1996) or the bivariate exponential distributions of Gumbel (1960)).

Similarly, the parameter τ = [β′ γ′]′ does not directly give the effect of wg on

E(yg|wg). Rather, it holds that E(yg|wg) = Υ−1wgτ , so that the effect of wg on

E(yg|wg) depends both on τ and φ. This leads us to the following result:

Theorem 2.2. Suppose the model is yig = xigβ + zgγ + φ

Ng−1

∑Ng

j=1,j 6=i yjg + ǫig with

E(ǫg|wg) = 0. Suppose that φ 6= 1 − Ng and φ 6= 1. Then, the effects of the various

elements of wg on E(yig|wg) are the following:

(1) The effect of xig,s is βsλ.

(2) The effect of xjg,s is βsψ, for j 6= i.

(3) The effect of zg,s is τsω,

where λ = 1−Ng+φ(Ng−2)

(φ−1)(Ng−1+φ)
, ψ = −φ

(φ−1)(Ng−1+φ)
, and ω = 1

1−φ
.

Proof. Let Υ be the Ng × Ng matrix with 1 on the diagonal and −φ

Ng−1
on the off

diagonal. Then, yg = Υ−1(wgτ + ǫg). Consequently, E(yg|wg) = Υ−1wgτ .

Let C be the Ng × (Ng + 1) matrix which is the INg
matrix in the first Ng rows

and columns and 1Ng×1 in the last column. And let Wg be the (Ng + 1) × (K + L)
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matrix where K is the dimension of the individual specific observables xig and L is

the dimension of the dimension of the group specific observables zg. Then let Wg

be such that the first K columns of row i contain xig, and the last L columns of

row Ng + 1 contain zg. Consequently, CWg = wg, so E(yg|Wg) = Υ−1CWgτ , and so

E(yig|Wg) = eiΥ
−1CWgτ where ei is the unit row vector with a 1 in the ith column

and 0s everywhere else. Consequently,
∂E(yig |Wg)

∂Wg
= τeiΥ

−1C. Using the same notation

as in the proof of theorem 2.1, it holds that Υ−1 = 1
u1

INg
− u2

u1(u1+Ngu2)
1Ng×Ng

. After

some algebra, τeiΥ
−1C is the (K + L) × (Ng + 1) matrix where the ith column is

τλ, all of the first Ng columns but the ith column is τψ, and the Ng + 1st column is

τω, where λ = 1
u1

− u2

u1(u1+Ngu2)
= 1−Ng+φ(Ng−2)

(φ−1)(Ng−1+φ)
, ψ = −u2

u1(u1+Ngu2)
= −φ

(φ−1)(Ng−1+φ)
, and

ω = 1
u1

− Ngu2

u1(u1+Ngu2)
= 1

1−φ
. �

These expressions are equivalently also the ceteris paribus effects of the respective

observables, holding the rest of the observables and unobservables fixed, and allowing

the social interaction to re-equilibrate according to the linear-in-means model.

This theorem implies that for some comparisons (e.g., comparing the effect of xig,s
and xig,t) the relative effect on E(yig|wg) can be determined as the ratio of the pa-

rameters β and τ , while for others (e.g., comparing the effect of xig,s with xjg,s)

the ratio of the parameters β and τ does not give the relative effects. Also, since

ω = λ+ (Ng − 1)ψ, the effect of a marginal change in zg,s has the same effect as the

same marginal change in everyone in the group’s x·g,s, as long as the corresponding

parameter values on zg,s equals that on x·g,s. This is expected since increasing a

group specific observable affects everyone directly, which is equivalent to increasing

everyone’s individual specific observables. Also, under the conditions of corollary 2.1,

when the corresponding parameter values are the same, the effect of a group specific

observable is greater in magnitude than the effect of an individual’s own individual

specific observable when φ > 0 and is lesser in magnitude when φ < 0. This implies

the necessity to explicitly specify which observables are individual specific and which

are group specific, and to treat these two sets of observables in distinct ways in the

analysis.

