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Abstract

We propose new approaches to estimating large dimensional semiparametric mono-
tone index models. This class of models has been popular in the applied and theoretical
econometrics literatures as it includes discrete choice, nonparametric transformation,
and duration models. A main advantage of our approach is computational. For in-
stance, rank estimation procedures such as those proposed in ( ) and

( ) that optimize a nonsmooth, non convex objective function are dif-
ficult to optimize with more than a few regressors. Some recent progress is the work
by ( ), but it too is only suitable for small di-
mensional models. Thus for such monotone index models with large, or even increasing
dimension, we propose a new class of semiparametric sieve and kernel based estimators
based on batched gradient descent (BGD), and study their asymptotic properties. The
BGD algorithm uses an iterative procedure where the key step exploits a strictly convex
objective function, resulting in computational advantages.
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1 Introduction

Monotone index models have received a great deal of attention in both the theoretical and
applied econometrics literature, as many economic variables of interest are of a limited or
qualitative nature. A leading special case in this class is the binary choice model which is
usually represented by some variation of the following equation:

Yi = [[XeT,zﬂZ —u; > 0 (1)
where I[-] is the usual indicator function, y; is the observed response variable, taking the
values 0 or 1 and X,; = (Xoﬂ-, X;F)T is an observed p + 1 dimensional vector of covariates
which effect the behavior of ;. Both the scalar disturbance term u; with distribution function
denoted by G(-), and the (p + 1)- dimensional vector 3} = (ﬁ*, B*T)T are unobserved, the
latter often being the parameter estimated from a random sample (y;, X.;), ¢=1,2,...n.

The disturbance term w; is restricted in ways that ensure identification of 3}. Parametric
restrictions specify the distribution of w; up to a finite dimensional parameter and assume
that u; distributed independently of the covariates X;. Under such a restriction, 3} can be
estimated (up to scale) using maximum likelihood or nonlinear least squares. Estimators that
are robust to these parametric distributional assumptions have been proposed and analyzed
resulting in a variety of estimation procedures for 3.

An important class of semiparametric restrictions used in the literature were based on
independence/index restrictions. Estimation procedures under this restriction include those
proposed by ( ), ( ), ( ). These cover but are not
limited to the above binary response model. This class of index models have a robustness ad-
vantage over parametric approaches, but estimators within this class are difficult to compute
due to nonconvexity and in some cases also nonsmoothness of their respective objective func-
tions. For these objective functions, even looking for a local optimum is generally NP-Hard,
let alone the global optimum ( : ). Furthermore the difficulty increases
with the dimension of X;. Recent work which is motivated by computational concerns is

( ). However, their two step procedure involves a fully
nonparametric estimator in the first stage, so is also not suitable for models with a large
number of regressors.

A related drawback of all these procedures is that they are designed to estimate parameters

in models of a small and fized dimension. A relatively recent and thriving literature in

1Other estimation of index models includes ( ) and ( ). While these are
relatively easy to compute, such derivative based estimators cannot be applied unless all components of X, ;
are continuously distributed.



econometrics and machine learning is recognizing the many advantages of allowing for large
dimensional models or models with a large set of controls. This class is a special case of
models that consider the situation when the dimension of x; is large, and this is now often
modeled with its dimension increasing with the sample size. Due primarily to its empirical
relevance, there has been a burgeoning literature on estimation and inference in certain
econometric and statistics models with a large number of regressors or a large number of
moment conditions. For a survey of examples in economics and finance, see ( ).
Recent papers include ( ), ( ),
(201%), (2015).

Related to our work is the recent literature on estimating large dimensional binary choice
or monotone index models in ( ) and ( ).
( ) considers inference in a large dimensional logit model, where it is shown that x?
asymptotic approximations to the LR statistic are suspect when the dimension of x is large.

( ) on the other hand estimate parameters by optimizing the

objective function introduced in ( ), but with the number parameters increasing
with the sample size. Optimizing these rank based objective functions is unfortunately hard
even with recent developments in algorithms and search methods for optimizing non smooth
and/or non convex objective functions. See for example important recent work based on
mixed integer programming (MIP) as in, e.g. ( ) and ( ).

Therefore, in light of the drawbacks in the existing literature, this paper proposes a new
estimation procedure that is amenable to easier computation. Specifically we aim to construct
a computationally feasible estimator for a semiparametric binary choice and monotone index
models with increasing dimension based on a convex objective function and then establish
its asymptotic properties. As we will discuss in detail in the next section, our algorithm
uses an iterative estimator based on a batched gradient descent (BGD) method, and we
show how to use nonparametric methods to approximate the distribution in each stage of the
iteration. One is the method of sieves”, and the other is kernel regression. Finally, our proof
in the semiparametric case requires development of approaches to handle estimators that are
defined recursively while at the same time allow for an unknown link function. The paper
starts out analyzing properties of the BGD estimator in parametric models with increasing
dimensions. The following section considers the main case when we allow for the link function
to be estimated via kernel or sieve methods. Finally a Monte Carlo Section examines the
computational advantages of our approach. Also, we provide an empirical illustration that
highlights the behavior of our estimator with real data.

2See ( ) who pioneered the use of sieve methods in econometrics.



Notation: Throughout the rest of this paper, to facilitate the description and prop-

erties of estimation procedures we will be using the following notation. For any real se-

o0

quences {a,}. -, and {b,} .

we write a, = o (b,) if imsup,,_, |a,/b,| =0, a,, = O (b,) if
lim sup,,_, o |an/bs| < 00, and a,, ~ b, if both a,, = O (b,) and b, = O (a,). For any random
sequences {a,},—, and {b,} -, we write a,, = O, (b,) if for any 0 < 7 < 1 there are N
and C' > 0 such that P{l|a,/b,| > C} < 7 holds for all n > N, we write a,, = o, (b,) if for
any C' > 0, lim,, o P {|a,/b,] > C} — 0. For any Borel sets A C R¥ denote its Lebesgue
measure as m (A). For any symmetric matrix A, we write A > 0 if A is positive definite, and
A > 0if A is positive semi-definite. For any symmetric matrices A and B, we write A > B if
A—B>0and A= Bif A— B = 0. For any matrix A, we denote o (A) as its singular value,
and denote 7 (A) and o (A) as its largest and smallest singular value. For any symmetric
matrix A, we denote \ (A) as its eigenvalue, and denote A (A) and A (A) as its largest and
smallest eigenvalue. For any vector = (xq,--- ,xp)T, we denote its Euclidean norm as
x|l = \/>_7_, #7. For any matrices A = (a;;), ., we denote || A|| = \/Z?:l >y az;. Note
that when A is positive semi-definite, there holds ||[Az| < A(A) - ||z||; for general square
matrix A, there holds ||Az| < @ (A) - ||z||. Finally, for any function f (x) with domain D,

define [|fl, = supycp f ().

2 The BGD Estimator

To provide some intuition for our semiparametric estimators that will be introduced in the
following sections, we first consider here a simplified version of the model where the cumula-
tive distribution function G (-) is completely known. Under such setup, we explore the batch
gradient descent estimator (BGD estimator) of 3, when its dimensionality p may increase,
which is also important on its own right. Throughout the following analysis we assume that

the data set satisfies the following assumption.

Assumption 1. An i.i.d. data set D, = {(Xe;,y:)}_, of sample size n is observed, where
y; 1s generated * by y; = I (Xwﬁg + XiTB* —u; > O) with unobserved shock w; that is inde-
pendent of X.,; and has CDF G (-).

Given any loss function (¢ (8,, X.,y) that depends on G and is a.s. differentiable with

3Here we are decomposing the vector X, ; into a scalar component Xy ; and the vector X;, and decomposing
the vector of parameters (37 into the scalar term g and the vector 3*. As we will see this is done for notational
convenience when imposing scale normalizations.



respect to B, € B., the BGD estimator of 87 is based on the following iteration,

(5 n
Berir = Bep = D0l (B Xeinvi) [0B.. 2)
=1

where d, > 0 is the learning rate. Note that n=!'>"" | 9lg (B,, Xe,i, yi) /0B, constitutes a
sample analogue of the derivative JE [{¢ (3., Xe,y)] /0B,.. Unlike the stochastic gradient
descent (SGD) algorithm, in the BGD algorithm, in each round of update we evaluate the
derivative of the loss function over all data points. This increases the computational burden
but provides a more accurate estimator for the derivative of the expected loss function.
Given the initial guess of the parameter, 3, ;, we iterate based on (2) until some terminating
conditions are reached.

In this paper, we consider the following loss function

X! B,
(8. Xop) = [ Gla)ds-yXIB, 3)
—A
for some sufficiently large positive constant A. The loss function (3) was also considered in
( ) and has many properties. For instance, under some mild conditions, it
is easy to show that at the truth,

OE (EG (/3:7 X67 y))
08,

=E{(G(XcB) —y) X}

=E{(G¢ (XI8) —E(y| X)) X} =0,

and

aQE (gG (ﬁea Xe> y))

0B.08.
So B uniquely minimizes Elg (8., Xc,y) over B.. Another desirable property of the loss
function (3) is that the derivative of (3) with respect to 8., which is (G (XI8,) — y) X,

depends only on G (-) instead of on its derivatives. So when we conduct a semiparametric

=E{¢" (X.B.) XX} = 0,V8, € B..

iteration in the following sections, we only need to nonparametrically approximate G (-),

which is generally more robust compared with approximating its derivatives. Based on loss

function (3), the BGD estimator is obtained by using the following iteration procedure:
Bepir =Per — (G (XeiBek) — ¥i) Xe. (4)

=1



We summarize our algorithm as follows in

Algorithm 1: The BGD Estimator
input : Data set {(X.;,v:)},_,, sequence of learning rate {05}, ,, initial guess

B.1, CDF G (-), and terminating condition 7
output: The BGD estimator Be

1 k+1;

2 while The terminating condition T 1is not satisfied do
3 /Be,k—i—l — IBe,k - % Z?:l (G (X;[:iﬁe,k) - yl) Xeﬂ';

4 k< k+1;

5 IBe A /637](:;

Remark 1. Key to the above approach is the construction of a convex objective function
that facilitates computation even with high dimensions. This transformed convex objective
works for any monotone model. In particular, for any model of the form y; = G(X!,8,) + ¢
with E[g;|X.;] = 0 and monotone G(.), a similar convez criterion as in (3) can be used for

inference on 3,.

We now describe the asymptotic properties of 3, ;. We first make the following assump-

tion.

Assumption 2. (i) X, = [—1,1]"""; (i) B. is convez, and there exists some constant By > 0
such that for any B, € B, |B;] < By for any 0 < j < p; (iii) there exists integer vg such that
G has up to vg-th bounded derivatives; () Define M, (8,) = 1 3" | &' (XT,8,) X XZ, and
M (B,) = E[M, (B,)]. For any B, € B., there holds 0 < A\, < A(M (8,)) < X(M (B,)) <

Ae < 00.

Remark 2. (i) and (ii) are convenient normalizations that facili-
tate the assessment of our model. Note that to ensure that 3, falls into a compact set for
each k, some form of truncation on B,;,, in (4) is needed. While according to our results
below, as long as B, is sufficiently large, it can be shown that 8, will fall into B, for all
k with probability going to 1. We then assume that 8., € B. for all k. (iii)
imposes some smoothness conditions on GG, where the requirement on vg will be stated in
the following propositions and theorems. (iv) requires that the eigenvalue of
M, (B,) is bounded from both below and above uniformly over B..

For any B, € B, define A3, = B, — B;. Also define ¢; = y; — G (Xziﬁ*), where

e

E [ei| X¢,] = 0. When and hold, we have the following result.



Theorem 1. Suppose that and hold with ve = 3, that p° (logp)°n~! —

0, that the learning rate is chosen such that o), = § < 2/ (3Xe), and that B, is updated based
on . We have that

(i) Define

j.BGD _ log ”Aﬂe,lu + %1og (n/ (plogp))
R —log (1 —A.0/2) ’

we then have

sup (| 28,4 = O, (Vp{logp) /n)

F>RECD 11
(it) Define k3SP such that (1 — 202" /pTogp — 0, we have

sup
k>kBGDP+1

= 0p (1/\/5)7

e o
ABepyrpgr — M1 (B7) ~ > X
=1

(i1i) For any k > kng + kng + 1, define Be = Bk Also define

S =M (B)E[G(1 - G)) XX, ] MTH(BD),

e

and
i1,n =M,"! (Be> {% i @z (1 - éz) Xe,iXZi} M;? (Ee) )
i=1

where G; = G (X],87) and G, =G (X;FZB )

€ e/-

Suppose further that E (XHXEZ) has uni-
formly (with respect to p) upper bounded eigenvalues, there holds

X *
Hzl,n -2

—p 0.

w) For any p+ 1 vector p such that lim,_, ||p|| < 00, lim, s pTX%p = 0% (p), and that
1
pT M=t (37) _\/15 > eiXei —a N (0,02 (p)), we have that

P AB./\/5 (p) /n —a N (0,1),
where 62 (p) = pranp.
Proof of . See . O

When p is fixed, (i) implies that supsgsep HA,B&,CH = 0, (1/4/n), and
(i) implies that for k sufficiently large, the BGD estimator is an asymptotically



linear estimator, so there holds /nAB, wwpen —a N (0,%7) by the central limit theorem.
The asymptotic variance can be estimated based on (iii). The number of iterations
required to obtain root-n consistency, k2P is determined by many factors including the
sample size n, the distance between the true parameter and the initial guess [|AB, ]|, as well
as the lower bound of the eigenvalues of M, (3,). In general, k:ffD is of order O (logn), but
in practice when we apply the above algorithm, the specific number of iteration is difficult
to determine. For detailed discussion of the number of iterations, see at the end
of Section 1. The inference on B based on the BGD estimator is given by (iv).
Note that for any given vector p, we require that \/iﬁ pr MY (B2) S0 eiX., is asymptotically
normally distributed. An alternative approach is to apply the high-dimensional central limit
theorem to + > M~ (B7) Xe.e; (e-g., : ).
Before we conclude this section and move to semiparametric estimation, we further com-
ment on . Different from the stochastic gradient descent algorithm (e.g.,
, ), we show in that the learning rate J, can be selected as a
sufficiently small constant. Indeed, in the following results, we show that J; can decay to
zero at any rate as long as >, 0 = oo holds, and the choice of d; will not change the

asymptotic results displayed in . In particular, we have the following proposition.

Theorem 2. Suppose that all the conditions in hold and that B, is updated based
on . For any sequence of tuning parameters {0 },., satisfying & > 0, 0, — 0,
lim supy,_, o, O0x—1/0% < 00, and Y-, 6 = 00, we have that

7.BG

~ D
(i) Define kPSP such that Zi;’{ 6 > A, {log (n/p (logp)) + 2log || AB.. ||}, and that
SUPysipany Ok < 2/, then there holds

sup || AB.k| = Oy (\/p(logp) /n) :

k>kBGD 11

7.BGD
k2

(ii) Define %ffD such that Z:: or/logp — oo, then we have that

\n
—RBGD 41

e o
Aﬁe,k—i—%ESD - M ! <ﬁe> E Z E:i)(e,i
=1

sup =0, (1/v/n);
k>kPBGP+1
(111) For any k > %ng —i—%f"fD +1, define B, = B,. We have that (111) and
(iv) hold.
Proof of . See . O



shows that the choice of the learning rate basically does not affect the conver-
gence rate as well as the asymptotic distribution of the BGD estimators. The main advantage
of using a sequence of decaying learning rates is that we do not need to choose the constant ¢
as required in , since for k sufficiently large, 6, < 2/ (SXG) will automatically hold.
However, the disadvantage of using decaying learning rates is that such procedure takes much
longer time to converge because the magnitude of the update in the k-th round decreases as

k increases. For instance, suppose that we choose 6, ~ k7" for some 0 < v < 1, we have
B

LBGD
that 2?21 d; ~ k=Y. Then to ensure that Y ;27 d; > A (logn + 2log||AB.,||), we need
~ 1
k‘fffD ~ (logn)™>. Obviously, setting v = 0 leads to k ~ logn, which corresponds to the
requirement in (i); when v > 0, we can see that more rounds of iteration is needed

compared with required in ().

3 Semiparametric BGD Estimation

In the previous section, we focused on iterative estimators based on the BGD algorithm
for the parametric binary choice models. We show that when the CDF of the error term
is known, the iterative estimators based on the BGD algorithm are consistent and attain
asymptotic normality under mild conditions. However, having prior knowledge of the form
of GG is generally too strong an assumption. In most applications, the source of the individual
shock v in is difficult to justify, which makes it quite difficult, if not completely
impossible, to know the exact expression of G. In this scenario, the algorithm proposed in
the previous section is infeasible. To overcome such problem, this section generalizes the
BGD estimator proposed in Section 2 to the semiparametric setting where GG is unknown.

In this setup, to ensure identification we set 33 to be 1, so our estimation target is 3*.
To simplify our notation, we denote the space of X as X, and the corresponding parameter
space of 3 as B. Suppose that an initial guess for 3* is given by B;. In the k-th round
of iteration, to update B based on the BGD algorithm, we require the knowledge of GG
as in Section 2, which is infeasible when G is unknown. A natural idea is that we can
construct an estimator for G based on the index constructed from the updated parameter
in the previous round. More intuitively, suppose for a moment that in the k-th round of
iteration, B, happens to be identical to the unknown true parameter 3*, then we have that
G(2) =E[y| Xo+X"B"=z] =E[y| Xo+ X" B, = 2] for any z € R.

This motivates semiparametric estimation by using nonparametric methods to estimate
G (-). We consider kernel estimation and the method of sieves in each of the following

subsections.



