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Abstract

Identification in econometric models maps prior assumptions and

the data to information about a parameter of interest. The partial

identification approach to inference recognizes that this process
should not result in a binary answer that consists of whether the

parameter is point identified. Rather, given the data, the partial

identification approach characterizes the informational content of

various assumptions by providing a menu of estimates, each based

on different sets of assumptions, some of which are plausible and

some of which are not. Of course, more assumptions beget more

information, so stronger conclusions can be made at the expense of

more assumptions. The partial identification approach advocates a
more fluid view of identification and hence provides the empirical

researcher with methods to help study the spectrum of information

that we can harness about a parameter of interest using a menu of

assumptions. This approach links conclusions drawn from various

empirical models to sets of assumptions made in a transparent way.

It allows researchers to examine the informational content of their

assumptions and their impacts on the inferences made. Naturally,

with finite sample sizes, this approach leads to statistical complica-
tions, as one needs to deal with characterizing sampling uncertainty

in models that do not point identify a parameter. Therefore, new

methods for inference are developed. These methods construct con-

fidence sets for partially identified parameters, and confidence

regions for sets of parameters, or identifiable sets.
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“The law of decreasing credibility: The credibility of inference decreases with

the strength of the assumptions maintained.”

Manski (2003)
“A fragile inference is not worth taking seriously.”

Leamer (1985)

1. INTRODUCTION

Partial identification in econometrics is an approach to conducting inference on parameters

in econometric models that recognizes that identification is not an all-or-nothing concept

and that models that do not point identify parameters of interest can, and typically do,

contain valuable information about these parameters. This partial identification approach
favors the principle that inference—and conclusions and actions—based on empirical

models with fewer suspect assumptions is more robust, hence more sensible and believable.

Stronger assumptions will lead to more information about a parameter, but less credible

inferences can be conducted. This is in line with Coombs’ (1965) principle of buying

information with assumptions.

Data alone can inform us only so much, and generally, it is not possible to do

inference without any assumptions, i.e., without a model. The partial identification

approach to econometrics views economic models as sets of assumptions, some of which
are plausible—e.g., based on economic principles that respect constraints and optimizing

behavior—and some of which are esoteric and are needed only to complete a model.

These latter assumptions are usually termed functional forms or distributional assump-

tions. Partial identification calls for analyzing the sensitivity of our inferences on the

parameter of interest to these esoteric assumptions. This approach to inference in econo-

metric models does not advocate that the only way to learn about parameters is via

nonparametric models with minimal assumptions. On the one hand, it tries to determine

as a first step the limit of what we can learn with only the empirical evidence (the data,
in a nonparametric setup). On the other hand, in a fully parametric model, this partial

identification approach examines the effect assumptions have on the information the

model contains about a parameter of interest.

For example, it is accepted that (unobserved) heterogeneity plays a key role in empirical

microeconometrics models. Economic theory is largely silent regarding the choice of the

distribution of unobserved heterogeneity, and in many cases, the choice of this distribution

is based on folklore, familiarity, and computational grounds.1 This is especially important

in nonlinear models in which mean independence assumptions are not sufficient. In these
models, it is important to examine the role played by assumptions made on the heteroge-

neity distribution.

In the past 30 years, there have been reactions within the empirical literature against the

fragility of inferences based on suspect assumptions. And so there is a movement, especially

in the labor economics literature, to look for the smallest set that delivers point identifica-

tion. Some of these approaches, championed by the semiparametric econometricians,

provided models that rely less and less on ad hoc assumptions while maintaining point

identification. These semiparametric models use strong support conditions on the observed
data in addition to the commonly used exclusion restrictions. Conversely, the less stylized

1Heckman & Singer (1984) examine the role distributional assumptions play in duration models.
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the empirical model is, the harder it is to obtain a semiparametric assumption that point

identifies the parameters. This tension between guaranteeing point identification while

maintaining the weakest possible set of assumptions has partially limited the use of
semiparametric approaches especially in more complicated (nonlinear) models.

Parametric models are useful. Adding plausible assumptions that are widely accepted

and based on economic principles can be a vehicle to communicate insights and conclu-

sions. It can help advance the scientific exercise and enrich it. But, in some situations, it can

also provide misleading answers: What good are sharp results that ignore model uncer-

tainty or model misspecification? In the past 20 years, researchers have begun to embrace

the idea that identification is not an all-or-nothing matter and that a set of plausible

assumptions that does not deliver point identification can still contain useful information
about parameters of interest.

This partial identification view has been motivated by the fact that point identification

is not the objective by itself and in essence takes us back to Koopmans & Reiersol’s (1950)

dictum whereby the specification of a model ought to be based on the underlying econom-

ics, prior knowledge (such as the linearity of variable cost that people have established

for this industry), or other assumptions with universal or almost universal acceptance,

but should not be geared primarily toward point identifying the parameters. “Scientific

honesty demands that the specification of a model be based on prior knowledge of
the phenomenon studied and possibly on criteria of simplicity, but not on the desire

for identifiability of characteristics that the researcher happens to be interested in”

(Koopmans & Reiersol 1950, pp. 169–70). Once the structure is specified, the model can

either have no information about the parameter of interest, restrict the parameter of

interest to a nontrivial set, or point identify the parameter of interest. This is exactly the

domain of identification analysis, with partial identification taking the view that identifi-

cation is not only about verifying whether the third case holds, but also determining the

extent of information contained in the second and linking this to the type of assumptions
that the researcher proposes in the model.