This theorem also implies that the direction of the effect of components of wg de-

pends not only on the parameters τ , but also, in the case of the effect of an individual

specific observable of a peer, also on φ. Thus, we are led to the following result:

Corollary 2.1. Under the same conditions, as long as −1 < φ < 1 and Ng > 2, it

holds that:
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(1) The sign of the effect of xig,s is the same as the sign of βs.

(2) The sign of the effect of xjg,s for j 6= i is the same as the sign of βs times the

sign of φ.

(3) The sign of the effect of zg,s is the same as the sign of τs.

Proof. This follows by inspecting the signs of λ, ψ, and ω. Since φ < 1, φ − 1 is

negative, and since φ > −1 and Ng > 2, Ng−1+φ is positive. Thus, the denominators

of λ and ψ are negative. The numerator of λ is increasing in φ since Ng − 2 > 0, and

equals 0 when φ = Ng−1

Ng−2
> 1, so is negative since φ < 1. Thus, λ is positive. Since

the denominator of ψ is negative, the sign of ψ is the same as the sign of φ. And, it

is obvious by inspection that the sign of ω is positive since φ < 1. �

This means that the parameters β and τ alone are sufficient to determine the

direction of the effect of an individual’s own individual specific observables, and the

group specific observables.

However, the parameters β and τ alone can be misleading about the magnitude of

the effects. This theorem implies that the effect of xig,s on E(yig|wg) is equal to βs if

and only if φ = 0, and otherwise has an effect that is greater in magnitude. Similarly,

the effect of zg on E(yig|wg) is equal to τs if and only if φ = 0, and otherwise has an

effect that is greater in magnitude. Thus, we have the following result:

Corollary 2.2. Under the same conditions, as long as −1 < φ < 1 and Ng > 2, it

holds that:

(1) The effect of xig,s is larger in magnitude than (the same as) βs if and only if

φ 6= 0(= 0).

(2) The effect of zg,s is larger in magnitude than (the same as) τs if and only if

φ 6= 0(= 0).

Also, as φր 1, all of these effects approach ∞ in magnitude.

Proof. The first claims follow by comparing λ and ω to 1. The parameter λ equals 1

if and only if φ = 0. The derivative of λ with respect to φ is φ (2(φ−1)−Ng(φ−2))

(φ−1)2(Ng−1+φ)2
. The

denominator is positive, and the numerator has the same sign as φ since Ng > 2.

Thus, λ decreases to 1 as φ increases for φ < 0 and increases from 1 as φ increases

for φ > 0. And, it is obvious by inspection that the parameter ω is equal to 1 if and

only if φ = 0, and otherwise is greater than 1, since φ < 1.

The second claim follows by observing that λ, ψ, and ω all tend to +∞ as φ ր

1. �

8



This result shows that the parameters β and τ necessarily understate the magnitude

of these average marginal effects except in the special case of φ = 0, and indeed may

understate the effects by an arbitrarily large ratio, depending on the value of φ.

2.1. Implications of these results to the application of the linear-in-means

model. Both Theorem 2.1 and Theorem 2.2 show that if these average marginal

effects, or in the case of wg these ceteris paribus effects, are the objects of interest

then applications of the linear-in-means model should report these functions of the

parameters of the model rather than the parameters of the model directly. This is

similar to the standard that when estimating discrete choice models (e.g., a binary

probit model) the estimated marginal effects are reported, not the parameters of

the model directly. This requires also the reporting of a different standard error to

account for the different statistic being reported, which might be accomplished by

the delta method.

Also, without further restrictions, the linear in means model above might not be

coherent in general, i.e., the exogenous variables (both observed and unobserved)

might not generate a well defined joint distribution of the outcomes without further

restrictions. These restrictions are similar to whether the predicted joint distribution

of the observables factors out. See Arnold, Castillo, and Sarabia (1999) for more on

this.