3.1 The KBGD Estimator

In this section we consider tkernel estimation to estimate G (-). The Nadaraya-Watson kernel
estimator of G (+) is of the form

S K, (2= X0y — X8y uj

é\ == )
(415:) >y K, (2 = Xog — X5 By) ’

€ R, (5)

where Kj, (-) = h™*K (-/h), K (-) is some kernel function, and h,, is some bandwidth param-
eter depending on n. Given the estimated CDF G (‘| Bi), we can update the parameter as if
it were the true CDF G (-). In particular, 3, is updated as

Ok o= [ A~
Bri1 = By — gk Z (G (XO,i + XzTﬁk| IBk) - yz) X;. (6)

i=1

Keep updating 3, based on (5) and (6), until some terminating conditions are reached. The
resulting estimator is labeled as the kernel-based batch gradient descent estimator (KBGD

estimator). We summarize our algorithm as follows in

Algorithm 2: The KBGD Estimator
input : Data set {(X.;,v:)};_;, sequence of learning rate {05}, ,, initial guess
B, kernel function K, bandwidth h,, and terminating condition 7

output: The KBGD estimator 3
1 k<+1;

2 while The terminating condition T is not satisfied do

3 for i + 1 ton do
-~ ' T i Ky, (XO,i‘I'X;er _XO,j_X’]rﬂk>yj .
4 L G (XO,z + X, ﬁk| 5k) N S0y Ky, (Xo0i+XT By —Xo0,; X[ 8y)

5 Bii1 < Bi — % > it (CA; (Xo,z‘ + X;Fﬂk:{ IBk) - ?Jz) Xei
6 | kK« k+1;

73%/315

Remark 3. In essence, the KBGD estimator can not be classified as a BGD estimator based
on a semiparametric loss function. In the semiparametric setup, given any loss function
(g (8, Xe,y) (quadratic distance in ( ), log-likelihood in ( ),
or loss function given in (3)) with unknown function G, it’s a common practice to replace
G with its nonparametric estimator G and then minimize (or maximize) the resulting loss

function to obtain the estimator of 3. Note that under the single-index framework, G usually

9



involves the unknown parameter 8, which is of the form G (1) = G (| B). In this scenario,

the BGD estimator is constructed by the following iteration

8£é< .|ﬁkBGD) (BEGDa Xe,ia yz)
93 !

S n
/BBGD BGD Yk
k+1 —

n <
=1

where 0lg a(-18een) (ﬁk “p Xewyz) /0B involves oG (‘| B) /OB, a complicated functions of

B In particular, the BGD estimator under loss function (3) is given by

0 5 X XB 0G (2] By)
Brpr =B — — ; (G (Xoi + X7 By| Br) + /_Oo dez —yi | X,.

Obviously, an additional term is introduced compared with (6). On the contrary, during the
construction (), we take G as given when taking the first order derivative of the loss function
and then replace the unknown G with its non-parametric estimator in the derivative. More

specifically, the KBGD estimator is updated as follows

agG (ﬁka emyi)
Bry1=Br — — Z ;
P 9B G(O)=G(-182)

so additional terms involving G (+| By) /OB are avoided. Finally, as we discussed in Section

, the derivative of loss function (3) with respect to 3 depends only on G, so we also avoid
approximating the derivative of G, which has poorer finite-sample performance compared
with approximating G. Such update also ensures contraction map under some conditions,

see

For any fixed z and B, under mild conditions there holds G (2| 8) =, E [y| Xo+XTB = z} .
Denote such limit as L (z,3). Obviously, L (z,8%) = G (z) holds for any z € R. Before we
move to a formal description of the statistical properties of the KBGD estimator based on
(6), we first provide some further discussion on L (z,3). For simplicity, in the following we
only focus on the case where all the covariates are continuous which permit continuous joint
density function. We leave further discussion of the case where some covariates are discrete
to . We point that when there are discrete covariates, our algorithm can be directly
applied without any modification, although some further assumptions will be required.

When all the covariates are continuous, denote the joint density of X, and X as f. (X.) =
fe (X0,X) and f (X) = [ f. (Xo,X) dXy, respectively. Denote z (X., ) = X, + X*8. Also
denote fx . (X, 2| B) as the joint density of X and z (X,, 3) given 3. Note that for any x

10



and z,

P[ng,z(xe,g)gz]_/

X<z, Xo+XTB<z
_ / [ / . (%0.X) d)N(O] ixX.
X<z Xo<z—XTp3

This implies that the joint density of X and z (X, 3) given 3 is given by

I3 ()Z'O, 5&) dXodX

fx: (X2 8) = fe ( = X'B,X), (7)

and the marginal density of z (X,, 3) is given by

fz<z|ﬂ>=Afx,z<x,z|ﬂ>dX=Afe (- - X"8.X) dX. (8)

Define fx. (X|z,8) = fx. (X, 2| 8)/f. (2| B) as the conditional density of X given z and
3, we have that

L(z,B8)=E(G(z—X"AB)|z(X.,B) = 2)
= G (Z - XTA/B) lez (X‘ Z?ﬁ) dX, (9)

where AG =3 — 3".
Based on the above notations, now we formally study the asymptotic properties of the

KBGD estimator under increasing dimensions. We first introduce some further assumptions.

Assumption 3. The kernel function K () satisfies: (i) K is bounded and twice continuously
differentiable with bounded first and second derivatives, and the second derivative satisfies
Lipschitz condition on the whole real line; (ii) [ K (s)ds = 1; (i) there exists positive
integer v such that [s'K (s)du = 0 for 1 < v < wvg —1 and [u"*K (u)du # 0; (iv)
K (s) =0 for|s| > 1.

Assumption 4. (i) There exists some constant { > 1 such that (' < f.(X,) < ¢ holds for
all X, € X.; (ii) there exists positive integer vy such that f. (X.) has bounded up to v¢-th
derivatives.

Remark 4. (i) together with (i) is a commonly-used assumption in
the machine learning literature (e.g., , ). It basically requires that the

joint density of X, is uniformly bounded from both above and below over X,, so the density

11



does not degenerate over X.. (i) basically allows us to construct a subset of X,

such that f, (z (X, 3)|8) is uniformly lowered bounded from zero over such subset.
The following lemma will be useful in the proof of our theorem.
Lemma 1. Suppose that , (1)-(i11), , and

hold with vg = 3, vk = 2, and vy = 3. Define ¢ (n,p,h) = h='y/log (pnh=1) /n + h*.
5p+1
If h,, — 0 and p2(pil)¢p% (n,p, hy) — O further hold, we have that

sup nZG 2 (Xe: B B) Xi ~E[L (= (X B) . B) Xil | =0, (P07 (n,p. ) ).
Proof of . See . O

implies that £ >~ | G(Z (Xei, 3)| B) X; will be closer to E [L (2 (X.:, 8) , B) Xi]
uniformly with respect to B as n increases. Note that such uniform convergence results are
free of trimming; we do not need to trim X,.; even when the density of z (X, ;, 3) is small.
So even when G (z (Xei,B)|B) is a poor estimator for L (z(X.;,3),3) for some X.; and
B, our results are still valid. While on the same time, the cost of not conducting any trim-
ming is that our guaranteed convergence rate depends heavily on the dimensionality. As is
required in , the dimension p must satisfy p%@bz’% (n,p, hy,) — 0. Suppose that
/6 we have that ¢ (n, p, hy) ~ ((logn) /n)"*. This

implies that when p is fixed, the convergence rate in is ((logn) /n)"***D When p

p/n — 0 and we choose h,, = ((logn) /n)

increases with n, the dimension p should satisfy plogp = O (logn), implying that p is allowed
to increase only mildly with n. The restriction on p basically comes from the fact that as X, ;
moves towards the boundary of X,, the density of random variable z (X, ;, 3) decreases faster
towards zero given a larger p, which makes the convergence rate sensitive to the increase of
.

For notational simplicity, in the following we denote z (X.;, 3;) and z (X.;, 3%) as z;

and z7. Based on the results in , we have that under all conditions as imposed in
, there holds

Bri1 = Br — WE (L (zig, Br) — G (27)) - X;] + 6 - (small order terms). (10)

Note that z;x = 2z} + XTAB, and L (24, B;) = [ G (zix — XTAB,) fx): (X] 2k, B) dX, s0
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(L (zix, Br) — G (2)) - X, equals to

{/X (G (27 + XTAB, — XTABL) — G ()] fx)2 (X] zige, Br) dX} X,
1
= / /X [G/ (z +1 (X = X)" Aﬁk) iz (X zig, Br) (XX — XZ-XT)} ABdXdt, (11)
0

where the integration is understood to be element-wise. To further simplify our notation,
define

W (X..X..8) = ¢ ( (X5 + (X -X) A,@) fxi- (X,

:(X..8).8).

Vv (Xf(ﬁ) _ (XXT - XXT) W (Xfiﬁ) ,
and

A(B)=E {/wae,i,xe,ﬁ) dX} |

we have that
BIL (a8 - G 1) X = [ 48"+ 120, 2B,
which indicates that
ABji1 = {/01 (I, — 0 A (B* + tAB})) dt} APy, + 0 - (small order terms) .

To ensure that with probability going to 1 the above iteration shrinks ||AB,||, we make the
following assumption.

Assumption 5. There hold

2ugb),x (/1 (B) + AT (B)) <y < 00,

and

inf A (A(8) +47(8)) = A4 > 0.

Based on the above assumptions, we have the following result.

Theorem 3. Suppose that , (i) (i1i), -
hold with vg = 3, vk =2, and vy =3, 0, = & such that 6 <min{1/(2X,),1/ (4p* |G|l )},
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and that B is updated based on . Define

5p+1 1
log (148, ) ~ Tog (PB4 (n,p, b))
b —log (1 —6),/4)

k,KBGD _

Then if h, — 0 and p25(gﬂ)wril (n,p, hy) — 0 hold, we have that

5p+1 1
sup (AR = O, (P (n,p,ha))

kzk{{fGDH

In particular, if hy, is chosen such that hy, = ((logn) /n)"®, then

1
p+1 l W
sup  [ABy] = O, (pfwiw (ﬂ) ) |

L n
Proof of . See . m

implies that the iterative estimator based on (5) and (6) is consistent under
increasing dimensions, no matter whether the starting point is close to the unknown true
parameter or not. However, the convergence speed heavily depends on the dimensionality of
the problem, p, even when p is fixed. This is not ideal under our single-index setup but is not
surprising since our algorithm does not involve any trimming procedure as we have discussed
in .

We proceed to establish the asymptotic normality of the KBGD estimator. Due to tech-
nical difficulties, throughout the following analysis in this section we only consider the case
where p is fixed. As we can see in , even in the case of fixed dimensionality,
the guaranteed convergence rate of the KBGD estimator based on (5) and (6) is at best
((logn) / n)ﬁ, which still depends on p. To obtain asymptotic normality, we need to slightly
modify our algorithm to get rid of the dependence on dimensionality. In particular, we in-

troduce trimming to our algorithm. When updating the parameter, we only use observations

that fall into a pre-selected region as did in ( ). In particular, the algorithm is
modified as,
Ok ~
Bry1 = Br — . Z]zd) : (G (2ikl Br) — ?Jz‘) X, (12)
i=1

where G (24 8,) = G (2 (Xes, B1)| By) s defined in (5), I? = I (X.; € X?), and X is a

1
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subset of X, given by
X=X, € X, |X;|<1—6,0<j<p) (13)

for some ¢ > 0 whose value will be determined later. Different from (6), the update of 3,
based on (12) uses only a subset of the whole sample for which the covariate vector X, ; falls
into X?. The reason why we choose the trimming set as in (13) is that, as we show in the
, for any 0 < ¢ < 1, there holds 1nf(_X BexdxB f(2(Xe, B)|B) > CoPpP for
some constant C' > 0 that depends on ¢. When p and ¢ are both fixed, f. (2 (Xe,8)|3)
is uniformly lower bounded from zero for any combination (X.,3) € X¢ x B, so the uni-
form estimation accuracy of L (z (X, ;,3),0) over X.,; and B will be improved. Note that
trimming will cause some efficiency loss by dropping some observations, but such loss can be
controlled to be small if we choose ¢ to be close to zero. We also point that trimming is only
applied to the update of the parameter; when nonparametrically estimating G, we still use
all the data points.
To simplify our following notation, given the trimming parameter ¢, we denote I? - X as
X?. We also define

10(8) =B |1 [ V(XoiXpax]|.
X
The following theorem provides a counterpart to the results in

Theorem 4. Suppose that all the assumptions and conditions on vg, vk, and vy in
hold. Suppose moreover that h, — 0, &, = 6 < min{1/(2)\,),1/ (4p*|G'|l..)},
¢ < oM,/ (16p? |G|, €), and that B is updated under (5) and (12) (The trimmed version of
). Define

JKBGD _ log ([[AB,]]) —log (¥ (n, p, hn))
b —log (1 —6A,/8) ’

then there holds
sup  [|ABLll = Op (¥ (n,p, ha)) -

k>kKBGD 11
Proof of . See ) m

Note that when p is fixed, ¥ (n,p, h,) no longer depends on p asymptotically. The im-
provement over the convergence rate basically comes from the improvement of the uniform
convergence rate of the kernel estimator due to trimming. Also note that under trimming, the
(1), kPGP

minimum number of iteration in , is of order logn as long as nh,, — oo.
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This implies that under trimming, a faster convergence rate is guaranteed with the minimum
number of iterations being of the same magnitude as that of the estimator without trimming.

We now proceed to establish the asymptotic normality of 3,. Define

&= %Z (G (=18 - w) X7

=1

We note that
Ok = [ A
A5k+1:Aﬁk—fZ(G(Zi,Hﬁk)—yi) Xf,
Ok "= (A ~ .
= 8B, =3 (G (2l B) — G (11 8Y)) X — 6

:/1 - %y |xo 00 (XerB)B)

dtABy, — 61€%,  (14)

B=B*+tABy,

where the integration is understood to be element-wise. To understand the properties of the

above algorithm, we need the following lemmas.

Lemma 2. Suppose that all the assumptions in hold with vg = 4, vk = 3, and
vy = 4. For any sequence of subset {B,},—, with B, C B, we have that

G (2 (X.i,8)| 8 _
sup Z X7 15) — A <5)H =0y (th\/(log (nhit)) /n+ Iy + sup ||Aﬂ||> -
BEB, 5 BEB,
Proof of . See . [
Lemma 3. Suppose that all the assumptions in hold with vg = 4, vk = 3, and

vy = 4. If h, is chosen such that hSn — 0, we have that \/n€’ —4 N (O, ZZ’), where

) (xe-2(x])]

Proof of . See . O]

S =E|(1-G )G (X -E (X

Now we are in a position to illustrate the results of the asymptotic normality of our
KBGD estimator.

Theorem 5. Suppose that all the assumptions in hold with vg = 4, vk =
3, and vy = 4. Suppose moreover that 6, = § < min{l/(2),),1/4p*[|G']|)}, ¢ <
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oA/ (16p%|G'| . €), hn is chosen such that nhS — 0 and hin/ (logn)? — oo, and that
B is updated under (5) and (12). Then
(i) There holds
sup 1ABLII = O, (n71?)

k>REKBOD 4K BAD 4

KBGD ;o
where ky,, s gen by

k,KBGD — log (nl/Q) + lOg (,lvb (nvpa hn)) .
an —log (1 —0A,/16)

ii) Define B = B, for any k — kKBGD _ LKGBD _ o e have that
( ) k Y 2,n

1In
Vi (B-8) =N (0.35).
where Zg = A;l (B%) Zg (/1;1 (ﬁ*))T.
Proof of . See . O]

We introduce the estimator for the variance matrix, based on which the confidence interval

of 3 can be then constructed.

Theorem 6. Suppose that all the assumptions and conditions in hold. Suppose
also that B is defined as in . Define

Se=a >0 (6 (-6 (xe-B(xi]=) (xr-B(x:

z))T>,

and

S, n0G(2(X.:B)|B
A‘b(ﬁ):%izle <Z<aﬁT )‘ )

where

- Z?:l K, (zi—Z)y; o (X?

& 3> _ 2 B (B %) X7

@‘ n ~ -~ )
Zj:l Kh, (2 — )

LXK (B -3)

and z; = Xo,; + XZT,B\ Then we have that
i (@52 (22 ) -3

Proof of . See . O

—p 0.
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We finally provide some remarks for the KBGD estimators.

Remark 5. We first provide some remarks on the implementation of our KBGD estimator.
The KBGD estimator might be sensitive to the data magnitude. So when implementing
such an estimator, we recommend first standardizing the data so that each covariate has zero
mean and unit variance. Note that when constructing the KBGD estimator, we normalize
the coefficient of Xy, to 1, indicating that the coefficients of X.; can not all be zeros. So we
need to test whether at least one covariate affects the conditional probability of y; = 1. One
option is to run a Logit or Probit regression and test whether all the coefficients are equal to
zZero.

When applying our algorithm, it is also crucial to determine the learning rate J, bandwidth
of kernel estimator h,,, and terminating conditions of the algorithm. In , the tuning
parameter 4 is required to be smaller than 1/(2),) and 1/ (4p? ||G’||..), neither of which is
known. So we recommend setting ¢ to be 1 in the first place, and gradually shrink it if
the iteration does not converge. For the choice of the bandwidth h,,, requires
that h,, is chosen such that nhS — 0 and nhi/(logn)*> — co. As a rule of thumb, we
recommend choosing h,, = C - n~"5. For the choice of the constant C, we can choose
C = Cy = std(z;ix) for the k-th round of iteration and C' = std (2;) when estimating the
variance E:g. We finally discuss the terminating conditions. As we show in , to
obtain root-n consistency and asymptotic normality, the iteration number is required to be
only of order log (n). However, such rule can not be directly applied to determine the number
of iterations since the initial distance ||A3,|| as well as the lower bounded on the eigenvalues
A, are both unknown. We recommend the terminating condition max;<;<, |§j,k;+1 - Bjk| <o

for some predetermined tolerance o. During the simulation, we choose o = 107°. Note that

in many cases, maxi<;<, | Bj’kﬂ - Ejk may not be monotonically decreasing with k; in some
extreme cases, maxi<j<p | Ej,kﬂ — Ejkl may even be oscillating and does not shrink to zero.
On these condition, we recommend decreasing ¢ or choosing h, = C -n~/° with C' = 1 when
iterating. If the maximum distance still oscillates, we recommend stop iteration when the

maximum distance achieves its minimum value.