Partial identification analysis can be conducted from the bottom up, whereby a

researcher first considers whether the data alone provide any information about the pa-

rameter of interest. Then, the researcher combines the empirical evidence with a list of

assumptions and studies the effects these assumptions have on what and how one learns.

Conversely, in some examples, it is easier to start with a top-down approach in which a

fully parametric model that point identifies the parameter of interest using a set of assump-

tions is first considered. Each of the unsettled assumptions yields to a different model that
point identifies a value for the parameter of interest, so this sensitivity analysis approach

collects in a set different values of the parameter of interest that correspond to the different

models (for a similar specification analysis approach, see Leamer 1985).

The identification of a parameter of interest basically posits the existence of an infinitely

large sample size and asks the question of what one can learn about this parameter. Point

identification analysis answers the question of whether the parameter of interest can be

recovered uniquely given this infinite data set, whereas partial identification considers the

question of what can be learned about this parameter in the presence of an infinite data set
and when considering various sets of assumptions. The requirement of studying identifica-

tion with an infinitely large sample separates the question of identification from the

distinct, but also important, question of statistical inference from a finite sample size. The

two questions, identification and statistical inference, are linked, and partial identification
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has created an important set of new statistical inference problems that require new

methods and new approaches. For example, in cases in which one is interested in inference

on the (nontrivial) identified set, statistical methods geared toward estimating sets are
required, and more importantly, methods to build confidence regions for sets are needed.

I summarize the main issues that econometricians face when handling statistical issues

related to partial identification below.

This article starts with a literature review that highlights the ideas of partial identifica-

tion beginning in the early 1930s. The next section discusses two important examples in

which the partial identification approach is described and applied. Section 4 discusses

statistical inference, and Section 5 concludes.

2. LITERATURE REVIEW

The literature on the identification of economic models has been a cornerstone of the

empirical research program in econometrics dating back to the early work on estimating

simultaneous equations in models of demand and supply in the 1920s and 1930s. The

classification of variables as exogenous and endogenous and the recognition of the identi-

fication problems that this endogeneity creates have been considered a distinguishing

feature of econometrics in relation to statistics, which is typically concerned with the

statistical properties of estimators and in which identification, or the uniqueness of the

optimum of some objective function, is sometimes directly assumed (especially in nonlinear
models).

It is not clear why the failure of point identification and the impact of partial identifica-

tion were largely ignored in both econometrics and statistics before the 1990s. This is

especially surprising as even a slight breakdown in point identification leads to changes in

the asymptotic theory of estimators, which in turns requires a modification of the standard

procedures derived under point identification. Given that point identification is oftentimes

assumed, it is surprising that not enough work has been devoted to studying properties of

models that fail to point identify the parameters and the effect of this failure on the
statistical properties of estimators. Phillips (1989), for example, states that “[i]t seems

important that we should understand the implications of identification failure for statisti-

cal inference. Yet, this is a subject that seems to be virtually untouched in the literature.”

Below I review the literature on partial identification in econometrics. I begin with the

early works, which have largely been glanced over by most econometricians and have had

(almost) no influence on the empirical literature before the 1990s. I focus on works in

econometrics, but there have been similar ideas in other literatures.2 I then describe some

of the recent developments in the literature. We start here with Frisch’s approach to
confluence analysis.

2.1. Partial Identification and Frisch’s True Regressions

Frisch (1934) was concerned with the problem of “confluency” in linear regression,

whereby the results of a linear regression of one variable on a set of variates are suspicious

2For example, in their review of structural equation models in sociology, Bielby & Hauser (1977, see p. 150, and
references therein) noted that identification is not an “all-or-nothing proposition” and cited partial identification
works in sociology based on insights from Marschak & Andrews (1944), which we review below.
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if one or more of these variates are almost perfectly correlated. To disentangle true rela-

tionships between variates that ultimately are used in regressions analysis, Frisch consid-

ered the case in which the object of interest is the matrix of correlation among a set of
unobserved variates x0 when we observe a vector x that is a convolution of x0 with a set of

“accidental disturbances” that are of “no interest.”