In short, these results imply that the interpretation of the linear-in-means model,

and the parameter φ in particular, is complicated and non-standard. The fundamental

reason for this, as has been seen in the above, is that all of the y·g are endogenous in

the linear-in-means model, and it is this simultaneity that causes the interpretation

of coefficients directly to be problematic: A “change” in the outcomes of the rest of

the group, according to the linear-in-means model, affects the treated individual, but

then the change in that individual’s outcome feeds back onto the “change” in the

outcomes of the rest of the group. Consequently, it requires some work to interpret

the model as providing the “effect” of the outcomes of the rest of the group. Similarly,

because of the social interaction effect, and hence the underlying simultaneity, the

effect of the observables wg is not simply the parameters β and τ . The next section

provides conditions under which the linear in means models inherits a structural

interpretation by treating it as a model of an economic game with the corresponding

response functions as given above.
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3. The linear-in-means game and the interpretation of the

parameters as a best response

We propose in this paper that if the object of interest is in some sense of the “effect”

of a policy experiment that manipulates the average outcome of an individual’s group,

perhaps motivated by the experiment of moving that individual to a new group, then

it is useful to interpret the linear-in-means model as corresponding to a game. This

will allow the interpretation of φ as a “best response” based on that game.

In particular, suppose that group g is playing the following complete information

game. Each individual in group g has a publicly known type θig, and the utility of

individual i of type θig is u(yig, y−i,g; θig) = θigyig −
1
2
y2ig +

φ

Ng−1
yi
∑Ng

j=1,j 6=i yjg. This

is strategically equivalent to the game with utilities u(yig, y−i,g; θig) = θigyig −
1
2
(yig −

2φ
Ng−1

∑Ng

j=1,j 6=i yjg)
2. Consequently, this game can be interpreted to be a game in which

individuals have a preference to conform their own outcome to 2φ
Ng−1

∑Ng

j=1,j 6=i yjg under

square loss. Also, individuals have a “private” utility of θig per unit of their outcome

yig. We suppose that individuals choose their outcome yig and that the outcome of

this game of choosing y·g is described by Nash equilibrium. This game generates the

linear-in-means econometric model.

Theorem 3.1. Suppose that the outcome of group g is a Nash equilibrium of the com-

plete information game in which u(yig, y−i,g; θig) = θigyig −
1
2
y2ig +

φ

Ng−1
yi
∑Ng

j=1,j 6=i yjg.

Suppose that θig = xigβ + zgγ + ǫig where xig and zg are observed by the econometri-

cian, but ǫig is unobserved and E(ǫg|wg) = 0. Suppose that φ 6= 1 − Ng and φ 6= 1.

Then, the data satisfY the linear-in-means econometric model: yig = xigβ + zgγ +
φ

Ng−1

∑Ng

j=1,j 6=i yjg + ǫig where E(ǫg|wg) = 0. Also, the best response functions in this

game are υ(t−ig; θig) = xigβ+zgγ+ǫig+
φ

Ng−1

∑Ng

j=1,j 6=i tjg, where the notation t·g is used

to indicate the best response is a function of any possible outcomes of the others, not

just the equilibrium outcomes y−ig that are observed in the data. And consequently the

average best response function is E(υ(t−i,g; θig)|wg) = xigβ + zgγ + φ

Ng−1

∑Ng

j=1,j 6=i tjg.

Proof. Any Nash equilibrium of this game must be in pure strategies, because the

first order condition of the expected utility function taking as given the strategies

of the others is θig − yig +
φ

Ng−1

∑Ng

j=1,j 6=iE(yjg) = 0. The second order condition

is −1, so that there is a unique optimal yig in response to any mixed strategies of

the others. Consequently, for any mixed strategy of individuals −i, individual i’s
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unique optimizing choice is yig = θig +
φ

Ng−1

∑Ng

j=1,j 6=iE(yjg). Consequently, in Nash

equilibrium each individual uses a pure strategy.