Remark 6. Our previous discussion has be confined to the case where all the covariates are
continuously distributed, while our algorithm can be directly applied to the case where there
are discrete covariates without any modifications. The basic reason is that, in contrast to the
average derivative approach ( , : , ) that uses the differentiation
with respect to covariates, the KBGD estimator performs differentiation with respect to the
parameters, so it does not impose requirements on the continuity of the covariates. It should

be noted that we do require at least one continuous covariate to guarantee identification
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of the parameters. For simplicity, we recommend choosing a continuous covariate as the
standardization covariate X,. Finally, we point out that stronger assumption should be
imposed to make our results valid when there are discrete covariates. In particular, suppose
that X, = (XCT, XdT)T, where X, is the collection of all the continuous covariates, whereas
X, is the collection of all the discrete covariates. Also denote the density function of X,
conditional on Xy as fx x, (X¢|Xq). Then we require that all the conditions imposed on the
fe (Xe) hold for fx x, (Xc|Xg) for any realizations of Xg.

3.2 The SBGD Estimator

In the previous section, we introduced the KBGD algorithm, where the update of the pa-
rameter is based on a BGD-type procedure while the unknown CDF is replaced with its
Nadaraya-Watson kernel estimator constructed by the initial parameter. In this section, we
consider an alternative nonparametric approximation for the unknown CDF based on the
method of sieves. Given a set of basis functions {r; (2)}32, that is complete in C (R) space,
any smooth CDF G can be represented by G (2) = Y 7% @i, (z) for any 2 € R, where
{7r]*~ 320 is the unknown coefficients of the basis functions. In practice, to make our algorithm
tractable, we truncate the sequence of the basis functions and only use the first ¢ + 1 basis
functions for approximation, where ¢ increases with sample size n at some rate. To approx-
imate G, it then remains to provide an estimator for the unknown coefficients of the basis
functions {7}7_y. Our estimation procedure for {77}7_, shares similar intuition as the one
that motivates the Nadaraya-Watson kernel estimator in the previous section. In particular,
suppose for a moment that in the k-th round of update, we start with 3,, which happens to be
identical to the unknown true parameter 3*. In this case, define 7,(z) = (ro (2),--- , 74 (2))"

and 7y = (ﬂ, e ,ﬂ;)T, we have that
Yi = G (zi,k) +& =~ ,qu (zi,k) 7T; + &5,

where recall that z;, = Xo,; + XTB,.. The above relationship motivates the following OLS

estimator for the sieve coeflicients

%q,n,k = (Z Ty (Zz,k) ,’,;r (%,k)) <Z Trq (Zz,k) yl) . (15)
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Given the estimator of the sieve coefficients 7, x, the unknown CDF G in the k-th round

of update is approximated by
G (2] By) = rL (2) Fngp, —00 < 2 < 0. (16)

Based on the estimated CDF G (z] B;), the update of the parameter can be carried out based
on (6). We iterate sequentially based on (15), (16) and (0) until some terminating conditions
are satisfied. The resulting estimator is then labeled as the sieve-based batch gradient descent

estimator (SBGD estimator). We summarize our algorithm as follows in

Algorithm 3: The SBGD Estimator

input : Data set {(Xc;, %)}, sequence of learning rate {0y}, ,, initial guess
B, the order of sieves g, sieve functions r(z) =r¢(z),--- ,7,(2), and
terminating condition 7

output: The SBGD estimator 3

k< 1;

while The terminating condition T is not satisfied do

3 7/'l\'(]7r,171C —

(Z?:l Tq (XO,i + XzTﬁk) ,r;r (XO,z' + Xz‘Tﬁk))_l (Z?:l Tq (XO,Z' + XzTﬁk:) ?Ji)3
4 for 1 < 1 ton do

5 | G (Xos +XTBy| Br) < T (Xoi + XTBy) Ty

6 Bri1 < Br — % > i (é (XO,i + X?ﬁk‘ /Bk) - yz) Xe,is

7 | k< k41

B<_:3k§

N =

o]

Remark 7. In the above SBGD procedure, we update the sieve parameter based on the
OLS-type estimation. An alternative procedure can be based on the flexible Logit regression
proposed by ( ). The advantage of using flexible Logit regression is that the
estimated CDF G (z| 3,) always falls between 0 and 1 for all z, which makes the update more
stable. While the disadvantage of such update is that the flexible Logit regression is based
on MLE, which does not allow for an analytical solution. Using numerical optimization to
solve for the sieve coefficients in each round of update will add to additional computational

burdens.

Remark 8. Compared with the KBGD algorithm, the SBGD procedure has at least two
advantages. On the one side, the sieve-based approximation for the unknown CDF is global

and guarantees uniform approximation error rate. This allows us to update the parameter
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without performing any form of trimming as we did for the KBGD estimator. Moreover,
this allows us to develop the asymptotic distribution of the SBGD estimator for the case
of increasing dimensionality. On the otherhand, the KBGD procedure relies on the kernel
estimation of CDF G at n data points, whose computational complexity of each update is
of order O (n?). While the most time-consuming part of the SBGD procedure is the OLS
procedure (15), whose computational complexity is of order O (ng? + ¢*). When ¢/\/n — 0,
the computational burden of SBGD estimator will be substantially lower than that of KBGD

estimator.

Define R, (2) = G (z) —r" (2) 7}, [y (B) = LS 1 (X0, + XPB) Ty (X0, + X7 8),

Lonk = Lgn (By), and Xy, (2,8) = %Z?:l ("“;F (Xo,z‘ + X;Fﬁ) F;,lz (B)r,(2) Xi) . Through
tedious algebra, we can show that the SBGD procedure has the following representation,

Ok — N
Bri1 =B — gk Z (Xi = X (200, Br) (G (zi) — G (7))
=1
6k n . B 1 n 1 n
- > Xiry (zik) Ty - > 1 (zix) By (zi0) + - > re(zin) e
i=1 j=1 i=1
6 n
+ f (Rq (zig) Xi +&:X5) (17)
=1

where recall that 2z = Xo,; + X]3*. To study the properties of the above procedure, we

introduce some additional assumptions.

Assumption 6. (i) There holds maxo<j<q |75l < Dgo, maxogquHr;HOO < Dy1, and

mMaxXo<j<q ||r;’||oo < Dy (i) Define Iy (B) = E (rq (Xo +XT8) 7} (Xo + XT8)) , there hold
infgeg A (g (8)) = Ap > 0 and supgeg A (Iy (8)) < Ar < oo for all q; (ii) There hold
SUD,cp |G(z) —rT(2) 71';‘ < &0 and sup,cp ‘G’ (z) — (v (z))T el < &1, where v'(z) =

(r(2), -+, (2))

For any —oo < z < 0o, define the population counterpart of X,,, (z, 3) as

%, (2.8) = E (v (= (X.. 8) T, () 7y () X)

Then we have the following lemma.

Lemma 4. Define x1, = \/pq2D;{0 log (pgDy0Dyan) /0, and X2, = \/ﬁquo (X1n + &40) -
Suppose that , (1)-(iii), and hold, and moreover,
v > 1 and the combination of p, ¢ and vg guarantees that x1, — 0 as n — oo. Then the
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following holds,

B = Br — GE[(X — X4 (2 (Xe, Br) . Br)) (G (2 (Xe, Br)) — G (2 (Xe, 87)))] + 06Ron e,
where supys [|[Rnkl| = Op (Xom)-
Proof of . See . =

Obviously, provides a parallel result to (10). In particular, define

U, (t.B8)=E|[G (2 (X, 8%) +tXTAB) (XX' - %, (2 (X.,8),8)X")],

under all the conditions imposed in , we have that

1
ABy,, — { /0 (I, — 6,9, (1, B,)) dt} AB, + %R 4. (18)

Obviously, (18) is also a parallel result to (11). As a result, to ensure that (18) actually

constitutes a contraction for ||[AB,||, we impose the following assumption that is similar to

Assumption 7. For any q > 0, there hold

inf )‘(\Ijq (taﬁ)_F\II;F (t,,@)) zAlI! > 07

0<t<1,8eB

sup A (¥, (t,8) + V] (t.8)) > Ay < oc.

0<t<1,8€B

Based on the above assumptions, we have the following result.

Theorem 7. Suppose that , (1)-(ii), and

hold, vg > 1, and the combination of p, q and vg guarantees that x1, — 0
as n — oo. Suppose moreover that the learning rate is chosen such that 6, = o0 with
0<d< min{l/ (2Ag) s A/ (2 IG"|I% p? {1 +Afqu§70}2>}, and that 3 is updated based
on . Define

LSBGD _ log (|[AB,]|) —log (X2,n>
Ln —log (1 —)y6/4) 7

then we have that
sup  [|ABll = Oy (x2m) -

k>kPBGP 1

Proof of . See . O
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According to , when x2, — 0 as n — 0o, the SBGD estimator is consistent as
long as the number of updates exceeds kfffGD . Based on such consistent estimator, we are
ready to establish the asymptotic normality of our SBGD estimator. Apply the mean value

theorem to (17), we have that
1y

Aﬁk—i—l = {Ip - 5k/ ﬁ Z G’ (Z: + tXiTAIBk:) (XzXZT - %q,n (Zi,ka /Bk) X?) dt} A/Bk
N

Ok —
T
_55 Xir, (zig) T an E :Tq (2jk) Bq (2j) E :""q (zjk) €

)
T T’; (Ry (2i) Xs + :X,) .
=1

Define Uy = E [G’ (z(Xe, 89)) (XXT - %, (2(X¢, 8,8 XT)] and Y, =E (Xir;r (27) F;l (6*))
Similar to and , we provide two additional lemmas that are useful to un-

derstand the above algorithm.

Lemma 5. Suppose that , (i)-(iii), and hold, vg >
2 and the combination of p, q and vg guarantees that x1, — 0 as n — oo. Then for any
sequence {B,} | with B, C B we have that

sup
0<t<1,8€Bn

= Op <qu§70X1,n + \/p3q2D2’0Dq’1 ;U_BP ||AIB||) .
€bn

ZG’ 7+ 1XTAB) (X XL = %o (2 (Xei, 8), B)XT) — U

Proof of . See . m

Lemma 6. Suppose that , (1)-(i11), , and
hold, and the combination of p, ¢ and vg guarantees that x1, — 0 as n — oo. Define
Toik =Tq(2ik), and Ry = Ry (ziy). Also define

\/p qD; 1 log (pgDy2n) /n,
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then we have that

sup
k>kPBGD 11

I 1 < 1 <
—§ X;rl, It —§ T xR -k+—§ TeikEi | +
n ‘ q,l,k’ q,n,k n ‘ a7, 9] n ‘ 9,7, J

i=1 Jj=1 Jj=1

1 & 1 & o
E;Rq(zz,k)xz_ggxq(zwﬁ )gj :Op(X4,n)a

where X4, = \/ﬁqu,ogq,O + v/PaDg0X2.nX30 T X2n \/P2Q4D2,0D2,1 (logq) /n.
Proof of . See . m

Based on the above two lemmas, we are now ready to study the asymptotic distribution
of the SBGD estimator.

Theorem 8. Suppose that , (i)-(1ii), and
hold, ve > 2, the combination of p, ¢ and vg guarantees that x1, — 0 as n — oo,
and that B is updated based on . We have that

(i) There holds
§ .o ~
ABpiy = (I = 00) ABy +— > (Xi = Xy (2], 8Y) £ + R,

=1

%n,k

where Supy>yssep 4y ‘ = O, (X5.n) with

Xsm = VP4D o (0 + qDg0Dg1) X350 + Xami
(i1) Define B = ﬂk+klsBGD+k2SBGD+1 with

pspGp _ —10gXan +logy/n
an —log (1 —Ayd/4) "

and any k > 1. If the combination of p, q¢ and vg further guarantees that /nxs, — 0 as

n — oo, we have that
Vi (B-8) = W%Z(X %, (1B e+ o (7).

Then for any p x 1 vector p such that ||p|| < oo and \/Lﬁ S PPN (X — Xy (25,87)) & —a
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N (0,0% (p)) with

o (p) = lim p"W;E{G (1) (1 - G (1) (X, — X, (51,87) (K — X, (:1,87) " } (7).

n—oo

there holds
Vip' (B=8") —a N (0,0% ()

Proof of . See . n

We now provide the estimator for the variance.

Theorem 9. Suppose that all the conditions listed in hold and pq2D;*705q,1 — 0
asn — 0. Let B be as defined as in . Define v¥,; = 7, (z (Xe,i,,@», T =
~ -1 ~ ~ ~
~ n -~ T n oo ~T ~ ~IT ~ *
’I"; <Z (Xemﬁ)); Ty = (Zi:l rq,irq,i) (i1 Taayi) s Gi = Ty G, = r;,z‘ﬂ'qa \Ijq,i =

n j=1 q,J" an

LY G (XXE = %0 (308) XT), Ryi = £ 500 X7, 0k (B) 7y and

n

0 =03 {6 (1-G) (X~ ) (- %) (57)

1=

Then for any p x 1 vector p such that ||p|| < oo, there holds

5% (p) — 05 (p)| = 0.

Proof of . See . n

We finally provide some remarks on the empirical applications of the SBGD estimator.

Remark 9. For the choice of sieve functions, we can use polynomial series for the case where
the error term u; has bounded support and Hermite polynomials for the case where u; has
unbounded support. Note that when using polynomial series {1, z, 2%, - - - , 27}, the correlation
between the sieve functions increases as the approximation order ¢ increases, which may lead
to a violation of (ii). To improve the finite sample performance of our method,
we recommend using Chebyshev or Legendre polynomials. Moreover, in the case where u; has
unbounded support, following ( ), we recommend first conducting the following
transformation G (z) = G (T (2)), where T': R — [—1,1] is a differentiable function, and then
using standard Chebyshev or Legendre polynomials to approximate G. For example, in our
following simulations and empirical applications in Section 5, we use T (z) = 27! arctan (2).

For the uniform error bound of truncated Legendre polynomials, see ( ).
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4 Monte Carlo Experiments

This section conducts Monte Carlo simulations to study the performance of our KBGD
and SBGD estimators. We focus on two aspects of our estimators. First we study the finite-
sample properties of the KBGD estimator, including the bias and the root mean squared error
(RMSE). Let the j-th argument of the true parameter be B5, and the simulation is repeated
R times, where its estimator in the r-th round of simulation is 3}” , then the bias and RMSE
are respectively given by Bias = | % Zle(@" — B35)| and RMSE = \/Zle(@? — B5)?/R. We

also investigate whether the confidence interval based on the asymptotic distribution has

good coverage rate. We consider nominal coverage rate a = 0.95, so the confidence interval
for 57 in the r-th round of repetition is given by CI7 = [3}" —1.96 - S/ta;,/ﬂ\]” + 1.96 - s/ta;],
where s/ta; is the estimated standard deviation of E; . The actual coverage rate is then given
by CR= L3 I(B; € CIY).

We are also interested in how sensitive our estimators are to the initial guess of the true
parameter. In each repetition of our simulation, we consider three different initial guesses:
the true parameter vector, the parameter vector estimated based on the Logit regression, and
the parameter with all elements being zeros. If the estimation results starting from different
initial guesses are close or even identical to each other, the estimation methods are insensitive
to the initial guesses and thus are robust in terms of computation. Denote B;, BZ, and BTZ as
the estimators with starting points being true parameter, Logit estimator, and vector of zeros.
We use Sp, = \/}lz Yoy 18, = B2 and Sy = \/}lz Yoy 18, — B ||? as the measurement

of the sensitivity. To compare the performance of our method with the existing estimators,

we also consider Ichimura’s semiparametric least squares (SLS) estimator ( , )
and Klein and Spady’s semiparametric maximum likelihood (SMLE) estimator (
,1993).

We consider data generating process y; = [(Xo; + 87 X1, -+ + B X0 — wi > 0),1 =
1,2,---,n, where data are i.i.d over ¢, and X¢;, X1,,---, X104, w; are also independent. We
set B = (1,0.5,-0.5,1,-1,2,-2,4,—4,1.5,-1.5)T, X;; ~ N(0,1) for 0 < j < 8, Xy, ~
Bernoulli (1/2), Xy, ~ Poisson (2), and u; ~ Cauchy. We consider two sample sizes n =
2500 and 5000. Finally, for finite-sample performance, we repeat the simulation 500 times;
for sensitivity analysis, we repeat 100 times.

reports the finite-sample properties of our estimators. It can be seen that our
estimators work well in finite sample cases. Both estimators have small bias, whose RMSE
decrease with the increase of sample size. Moreover, the confidence interval constructed based
on the asymptotic variance and normal approximation has actual coverage rate that is quite

close to the nominal rate 0.95.
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Table 1: Finite Sample Performance of KBGD and SBGD Estimators

Bias RMSE CR Bias RMSE CR
KBGD SBGD KBGD SBGD KBGD SBGD KBGD SBGD KBGD SBGD KBGD SBGD
n = 2500 n = 5000

A
S
Bs
fa
Bs
Be
Br
Bs
By
Bro

0.0024 0.0031 0.1193 0.1240 0.9600 0.9680
0.0002 0.0055 0.1255 0.1336 0.9480 0.9500
0.0136 0.0260 0.1544 0.1791 0.9480 0.9460
0.0093 0.0213 0.1551 0.1706 0.9500 0.9440
0.0257 0.0482 0.2511 0.2968 0.9540 0.9400
0.0236 0.0477 0.2502 0.2860 0.9480 0.9580
0.0500 0.0964 0.4513 0.5416 0.9640 0.9420
0.0447 0.0920 0.4662 0.5441 0.9360 0.9520
0.0242 0.0454 0.2921 0.3303 0.9480 0.9500
0.0168 0.0338 0.1881 0.2223 0.9520 0.9440

0.0047 0.0005 0.0844 0.0867 0.9500 0.9600
0.0031 0.0074 0.0846 0.0878 0.9520 0.9540
0.0004 0.0074 0.1053 0.1112 0.9320 0.9320
0.0012 0.0095 0.1035 0.1117 0.9600 0.9500
0.0007 0.0168 0.1648 0.1889 0.9400 0.9480
0.0121 0.0269 0.1723 0.1931 0.9540 0.9360
0.0051 0.0352 0.3083 0.3525 0.9440 0.9420
0.0098 0.0394 0.3121 0.3477 0.9420 0.9440
0.0072 0.0048 0.1840 0.1909 0.9540 0.9560
0.0030 0.0147 0.1247 0.1402 0.9440 0.9380

NOTE: For KBGD estimator, we use fourth-order Epanechinikov kernel to construct the Nadaraya-Watson
estimator. We choose § = 1. In each round of iteration, the bandwidth h,, is chosen as h,, = oz-n~'/5, where
n is sample size, oz is the standard deviation of z; j, and z; 1, = Xo ; —|—XZ-T,8,€. For SBGD estimator, we choose

g =9 and use Legendre polynomials with transformation discussed in

. For both estimators, the

stopping rule is either maxi<j<p |8 k41 — Bj k| < 10~° or k£ > 20000. The above also applies to our empirical

analysis in Section

. Trimming is ignored during all the simulations. Due to the outliers of the simulation,

we trim out the lower and upper 2% simulation results and calculate the bias and RMSE.