The main motivation is studying correlation among random variables and allowing for

the possibility that this true correlation is among variables that are unobserved. These

unobserved random variables constitute the “true regression.” Therefore, this is a classic

identification problem in which the observed data consist of the vector x, the object of

interest is the second moment matrix of the vector x0, and x ¼ x0 þ x00. Frisch writes the

observed second moment matrix as a function of the true moment matrix and nuisance
parameters that represent the effect of the disturbances, or measurement error. He uses a

set of assumptions, uncorrelation between the cross-equation disturbances, and

uncorrelation between the disturbances and the systematic parts to reduce the dimension-

ality of the problem. As an example, Frisch considered the two-variate model

x1 ¼ x01 þ x001;
x2 ¼ x02 þ x002;

where we observe the second moment matrix E[(x1,x2)0(x1,x2)], and thus we are able to

relate it to the second moment matrix of ðx01; x02Þ under the uncorrelation assumptions.

Therefore, it is easy to see that covðx1; x2Þ ¼ covðx01; x02Þ, for example. Assuming that the

latter is positive, we have

covðx1; x2Þ
varðx2Þ

¼ b1
varðx02Þ

varðx02Þ þ varðx002Þ
& b1;

where b1 is the slope in the true regression of x20 on x10. It is also easy to see that

varðx1Þ
covðx1; x2Þ

¼ b1 þ
varðx001Þ
b1varðx02Þ

' b1:

Frisch concludes that the slope coefficient of the true regression of x10 on x20 must lie in the

“possibility set” b 2 covðx1; x2Þ
varðx2Þ

;
varðx1Þ

covðx1; x2Þ

! "
. The end points of this interval

“form limits between which the true slope must lie whenever the assumptions

specified hold good. But there is nothing in the observed correlation matrix

which permits to choose between the above two limits, or to fix any number

intermediate between them. Thus it is when, and only when, there is a good

agreement” between the endpoints do we get to draw “definite conclusions
about the true regression slopes.” (Frisch 1934, p. 86)

So, here Frisch covers the essential principles in a partial identification analysis: He derives

the identified set, or, as he calls it, the possibility set, which can be estimated because it is a
function of the observed variables, and also argues that this set is sharp; i. e.,any value in

the set, including the end points, cannot be rejected as the true value of the slope. He

provides a simple and clear analysis of the relationship between the data and

the underlying structure. Frisch posits a classical measurement error model in which

the disturbances are uncorrelated with the systematic variables, and under these assump-

tions he derives the information about the true slope.
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The current literature on measurement error in linear models uses instrumental vari-

ables to obtain point identification of the true slopes. This direction of the literature is not

driven by the belief that exclusion restrictions are more robust than Frisch’s uncorrelation
restrictions, but rather it seems to be driven by the need to obtain definite conclusions, in

terms of point identification. Sometimes, relying on exclusion to obtain point identification

in a measurement error model is reasonable, but empirical analysts can easily compute

Frisch-like bounds as an approach to learning about the parameters when exclusion

restrictions are suspect, or are not available. The statistics literature relies on one having

knowledge of the measurement error process via validation data or the estimation of

reliability ratios (e.g., see Fuller 1987). This typically yields point identification, but these

data are not easy to obtain in typical economic surveys.

2.2. The Partial Identification Approach of Marschak & Andrews

In an important paper, Marschak & Andrews (1944) (MA) studied the problem of inference

on production functions and showed that, by exploiting the economic theory of production

(such as conditions for profit maximization under constraints), the parameters of this

production function “can be confined to relatively localized regions of the parameter space

on the basis of available observations.” This partial identification approach uses economic
restrictions to derive bounds in a parametric model of supply. We review the approach

using an example employed by Nerlove (1965, see chapter II) in his review of MA’s paper.3

Suppose we are interested in estimating the Cobb-Douglas production function

Y0f ( a1X1f ( a2X2f ¼ Aþ u0f ;
b0X0f ( b1X1f ¼ B1 þ u1f ;
b0X0f ( b2X2f ¼ B2 þ u2f ;

ð1Þ

where Y0f, X1f, and X2f denote the output and inputs 1 and 2 for firm f, and the

unobservable u0s are interpreted as the distance between its production and the average

production. These can measure the firm’s efficiency, but they also contain other unobserved

qualities that are all aggregated into these unobservables.

The first line of Equation 1 is the production function (in logs), whereas the second and

third lines represent the first-order conditions from profit maximizations, taking into

account the demand function in inputs 1 and 2 (i.e., they deal with the more general case
of imperfect competition), where a specific functional form for the demand, for example, is

such that

bi ¼ 1þ 1

!i
; i ¼ 0; 1; 2;

where the !i
0s are the elasticities, which one can show obey the following inequalities:

0 5 b0 & 1 and bi ' 1 for i ¼ 1, 2. The standard current approach for inference on the

above model uses exclusion restrictions, or variables that influence the production of one

factor, and not others.

MA take a different approach. With the assumption that firms maximize profits, taking

into account their production function and market demand, MA use the second-order

optimization conditions to place bounds on the parameters of the production function,
(a1, a2). Therefore, when there is perfect competition (b0s equal to 1), (a1, a2) must lie in the

3Nerlove’s chapter reviewing the MA approach is titled “Partial-Identification: The Marshack-Andrews Approach.”
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triangle bounded by the line connecting (0,1) to (1,0). The different bounds on (a1, a2) are
graphed in Figure 1, where we see that the size of the identified set increases as we move

away from perfect competition. The importance of the MA approach is recognizing that,

although the bounds without any assumptions can be wide, one can use more assumptions
motivated by the economics of the problem to shrink the allowable regions.