The best responses in this game are υ(t−ig; θig) = θig +
φ

Ng−1

∑Ng

j=1,j 6=i tjg, where

the notation t·g is used to indicate the best response is a function of any possible

outcomes of the others, not just the equilibrium outcomes y−ig that are observed

in the data. Since φ 6= 1 − Ng and φ 6= 1 the game has a unique equilibrium

outcome. Then, in the unique pure strategy Nash equilibrium outcome of this game,

it holds that yig = θig + φ

Ng−1

∑Ng

j=1,j 6=i yjg. If θig = xigβ + zgγ + ǫig, then yig =

xigβ + zgγ + ǫig +
φ

Ng−1

∑Ng

j=1,j 6=i yjg. Thus, given the parameterization of θig, this

game generates data according to the linear-in-means model. �

Note that in the best response function, the outcomes of the others are held constant

and are non-random, so that it is not necessary to condition on them as it was in the

previous section in the context of the linear-in-means model without an underlying

game. Thus, φ is the marginal effect of the peers’ average outcome on the average

best response function. This provides a justification for the interpretation of φ as a

marginal effect of the peers’ average outcome.

The extra assumption of the linear-in-means game is necessary for this interpreta-

tion. Under only the linear-in-means econometric model, all that the model specifies

is that yg is some simultaneously determined function of the observables wg and un-

observables ǫg. That model alone does not provide the way to “predict” what would

happen when some subset of yg are specified “off the equilibrium.” But, with the

assumption that the linear-in-means game is generating the data, and describes the

social interaction, then φ may be interpreted as a parameter of the best response in

that game. We elaborate on this point further in the conclusions.

This allows extrapolating from observations of Nash equilibrium behavior to draw

conclusions about responses to manipulating an individual’s peers’ average outcome.

This is necessarily a “non-equilibrium quantity” because it involves specifying some

of the values of the outcomes of the social interaction. This specification of an in-

dividual’s peers’ average outcome together with the best response to that average

will generically not be a Nash equilibrium. This is a limitation of any approach of

“estimating” a peer effect of average outcomes on an individuals outcome, because

the outcomes are endogenous and simultaneously determined and cannot necessarily

be directly manipulated while maintaining equilibrium.
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3.1. Can other games generate the linear-in-means econometric model?

The game considered above is not the only game generating the linear-in-means

econometric model. Alternatively, suppose each individual in group g has a pub-

licly known type θig, and that the utility of individual i is u(yig, y−i,g; θig) = θigyig −
y2ig
2

− η

2
(yi,g −

1
Ng−1

∑Ng

j=1,j 6=i yj,g)
2. This game can be interpreted to be a game in

which individuals wish to conform to 1
Ng−1

∑Ng

j=1,j 6=i yj,g with “intensity” η. The

best response in this game is υ(t−ig; θig) =
θig
η+1

+ η

η+1
1

Ng−1

∑Ng

j=1,j 6=i tjg. Suppose that

η 6= 1−Ng

Ng
, so that the game has a unique equilibrium outcome. Then, in the unique

pure strategy Nash equilibrium using the same functional form assumptions on θig,

yig =
xigβ+zgγ+ǫig

1+η
+ η

1+η
1

Ng−1

∑Ng

j=1,j 6=i yjg. So, up to a re-parametrization of the model,

this game also generates data according to the linear-in-means model, and the rest of

the analysis above follows similarly. This parameterization of the game may be better,

as it results in preferences for conformity of outcomes with an intensity parameter η.

However, there is a sense in which this sort class of game is the only game that can

be used to interpret the linear-in-means model, as the following theorem establishes.

Theorem 3.2. Suppose that individual i with type θi has utility function ui(yi, y−i; θi),

defined for actions on the entire real line. Suppose that ui(·) is a polynomial in yi, and

in particular is such that maximizing ui(·) with respect to yi follows from the usual

first and second order conditions, and so also in particular that ∂2ui

∂y2
i

< 0. And suppose

that the first order condition has the unique solution yi = θi +
φ

Ng−1

∑

j 6=i yj over the

complex numbers. Then it must be that ui(yi, y−i) is equal to θiyi −
y2i
2
+ φ

Ng−1

∑

j 6=i yj

up to positive affine transformation, where the constants in the transformation may

depend on y−i and θ but not yi, and so in particular for any y−i individual i has an

incentive to conform to 1
Ng−1

∑

j 6=i yj.