Table 2: Sensitivity of KBGD and SBGD Estimators: Fixed Coefficients

Sensitivity Running Time

Method S, Sy True Logit  Zeros

KBGD 0.0242 0.0198 113.21 79.120 158.91

" — 2500 SBGD 0.0175 0.0259 0.9504 0.9482 1.1587
SLS 0.8732 251.58 35.695 37.210 35.104

SMLE 0.9362 318.41 34.515 33.704 31.078

KBGD 0.0241 0.0175 157.48 87.954 230.07

 — 5000 SBGD 0.0189 0.0282 1.4644 1.4722 1.9074
SLS 0.6870 871.58 46.402 44.647 41.486

SMLE 0.7343 507.69 44.563 43.256 35.904

NOTE: SLS refers to semiparametric least squares estimator, and SMLE refers to semiparametric maximum
likelihood estimator. The running time is all in seconds. Due to the outliers of the simulation, we trim out
the lower and upper 2% simulation results and calculate the corresponding results. The above also applies

to
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Table 3: Sensitivity of KBGD and SBGD Estimators: Random Coefficients
Sensitivity Running Time
Method St Sy True Logit  Zeros
KBGD 0.0270 0.0214 122.00 74.433 166.94
SBGD 0.0123 0.0246 1.0132 0.8252 1.2044

n =250 SLS  0.9178 500.24 34.864 35.571 34.065
SMLE 0.9956 533.58 34.334  32.520 29.473
KBGD 0.0234 0.0232 163.74 91.449 247.49
n — 5000 SBGD  0.0077 0.0234 1.5529 1.4377 1.9217

SLS 0.6796 10737 43.935 41.420 46.449
SMLE 0.6821 698.63 43.616 44.825 37.763

reports the sensitivity of our estimators to the starting points. We can see that
for both KBGD and SBGD estimators, S;, and Sz are close to zero, indicating that the
resulting estimators starting from Logit estimator or zeros are almost identical to the ones
starting from the unknown true parameter. Such a result demonstrates that our algorithms
are robust to different initial guesses. On the contrary, the SLS and SMLE are both sensitive
to the initial guess. As we can see, the estimators starting from parametric Logit regression
differ significantly from those starting from the unknown true parameter, and such difference
even explodes when we consider estimators starting from the origin point. The above results
highlight the numerical robustness of our estimators.

The robustness of our algorithm might also be sensitive to the setups of coefficients. To
check whether this is the case, instead of using the fixed parameters specified before, in each
round of simulation we randomly draw true parameter 8* as follows g%, 85, 55, 85 ~ N (0, 1),
b5, By, BE, B ~ 2N (0,1), and Bz, 55 ~ 4N (0,1). The simulation results are reported in

. We can see that the results are similar to those under fixed parameters, indicating

that our algorithm is robust to initial point under different parameter setups.

5 Empirical Illustration

As an empirical illustration of our new methods, this section applies our KBGD and SBGD
estimation procedures to study how education affects the risk aversion. In the existing re-
searches it’s extensively documented that, on the individual level, risk aversion is significantly
correlated with the level of education, although the directions of correlation are mixed, see

( ) for a comprehensive review. In this study, we investigate how educational
background of the family affects the risk aversion of the household as well as household-level

investing behaviors. We use the national survey data from 2019 China Household Financial
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Survey Project (CHFS) ( , ), which provides household-level information over
demographics, asset and debt, income and consumption, social security and insurance, and
various household’s subjective preferences. The dependent variable we are interested in is
the degree of risk aversion of the household. In particular, y; is constructed to take value of
0 if the i-th household is completely against any form of risks and thus is described as being
extremely risk averse; it takes value of 1 if the family is willing to bear some form of risks
when making investments. We study how the probability of y; = 1 is affected by a set of
factors based on the binary choice model. We have a total of 11 explanatory variables in our
model. The key factor that we are particularly interested in is the educational backgrounds,
which is defined year of education of the head of the household. We also consider a set of
other control variables including gender, ethnicity, health conditions, marital status, region
of residence, economic knowledge, and total asset, whose impacts on the risk aversion are of
interest on their own right. When conducting semiparametric estimation, we normalize the
coefficient of total asset to 1. See ( ) for detailed discussion on the construction of
the data sets.

Before estimation, we normalize all the continuous variables so that the resulting variables
all have zero mean and unity variance. To provide a comparison to the semiparametric
estimation results, we first conduct parametric Logit regression and report the normalized
coefficients in regression (I) in . We then conduct KBGD and SBGD estimation and
report the estimated coefficients of education in (II) and (III). As we can see from :
no matter which estimation methods we use, the coefficient of educational background is
estimated to be positive with significance at 1% level. This implies that, holding other
conditions fixed, on average an increase in the year of education of the head in the households
leads to the increase of willingness to bear risks. Comparing the semiparametric estimation
results with that of Logit regression, we can see that the KBGD and SBGD estimators are
close to each other. We finally compare the computation time of each method. We can see
that both KBGD and SBGD estimators take much longer to converge compared with the
parametric estimation. Comparatively, the SBGD algorithm is significantly faster than the
KBGD algorithm, which takes over two hours to converge. This result supports the use of

SBGD algorithm when there are data of large scale.
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Table 4: Estimation Results

(D) (1) (I11)

: 2.5543** 2.4832*** 2.4647*
Estd. Coefficients (0.1070) (0.3638) (0.3239)
Num. of Obs. 26906 26906 26906
Estimation Methods Logit KBGD SBGD
Running Time 1.4276 8573.1 40.9941
Num. of Iteration - 14996 12986

Note: For Logit regression, we report the coefficient of education divided by that of total asset. For semipara-
metric estimation, we normalize the coefficient of total asset to be 1. The standard deviations are reported
in the brackets below the coefficients. *** indicates significance at 1% level. For both KBGD and SBGD
estimators, we choose 6, = 1. For KBGD estimator, we choose h,, = C -n~Y/% with C = C}, = std(z; 1),
and use the fourth-order Epanechinikov kernel. For SBGD estimator, we choose ¢ = 9 and use Legendre
polynomials with transformation discussed in . The starting point of iteration for both KBGD
and SBGD estimators is chosen as the origin point with all arguments being 0. The stopping rule is set as

maxi<;j<p |Bj,k+1 — Ej,k| < o with ¢ = 10~°. Finally, the running time is in second.

6 Conclusions

In this paper, we proposed new estimation procedures for binary choice and monotonic index
models with increasing dimensions. Existing semiparametric estimation procedures for this
model cannot be implemented in practice when the number of regressors is large. In contrast,
our algorithmic based procedures can be used for many regressor models as it involves convex
optimization at each iteration of the procedure. We show this iterative procedure also has
desirable asymptotic properties when the number of regressors increases with the sample size

in ways that are standard in big data literature.
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A Lemmas and Proofs

This part provides some lemmas that will be used during the establishment of our results
in the main context. If not otherwise stated, the dimension p of covariate X is allowed to

increase with sample size n.

Lemma A.1. Consider i.i.d. random variables {U;},_, on probability space (2, </, P) and
dyxdy matriz A(U,0) : QxO — RT*% with© C RP being compact, Supycq gee | Ase (U, 0)] <
Dap and supyeq |Ast (U, 01) — Asy (U, 03)]] < Day |61 — s uniformly for all 1 < s < d;
and 1 <t <dy. Then there holds

. \/ pdd> D,y log (dldQDA,ln))
o, ,

su AU;,0) —EA(U;, 0
968 nz ( ) n
Proof of . Note that
1 n
sup EZA(Ui,Q) EA(U;,0)|| < max nZA Ui, 0,) — EA (U, 6,)

=1

+ max sup

EZAM,H) - %ZA(Ui,eb)
i=1 =1

+ max  sup [[EA(U;,0) —EA(U;,06,)| -

For the first term, we have that

(1@&% nZA (U;, 0) — EA (U;, 6) 7')
B
<> r ( ZA Ui, 0) — EA (U, 0) T)
b=1

-
>
\/d1d2>

<7 (m B,
B di da T
: ZZZP( : W)

B
<> Y ) 2exp (=Cn7?/ (dide D% ) = 2exp (Clog (Bdydy) — Cnr?/ (dida D)) |

b=1 s=1 t=1

1
— Z A (Ui, 6y) —EAs 4 (Ui, 0p)
i—1

n

1
= At (Ui, 06) = BA, (U, 6))

n -
=1
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indicating that

1 n
- > AU, 0,) — EA(U;, 6,)
=1

max
1<b<B

n

\/dldﬂ)?4 ,log (Bdldg))
—0, ’ .

On the other side, for the second term we have that

%ZA(UZ-,G) —~ %ZA(Ui,Hb)
=1 =1

max  sup
1<b<B

10-6s11< 55

Vdido D
< Vdidy max max sup sup  |Ay (U,0) = Ay, (U,6,)] < T2
1SS SIS UER g—g, < /B

The same bound holds for the third term. Then let B = (v/nD41)", we finish the proof. [

Lemma A.2. If , (i)-(iii), and hold with min {vg, vy} >
2, then there exists a constant C' that does not depend on X, z, 3 such that the following hold

(i) supx . 10" fx.- (X, 2| B) /02°| < C for 0 < s < vy,

(i1) sup, g |0°f. (2| B) /02°| < C for 0 <s <wvy;

(i) supx . g |10fx.- (X, 2| B) /0B < C\/p;

() supx ., g ||82fX7Z (X, z]8) /8ﬁ8ﬁTH < Cp;

(v) 101 (2[B) /0B < C/p:

(vi) |0°f- (21 B) /0BOB"| < Cp;

(vii) Sup, g 1. (1820 |0°L (2,8) /02°] < C for 0 < s < min{vg,vs};

(viit) SUD. g 1.0 10L (2. 8) /OB < C

(iz) Sup, g 1. (21320 ||0°L (2,8) /0BIB" || < Cp;

(t) supx, p.1.(:(x. 820 S HaW (Xe’ 5@,6) / %H X < C\/p.

Proof. To prove (i) and (ii), we note that for any 0 < s < vy,
ast,z (Xv Z| :8) _ 8Sfe (X()?X)
825 aXS XQZ,foTﬁ ’
and

w:/ {fo,z(X,z\ﬂ)
0z° x 0X¢

Since f. (X,) has up to vs-th bounded derivatives over X, according to Assumption -(ii)

ax

and X; is bounded by 1 for all 1 < j < p according to Assumption 2(i), (i) and
(ii) hold.
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Similarly, note that

an,Z(X7Z‘ﬁ) _ afe (X07X) X
8/8 aXO X():Z—XTB ’
a2fX,z (X,Z’,@) _ a2fe <X07X) XXT
aﬁaﬁT an Xo=2—XTp3 ’
afz Z|ﬁ / 8f6 X07 XdX
aXO X():Z—XT,B ’
a2fz Z|/6 fe X07 XXTdX
3,335 8X2 Xo=2—-XTg3 7
we validate (iii)- (vi).
To prove (Vu) note that
s—J
0z5—J
. 8S_ijZ(X’Z B)
< (4) . | ’ .
< cz lcoll. ( || ax
7=0
According to (iii), HGU) HOO is bounded for all 0 < j < vg. Then it remains to

show that [, ‘85_jfx|z/8zijj‘ dX is also upper bounded for all 0 < j < vy. When j = s,
we have that [, |0°7 fx). (X|z,8) /02*77|dX = 1. When j = s — 1, define X(z,8) =
{X: (= X"B,X) € X.}. We have that

[ [ X128
X 0z
:/ Ofx (X,2|B) [0z fx=(X,2]B) [x (0fx.: (X, 2]B) /0z) dX|
X ffo,z<X7’Z|/6)dX (foX7Z(X,Z|,8)dX)2
< 2Jx10fx: (X, 21 B) /02| dX _ 2]0fx:/02] o m (X (2,8)) _
T i xe (X2 B)dX T ¢'m (X (z,8)) B
according to part (i) of this lemma. The proof of the case when j = s—2,--- ,0 are similar,

so 1s omitted.
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To prove (viii), note that

H%Z@H S/X”G/ (2 — XTAB) fx- (X 2z B) X dX
et A Ofx (X]2,8)

Obviously, the first term on the RHS is bounded by ||G'[| /P, and the second term is
bounded by |G|, [y [|0fx)- (X|z,B) /08|| dX. Note that

[ s (X1:.) o ax < 2 B LI

2C/pm (X (z,8))
S X (p) VP

according to part (iii) of this lemma. This proves (viii). (ix) can be

similarly proved.

Finally, to show (x), we note that

/ oW (Xf(ﬁ)
X

dx

98
< [ e ( (X8 + (X - X)TAﬁ) (x —i)‘ fxi: (X (X..8).8) aX
ofx- (X|=(X..8).8)

+/X B

Obviously, the first term is bounded by 2,/p|/G"|,, and the second term is bounded by

dX.

e (z (X.,B") + (X - X)T Aﬁ) ‘

1G]l [ ‘Gfx\z <)~(,z(Xe,B)’ B) /GB” dX. Note that
[ 0fxe (X2 Xe8).B) | o 2fy[orx. (X (X0 8) jop] X
x o f:(2(Xe, 8) B)

We can see that

ofx: (X2 (X 8)[B)  0x. (X.4]8)
o3 - 0z X
z=2(Xe,0)
Ofx.: (X, 2|8
RACE
a=2(Xc,B)
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8) /o=

is bounded by C./p, so H@fx,z (i,Z(Xe,ﬁ)’ﬁ)

according to (i) and (ii), we know that H(‘?fXZ ()N(,z is bounded, and

Hafx,z (X.2|8)
bounded by C/p. So

S0 (%2 %.8)|8) /98] X _ .o m (2 (%..8). )
- (X BB ST mEEX.8).8) VP
This finishes the proof of (xii). O

Z:Z(Xeu@)

Z:Z(Xevﬁ)

Lemma A.3. Suppose that ; (i)-(iii), 5 and hold

with vg = 3, vk = 2, and vy = 3. Deﬁne

A, (Xe, B) =

XeuB ( e,j’ﬁ)) /hn) ’ ('j)»

where - is y or 1. Also define A. (Xe,ﬁ) = lim, . Eg, A, (X¢, 3), where the expectation
Eg, is taken with respect to the data set %,,. Then
(i) There holds
sup [ Ay, (X, 8) — Eg, An, (Xe, B)] = O, (hy'/plog (nph) /1)
(Xe,B)eX.xEB

(i1) There holds

sup Eg, An. (Xe, B) — A (X, B)| = O, (h2) ;

(Xe,B)eX.xEB

(iii) Define ¢ (n,p, h,) = hy'\/plog (nph;') /n+ hZ, there holds

sup [ Au (X, 8) = A (Xe B)] = Oy (h' V/plog (nphs 1) i+ h2)

(Xe,B)eEX.xEB

Proof. (i) is a direct result of if we note that

K (2 (Xe, B) = 2(Xej. B)) /ha) - ()| < Chy*

and

10 (K (2 (Xe, B) = 2 (Xej, B)) [hn) - (-5)) /0B < C/phy,*.
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To prove (ii), we only need to note that

E@n [An,y (Xt?? 16)]

B [ ()

:hiE@n |:K (Z(XewB)_ ( 6]7/8)> ( (Xejy/ﬁ) X}‘A/@)

:%/K(Z(Xe’ﬂ )G ~ XTAB) fx» (Xj, 2| B) dX;dz

_i Xeaﬂ _xT fX,z(Xj7Z|18) )

~5n [ () e [ 6= xjam) 2R,
() amacm

= [ K(2)L(2(Xe,B) = hnz,B) f2 (2 (Xe, B) — hn2| B) dz

I
h

(- (% B 1. = (X 9) )+ ' | FEE R BLD L BN | [ ¢ 2y 20

+_{/K {a% z g)zgfzﬂﬁ)] } ”

and similarly,

Bz, Ans (Xo,B)] = s, | K ( el hn< =2)

(8

/K 2 (Xe, B) — hnz| B) dz

f. (2 (X,
~ X9+ | TEEEBID N [ e o) 20
0*f. (2 B)
el res [P
where Z lies between z (X,, 3) and z. Note that according to (i) and (ii), f. (2| B)

and L (z,8) f. (2|8) = [, G (z — XTAﬂ) fx.» (X, z| B) dX both have up to third bounded
derivatives with respect to z, so the results hold.