MA use restrictions on the variance of u0 in Equation 1. Arguing that u0 represents the
technical efficiency of the firm (given as a deviation from the mean of efficiency of all

firms), they assume that the so-called best firm can be no more than five times as good as

the worst firm, for example, but also can be no less than four times as good as the worst

firm, which leads to bounds on var(u0). These proposed bounds on this variance, along

with the first line in Equation 1, can be used to narrow the set. For example, we see in

Figure 1b that there are substantial identification gains using these variance restrictions.
In MA’s paper, we find a first example of the partial identification approach to inference

in an economic model using assumptions that are motivated by the underlying economic

problem. The results appear in diagrams in the paper, but it would be interesting to map

them into estimates of the production function and to compare them with ones obtained

using instrumental variables. This approach to inference in parametric structural models

has largely been skimmed over and ignored. A noted exception is the work of Leamer

(1981), who revisits MA and Leontief and examines the problem of learning about elastic-

ities of demand and supply in a linear simultaneous equations system with uncorrelated
errors. He shows that sets of parameters that lie on a hyperbola are identified. This means

0
α1

1

2

a

β1

β0 = 1,
β2

β0 = 1
2

1
2

β2

β0 = 1,
β1

β0 = 1
2

β1

β0 =
β2 

β0 =

β1

β0 =
β2

β0 = 1

α2

10 α1

s00 = ŝ00

0

α2

1

s00 = c' s00 = c 

b

0 1 2 3

Figure 1

Bounds on (a1, a2). (a) The identification region under various conduct parameter assumptions. The functional form assumptions
on the production function, the demand functions, and the optimization restrictions were used to derive these bounds. The
smallest triangle [the line connecting (0,1) to (1,0)] is obtained under perfect competition. (b) Added restrictions (Marschak &
Andrews 1944) on the size of the disturbance in the production function, shrinking the regions substantially. Figure adapted from
Nerlove (1965).
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that the forward regression of price on quantity understates the elasticity of supply (in case

the latter is positive), whereas a reverse regression provides an upper bound.

2.3. Other Influential Works

In addition to the above, the work of Fréchet (1951) in the statistics literature on whether

knowing the marginal distributions of continuous random variables X and Y tells us

anything about their joint distribution is important and influential. Fréchet showed that,

given knowledge of the distribution functions F(.) and G(.) of X and Y, respectively, their
joint distribution K(.;.) is such that for all

max
#
FðaÞ þ FðbÞ ( 1; 0

$
& K

#
a; b

$
& min

#
FðaÞ; FðbÞ

$
:

These bounds are attainable, i.e., min(F(a), F(b)) and max(F(a) þ F(b) –1, 0) are proper

distribution functions with extreme forms of correlation structures (for more details, and

other results regarding the Fréchet bounds, see Nelson 1999). This is an important result

that has been extended and applied in many areas.4

Other early work that contains partial identification ideas is Duncan and Davis’s work

(see Duncan & Davis 1953 on the ecological problem). This problem is one of learning the

conditional distribution of a random variable Y given (X, Z) when data are available from

two random samples: one that contains data on (Y, Z) but not X and the other that

contains data on (X, Z) but not Y. Duncan and Davis conducted partial identification

analyses that were later studied more formally by Cross & Manski (2002).

2.4. Early Reaction to Partial Identification

As shown above, the ideas about partial identification have been around in econometrics

since the 1930s, and the rationale for such an exercise could not have been more relevant
or pertinent. However, these ideas were largely ignored in the empirical and theoretical

fields in econometrics until the late 1980s. Researchers have been tentative at best in

considering partial identification. The semiparametric literature in microeconometrics has

certainly looked for a model that makes fewer assumptions, but one that (almost) always

guarantees that these assumptions deliver point identification, regardless of whether these

sufficient point identification conditions are suspect, or whether they hold in their data.

I speculate and offer two reasons about this incertitude regarding partial identification.

One main motivation for empirical work in economics is to evaluate policies, with an
important purpose of decision making. Therefore, with partially identified models, an

empirical strategy that provides multiple answers is generally viewed as a drawback. This

feeling among empirical economists and econometricians can be summarized using

Nerlove’s (1965) comment on MA’s partial identification approach described above.

Nerlove finds the “fundamental defect” of MA’s approach is that “it is impossible to obtain

unique estimates of the parameters of the production function. All that can be done is to

restrict their possible values to a more-or-less narrow range.” Data by themselves, we are

told, are not informative; the bounds are usually wide, so partial identification analysis by
itself is not useful. However, one rationale for partial identification is exactly that:

Although data alone are sometimes not useful, data and theory together are. Therefore,

4Given knowledge of the marginals, bounds on joint distribution can be used in competing risks models that are
useful in economics, for example.
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the purpose of empirical work is to harness and link results and conclusions to theory and

models, clarifying what conclusions follow from theory, and what conclusions do not; this

is the essence of partial identification.5 The skepticism regarding multiple answers does not
rest on solid, coherent arguments, so it is likely to subside.