Proof. Since the first order condition has the unique solution yi = θi +
φ

Ng−1

∑

j 6=i yj

over the complex numbers, by the Fundamental Theorem of Algebra it must be that

u′i(yi, y−i; θi) = Ci(y−i, θ)(yi − θi −
φ

Ng−1

∑

j 6=i yj). Consequently, it must be that

ui(yi, y−i; θi) = Ci(y−i, θ)(
y2i
2
− θiyi −

φ

Ng−1
yi
∑

j 6=i yj) + Di(y−i, θ). Since the second

derivative of utility is assumed to be negative, it must be that Ci(y−i, θ) < 0. So, the

utility function is equal to θiyi−
y2i
2
+ φ

Ng−1

∑

j 6=i yj up to positive affine transformation,

where the constants in the transformation may depend on y−i and θ but not yi. �

3.2. Limitations of the linear-in-means game above. We provided above one

model of a game in which the linear in means model is a best response function of

12



the game. However, this economic model is making particular assumptions about

the relationship between the data and the underlying interaction. These particular

assumptions introduce limitations. We list and discuss three such limitations below.

These are made in terms of comments.

Comment 1: The linear in means game we specified above is not the only game

that leads to the linear in means model. That other economic games can lead to the

same econometric model affects the interpretation of the parameters in that latter

model in that for example, these parameters cannot be given the best response in-

terpretation. For example, consider a two-stage interaction where in the first stage

individuals choose their peers and in the second stage individuals play the linear-in-

means game above with their peers. Suppose that in the first stage individuals choose

their peers partly on the basis of their predicted outcome of the second stage. Then,

under the assumption that the data come from an equilibrium in this game, the data

will satisfy the linear-in-means econometric model. However, upon manipulating an

individual’s peers to have different outcomes, it is plausible that the individual will

also re-optimize the choice of peers, which implies that the linear-in-means model

does not have a best response interpretation. For example, in an equilibrium of this

two-stage interaction each individual may “pay attention to” its peers, having chosen

its peers, but upon “assigning” peers to that individual with different outcomes than

the equilibrium outcomes, the individual may then choose to ignore its peers. This

might present difficulties for using data on equilibrium outcomes from the linear in

means game to predict outcomes from a policy question that “assigns” peers.

Comment 2: The assumption that data are realizations from the intersection of

best responses implicitly entails the assumption of pure strategy Nash equilibrium

play. It is well known that Nash equilibrium play often is not a reasonable characteri-

zation of actual behavior. Many alternatives to Nash equilibrium play are entertained

both in the theoretical game theory literature and also the experimental literature.

Among many other examples this includes rationalizability (i.e., Bernheim (1984) and

Pearce (1984)), quantal response (i.e., McKelvey and Palfrey (1995)), and models of

“bounded reasoning” (i.e., Camerer, Ho, and Chong (2004) and Costa-Gomes and

Crawford (2006)). Also, it entails the assumption of complete information. It may

be plausible in some settings that individuals only have non-degenerate beliefs over

the types of its peers. In the case of incomplete information the analog to the best

13



response is an individual’s action as a function of its realized type and its beliefs

over its peers. Thus, the best response interpretation of a counterfactual involving

the manipulation of an individuals’ peers is not obvious in the case of incomplete

information. Rather, the relevant counterfactual would involve the manipulation of

an individual’s beliefs about its peers, which is not the same as manipulating its

actual peers. Under incomplete information it is possible for a manipulation of an

individual’s actual peers to have no effect on outcomes, but for a manipulation of

an individual’s beliefs about its peers to have an effect. We leave a further develop-

ment of this to future work5. In addition, the game above implicitly rules out mixed

strategy equilibria since we assume that the best response functions are satisfied in

the data. This might be important because in some setups of interest (see Section 4

below), it is plausible to have a model for the interaction in which the only equilibria

of the game are ones in mixed strategies (this effectively means that every player is

indifferent in playing any of the actions on the support of his equilibrium strategy).