Finally, (iii) is a combination of (i) and (ii). O

, (1)-(i11), , and

hold. Given any positive sequence {¢,} -, satisfying ppy | 0, define

Lemma A.4. Suppose that

Xow ={X.€X.: |X;| <1—¢,0<j<p}.
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Then
(Z) 1-P (Xe € Xe,n) =0 (p¢n): and inf(Xe,,B)EXe,nXB fZ (Z (Xeaﬂ” /8) ~ Qﬁpip;
(i) If ¢ (n, p, hyp) = 0 (¢Pp~P) , there holds

s |G (2 (X, B B) — L (= (X, 8).8)| = O, (16,70 (n,p. ha)

(Xe,B)EXe,nxB

Proof. To prove (i), note that for pg, < 1, m (X, — X)) =1 — (1 — ¢,)" < pohn.
So fx ~Xem fe(Xe)dX. < (pon = O(pgn) due to (1) To show the lower
bound, note that given any 8 € B and X, € X, ,, there holds |z (X,, 3) — XTB — Xo| <

L 1B~ Xj\. This implies that for any X, X € X(z (X, 8),0) if

X e {5{ e 0,17 <Sup w) /p} .
BeB
Since the above set has Lebesgue measure of order O (¢ /p”), we have that
inf f.(2(Xe,8)|8)

(Xe,B)EXe,nxB

> ot o (= (X 8) - X8 X) aX ~ a2/17,
XeX(2(Xe,B3),8)

(Xe,B)EXe’nXB X

due to (i). This proves ().
To prove (ii), note that for any X, and 3, we have @(Z(Xe,ﬁ)\ﬁ) =
Any (Xe, B) /An1 (Xe, B) and L (2 (X, B),8) = Ay (Xe, 8) /A1 (Xe, B). So

G (= (X..8)|B) - L(2(X..8),8)
[Any (Xe, B) = Ay (Xe, B)]

sup
(Xevﬁ)exe,n xB

< sup

(Xe\B)EXon X B Anq (X, B)
|An 1 (Xaﬁ) - Al (X7/3)|
+ su L(z(X.,03), ’ .
(X. ﬁ)efc)@ W xB (z(Xe.8).B) A (X, 8)

Obviously, since ¢4 (n, p, h,) = o (¢ /pP),
sup ’An,l (Xe7/6) _Al (Xeaﬁ” :Op (qu/pp)’

(Xe,ﬁ)GXEJL xB

so inf(x, gjex. x5 An1 (Xe, B) = O, (pP¢,?). Moreover, L (z(X.,3),08) is upper bounded
by (vii). Then the results hold according to : O

Proof of
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Proof. Note that

- Z G (2(Xei, B)|B) X —E[L(2(Xc;,8),8) X

sup

BeB || o]

1 &/~
<sup |23 (G (X BIA X~ L(: (X 8).8)) X, 1)
s nZL Xei,B),8) X —E[L (2 (Xcs, 8),8) Xil|| - (2)

Obviously, (1) is bounded by

n

1 ~
su — G(z Xeia Xz—L z Xeia y Xz
o 130 (6 (s DIB X~ L (%ei.9).9)
< = sup |G (2(Xei B B)Xi = L (2 (X, B) . 8) K| - L (3)
=) BeB
1 ~
+ ﬁ Zzug G (Z (Xe,iaﬂ” ﬁ) Xz —L (Z (Xe,iaﬂ) 7/8) Xz ' (1 - ]n,z) ) (4)
i=1 P€
where I,,; = I (X.; € X.,,) and X, is chosen as in . Note that (3) is bounded
by
—ZSUP Xezyﬁ)lﬁ)x L( (Xe,iaﬁ)aﬁ) X’L 'In,z'
1 BeB
< swp \G(z(Xe,mm)X - L(Z(X..8).8)X|
(Xe,B)EXe n X B
= O, (17205741 (n,p, b))
according to . For (1), we have that
E— ZZUILT; (Xei, B)B) Xi — L(Z (Xeyi, 8), 8) Xi|| - (1 = L)
€
< CypEI (Xe,i ¢ Xe,n) =0 (p3/2¢n) )
according to (i). Then we have that (3) is of order O, (pP*'/2¢, Py (n,p, hn) + p*2¢y,).

38



Now we go to (2). Similar to the above truncation, we have that

sup || ZL (Xei:8).8)Xi —E[L(2(X.:.8), B) Xy
=5k ZL (XeiB).B) X, Ly ~EIL (= (X,0.8).8) X, I, )
+Z‘ég TLZL Xemﬁ /6) (1 _ITL,i) _]E[L (Z (Xe,iaﬁ)aﬁ) X - (1 _L%i)] (6)
Obviously, (6) is O, (p*/?¢,). For (5), note that ||L (2 (Xcs,B),8) X - In,|| is bounded by
C and 9||L (2 (Xc;s,8),B) Xji - 1ni/0B) is bounded by C\/p by (vii) and (viii),
we have that (0) is of order O, <\/ p*nlog(pn /n) using . Then
ISBEIZ; HZL XE’L?IB B)XZ_E[L(Z(XE,’Ly/@)?/B)XZ]

o, (VPR 0

Together, we have that

ZG (Xei,B) B) X — E[L (2 (Xe, B) . B) X]

sup

BeB ||

(p”“% Py (n,p, hn) +\/p*log (pn) /n +p3/2¢n)-
b1 L
Then if we set ¢,, = ppTiwlp“ (n,p, hy,) , we have that

_1 5p+1 _1
Pbn = PPEPUn (n,p, h) = Pt (n,p, hy) < PR 0P (n,p, hy) — 0,

and
Vp*log(pn) /n=o (p;zgib%”“ (n,p, hn)> ,
SO
1A Sl
sup |- Y G (2(Xei,B)8) X —E[L(2(Xei, 8), B) Xil|| = Op ( p2o 040 (n,p,hn) ) -
€ i=1
This finishes the whole proof. O
Lemma A.5. Suppose that p is fized. If all the assumptions in hold with vg = 4,
vk =3, and vy =4, we have that (i) holds. Moreover,
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(i) There holds

sup  |Eg, A, (Xe, B) — A (Xe, B)| = O, (1) ;
(Xe,B)eX.xEB

(ii) There holds

sup 1A, (X, B) — A (X, B)] ( 'log (nh=1) /n + h3>

(Xe,B)eX.xEB

Proof. The proof is similar to the proof of S0 is omitted. n

Lemma A.6. Suppose that p is ﬁxed For any X, € X, and B € B, define

A, (X, B) = h2 2(Xe, B8) — 2(Xej, B8)) /) (X = X;) - (+5)
where - =1 or - =y. If all the assumptions in hold with vg = 4, vk = 3, and
vy =4, then

(i) There holds

sup || A, (X, 8) — By, A, (X, 8)| = O, (h,f log (nh-1) /n) :
(Xe,B)eXexB
(i) Define Ay (X, B) = lim,, o Eg, A7, , (X¢, B) and A} (X, B) = lim, o Eg, A}, | (Xe, B).
We have that Ay (X., B) = 0H:1 (2, X|B) /0z],_,x. g and A} (Xe, B) = 0H2 (2,X|B) /02|, x_p):

where

Hl(z,X|ﬁ):/XG(z—)~(TAﬁ) £ (z—iTﬁ,fc) (X-f() X,

m(=X\9) = [ £.(:-X'8.X) (X - X)X,
X
and the differentiation of Hy and Hs are element-wise. Moreover, there holds

sup ||E@nA;L7 (XeHB) - A/ (Xeuﬁ)H = Op (hi) )
(Xe,B)eXxB

(i1i) There holds

sup |4 (Xe,8) — A (X., B)|| = O, (h;mog (nhy1) /n+ h3) :

(Xe»B)EXe xB

Proof. (i) is a direct result of if we note that for each 1 < [ < p,
hi 2K (2 (Xe, B) — 2 (Xe 3, B)) /hn) (X; — Xi15) - (+) is bounded by Ch,,? and its derivatives
with respect to 3 and X are both upper bounded since p is fixed.
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To prove (ii), we note that

E@n A;L,y (Xe7 /3)

,; Eg, [K' (= (Xe, 8) — = (X, 8)) /ha) (X X,) - G (o, + X[ 8]

: 2 (K (( (X, B) =2 (Xes.B)) /1) (X = X)) G (2 (Ko B) = X[ AB)]
/K’ (X..0) — 2) /hn) dz/X [G (z—iTAﬁ) Fx.s (fiz ) <X—)~(>} dX

(K" (2 (Xe, B) = 2) /hn) Hy (2, X[ B)] dz

h2
_ h—n/[K’ (2) H (2 (Xe, B) = ha2. X B)] d

Note that both G and f. have up to fourth bounded derivatives with respect to z, and
the upper bounds hold uniformly with respect to z, X and 8. This implies that each ele-
ment of Hy (z,X|3) has up to fourth bounded derivatives with respect to z. Also ote that
J K (v)dv = K (v)|™, =0, [oK'(v)dv = K v)|",— [K(v)dv = -1, [v*K'(v)dv =
v K (v ) — s [v 'K (v)dv =0 for s = 2,3, and | [ v*K’ (v) dv| < oo. This implies that

ALy (Xe, B) = A (X, B)|| = O, (h2)

uniform with respect to X, and 8. The proof of the uniform distance between E4, A;, | (X, B)

and A} (X, 8) is similar. So we finish the proof of (ii).
Finally, (iii) is a combination of (i) and (ii). O
Lemma A.7. Suppose that p is fized. If all the assumptions in hold with vg = 4,

vk = 3, and vy = 4, we have that
0G (2 (X, B)|B)  0H,(z(X.,B),X.)/0z
op f: (2 (Xe, B))

+L(2(Xe,08).8) - (Z((f?fe) B)) o

where X? is defined in (13) in the main text.

sup
(Xe.B)eXd xB

0, (i \/log (a1 Jr + 12

Proof. Note that

0G (2(Xe, B)| B) _ 0y (Xe, 8) /OB Ay (Xe, 8) 0Ans (X, 8) /0B
B A (X ) An (X B A (X, B)
A4, (X B) Ay (X B) Ay (Xe, B)
T A (X B) A (X, B) Ay (X, B)

41



Then

‘ Any Xe,B)  0H: (2(Xe, B),X) [0z H y(Xe,B) A (Xe,ﬁ)H
An,l (Xe,,B) fz ( (X57B)> Xeaﬂ) Al (Xe,,ﬂ
y (Xe, B) — A, Xe,B)H
H nl (Xea/g (7>
+ HA/ Xeaﬁ) Anl(Xea/B Al Xe;ﬁ)” (8)
Al (Xevlg) An,l (X€7IB> .

Now for any (X.,3) € X¢xB, A; (X., 3) is uniformly lower-bounded according to
so A1 (Xe, B) = p( ) also uniformly holds. y (Xe, B)|| is upper bounded, so

||A’ (Xe, B) H = O, (1) also uniformly holds. Then (7) is O, (h;% /log (nh1) /n + hi) and
) is O, ( 'log (nh1) /n + h3> Similar method can be used to show that

An,y (Xea /8) A;L,l (X67 /8) L (Z (X67 6) ’IB) aH? (Z <X€7 /8) 7X€) /az

?

Ani (X, B) Any (X, B) f.(z(X.,8))
is also O, (h;zx/log (nh;1) /n+ hi) This finishes the proof. O
Lemma A.8. Suppose that p is fized. If all the assumptions in hold with vg = 4,
v =3, and vy = 4, then for any B C B, we have that
G (Z(X..0)| B)

sup
(X.,B8)eX? xB B

where ay, = O, (h,f\/log (nh 1) /n+ hi) and ay = O, (supgeg | AB]]) .

Proof. We only need to show that
ot (2 (Xe, B),Xe.) /02
f: (2 (Xe, 8))

- [w (%K) (x - X) x| = 0 (1881).

< oy, + g,

/W XXB) (X X>dX

8H2 (Z (Xey /6) 7Xe) /82
f2 (2(Xe, 8))

sup
(Xe 7ﬁ) 6?6 xB

- L(Z (Xe,ﬁ) 7/8)
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Note that
OHy (2 (Xe, B),Xe) /02 — L (2(Xe, B),8) OHa (2 (X, B) , Xe) /02

_ /G' (=(X..8 - Xa8) 1. (+(X..8) - X B,X) (X - X) aX

v / G (z (X., ) — XTAﬁ) (8fe (z (X.,8) - X B, 5&) /az) (X - f() dX
~1(:(X.0).8) [ (o1, (:(x..0) - X'B.X) 0:) (X - X) X

_ /G' (2 (X.,8) — X"AB) f. (z (X., ) — iTﬁ,i) <X - 5() dX

+ / (G (2 (X.,8) - X"AB) — G (z(X., 8))] <3fe (z (X..8) - X B, 5&) /8z> (X - 5{) dX
(LEX).0) -G EXuB) [ (0f (X0 - X B.X) f0:) (X - X) X,

Note that

H e ( - X A8) - G (=(X..8))| (0f. (2 (X..8) - X 8.X) /02) (X - X) dfiH

<C-suwp ( (X, 8) XTA/B)—G(z(xeﬁ»]-m<X<z<Xe,ﬁ>,X>>

Xex
<C- HAB“ "m (X (Z (Xeaﬁ) 7X)) )
and according to our choice of X2, we know that m (X (z(X,,3),X)) > 0. On the other

side,
H(L (+(X..8).8) - G ( z(Xe,B)))/<0f (:(X.8) - X"B.X) /) (X - X) df(H
<CH L (X0 B),8) — G (= (X, )] - m (X (= (X, B), X))
€L (X B).8) — L= (X, ), 8°)| - m (X (= (X.. 8), X))
<c. (supnaL - 6) /aﬁu) 1AB] - m ).X))
< C-IAB] - m (X (2 (X,

due to the upper boundedness of ||0L (z,3) /08| according to (viii). Note that

fZ(Z(Xe,/@”,B) > Cm(X(Z (Xeaﬁ)>X))
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for some C' > 0 due to (i) and the choice of X2, so we have that

(0 (= (X, 8). X,) 02— L (= (X..) . 8) 0B (= (X.B) . X.) /02) /1. (= (X..B)| B
- [ @ (%0 - X"28) 1 (- (X0 - X'B.X) (X - X) aX/ 1. (= (X519
(O H: (= (e B).X) = L (2 (X, B).8) 0. Ha (= (X, B). X)) /1. ( (X B)] B
—/W (Xef{e,ﬁ) (X - 5() dfiH <C-|Ag).

This proves the results. O
Now we prove in the main text.
Proof of . Note that
1\~ 560G (2 (Xei. B)| B)
¢ e,
sup ||— X — Ay (B
sup |2 ZZI o8 ¢ (B)
¢ G (2(X.;,8)| B) /
< sup ||-) X? ’ W (X, Xe, 8) (X; — X) dX 9
< s 3o ( 55 B) (X - X) ©
+ sup —Zx¢ (/W (Xei, Xe, B) (X — X)dX — Ay (B H (10)
BeBn
Obviously, (9) is of order O, (h;Q log (nhfl) /n+ hd + supgep, HA,BH) according to
Using , we can show that (10) is O, <\/ logn) / n) by noting that each element
of [W (X, Xe,B) (X; —X)dX is bounded and that fx H@W (Xe, X, [3) /8[3“ dX is uni-
formly upper bounded according to (x). This finishes the proof of ]
Now we prove in the main text.
Proof of . We first show that

gizéiimn (2 = #7) (%) X+ oy (\/15>

i=1 j=1 z
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Define f7 (zf) = f. (2| 8") and fx . (X, 2) = fx.. (X, 2| B%). Recall that 2} = 2 (X, 8"), so

1 v * * Jg__Ji
€= 522 (5 =) (5 ) X

i=1 j=1
Iy £ 1 o ¢
= 2 - jlehn (Z] Zz) (yj yz)] [%Z?_l Khn (Z; — ZZ*) f; (Z*)] Xz
_Ivly _ G 1 _ 0
e - 2 ;Khn (Z] Zz) (yj G(Zz)>] [%2?_1 Khn (Z; _ Z:) f; ZZ*)] Xz (Z>
1 ¢
__;81[ ZKhn 2=z ][%Zlehn(Z —z)_ ;(Z;)]Xz(zz)

For term (i), due to truncation, we have that

max
1<i<n

1 R ’ [
[%2321 Khn (Z;—Z:) fz (z;)] Xl OP (hn \/W‘th)

We further provide a uniform bound for 1 w2 K, (25 —27) (y; — G (2})) X? over i. We
first note that

%ZK,M (z]* — zz*) (v, —G (7)) X

ZK’Z" z — 2 (G (z]*) -G (zz*)) X?] ,
where the RHS is equivalent to

E {E . Z K, (2 — ) (G (2) - G () X X] }

=" e [ - G - G ) 12 )

n

_n-lp {x?o / (K (2) (G (2} + 2ha) = G (1)) £ (2 + 2hy) dz} |

n

Now note that since G and f; both have up to fourth order bounded derivatives, we have

that
(G (2] + zhy) — G (7)) [ (2 + 2z )
— (G’ (27) zh, + %G” (2F) 22h2 + G”’( 5 2°hi + O (= 4h4)) (fX(zF)+ O (zhy,))

= G () 2 (3 2+ 3G (5) 2 (1) 202 4 <G (21) £ (1) 205+ O (0.

(]
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So
/ K (2) (G (2 + 2hn) — G (1)) £ (2 + zh)] dz = O () |
where the bound does not depend on i. So
1 n
=D K (5= 2) (G(5) -G (=) Xf’]
j=1

On the other side, we have that we have that

max ||E
1<i<n

—0 (1),

n

nZKhn 2; =z} ) (v — G () X?

—Eg, =0, ( (logn) /nh%) .