Another important reason for the skepticism about partial identification is the idea that,

on some level, all empirical work in the social sciences is based on assumptions,6 so it is not

clear where the line should be drawn. Which assumptions are plausible and which are not?

Is the choice of regressors and what regressors to condition on a more plausible assumption

than conditional independence? These are valid questions and should be examined only in

relation to a particular empirical problem. For example, in Frisch’s model above, we are

interested in the best linear predictor of one random variable given another under square
loss. This object is valid under mild moment existence assumptions, which are typically

considered plausible. Overall, however, there is a large set of assumptions or models that

may be considered plausible, and guarding against all does not seem feasible, both concep-

tually and computationally. Therefore, some recent work on partial identification has

considered fully parametric models, and researchers have studied the identification power

of some assumptions by examining the informational content of these models absent these

assumptions. The particular assumptions that were relaxed are ones that the community of

researchers considers the most controversial, are untestable (or least likely to be testable,
even with more data collection), and thus constitute a leading cause for unease (see Section

3 for examples). These (partial) sensitivity exercises, in which one uses a partial identifica-

tion approach to study the sensitivity to some assumptions, can be helpful to communicate

ideas and discriminate among various modeling approaches. The answer to this second

concern is to acknowledge that, although full-fledged sensitivity analysis against all plausi-

ble models is not always possible, accounting for model uncertainty, even for some parts of

that model, is always worthwhile (for similar ideas, see Heckman & Hotz 1989 and the

rejoinder).7

2.5. Recent Literature

Given the above reservations, the econometrics literature, both theoretical and empirical,

did not pay much attention to partial identification largely until the work of Manski and
his collaborators, starting in the late 1980s. This work, and other work inspired by it, has

revived and buttressed the partial identification view within empirical economics as a

valid, coherent, and sensible approach to inference. Starting with work that analyzed the

problem of self-selection into treatment from a partial identification perspective (Manski

1989, 1990), Manski urged empirical economists to be cautious of assumption-driven

conclusions, especially in the aftermath of the general skepticism in the labor economics

literature at the time about the usefulness of parametric models of selection (e.g., see

5Moreover, with the statistical uncertainty from using finite sample sizes, point-identified models provide confidence
regions for these uniquely identified parameters, where, heuristically, each parameter in these regions is statistically
as likely to be the true parameter. So, conceptually, this argument of preferring a point to a set is not as solid as it
might seem from a practical perspective, as one should account for statistical uncertainty when reporting results,
which makes the preference of point-like to set-like argument questionable.
6Here, one can argue that even raw data are driven by theory and that routine assumptions, such as being indepen-
dent and identically distributed, are conditioned on some assumptions (see Coombs 1965 for more details).
7This second concern should not be used as an excuse for researchers to not worry about the sensitivity of their
results to the assumptions made.
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LaLonde 1986). Manski then provided a worst-case bounding strategy that is simple to

understand and easy to compute. These bounds summarize what the data, and only the

data, say about the parameter of interest. He has since made contributions to partial
identification in many settings (for a clear synthesis of these results, see Manski 2003,

2007). A Manski-style approach to partial identification advocates the bottom-up

approach in which first worst-case bounds are derived, gradually stronger assumptions

are added, and their effects are analyzed. For example, Manski (1997) examines the

identifying power of monotonicity (and equilibrium) when estimating demand functions

using an independent set of data on quantity and price from a cross section of markets. In

another example, Manski & Pepper (2000) revisit an important issue in labor economics:

estimating wage regression as a function of schooling. The conceptual contribution of this
paper is the approach whereby one need not assume full statistical independence between

the counterfactual outcomes and an instrument, but one can explain a form of monotonic-

ity, with higher values of one leading to higher values of the other. The paper shows how

this type of assumption contains identifying power. Similar ideas have been studied

recently by Nevo & Rosen (2009).

With regard to other partial identification works, Bollinger (1996) extends the Frisch

bounds to cases with misclassification, and Hotz et al. (1997) study contaminated instru-

ments as applied to the effect of teenage pregnancy on later outcomes, using the partial
identification approach to contaminated models in Horowitz & Manski (1995). Tamer

(2003) studies inference in entry models with multiple equilibria, which is generalized

further to cover cases without assuming Nash equilibrium in Aradillas-Lopez & Tamer

(2008). Manski & Tamer (2002) focus on inference on parameters in linear regressions

with interval data on outcomes or a regressor using a partial identification approach, and

Blundell et al. (2007) study bounds on wage distribution in the United Kingdom using

worst-case and other more informative bounds. This is a just sample of recent works on

partial identification on various problems.