Comment 3: The above game can admit multiple equilibria. This is not without loss

of generality even in the above quadratic utility game. For example, if one assumes

that outcomes have support on [0,∞], then it is easy to see that the above game can

have multiple equilibria many of which are on the “boundary” where many players

decide to play yi = 0, and unique “interior” equilibria are a special case that depend

on particular values of the parameters. This problem of multiplicity by itself does

not present problems since the best response functions for that game still hold in the

data regardless of whether these best responses lead to multiplicity. However, care

should be taken in interpreting the predictions of the model under multiplicity.

4. Educational achievement with peer effects

In this section we focus on the applications of models of social interactions to class-

room production, where the outcome is educational achievement that is measured,

for example, by test scores. Our intention in this section is to highlight the assump-

tions implicit in the linear-in-means game, and thus the assumptions implicit in the

interpretation of the parameters of the linear-in-means econometric model as a best

response function as described above.

5See Blume, Brock, Durlauf, and Ioannides (2011) who have made contributions in the incomplete

information game.
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One possible mechanism for the social interaction in the case of educational achieve-

ment is competition among the students. Students might be competing for grades

assigned based on relative performance (e.g., “grading on a curve”), for permission

to take subsequent classes that take only the highest achieving students (e.g., ability

tracking), for interviews or jobs that depend on class rank (e.g., the labor market for

business, law, medical, and perhaps other students in the United States and similar

countries, or the labor market for government jobs in some countries), for letters of

recommendations from the instructor, or simply for the psychic benefit of doing bet-

ter than peers. This is related to the idea that education acts as a “filter” or “screen”

for ability (i.e., Arrow (1973)).

This suggests that a plausible economic model for educational achievement in a

classroom is that if student i has the k-th highest achievement, perhaps as measured

by test score, it gets a reward of Vik where Vi1 ≥ Vi2 ≥ · · · ≥ 0.6 The students

must pay a cost of effort to produce educational achievement: the cost of educational

achievement bi for student i is ci(bi) where ci(·) is a cost function. This cost might

reflect the psychic cost of learning, the opportunity cost of time in general, or, per-

haps especially in developing countries, the opportunity cost of time as it relates to

foregone wages or contribution to the household. Let Vi(bi, b−i) be the reward Vik

when bi is the k-th highest achievement. Therefore the payoff to student i from edu-

cational achievement bi when the other students have educational achievements b−i is

Vi(bi, b−i)− ci(bi). Economic models like this are known variously as all-pay auctions

or contests.

In general any Nash equilibrium of this interaction must involve randomization,

either because there is complete information and students use mixed strategies or

because there is incomplete information. The intuition for this result is evident in

the case of two students and one reward with asymmetric valuation, with complete

information and a shared cost function ci(b) = b. Suppose that student 1 chooses

educational achievement b1 > 0 as a pure strategy. Student 2 has two possible “best

responses:” either it selects an achievement of 0 and gets payoff 0 or it selects an

achievement of b1 + ǫ for ǫ > 0 very small and gets a payoff of V2 − b1 − ǫ.7 In the

6 We can allow the valuations of the rewards to be symmetric or asymmetric across students. The
valuations are symmetric if Vik = Vjk for all i 6= j and all k, and are asymmetric otherwise. If the
valuations are symmetric, the indexing by i is irrelevant. Also, when the valuations are asymmetric,
the valuations can either be commonly known or private information.

7Note that student 2 does not technically have a best response to a pure strategy when b1 < V1.
This is not a problem for us, exactly because we are showing that we should expect mixed strategies
in equilibrium.
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former case student 1 has exerted too much effort and would prefer to deviate to

an achievement of 0 + ǫ, so that it still wins V1, but at a lower cost. In the latter

case student 1 would prefer to deviate either to an achievement of 0, so that it still

loses but exerts no effort, or to just out-achieve student 2’s achievement of b1 + ǫ.