- LS~ Ky, (2 — =) (5 — G (o)) X
j=1

max nZKhn z5—zf) (y; — G (% NX| =0, (h;lx/(logn)/n—i—hi).
So
lZ ZKh (= #) (4 — G (1) 1 - ke
n = " ZJ L K, (z —z) f2 () t
max 2y — 2 2 91l max L _
<1<z<n nZKhn ( G( ))Xz 1<i<n _Z] lKhn (z —z) f- (Z:)

=0, (h,” (logn) /n+ hS) =0, (1/v/n),

according to our choice of hy,, so term (i) is o, (1/y/n).
For term (ii), without of loss of generality, we assume that Xf = Xj’ is a scalar; the

general case can be proved similarly. We note that
E & | — Khn 27— Z: n - * Xj)
; n; (J )] [%Zj:lKhn (Z;_Z:) fz*(zz)] ]

n 1 n
2o K (Z*‘_Z'*)
=E) El¢g |1 - 2=2 T XX =0
2 {5 Fr @) Z
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due to the fact that the data is i.i.d. and that E (¢;| X, ;) = 0 for all . Moreover,

SAIENEE

1 LS
w2 [1 e f

=1
n * * 2
) [1 a2 En (5 - Zi)] X

\Y%

= E{G(E)(1-G(

C . * * * * * * * * —

= ﬁEX? ( Z E [(Khn (Zj —ZF) = £ (27)) (K, (2 — 2) — [ (Zz))|Xz¢] +0 (nhn1)>
JFLkFLIFR

Note that E [(Kh (25 = 2Z7) = f2(2))) (K, (25— 25) — [7 ()] Xﬂ is O (h9) for all k # 7,

j # 1, and k # 4. So the above term is of order O (hS/n + h,'/n?), implying that

n [1_%2?1&”(2;—2{)])(? _op<hi/\/ﬁ+1/<n\/a)):op(1/\/ﬁ),

9

n 4= fr (=)
according to the choice of h,,. This proves the first result.
Now we obtain the asymptotic distribution of

1 n n X X oy,
Fa Xk (- () %

i=1 j=1

First note that

1 —w i
S K (- (% Zy)X¢

Z

i=1 j=1
Y
e ey
i=1 j=1 ¥
" Yi~eod
Kh z —zf X
;];1 ( (Z]) ])
n(n—l B Yi —Yiwo , Yi —Yj ¢>
= — Kn Z _Z - * XZ —‘I— " " X .
( ) ;J;l " (f (27) 12 (ZJ) J

Let E;; be the expectation with respect to the j-th observation conditional on the i-th
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observation. Note that

* \ Yi —Yi
Ej\i |:Khn (Zj — Zz) f]* (z*) X?:|
X¢

g ,@m (Ko, (5 =) (€ () - )]

G (2f + hnz) —yi) [2 (25 + hpz)dz

f;(:)/K(Z)<G( D+ (&) 2ha+ 56" () PR A0 hn)—yi)(fg(zi*)+0(zhn))dz

-2 /K()(G(*)— ) () dz+ 0 (h3) = X2 (G () —y:) + O (h3)
() & z) = Yi) J. (2)az Yi /o

and
. o\ (Y TY ¢
Ejji | K, (25 — %) (fz* (ZJ*)> Xj]
() (5-G ) e
/—K< hn )( ) )Xd)fX’Z(X,z)dde
= [ K IR e (K1 4 ) X
— (= G () [ XOsx. (X|D)dX +0 (1)
= (i — G () E (X 2]) + O (hy) .
So
o *x % y] Y; qb Yi y] ¢ — ¢_ ‘ * 3
Eji | K, (2 z,)<f*( X+ f*(*)x>] 51<X1 IE( Zzl>)~|—0(hn).

We also note that

Ki, (2 - )(ii( ))X¢

x % y] Yi 1) Yi y] ¢ o
Khn('zj )(f*(*)X +f*(*)X)

2

< CE(K}, (2 - 2)) = 0 (1) = o(n)

E

E,E

i
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so according to ( ), we have that

-1 n—1 n
n o (YT Yo | Yi T Yixeo
vn (2> ' Z K, (27— 27) (fz* (z*)X’ + ) X]) .

i

i=1 j=i+1 J
2 ¥ o o] x
=—— ) g (Xi —E(Xi zi>)+0p(1).
n
i=1
This implies that
1 n
Vgl = -3¢, (X;? ) (Xf z)) +o,(1) =4 N (o, z§> .
n
i=1
[
Lemma A.9. Suppose that , (i) and (ii), and hold,
we have that
sup [[Ly.n (B) = Ty (B)| = Op (x1.0) -
BeB
Proof of . This is a direct result of by noting that |r, (2) 7, (2)| < D2
and |0 (rs (Xo +X"8) 1y (Xo +X"8)) /08|| < C\/PDgoDg,1.- O

Lemma A.10. Suppose that , (i) and (ii), and
hold, and X1, — 0 as n — co. We have that

sup [T (8) = T (B)]| = O0p (x1n) -

BeB
Proof of . First note that
sup [A (T (8)) = A(Tg (8))] < sup [Ty (B) = Lg (B[ = Op (X1,) »
BeB BeB
and

sup [A (Tg.n (8)) = A (T (8))] < Sup ITgn (B) = Lq (Bl = Op (X1.n) -

BeB Be
Since x1,, — 0, we have that with probability going to 1, there holds
< — > =L
ZEEA (Lo (B)) < = MEATqn (B) 2 5

indicating that supgeg A (I, (8)) = O, (1).
Note that for any positive semi-definite matrices A and B, there holds min {\, || B||, Az ||A]|} <
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|IAB|| < max {A4||B|, 5 ||A]}, so we have that

up T, (8) =T, (8)] = sup [Ty (B) (g (B) = Tq (B) ;1 (B)]]

q

< (sup A (ﬁ))) (sup N (ﬂ))) sp [Tan (8) — T (B) = Oy (x1) -
BeB BeB BeB

Lemma A.11. Suppose that

, (i) and (ii), and
hold, and moreover x1, — 0 as n — oo. Define

Z:{Z:Z:X0+XTﬁforsomeXeEXe andﬁGB}.
We have that

supsup [|X.n (2, 8) — X4 (2, B)ll = Op (VPeDgX1.m) -
z€Z BeB

Proof of . Note that
sup sup | Xq (2,8) — X, (2, B)|
2€Z BeB
1 n
<supsup||X,n(2,8) — — 'rTXi—l—X;F r-t r, (2)X;
< supsup || %, (=, 8) n;(q( 00 + X7 B) I (B) 7 (2) X)
1 < _
+ supsup (| X, (z,8) — — Z (T;r (XO,i + XZTﬁ) Fql (B) 14 (2) Xi)
2€Z BeB n=

For the first term, we have that

n

X (2:8) = £ 3 (rF (Yo + XIB) I (B) 7, (X))

=1

sup sup
z€Z BeB

_ % S supsup [T (Xo; + XIB) (T;1 (8) = T7 (8)) rq (2) X4

9 q
‘] 2€Z BeB

< CVpaDy, |[Ton (B) =T (B)|| = O, (VPaDjox1,) -
For the second term, we note that

n

%, (2.8) — - S0 (rF (Xou+ XIB) T, (8) 7 (=) X.)

i=1

sup sup
2€Z BeB

< supsup sup
BEB B XeEX,

=1

20

X, (XO + X738, 5) _ % Xn: (qu (Xoi + X18) T, (8) 7, (Xo + XTE}) XZ->

)



where uniformly for all 3, 3,, 3, ,B € B, X, € X,, and X; € X, there hold

e (Xos +XiB) T (B)ry (Xo + XTB) X,,| < CqD?

q,0°

and
ory (Xoi+XiB) T (B) 7y <X0 + XTB) Xij
0X,

< O\/ﬁqu,qu,l,

orT (Xo; +XIB)T51(8) 7, <XO i XTB) X,
al’é S O\/Z—quq,ODq,ly

ry (Xoi+ XTB) T, (81) 7 (Xo + X"B) = 7f (Ko +XIBy) T, (By), (X0 + X7B) |
‘(qu (Xo,i + XiTﬁ1) - T;F (Xos + X;F/BQ)) Ff (By) 7y <X0 + XTB) H
vy (Xos+X78,) (I, (B) T, (8) 7 (Xo + X"B) |
< CV/P4Dg0 Dy 1By = Ball + CaDgo [Ty (By) = Tq (B2) | < Cv/pg* Dy Dy |18y — Bl -
So we have that the second term is of order O, (\/ﬁxm) . This finishes the proof. O

<

d

Lemma A.12. Suppose that , (1)-(iii), and hold
with vg > 1, and that X1, — 0 as n — oo, then we have that

n

% Z (Xz — X4 (XO,i +X;8, 5)) (G (XO,i + X?ﬁ) -G (Xo,i + X;Fﬁ*))

sup
BeB i=1

—E (X = X (Xo; +X78,8)) (G (Xo; +X7B) = G (Xo; + X7 8))) || = Op (VPx10) -
Proof of . We only need to note that uniformly for all X.;, 1 < 7 < p, and

B, 3,8, € B, there hold
’(Xi,j - ]EXe (T’qf (XO + XT,B) F;l (/6) Tq (XO,i + X;Fﬂ) X])) (G (XO,i + X;F,B) -G (XO,i + X;F,B*))}
< CqD?

q,0°

o1



and

|G (Xo; + X! 8y) Ex, (v, (Xo+X"8y) T, (By) rg (Xog + X 8y) X))

—G (Xo, + X{ 8,) Ex, (TqT (Xo+X"8,) PC;I (By) rq (Xoi + X[ B,) X;) H

< H (G (XOJ’ + X;Fﬁl) -G (XOi + X'T132)) ( ‘ (XO + XT51> r,! (ﬁ1) Tq (XO,i + X;Fﬁl) Xj) H
+[|G (Xoi + X7 By) Ex, ((r) (Xo+X"8y) — 7y (Xo+X"8,)) T, (By) mq (Xog +X78) X)) |
+ |G (Xoi + X7 Bo) Ex. (rg (Xo+XT8,) (T (B1) = T (8)) 7 (Xos + Xi81) X5 |

+|G (Xo; + X7 B,) Ex., (r] (Xo+X"8y) T, (By) (g (Xoi + XT8y) — ry (Xo; +X78,)) X;) |
< CVpa DDy |18y — Bell-

O
Lemma A.13. Suppose that , (i)-(iii), and hold
with vg > 1, and that x1, — 0 as n — oo, then we have that
%ug nZXT Xezy/B ( Zr Xe]nB ( (Xe]wB >|| \/_qu()qu)
€
sup ZXr (Xei B)) ( Zr 2(Xe,B))e )H b (VPX1n)
BeB || T
and
sup nz Xei:B)) Xi +eXy)|| = (\/_5qo+\/ (logp) /n>
€ =1
Proof of . For the first result, we note that
sup Xir, (z(Xei, 8)) ( Z’r (Xejs B)) Ry (2(X e,j,ﬁ))>H

ZOp(\/ﬁ sup lrg (2(Xe, B))||  sup IIrq(z(Xe,ﬁ))Rq(z(Xe,ﬁ))ll)

BeB,XceXe BeB,XceXe
=0y (\/ﬁqDS,qu,O) '
For the second result, we first have that
sup

BeB nZT (XesnB))e

due to the fact that |r; (2 (X ,8)) ;| < CDgo and [|(0r (2 (Xej,8)) /08) €] < C/pDga

<\/ pqD2 o log (pgDgan) / n)

02



forall 0 <1 <gq. So

nZXr 2 (X, 0)) ( Zr 2(X.;,8)) )H
= 0, (VPaDy0\/paD2 g log (pgDym) /n) = 0, (vPx1n).

sup
BeB

Finally for the third result, we have that |2 3" | R, (2 (Xe:,8)) Xi|| = O, (\/p€,0) and

7 i e Xl = ( p (logp) /n>-
Combine the above results, we finish the proof.
Now we are ready to prove in the main text.
Proof of . We note that
Ok o= [~
Brir=Br—— >, (G (zik| Br) — yz‘) X;
i=1
_ 5k T = T 6k *
=By — — Z (rg (zin) Tgmp —7q (zip) 75) X — o D (G i) =G (2) X
=1 =1

Ok o § —
i=1 =1

Now we look at the 7, — m;. Define ['y,, 1, = [y (By,), we have that

-1

~ 1 ¢

Tonk = ( qu Zik) zlk)) (Ezrq (zik) yi)
=1

= 71'; — F;}L,k’ <% Z ry (Zi,k) (G (Zi,k:) - G (Z:))) + Fc;rlz,k (% Z Ty (Zi,k) Rq (Zi,k>>

Take the above expression of 7, — m, into the update of 8, we have that

) .
Brs1 =B — — Z (Xi = Xgn (ziges Br)) (G (200) — G (20))
=1
5k n - . 1 n
T Z Xir, (2ik) Lonk n Z rq (zjk) By (25k) Z T (k)
i=1 j=1
(5 n
T f (R, (2i0) X; + &:X,)
=1

23
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If we define
Rop =E(X =X, (2 (Xe, Br), Br) (G (2(Xe, By)) — G (2(Xe, 8Y)))
-2 D 0= X (2 (X ) 51)) (6 (- (Xess B0) = 6 - (X )

+= Z (X = X (2 (Xei, Br)  Br)) (G (2 (Xeyi; Br) — G (2 (Xeyi; 8Y)))
- E Z (Xl - %qvn (Z (Xe,ink) 7/819)) (G (Z (Xe,iaﬁk)) -G (Z (XE,iaﬂ*)))

n
O X.pT
_;E iTq (i) T an E :Tq zjk) Ry (2 k) E :rq Zjk) €

1)
+ Tf (Ry (zi) Xi + X)),
=1

we have that

Brr1 = B — GE[(X = X4 (2(Xe, By) , Br) (G (2 (Xe, By)) — G (2 (Xe, BY)))] + 06 R -

It remains to verify the order of sup;~, | R, ||, which is done based on ,

and
Now we prove and in the main text.
Proof of . Recall that

U, (t,8) =E[G¢' (2 (X., 8) + tXTAB) (XX — %, (2 (X, 8),8)X")].
We have that

n

sup 1 Z G' (27 +1XTAB) (XiX] — X (2 (X, 8),8) X)) — U7

q
0<t<1.8eBn || =

§o<§i%eg RZG’ 2+ tXFAB) (Xyn (2 (Xess 8),B) — X, (2 (Xeiy B), 8)) XF
/ T T . Ty _
+o<fﬁ%es nZG 2 HIXTAB) (XX — X, (2 (X, 8),8) X)) \I/q(t,ﬂ)H

+ sup  ||Y,(t,8) - V.
0<t<1,8¢B,

From , we know that

supsup || Xo,n (2, 8) — Xq (2,8) = Op (VPaDgX1) -

z€Z BeB

o4



and as a result,

LSS @ (o 4 1XTAB) (B (= (X B) . B) — Xy (= (X, 8) . B) X7

n =1
= 0, (pgD2 X1 -

For the second term, we have that

sup
0<t<1,8€B

sup
0<t<1,8eB

=0, <\/ P*q* Dy 10g (pg D, Dgn) /n> = Oy (x1) »
due to the fact that

1 Z G’ (2: + tX;FAﬁ) (XZXlT — X0 (2(Xes, B),08) XlT) -, (t, B)H

n -
=1

|G (2} +tXTAB) (XisXiy — (X4 (2 (Xein 8),8)), Xin) | < CqD;

q.00

and

’G/ (Zz* + tX;FAIB1> (Xi,in,t - (fq (Z (Xe,i> /61) 7/61))5 Xi,t)

_G/ (Z: + tX;FA/B2) (Xi,in,t - (fq (Z (Xe,ia /82) 7/62))5 Xi,t)|

< C\/Z_QQQDZ,ODQJ 18, — Byl -
Finally,

sup  [| W, (¢, 8) — Ty

0<t<L1,8€8,

< sup |E[G (2(X.,8) +tXTAB) - G (2(X,, 8Y)) (XXT - %, (2 (X.,8),8) X")]|

0<t<L1,8€8B,

+ sup [E[6 (2 (X, ) (2 (2 (X 8).8) = X, (= (X, 8. 89 XT)] |

Obviously the first term is bounded by C'\/p*qD?supgep, |AB||, while the second term is
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bounded by
o (- (%) 500 05.0) = (- (5o ) 5 91 05,

< s | (r (= (%08)) = (- (%)) 17 90 %8|
# 0 sup [, (= (%)) (17 0) -1 0 (%00
#Cp sup |y (= (Re8)) 1518y (X, B) = 74 = (Xeﬁ*)))H

< C\/p3q2DZ’,0Dq,1§ug |AB].
€bn

So
sup || W, (¢,8) = V5| = O, <\/p3q2D270Dq71§ué) ||A,6|\) .
€bn

0<t<1,B€Bn

Combine the above results, we have that

sup
0<t<1,8€Bn

= Op <qu§70X1,n + \/p3q2D2’0Dq’1 ;U_BP ||A,8||) .
€bn

% STC (2 +1XTAB) (XX — Xy (2(X.B) . B) XT) — W
i=1

O

Proof of . According to , we have that sup;pszep [|ABL]| = Oy (X2n)-

l

To prove the lemma, we first show that
n n n n
1 1 1 1
E T -1 E : E : § *
k2ky o 41 i=1 j=1 i=1 i=1

= 0, (vPaD2 €10 + v/PIDg0X2.0X30) »

where x3, = \/pquil log (pgDg2n) /n. Note that

1 ¢ 1, /1 I~ ., . .
sup — TqikEi — — Tl =  sup — ey (27 +1X; AB) X, dt » ABy,
kaEEGD-H 1L zzl n 121 o kaiEGD+1 o n zzl q ( v v ) ¢
1 n
<sup||= > e (Xoi+ X[B)XT||  sup  [|AB],
BeB || =1 k>k$BGD 41

Obviously, we have that supgeg [|2 Y0 &) (Xoy; + X7 8) XF|| = O, (x3,) due to the fact

o6




that |e;7), (Xo,; + XT@)Xt\<0Dq1and H@ez (Xo, +XTB) X,/08|| < C/PDyp2, s0

n 4 49,75 J n 4 q,) J
=1 i=1

which leads to the result if we further note that

n
*

§ :quZk an( E :qukR gk T = E :'rqjkgj § :rqu'gj)

e
1 1 1

*
- E Taikllagr + - E TakE — E T
j=1 =1 i=1

= O, (v/paD?2Eq0 + /PIDg0X2,nX3m) -
Next we show that

sup
k>kPBGD 11

Op (X2,nX3,n) )

sup
k>kPBCD 41

l

=0, <\/p_qu’0 sup

k>kSBGD 41

sup ZX quk an —E (X T, (Xol + XI5 ) (/3*)) ‘ =0, (P\/EDg,qu,lXZn) )
k>kPBGD 41
sup ZXrW = ZXr (Xo; +X7B%) I, (BY)
k>kPBED 41
< sup for (Xoq+ X7 Be) Tyks — Zxr (Xoq + X8I, 1,
k>kPBGD 41
1
+  sup — inr;f (Xoi +X7B) T, 0 — ZXir;F (X0 + X 8°) T, (BY)
k2kP P +1 = i=1

The first term is obviously bounded in probability by

n

1
n Z Xi (rq (XOJ + X;Fﬁk) Ty (X(M + X;FB*))T
i=1

C  sup
k>kPBGD 4

< CpvqDya 18, — B = Cpy/qDgiX2n-

The second term is bounded by

1 n
Xy (Xoi + X[8)
i=1

r-l 18
28 Wm0 60
S C\/p_qu,O sup HFan F;I (’6 )”

k>kPBGD 1
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Now we provide an upper bound for SUPj>SEGD |1 HF -t (,8*)H Note that

q,n.k q

wp [T, - mvuzop( [T — <>||)
k>kPBGD 11

K2ESEOD 11

=0y ( sup  [|Pgnk = T (B + 1T (B") = Ty (ﬂ*)H)

k>k{BCD 41

= Op (@qu,ODq,IXZn + Xl,n) = Op (\/]—QQDq,ODq,IXZn) .
So

1 n
20 | S O X S (0 X))
>k3 i=1

= Op (p\/ qu%ODq,lXQ,n) )

and together

sSup =0, (p\/ Q3D20Dq 1X2 n> .
k>k$BGD 41 e

Moreover, note that H% Sy Xirq (XOJ- + X;fﬁ*) Fq_ (B")—E (Xir:f (Xoﬂ- + XZ.TB*) F;l (ﬁ*)) || =
O, <\/ p*D?log (pn) / n), so we have shown the results.