2.6. Work on Inference

Most of the above literature has been concerned with identification as a question separate

from statistical inference. One of the first papers in econometrics to tackle some aspects of

inference in models with partially and nonidentified parameters was Phillips (1989), which

proposes novel statistical inference methods in models in which some of the parameters are

partially identified or nonidentified. The methods rely on rotations of the parameter space
into one where all parameters are identified. Throughout the 1990s, most partially identi-

fied models were such that the boundary of the identified set could be derived explicitly as

a functional of the observed data distribution. The typical bound on a parameter y, for
example, would be of the form F1 & y & F2, and (F1, F2) could be consistently estimated

from the data. Moreover, a confidence region for [F1, F2] was usually constructed by jointly

bootstrapping the end points. Imbens & Manski (2004) then noticed that narrower confi-

dence regions can be reported if one considered covering not the set, but the actual

nonidentified parameter (these bounds were later refined in Stoye 2009). Conversely, and
in the context of linear models with interval data, Manski & Tamer (2002) construct sets

of parameters that are consistent in the Hausdorff metric to the argmin of a particular

objective function under some conditions. This result generalizes the classical case of the

consistency of m-estimators to cover the case in which the argmin of the population
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objective function is not a singleton. Manski & Tamer’s work did not contain inference or

confidence region procedures. There are a number of current papers that provide

approaches to inference in partially identified models. Chernozhukov et al. (2007) provide
a more general set of consistency results with rates of convergence for argmins of general

objective functions. They also provide methods to construct confidence regions that cover

the identified set or the true parameter with a prespecified probability. These methods are

based on subsampling. Similar methods are also provided by Romano & Shaikh (2008,

2010) using subsampling. Beresteanu & Molinari (2008) introduce tools from random set

theory to study inference about the identified set. As many of the partially identified

models can be represented by moment inequalities, there has also been a flurry of recent

papers that develop inferential methods designed to cover moment inequalities (and equal-
ities) (e.g., Bugni 2007, Canay 2007, Andrews & Jia 2008, Rosen 2008, Andrews & Soares

2009, Stoye 2009).

3. TWO EXAMPLES

This section provides two examples that showcase the partial identification approach to

inference. The first example builds on the canonical missing data problem and shows how

a partial identification approach links the assumptions used to information provided,

employing a more nonparametric approach as compared with the second example. The

second example considers a fully parametric model in which a set of parametric assump-

tions is relaxed, and hence the identified features of a set of models are studied. In this

section, we also assume away sampling issues and hence are concerned about the identifi-

cation problem as distinct from statistical inference. Inference from finite sample sizes is
examined in Section 4 below.

Operationally, identification questions can be written as the problem of analyzing and

characterizing the argmin set of a properly defined objective function. This objective

function can be a likelihood, or a moment-based objective function, and the important

property this function must satisfy is that it is constructed in such a way that its set of

minima exhausts all the information in the model given the maintained assumptions. We

illustrate these ideas in two examples below.

3.1. Example 1: Missing Data

We examine a series of examples in which the partial identification approach is

highlighted. We begin with the missing outcome problem when this outcome is binary. We

also characterize the mechanics of the information the model contains about the parameter

of interest and express it as the argmin of an objective function.

3.1.1. Missing binary outcomes. Let Y be a binary 0/1 random variable that is observed

only when another binary 0/1 random variable Z is equal to 1. So, we observe (YjZ¼ 1, Z).
We are interested in P(Y ¼ 1). These and similar problems are put together and worked out

in Manski (2003).

The parameter of interest here is P(y ¼ 1), and we require the characterization of
information about this parameter contained in the observables (and the assumptions). It is

easy to see that, without additional assumptions, this frequency is not point identified in

general. The issue is that the data alone contain no information about YjZ ¼ 0, so, without

this, the above problem consists of a class of models, each of which corresponds to a
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complete model with an assumed distribution for YjZ ¼ 0. One common approach in the

literature is to add a model for the unobservable YjZ ¼ 0 that is based on some prior

scientific or economic convictions. These assumptions are not testable. Another comple-
mentary approach is to examine the above model’s information about the parameter of

interest without further assumptions. We start with this latter approach and discuss the

parametric approach in a second step.

The identified features of the problem consist of the set of values for P(y ¼ 1) that are

consistent with the assumptions (and the sampling process). Given the maintained assump-

tions, the sharp identified set, or the identified set, is the set of parameters that exhaust all

the information. The sharp identified set is also referred to as the sharp set, or the identifi-

cation region. Here, this set would be

YI ¼ fp 2 ½0; 1* : p ¼ PðY ¼ 1jZ ¼ 1ÞPðZ ¼ 1Þ þ qPðZ ¼ 0Þ; for some q 2 ½0; 1*g:

YI can also be characterized as

YI ¼ fp 2 ½PðY ¼ 1jZ ¼ 1ÞPðZ ¼ 1Þ;PðY ¼ 1jZ ¼ 1ÞPðZ ¼ 1Þ þ PðZ ¼ 0Þ*g or

PðY ¼ 1jZ ¼ 1ÞPðZ ¼ 1Þ & p & PðY ¼ 1jZ ¼ 1ÞPðZ ¼ 1Þ þ PðZ ¼ 0Þ:

The sharp set can also be obtained by parameterizing the likelihood of the observed data as

a function of the parameter of interest and other nuisance parameters. The log likelihood is

Q p;qð Þ+ l p;qð Þ¼E y log
p(ð1(PðZ¼ 1ÞÞq

PðZ¼ 1Þ þ 1(yð ÞlogPðZ¼ 1Þ(pþð1(PðZ¼ 1ÞÞq
PðZ¼ 1Þ

! "
:

The argmax of the above likelihood is the set of parameters (p, q) 2 [0,1]2 that satisfy

P Y ¼ 1jZ ¼ 1ð Þ ¼ p( qð1( PðZ ¼ 1ÞÞ
PðZ ¼ 1Þ :

This is the identified set YI.

Another common approach to the problem above is to add assumptions. One assump-

tion is Y ⊥ Z, which is called the independence assumption (this can also be conditional on

some set of covariates). This assumption leads to point identification because it implies that

P(Y ¼ 1) ¼ P(Y ¼ 1jZ ¼ 1). This assumption is motivated in situations in which the

scientist believes that the missingness of Y is not related to the value of Y. The important

point is that the value for P(Y ¼ 1) implied by this assumption certainly lies in YI.

3.1.2. Missing continuous outcomes. These results above can be generalized to the case in

which Y is a continuous random variable with support on R and a strictly increasing

distribution function F(t) + P(Y & t), which is the parameter of interest.

Without further assumptions, the identified set for this distribution is

YI ¼ fFðtÞ 2H : FðtÞ ¼ PðY & tjZ¼ 1ÞPðZ¼ 1Þ þKðtÞPðZ¼ 0Þ; for someKðtÞ 2Hg; ð2Þ

where H is the set of strictly increasing distribution functions on the real line. Note that this

set YI lies within the set of strictly increasing distributions bounded above and below by
P(Y & tjZ¼ 1)P(Z¼ 1) þ P(Z¼ 0) and P(Y & tjZ¼ 1)P(Z¼ 1), respectively. One can also

characterize the identified set as a solution to an optimization problem. The second

approach is again to make prior restrictions similar to ones made above. An overall

parametric approach starts with a parametric distribution for Y and tries to study the
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identification problem of its finite-dimensional parameters using the truncated data. The

ensuing distribution may or may not lie in YI. In the latter scenario, the parametric model

would be rejected.

3.1.3. Missing outcomes and treatment effects. The above approach to identifying the

distribution of an outcome is important and is key in the literature on program evaluation,

which is typically interested in functionals of the joint distribution of two outcomes

(Y1, Y2),
8 where we observe one of two outcomes: We observe Y1 when an observed

random variable Z ¼ 1 and Y2 when Z ¼ 0. Average treatment effects can be derived easily

from the bounds above as these bounds can be extended easily to bounds on the mean.

Here, we posit F(t1,t2), the joint distribution of (Y1, Y2), as the parameter of interest.

Here, the problem is slightly more complicated because the sampling process is such
that we do not observe both Y1 and Y2 for any unit. In addition, the marginal distribution

of each is not point identified. As above, we study the information content of the model by

first examining what can be learned without further assumptions.

The joint distribution of (Y1, Y2) can be written as

P
#
Y1 & t1;Y2 & t2Þ ¼ F

#
t1; t2Þ ¼ C

#
F1ðt1Þ; F2ðt2Þ

$
;

where F1 and F2 are the marginals, and C(.,.) is a copula, a bivariate distribution with

uniform marginals. Hence, the sharp identified set on the joint distribution of (Y1, Y2) can

be written as the argmin of the objective function:

QðFÞ ¼ argmin
Cð:;:Þ;K1 ;K2

QðF;C;K1;K2Þ; ð3Þ

where

Q
#
F;C;K1;K2Þ ¼ d½F#t1; t2Þ;C#F1ðt1jZ¼ 1ÞP1 þK1ðt1ÞP0;F2ðt2jZ¼ 0ÞP0 þK2ðt2ÞP1

$*;
where P1 ¼ P(Z¼ 1) and P0 ¼ P(Z¼ 0). The above optimization is complicated and can be

hard to estimate with finite sample sizes. A slightly less cumbersome description of the

identified set can be obtained by exploiting the Fréchet bounds on joint distributions. For
example,

Fðt1; t2Þ ¼ Fðt1; t2jZ ¼ 1ÞPðZ ¼ 1Þ þ Fðt1; t2jZ ¼ 0ÞPðZ ¼ 0Þ:

Now using Fréchet’s bounds we have,

Fðt1; t2jZ ¼ 1Þ & min
#
F1ðt1jZ ¼ 1Þ; F2ðt2jZ ¼ 1Þ

$
& F1ðt1jZ ¼ 1Þ

and similarly,

Fðt1; t2jZ ¼ 0Þ & F2ðt2jZ ¼ 0Þ;

and so,

Fðt1; t2Þ & F1ðt1jZ ¼ 1ÞPðZ ¼ 1Þ þ F2ðt2jZ ¼ 0ÞPðZ ¼ 0Þ;

and these bounds are sharp. A similar bound can be derived for the lower bound.