This heuristic suggests that in general that there can be no Nash equilibrium in pure

strategies in this sort of model.

Results like this have been proved formally under a variety of specifications: com-

plete information with asymmetric valuations for one reward (i.e., Hillman and Riley

(1989), Baye, Kovenock, and De Vries (1993), and Baye, Kovenock, and De Vries

(1996)), complete information with asymmetric valuations for one reward under var-

ious types of upper bounds on the allowed achievement8 (i.e., Che and Gale (1998),

Kaplan and Wettstein (2006), and Kline (2009)), the equilibrium with complete in-

formation with symmetric valuations for many rewards (i.e., Barut and Kovenock

(1998)), and the symmetric equilibrium with incomplete information about cost func-

tions with symmetric valuations for many rewards (i.e., Moldovanu and Sela (2001)).

A more general study of these types of models is Siegel (2009). We do not claim that

any of these models are necessarily completely satisfactory as a model of competition

in educational achievement. Rather, we simply make the case that it is a reasonably

robust result that randomization is necessary in equilibrium in this type of model.

Thus, this model cannot possibly be “represented” by the linear-in-means game

interpretation of the linear-in-means model, because the linear-in-means game entails

both complete information and the use of pure strategies. Furthermore, and perhaps

a more fundamental problem with the linear-in-means game, the incentives of this

game are significantly different from the incentives of the linear-in-means game. The

linear-in-means game entails a social interaction where the social interaction is due

to a preference for conformity of outcomes. This may be plausible in some settings

like drug and alcohol use, but is less plausible in the setting of educational achieve-

ment. There is not a preference for conformity of outcomes in the interaction based

on competition in the all pay contest just discussed above. Sacerdote (2011) dicusses

other possible mechanisms for social interaction in the case of educational achieve-

ment. Among these possible mechanisms are models where the best student in the

peer group matters (as a role model for the rest of the group) and the worst student in

8This has been previously studied in the context of political lobbying, where the upper bound
is understood to be a law that limits lobbying. In the context of educational achievement this
upper bound might reflect the fact that there is an upper bound on “humanly possible” educational
achievement, or a maximum possible test score.
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the peer group matters (as a distraction for the rest of the group). In neither of these

cases, nor the others discussed by Sacerdote (2011), does it appear that the social

interaction is due (at least primarily) to a preference for conformity of outcomes.

5. Conclusions

In this paper we have studied the interpretation of the linear-in-means model. First,

we have shown that standard policy relevant parameters related to average treatment

effects are not directly the parameters of the linear-in-means model, but rather func-

tions of these parameters and possibly also the parameters of the distribution of the

unobservables. These results show that a “standard” interpretation of the parame-

ters of the model in analogy to the ordinary linear model are not necessarily justified.

Second, we have shown that it is possible to interpret the parameters of the linear-in-

means model in almost the “standard” way under the additional assumption of the

linear-in-means game. But, third, we have shown that the game that leads to the

linear-in-means model places strong conditions on the nature of the social interaction

allowed, and may or may not be plausible for any particular social interaction under

consideration. In particular the linear-in-means model is shown to make most sense

in settings where there is a preference for conformity of outcomes. In addition, the

game leading to the linear in means model implicitly assumes Nash behavior in pure

strategies. These various results are summarized in table 5, which shows four possible

effects of interest in the linear-in-means model and the corresponding result in this

paper giving that effect.