Based on the above results, we have that

ZX quk an ( Z"'q,J,kR gkt = qu,y,k5]> + %ZRq (zik) Xi — %Z%(z;‘,ﬂ*) €;
i=1 i=1

ZXquk gk ZXT X0’+XT'6) (6*)

sup
kE>kFBGD 4]
n
*
< sup § X, rqzk an E :T%J kR q,5,k +— 2 :T%J kEj — Zr%jgj
k>kPBGD 11 i=1

1 BN
b (ﬁzxﬁmrq;k B (X (0, + x?zs*)rqlw*») (1)
i=1 =1

k>kPBGD 41

1 n
+  sup - Z R, (zix) X
=1

k>kPBGD 41

— Oy (VPaD2E40 + VPIDyoX2mXsm + PV T Do Dy Xamy/ (aD2o log )/

o8



B Proofs of Theorems

Proof of

Proof. We first prove (i). Recall that AB,;, =B, —B;ande; =y; — G (XGTZBZ)
We have that

5 n
ABeiir = BBy — 3 (G (XLiBex) — G (XLBY) — i) Xe,
i=1
SO
§ .
A/Be,lc - E Z (G (X;[:i/Be,k) -G (X;I:UBE)) XE,Z’

i=1

HAIBe,k—HH < +

S n
E E EiXe,i .
i=1

Note that mean value theorem leads to
J — .
Aﬂe,k - ﬁ Z (G (XeT,i/Be,k) - G (XeT,ZIBe)) Xe,i

=1

1 (5 n
= AB -~ / {; DG (XLB+IXAB, ) Xe,ixziAﬁe,k} dt
0 i=1

1
- /O (Lo — M, (B2 4+ tAB,,)) AB,, } dt,

where the integration is understood to be element-wise, and B;+tAB, ; € B. due to convexity
of B..

We next provide a uniform upper bound for A (I,.; — dM, (3,.)) and lower bound for
A(Lp+1 — 6M, (B,)) with respect to 3, € B, in probability. Since holds, we
have that G (XI,8) X;,X;, is bounded by [|G|l and [|0G (X1,8) X X;:/08| < C/p.

Then according to , we have that

3
sup | M, (8,) — M (8] = O, (\/ P 10g"> |
B.€B n

Since p°(logp)?>n=t — 0 holds, 1/p? (logn) /n — 0 holds, so

sup X (M, (B,) = XM (B,))| =0, (1),

and

sup [A (M, (8.)) = A (M (B,))| = 0p (1) .
B.EB

29



Due to (iv), with probability going to 1, there holds,

A/2 < inf A(M,, (B.)) < sup A (M, (B,)) < 3X./2.
B.eB B.€B

Since § < 2/(3).), we have that with probability going to 1, there holds

0<B1nf A (L1 — 6M, (B,)) < sup ALy — 6M, (B,)) <1—)A.6/2.

e

Based on the above inequality, we have that with probability going to 1, there holds

< /o1 {Sup X(Ipp1 — OM, (Be))} dt - [|AB ]| < (1= A:8/2) - | A8 -

B.€B

So with probability going to 1, for all k£ there holds

1 n

- E 5iXez
n -

< (1-X.6/2)" || A8, +5Z (1-A0/2)"

7j=1

1 n
ﬁizlgixez

HA/ge,k+1H S (1 _Ae(s/Q) HA/Be,kH + 0

I/\

Eﬁz e,i

< (1-X.0/2)"]|AB..|| +2A"

>T> < ( Zaz i

2 exp (C’nTQ/p) = 2exp (C’1 logp — C’gm'2/p)

Note that for any 7 > 0,

1n
p(_
n
=1

Z EiXe 7

\/p+1>

SO

=0y < p (log p) /n) :

Then for k& such that

(1= X0/2)"[|AB..|| < v/p (logp) /n,

or equivalently,

log ||AB.. || + 3 log (n/ (plogp))
- 1Og (]‘ - 365/2) 7

k> kPoP =
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we have that

|88 sl = O (Vp Goep) /n)

This proves (i).
Next we prove (ii). For any k > kPSP + 1, there holds
§ .
A/Be,kJrl = Aﬁe,k - E Z (G (XreI:ilBe,k> -G (Xg:i/ﬁe) - gi) Xe,ia
i=1

5 n
= ( pt1 — OM, (ﬂe k)) AB,\ + ﬁ;gixe,ia

where 3, , is element-wise and lies between 8, ; and 3. Since ||AB, || = O, ( p(logp)/ n)
for k > kPSP +1, ||A,§ekH =0, (\/p (log p) /n) also holds. Note that

1M (Be ) HMH = M, (B2)]| + 1M, (82) = M (B2)]] .
For the second term, ||M, (8;) — M (B})|| = O, (\/ (logp /n) obviously holds. For the
first term, since G is twice differentlable with bounded derivatives, we have that
2 . * " T
o I B) <MD < s S XX 167 (KL [XEABLA
< C\/p_ sup  |[Bex — Be|| = Oy ( p* (log p) /n) :
k>kPGP+1

where Be,k lies somewhere between Bek and (3} and is also element-wise, and the second last
inequality comes from the fact that || X, XZ,|| < p and |[XT,AB, | < [ Xe,ll [[AB.x|| This
implies that

o[, (B.a) = M (82)]| = O, (/o ogn) ).

k>kint1
Define wy = (M, (Bes) — M (8})) AB. - Obviously, there holds
ap teit = (om0, @ 3@l ) (_mn 1500
E>kPGP 41 k>kPGP+1 k>kPGP+1

which is o0, (n7/2) according to Assumption 2.
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Based on the above result, we have that for any £ > 1,

(5 n
A/Be,k—&-kaD—i-l = ( pr1 — OM, (/Be k+kf§D)> Aﬁe,kﬂcng T ;&Xez
« J
= (Ipt1 —0M (B7)) Aﬁe,mkﬁgD - 5wk+kE§D T n ZgiXe,i

k-1
= (Ip+1 — oM (ﬂ;))k Aﬁe,kﬁijﬂ - 52 p+l — oM (B )) Wi+kBGP —j

(S (22

For the first part on the RHS of the last equality, we have that

| (s = 80 (B2 A8, o

< (1= 0.0)" | ABeapens
::(1-Aénkcz)( ])ﬂogp)/n>.

For the second part, we have that

k—1 o0
Z i1 — OM (B7)) Wr+kPED—j (| = 52 (1= A0) Hwk+k3§D—j
7=0 j=0

) =0, ( p° (log p)” /nQ)

-1
< A; sup Hwk+le§D
k>1 :

= 0p (n’lm) .

For the third part, we have that

k—1 n
( 6 p+1 6M ) ( Zgz ez) - n (/3:) (% ZgiXevi>
7=0 =1
Zgz esi 251 esi

j
= (1-)0)" p( p (logp) /n)-
This implies that when (1 — Aeé)kQBv’GLD vplogp — 0, we have that

1—/\5

1 n
sup  ||VNRAB, pigsor — M (BY) —= Y Xl =0, (1)
k>kPGD 11 T vn zzl ’
This proves (ii)
Now we prove (iii). We first note that for any square matrices A, B, and C,
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there hold [|AB|| <7 (A) ||B|| and | ABC|| < (A) | BC|| <7 (A)7 (B)[|C]. So
| (80— 0 (B) || = v (82 (M (B.) - M (80) s (B,
<z (M (8)) -7 (M, (B.)) - || (B) - v 82
due to the fact that M ! (B) and M, (Za) — M (B) are both symmetric. Due to
(iv), we have that & (M~ (82)) = X (M~ (82)) < A" Since || M, (B.) - M (82)

0p (1) holds according to the previous proof, we have that with probability going to 1,
o] <Mn_1 (Zﬂ)) =) (MTZ1 (:@)) < 2)\.'. Then with probability going to 1, we have that
|8 -1, (B,) | < 222 — 0, (V' (logp) /n).

On the other side, we have that

M, (B.) =M (8Y)

1 e ~ R * *
ﬁ ; G; <1 — Gz> Xe,ixzi —E [Gl (1 _ Gz) Xe,iXeT’l-}

% Y GH(1-GH XX, —E[Gr (1 -G X X

<oVp |B. - 8:]| + 0, (Vi ogp) /n) = 0, (Vi llogp)/n)

Together, we have that
< vt Eler - enxext] (Mt e - (B))

+

21—2;‘




2= with probability going to 1, and X (% S G (1 - é) XXT) < C with probability

going to 1, we have that

<c|mt o) - (B.)
% > G (1- ) X XL~ E[Gr (1~ G) X XL

i=1

Hil—xi

+C

= 0, (V¥ (logp) /n) = 0, (1),
which validates the result.

To prove (iv), we only need to show that 2 (p) — o2 (p) = 0, (1). Note that

[52(0) = a2()] = o™ (S0 = 31) o] < llell || (S0 = 1) | < ol 1 = =1 = 0

given that ||p|| < oo for all n, which validates the result. O
Proof of
Proof. We first show (i). Note that from the proof in , we know that

with probability going to 1, we have that

||A/Be,k+1H < I@SHE%X(IPJJ - 5an (ﬁe)) HA/Be,k” + 616

l Z 52'Xe,z'
[
k k—1 j—1 1

< (1T0-202) fml {3 (T -im ) |15
j=1 i=1

§=0 1=0
(11)

n
1
— E €iXe,i
n <

i=1

< (1= X0i/2) || AB k| + 6

Y

where T2 (1 — A0r_1/2) = 1if j = 0.
For the first term on the RHS of (11), since e® > 1+ z for all =, we have 1 — )\ ,6;/2 <
exp (—\.0;/2) for all j. Define Sy = 0 and S; = 327_, &, for j > 1, we have that

k A o A8
(H (1 —Ae5j/2)> 1AB4]| < exp (——;Z@) 128 ]| = exp (——62 ) (ENeAp
j=1

j=1

Next we show that Zf;é Ok—; (Hg:_ol (1-— Ae5k—z/2)> is upper bounded by exp (A, 0x11/2)

64



up to some constant scale that is independent of k. Since lim supj, dx—1/0; < 0o, we have that

j—1

k-1 -1
A
g Ok—j ( (1 —Ae5k—l/2)) < E Ok—j €Xp <—_?e g 5k—l>
1=0 =0 =0

k-1

Sk — Sk_;

SCZfSk—jHeXP A ( k2 i ]))
j=0

k—1
< 20X exp (_A,ﬁk) {exp (%) — exp (AGS’C_]>} < Cexp <Ae5k+1) '
2 ) = 2 2 2

Then we have that

AS AS
|AB. k11| = Op (exp( k> HABMID +0, (exp <_Tk+1) p (log p) /n) -

When k > EESD + 1, we have that

exp( A S’f) 1AB..|| < Vo (logp) /.

and
50 || AB, ji1]| = Op ( p (log p) /n) This validates (i).
For (ii), we know that for k > EESD +1, ||Aﬁe’kH =0, (\/p(lTp)/n> holds,

so we have that

Aﬁe,k+1 - ( p+1 — 5]4 (IB )) A/Be kT g 51Xez

_ P
= (Ip+1 - 5I€M (ﬁ:)) AIBe,k - 5k (Mn (IBe,k) - M (16:)) AIge,k - Ek ZgiXC,ia
=1

where Be,k lies between 3, ; and B3, and is element-wise. Following the proof of

we can easily show that

sup HMn (B H = (\/ (logp) /n)

k>kBGD 41
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Recall that wy = (M, (Bek) — M (B7)) AB., 50

sup el = 0, (1 o) /) =0, (1272).

k>kPGP 41

We have that

J— A~ * ~ — A~ ~
Aﬁe,k+kESD+1 = (Ip+1 5k5§D+kM (@;)) Aﬁe,mkfg’? 5k55D+kwk1€§D+k kBGDJrk E :51 e,

T
L

(Ip+1 - 5EESD+k—jM (ﬁ:)> AB&EESD“

Jj=0
k—1 j—1
*
B 5E13,5D+k—j H (IPH - 5E§§D+k—lM (ﬁe)) WEBGD ). j
j=0 =
k—1 -1 -
*
- e || (IPH = Ogpen g M (@)) - > " eiXe,
=0 = i=1

where Hz 0 ( 1 — 5kBGD+k_lM(,3*)> = 1if j = 0. For the first part, define S}ElBGD,k =

€

kPGP 4k
St ipen 1 d;, we have that
Jj=

k—1

< H <1 — A€5E{3GD+k—j/2> HA,B67EIBGD+1H
0 R "

J]=

k—1
H (Ip+1 - 5EESD+k—jM (BZ)> ABGE?SD“
j=0

A

= exp <_AeSEE§D,k/2) HAﬁe,EESDH
=0, (eXp (—AeS;;ggD,k/ 2) p(logp)/ n) :

For the second term, we have that

k-1 j—1
*
2 ORpED ki 11 (IPH — Ogpan M (56)) WipeD i

7=0 =0
k— Jj—1
< Z kPGP +k—j (1 A 5kBGD+k z/2> {SUP kaGDJrkH}
=0 =0 k>1
<e < A kBGDJrk/Q) {Z 5kBGD+k. j exXp ()\ SkBGD+k J/2>} {Sup kaGDJrkH}

k>1

= < 5 (log p) /nz)
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according to the proof of (i). Now we look at the last term. Note that
k-1 j—1

Min =: Z {5EIB§D+1<;—]‘ H <]p+1 - 5EIB§D+k—lM (:62)> }
j=0 ’ 1=0 ’
= Ogpon plper + Sgpon oy (Losr — Ogpon M (BD)) + -+

+ 5EESD+1 <[p+1 - 5E§§D+kM (62)> (Ip—i-l - 5EE§D+k—1M (B2)> (Ip—i-l - 5’]555D+2M (6:)) s

SO
Mpy1n = 5’/55,§D+k+1lp+1 + <1p+1 - 5%E§D+kM (BD) M-
Note that
M1 — M7H(B])
= M = M (B2) + Ggpon o M (B2) (M7 (B5) — M)
- (pr — Bgpan M (5;)) (My — M7H(BY))
SO
HMk-f—l,n - M (5:)” <A (Ip+1 - 5EBGD+1<;M” (,8:)) HM’“” - M (B:)H
< (1= Ggagn e ) [|Men = M1 (82
< exp (A skm o) M = 17132
Then
k-1 j—1 n
> 5’];,13,;}D+k—1—j zl_g (I - 5E§§D+k—1M (5:))} %Z;Eixe,i
= _ =

= M (B -3 e X+ Oy (5 (<A Sgpen, ) Vi lorp) /)
i=1
So we have

* 1 -
VIAB, o = M7 (BL) 7= 3 eXei| = Op (exp (~AuSipon,/2) Vo (logp) /)
=1

(
( p° (log p) /nQ)

(e ( kBGD k> p (log p) /”)

According to the definition of kBGD we have that for k£ > kQBnGD there holds S REGD ) /logp —

00, this proves (ii).
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The proof of (iii) and (iv) is the same as that in the proof of

, so is left out.

Proof of

Proof. Define

Z (X.i.8)|8) X, ~E[L (= (X...0).8) X,

SIH

nln

1 n
n — — G X E G (3 7
m (n > -G X - Bl ) } X
Note that when 8* € B and 83, € B, we have that 8* +tA3, € Bforall 0 <t <1, so

1
[ABL | < H/O (Ip = 0A (8" +tABy)) dtABy|| + 0 [[11n (Be)ll + 0 |72,

< {2225 (I, =04 (ﬂ))} [ABLI + 0 lmn (Bi)ll + 0 lIn2,nll -

Note that for any 1 < s,t < p,

(A(8),,

- ’E |:/ (Xs,iXt,i - Xs,iXt) w (Xe,ia Xev /3) dX:| ‘
X

<2GLE | [ e (XI= (X80, 8)0X] <2161,
X
so each element of AT (8) A(B) is bounded by 2p||G’||~, and we have that
sup |5° (1, = 0A(8)) = A (I, = & (A(8) + 47 (8)))|

BeB
<supd?[[AT (B) A(B)]| < 2G| p*°
BeB
Then according to , we have that

upa” (1, = 04 (8)) < 1 =04+ 2G| 0
(S

When 6 < min{1/(2),),1/(4]|G’||.,p?)}, we have that
0<1—6A,+2]|G p°0° <1—-6),/2<1.
So
sup (I, — 64 (8)) < /1 —00,/2 < 1—06),/4,

BeB
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and

2B < (1= 0A4/4) [ABLI + 6 11, (Bl + 6 |72,
k—

< S (U= /A AB 6 Y (1= 62a/4 (I (B,) || + l17201)

J=0

< (1= 000/ 130, +5+ 3 (1= 01/07 (sup e (8] + )

j=0

._\

= (1 8/ 188+ 47" (sl (B + el )
Note that
5p+1 1
sup |1, (B)|| = p*@ DY+t (n, p, hy,)
BeB
according to , and

[112.n]l = Op (vp(logp) /n) =0y (p% (¥ (n, p, hn))vis>

under any choices of h,, — 0. This implies that when

1

S5p+1 1
(1_6AA/4)]€HA161H SPQ(’:’H) (w (n pah )) ! )
or equivalently,

log ([|AB. 1) — oty logp — iy log ¥ (n, p, h)

l{? > kKBGD _
= "n —log (1 — X, /4) ’

we have that sup;spxsan iy [|[AB]| = Oy (p;(gﬁ)lpr-lﬂ (n, p, hn)> : O

Proof of

Proof. We first note that

| [ v %X p)ax| <2061 [ e (X2 (Xe8). 80X =2 6.
X X

for all X, ;, so

sup 144 (8) = A(B)| < 206" B (1= 1) <20 ||, 6,

BeB
where the last inequality comes from the fact that m (Xj’) =1—(1-¢)" <po. So
sup 145 (B) — A(B)|| < 0A4/8 (12)
€

holds under the choice of ¢.
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Based on (12), the following proof is similar to the proof of . Define

ZG (X B)|8) X! —E |L (= (X... ). B) X!