The use of the linear-in-means game to interpret the parameters of the linear-in-

means model is analogous to the situation with models of supply and demand or

other structural simultaneous equations models. In the classical model of supply and

demand by linear simultaneous equations the model is

qi = γspi + xiβs + uis

pi = γdqi + xiβd + uid

where the first equation is the supply as a function of price and other variables, and the

second equation is the willingness to pay as a function of quantity and other variables

(e.g., Amemiya (1985, p. 228)). In this model price and quantity are simultaneously
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Effect of

on wg y−ig

E(yig|wg), or ceteris paribus a ceteris paribus interpretation of

Equilibrium outcomes equilibrium yig as a function of wg this quantity is not defined, but

discussed in Theorem 2.2 Theorem 2.1 gives E(yig|wg, y−ig)

given by β and τ interpreted given by β and τ interpreted

Out of equilibrium responses as responses of the linear-in-means game as responses of the linear-in-means game

in Theorem 3.1. in Theorem 3.1

But effect on equilibrium outcomes

may be more interesting.

Table 1. Possible effects of interest in the linear-in-means model

1
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determined, according to the equilibrium condition that supply equals demand, and

so this model alone does not give the response of supply to price. But, in addition

to this econometric model is the supply model (alone) from economic theory which

implies that a competitive market has a supply function that is well defined at non-

equilibrium prices. The condition that each equation of the model has meaning

independently from the rest of the simultaneous equations model is referred to as

autonomy, and is closely related to the causal interpretation of the parameters of the

model. See for example Goldberger (1989) who discusses this issue9.

In the supply and demand model the economic model is that in addition to the

econometric model observed at equilibrium values of quantity and price, it also holds

that

qi(t) = γst+ xiβs + uis

pi(t) = γdt+ xiβd + uid

because of the existence of an economic model that gives supply as a function of any

price and willingness to pay as a function of any quantity, not just equilibrium prices

and quantities. Then, under this standard assumption, it is possible to interpret γs as

the response of supply to price even at non-equilibrium prices and to interpret γd as

the response of willingness to pay even at non-equilibrium quantities. The additional

assumption that there is a well-defined supply function and well-defined willingness

to pay function independent of the equilibrium supply and demand process is so

standard that it need not be stated in applications of this model. But, with the

linear-in-means model it is necessary to provide an explicit and rigorous justification

for interpreting the parameters of the linear-in-means model as a sort of “response”

function, but in this case as a best response function in a particular game rather than

as a competitive market supply function or willingness to pay function. In this paper

we have shown a way to interpret the linear-in-means model to satisfy this autonomy

requirement. But, also we have shown that this does entail additional restrictions on

the social interaction.

We conclude with two remarks related to the modeling and interpretation of social

interactions.

9See also Wooldridge (2002, p. 209-211), which points out that many applications
of simultaneous equations models do not satisfy this autonomy requirement, compli-
cating the interpretation of the parameters in those models.
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Remark 5.1 (Alternative models of interaction). There are at least two possible

responses to our results about the interpretation of the linear-in-means model.

First, it is possible to conclude that the behavioral assumptions that are implicit in

the linear-in-means game are correct, and if so to interpret the linear-in-means model

as usual. This means ruling out a class of plausible economic model, especially when

there is incomplete information or the use of mixed strategies, as in the example of

competition in educational achievement.

Second, it is possible to use a different model for the social interaction, perhaps based

on a game theoretic model that is interaction specific. The most closely related paper

in this literature is Kline and Tamer (2010), which studies the partial identification

of best responses in binary games, under a variety of behavioral assumptions. Other

papers like Bresnahan and Reiss (1991), Tamer (2003), Ciliberto and Tamer (2009),

Bajari, Hong, and Ryan (2010), and Bajari, Hong, Krainer, and Nekipelov (2010)

study identification of the payoffs of a game, which is stronger than identification of

best responses.

Remark 5.2 (Applicability of these conclusions to experimental data). The results in

this paper apply equally to observational data and experimental data. There are obvi-

ously many advantages of experiments in areas like development and labor economics.

Nevertheless, the conclusions of this paper suggest that, despite these advantages, there

is still significant scope for econometric modeling of the data from experiments when

there is social interaction. While the experiment helps to resolve endogeneity issues

related to the relation between observables and unobservables, econometric modeling

helps resolve issues related to the interpretation of the parameters of the model of the

social interaction, as discussed in this paper.
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