1 n ) ) 1 n
- E;G(zi)X? ~E|G()X!] + E;@Xf.
We have that
5 n
AIBHl:A/@k—EZ( (zik| Br) — >X¢
i=1

= B, — 08 [(L (e B) — GZ) XE] + (1, (B) + 15,

1
= [ 4= 505 (8" + D8} Ayt + 6 (], (8y) + 5.).
0

o]+ sa])

= O, (n"'/?). Due to trimming, we also have

SO

8]l < sup 7, = 525 8 18,1+ & (sup

Obviously, since p is fixed, we have that Hng’n

that supgep 771n H = O, (¢ (n,p, hy)). Note that (12) holds, so we have that

sup [, — 34y (8)) — {1, — A (B)}] < 91,/8.

According to the proof of , there holds supgcz @ (I, — 04 (8)) <1 —0A,/4 under

the choice of 9, so we have that

supa (I, — 545 (B)) < 1 —6A,/8.

BeB
Then based on the proof of , it remains to note that
Sup( “+“n2n > :OP(¢(nap7hn))
BeB
holds under any fixed trimming parameter ¢. O]
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Proof of

Proof. Note that under the choice of § and ¢ , SUD, S FKBGD 4 18, — Bl = O, (¥ (n,p, hy))

according to . According to (11), we have that

HAIBHE{ffGDH

< sup rei [p_%z X?(?G(Z(XGT“B)W)

k>EKBGD 11, te(0,1] i=1 0B

1ABL] -+ [|€x]] -

B=B*+tAB,,
According to , we have that

sup ]p_éz X;baG(Z(Xe%u@ﬂB)

k>EEBED te(0,1] N B

B=B*+tABy,
—{I, — 644 (8" +tABY | = 30, (12 (og (ki) Jn+ 13 ) (13)
due to the fact that

sup [ ABy| = Oy (11 (1., hn)) = 0y (2 (log (nh,)) [+ B

k>kEKBGD 11

when p is fixed and h,, — 0.

When nhS — 0 and hin/ (logn)® — oo, we have that h;2\/(log (nh1)) /n + h3 — 0.
So we have that (13) is smaller than 6\ ,/16 with probability going to 1. According to the
choice of ¢ and 0, we have that supgcz7 (I, — 044 (8)) < 1 —0),/8 according to the proof

of . So as n increases, with probability going to 1, there holds

§ 0G (2 (X.,
sup L -=-> [X? (= ,T,B)IB) <1—6X1,/16,
sz{f,?GDH,te[o,l] n i—1 B B=B*+tAB,
Then as n increases, with probability going to 1 there holds
HAﬁkJr;{fchH < (1—-10X,/16) ) Aﬁk+E{ffGD +0 HéﬁH

<< (1—6X,/16)F HABE{(BGDH +1605" [|€2]].

According to , ||£ﬁ|| =0, (n‘l/Q). Also note that "A,BE{<BGD+1 = O, (Y (n,p, hy)),

then if we choose k3P“P such that (1 — 5AA/16)k§EGD_1 < n~Y2p~ (n,p, hy), or equiva-
lently,

log (n'/?) +log (¥ (n,p, hn))
log (1 —6),/16)

KBGD
k2n > —

+1,

we have that supy,xsep ABHE{(BGD =0, (n*1/2). This proves (i).
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To prove (ii), we consider the following decomposition,

AByy = (I, — 644 (8")) ABy, + 6wy (By,) + 6w2 (By) — 0&5,

where
' 1 ¢ G (= (Xes,
w1 (By) = / Ay (B +tABy,) — - Z XY¢ 8BT AIP) dtAB,,
’ =1 B=B"+1AB)
and
52 (8,) = / [45(8") = 44 (8" +1AB,)} dtAB,.
Obviously, according to
s @ (Bl =0 (h2V(og (ki) fn+ 12) Oy (n7F) = 0, (n7H).
k>RIBOD L RKBGD |

We also note that each element of matrix ]f’ . f XV<Xe,i7XeHB) dX has bounded deriva-
tive with respect to B3 for any X.;. This is because, if X.; ¢ X2, If’ = 0 so each
element will be zero and the results hold; if X.; € X2, then f.(z(X.;,8)|8) > 0, so

Sy 1OW (Xci, Xe, B) /0B8] dX is bounded according to (x). This implies that
_ 1
s (@Bl < CUABIP =0, (n73).
KSRKBGD | KBGD
Then

Aﬁk+E{ffGD+k§fGD+1

k
= (Ip - 5A¢ (6*))k ABE{ffGD+k§fGD+1 +0 Z (]p - 5A¢ (ﬁ*))kﬁ w1 (ﬁgffGD_i_kgfcp_,_j)

=1

k
+Z ] —5A¢ ) 7]_ <,6kKBGD+kKBGD+]> 52 I _5/1¢ )k J€¢
7=1
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Note that supge o (I, — 044 (B)) <1 —06A,/8, so

|1, = 644 (8 ABignon on | < (1= 904/8)" | ABpenco  yyenen,

k 00
) Z (I, — Ay ([3*))167J w1 (5%{(5GD+;€§7JLBGD+]~> Z 1- 5)‘/1/8 _sup w1 (Bl
i1 ’ ’ =0 k>kfS BOP 4k BGD 41
=0, (n 1/2) ’
k .
5 Z (I, — 64, (3 )k—J Wy (ﬁz{(fcmrkgfcmrj) (1— 5)\/1/8 _Sup w2 (B)l
j=1 ’ ’ k>k[BGD 4k BGD

|/\
= nMg

1/2)

k
AL (B €L =8 (I, =846 (87) 7 &1 < 8AFH(1—00,/8)"" [l€x]].
j=1
As k — oo, we have that A7 (1 —0),/8)F H&’fﬁ“ =0, (n71?), so
AByygson enar = 45 (B°) € + 0, (n12).
According to , we have that \/ﬁfﬁ — N <0, E?), so we have that

\/EA'Bk+E{ffGD+k§fGD = A;l (8% \/ﬁsz +0,(1) =4 N (0, /1;1 (8*) E? <Ad_>1 (B*))T> .

Proof of

¢
hold. Note that indicates that H/TM (,@) — Ay (,3*)” —p 0, which implies that

H/T;L (B) — /1;1 (B%) 0 also holds.

Now we show that

Proof. We only need to show that H/T;L (,@') — A1 (BY)

—p 0 and Hié’ — EZ’H —p 0 both

— ZfH —p 0 holds. Our basic proof method is similar to that of
. In particular, let ¢,, | 0 and X, be as defined as in the proof of . Then
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we have that f7 (27) > C¢P as long as X, ; € &.,. Denote G7 = G (2}), we have

) (-5 (x2))

) (x0— B (x¢ Z;))T)H (14)
P2 (1 m-6(1-6) (xe B (xi]2)) (xe-B(xe]2)) )
) -2 ()|

(15)
z-*) are all upper bounded, so (15) is O, (¢,).

1 . . .
N7 (1, G (1 . Gi> (X? ~E (Xf
n <

7

“E (In G (1 - GY) (Xf ~E (X‘?’

Q

& (1= 1,061 (1= 1) (X! B (X!

(2

Note that Gi, G, X2, E (Xd” 2) and E (X?
Now we look at (11). Note that
é\‘ B Z?:l Khn (Z: _ Z;) y] _ aG <Z (Xe7i7/6> ‘ B) AIB
Z?:1 K, (Zz* - Z;) 08"
where B lies somewhere between B and 3*. According to the proof of , we have
that

9G (= (X, 8)| B)
08"

sup
(Xe,B)EXe,n xB

if ¢,.7 (hf\/log (nh1) /n + hfl) — 0, since || ;! (2 (X, B)) 0H; (2 (X, B),X.) /02| and
IL(z(Xe, B),8) [ (2(X,, 8)) 0Hs (2 (X, B),X.) /Oz|| are both bounded for all 3 € B

and X, € X, ,,. So
(@ Sty K, (27 = 2)) yj) I

H =0, (1)

max
1<i<n

— - =0, (n7?).
Zj:l Kh, (Z: - Z;) g ( )

Also note that when ¢ ? <h;2\/10g (nh;') /n+ h;i) — 0,
" K *) s
(Z]l hn (Zz Z;) Yj ~0, (¢;p <h;1\/w+ hi)) ’

Sy K, (27 — %))
this indicates that

max
1<i<n

-G (zj)) Ly

0y (¢ (B! V/Iog (nhy 1) Jn+ 1) )

due to n'/? (h;l\/log (nh 1) /n+ hfl) — oo under the choice of h,,. Using similar argument,
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we can also show that
(E00) -2 (x]) 1] 0, (o (o Vi + ).
So we have that (1) is of order O, <gz5;p (h;l\/w + hf’l) + n*1/2>. It remains to

choose

max
1<i<n

o = 0 (1" Viog Gty -+ 12) ™)

to conclude the proof. n
Proof of
Proof. The proof is similar to that of . Note that
sup [0 (1, = 0%y (t,8) = A (L, = 0 (¥, (£, 8) + ¥, (£, 8)))]
0<t<1,8eB
<0 sup (W, (4 B)° < 8 |G% p? {1+ ArgD2,
0<t<1,8€B

So if 6% | G"||%, p {1+ A 'qD? 0} < 2y, or equivalently, § < Ay / <2HG’H PP {1+ A 'gD2o} )
we have that

sup |67 (I, — 69, (£,8)) = A (I, — 6 (¥, (t,8) + ¥, (t,8)))| < Agd/2,

0<t<1,8€B
SO

sup o2 (I, — 00, (t,8)) <1—)Ay6/2 <1,
0<t<1,8¢B
and
sup @ (L, — 0V, (t,8)) <1—Ayd/4.
0<t<1,8€B

Then we have that
1
1ABy.. | < / (I, — 60, (t, B,)) ABdE + 5%,
0

< sup (L, =69, (L, 8)) [[ABLI + 0k 1R k]l < (1= Ag0/4) [ABL][ + 6 [|Rn il < -

0<t<1,8€B

k
< (1= 2g0/4)" A8+ (1= Agd/4)" 7 R

J=1

< (1= 240/0" 138+ 47240, (30 18] )
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When (1 — A8/ 4% |AB || < X2n, or equivalently, & > 10g(_||1AOZ(11||S$§§Z<)2,n) = k:fijD, there

holds ||AB44]| = Op (x2m). O
Proof of
Proof. We first prove (i). Note that

1
AByi1 = {/ (I, —67}) dt} ABL + R
0

J ¢

i=1 =1

1 1
+ / (\D; - - DG (2 +1XTAB) (XX — Xy (2 (Xei, B), B) XE)) thﬂk} .
0 i=1
Define
~ 5
= _ — X — DS
9%n,k %n,k n Z ( 4 %q,z) €+

i=1

1 n
/ (w; - % YOG (5 HXTAB) (XX — Xy (2 (Xeis ). B) X;f)) dtABy.
0 i=1

According to , we have that

1 1 n
sup / (xy; — =) G (2 HXTAB) (XX = Xy (2 (X, 8),B) XT) | dtAB,
k2kP RGP +1 || /0 L
* 1 . *
< sup Uy — = G (2 +XTAB) (X XT = X0 (2(Xean 8),B)XT) || sup  [|AB]
k>k$BGD41,0<t<1 n-- k>kSBCD 41

=0p (x/ﬁqu,o (P +¢DgoDg1)  sup IIAﬂll2>

k>k9BGD 11

= 0, (VPaD? o (p+aDgoDgn) X5,) -

According to , we have that
5 n
sup Rk — — E (Xi = Xg) €| = Op (Xan) -
k2kP P +1 e

This shows the result.
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To prove (ii), we note that

§ < ~
AﬁkﬂcfﬁGDﬂ - (Ip - 5\1';) Aﬁkﬂcfﬁ(w + n Z (Xi — Xg) € + %n,k—l—kf}gGD?

=1

k n
1[0
= (Ip - 5\P2)k AﬁkfﬁGDJrl + E : (]:D - ‘N/;)] 1 (E E (Xz - %q,i) 81')
=1

=1
k L~
+ Z (Ip — 5‘1/;)J Q%MM%GDH,J-
j=1
1 n N k o~
= \112_15 Z (Xz — :fq,i) g+ (]p — (5\112) Aﬁkfch-&-l -+ Z (]p — (5\1/2)] fﬁn,kJrkiEGDJrlfj
i=1 j=1
6 n
+ Z 5\11* (— Z (X, — %q,i) Efi) .
j=k+1 L
Then since
H ([p - &Ij;)k AﬁkfﬁcDH =0p ((1 - A\yd/‘l)k X2,n) )
Z (Ip - 5\112)] mn,k—l—klsEGD—i-l—j < Z (1- A\I/5/4)]_1 sup Rk ’ =0, (X5.m) 5
j=1 ' _ kaiEGD+1
and
oo 6 n n
> (hp—owy) (—Z (Byrq (27) + Xi) € ) (1= Ayd/4) > (Xi— X))
j=k+1 n i=1 Agh i=1

pqD2, (logp)
'

=0, | (1=2y6/4)"

= 0, (1= 240/4)" xa)

So as long as (1 —Ag0/4)" X2, < 072, or equivalently, k > k5B = %, we

have that
1 ¢ .
A =N (w X)eil| =0y (n7%).
kzk;ggf’ﬂ BitrsB6r 11 a o 221 (Byrq (27) + Xi) &if| = 0p (1
The following results hold trivially. m
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Proof of
Proof. Note that under all the conditions imposed in , we have that

H@ -8 =0, (\/quD;‘,o (log p) /N) ,
due to the fact that each element of (X; — X,;) ¢; is bounded by C’qu’O and
holds.

To prove the theorem, we first show that

=0, (\/p2q4D2’0 (logp) /n + qD2705q70> )

Gi— G, (27)

sup
1<i<n

Define z; = 2 (Xe,u Z’)’) To show the above result, note that

sup |G; — G ()| < sup F:ii (7 — 7))

1<i<n 1<i<n

+ sup '/P\:;iﬂ'; —GZ)|+ sup |G (=) —G(%)].
1<i<n 1<i<n

Obviously, the second and third terms on RHS are of order O, (€,) and O, <\/ p*¢* Dy, (logp) / n) ,
while the first term is bounded by /qD, 0 Hﬁ'q — TF;H. Note that

7, —m =1, (B) (% (G E) -G <z:>>) +1;% (B) (% SR, @))
‘ i=1
+T) (B) <% Y r, (/z\,-)si).
1

So we have that |7, — m|| = O, <\/p2q3DS’O (logp) /n+ \/aDq,OEq70> and the third term is

of order O, <\/ P*¢*D5, (logp) /n + qu,ogqp) . This proves the first result.

We also note that according to the proof of , we have that
sup ||, (3.8) - %, (z2.8Y|| = 0, (/e DD 10g (pn) /n)

Then we show that

max
1<i<n

=0, (\/p‘*qu;f0 (logpn) /n (Dyo + Dya1) + pqSDS,OEq,O) )
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Note that the above is bounded by

(@(-0) ~an-e) (-2 (55) (-2 (:5))°

61 G) (X~ 200 (28)) (X~ %, (28)) = (X - 2, (2.8 (X, = 2, (187"

max
1<i<n

+ max
1<i<n

where the first term is of order O, (\/ p4q8D;760 (logp) /n+ pq3D2705q70), while the second

term is of order O, <\/ p** DDz, (logpn) / n) Together we show the result.
Next we show that

U —

=0, (\/p4q4D;{0 log (pgDy0Dy1n) /n) i

Since vg > 2, we have that

swp |G~ G (= (X, )| < sup [7l) (7, — ;)

1<i<n 1<i<n | 7

+ sup |[Pmr — G (%) + sup |G (Z) - G ()
1<i<n 1<i<n

= O <\/p q4D8 D2 logp) /n + qu,()Dngq’o + gq71> .
So

% i (é; -G (Z:)> ’ (XzXzT - %q,n (2\1: B) X?) )

+z Z & (=) ((%0n (28) = %, (.87 XT)

—ZG’ (25,8 X} — v

|-

<\/p qﬁD;?ODal log (pn) /n + pq2Dg’,0Dq715q’0 + qug’quJ) ,

+

which also implies that & (\Il;_l> =0, (1), and

|9t = w7 = 0, (\/pa D3 D2, (tog pn) /n + pa* Diy Dy g0 + aD20E1 )
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Now we are ready to demonstrate the consistency of the variance estimator. Note that
~2 2
55 (p) — 0% (p)l

2
<lpll

{60 6) (51 (8) (5% (58) ) ()

~UE {G (=) (1= G (1)) (Xi = % (7, 8") (Xi = %, (,8)" } (‘Péfl)TH

13 {6 0-8) (k5 () (5 e (25) "

_E{G(z;) (1—G () (X %qn< 2, )) (X %qn( B))T}) (@;1>T’
{GGE0-6E) K% 680 (- %, .80 | (T vy

The first and the third terms are of order O, <\/p6q8D;’60D3’1 (logpn) /n+ p*¢* Dy 4Dy 1Eq0 + pq2D3’05q71> :

2 ||3+—1 *—1
\Ilq \I,q

(EE{a0-0) (- () (x5 ()

2
+ el

and the second term is of order O, <\/p4q8D;f’g] (logpn) /n (Do + Dya1) + pq3D2’08q70>. To-
gether, we have that

5% (p) = o5 (p <\/ P°q* Dy D31 (logpn) /n+ pg* Dy (PDy + Dgy) Eq0 + pq2D3,05q71> :

which implies that [6% (p) — 0% (p)| =, 0 under all the conditions. O
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