8See the recent work of Fan & Park (2009) that derives bounds on functionals of Y1 – Y2.
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As above, to identify marginal treatment effects, a common approach is to invoke

(conditional) independence9 restrictions as in (Y1,Y2 ⊥ Z), which point identifies the

average treatment effects, for example, or any parameters that require only information
on the marginals. To identify the joint distribution, researchers use two approaches in

econometrics. The first approach is based on a fully parametric model that is guided by an

underlying economic model (e.g., see the classic works of Gronau 1974, Heckman 1974,

and Rosen 1974). This approach is useful in providing a tight link between empirical work

and theory. It allows researchers to conduct policy analysis and extrapolate off the support

of the data. Results from these exercises are interpreted within this model world. However,

it is understood that this approach suffers from a potential lack of robustness when one

tries to apply its results to a broader context (for more on sensitivity analysis in parametric
models, see Section 3.2 below).

The second, less parametric, approach in economics exploits another set of assumptions

based on exclusion restrictions and support conditions (e.g., see Heckman & Honoré

1990, Ahn & Powell 1993). These semiparametric approaches rely on exclusion restric-

tions and/or support conditions on a set of regressors to point identify the parameter of

interest. These approaches are interesting and useful and should be complementary to the

one in the above paragraph. Comparing the various sets of estimates obtained from these

various models would be useful. Even though identifying joint distributions, as in Equation
3, is complicated, economists should not trade convenience and simplicity for conviction

and sensitivity analysis.10

Remark 3.1: Inference in partially identified models is tied to inference in m-
estimation problems with nuisance parameters. Those latter parameters are

generally not of intrinsic or essential value to the analysis, but do create great

problems for inference (especially for constructing confidence regions with finite

sample sizes). Hence, mathematically, inference in a partially identified model is

similar to inference on the argmin of a well-defined objective function.

3.1.4. Inference in a linear model with interval data. The class of models considered

above is largely nonparametric. Now we maintain the assumption that the conditional

mean of Y is linear in X, a vector of regressors, i.e., E[YjX] ¼ X0b. Moreover, the outcome

Y is censored in a special way. It is interval measured; i.e., we do not observe Y, but rather
we observe [Y1, Y2] such that P(Y 2 [Y1, Y2]) ¼ 1, and the parameter of interest here is the

finite-dimensional parameter b. Therefore, the main maintained assumption is that the
latent conditional mean of Y given X is linear.

There are a number of ways to go about the identification analysis of b. I group them

under two main avenues below. First, we approach the problem without any added

assumptions about where Y lies within [Y1, Y2], so the amount of information about b
can be analyzed as follows. Here, the mechanics of characterizing the identified set can

vary. For example, let

9This is the assumption that basically legitimizes the “correlation implies causation” interpretation of mean
regression.
10Peterson (1976) shows that, in a competing risks model, any joint distribution of outcomes can be rationalized by
one in which the outcomes are independent. He further derives bounds on the joint distribution based on the
competing risks model. The statistics and biostatistics literatures seem to have largely taken Peterson’s results as a
justification for analyzing competing risks models under independent risks. This is unwarranted and should be
reconsidered, as independence is not a reasonable assumption in most settings.
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Y ¼ Y1lþ Y2ð1( lÞ;

where l is a random variable with distribution on [0,1]. Then the identified set for b can be

written as the argmin of the following objective function:

YI ¼ argmin
b

QðbÞ;

¼ argmin
b

!
argmin

Fl

ExðE½yðlÞjx* ( x0bÞ2
"
;

ð4Þ

where

E½yðlÞjx* ¼ E½Y1lþ Y2ð1( lÞjx* ¼ E½E½ljY1;Y2; x*ðY1 ( Y2Þjx* þ E½Y2jx*

and Fl is the expectation of l conditional on (Y1, Y2, x). There are other ways to charac-

terize YI by exploiting monotonicity in the problem. For example, it is easy to show that

the identified set can also be written as a moment inequality model:

YI ¼ fb 2 Rk : E½Y1jx* & x0b & E½Y2jx*g;

which can be written as the argmin of the objective function

QðbÞ ¼ E½wðxÞðE½Y1jx* ( x0bÞ2þ þ ðE½Y2jx* ( x0bÞ2(*Þ*;

where w(.) is a nonnegative weight function, (a)þ ¼ a1[a ' 0], and (a)( ¼ a 1[a & 0]. This

is the modified minimum distance approach introduced in Manski & Tamer (2002). All the

above approaches will deliver YI.

Another identification strategy is to model the relationship between Y and (Y1, Y2)
parametrically, using a link function. For example, assume that Y ¼ g(Y1, Y2, y), where

g() is known, y is an unknown (nuisance) parameter, and g(Y1, Y2, y) lies between [Y1, Y2].

It is possible now that both y and b are point identified, so this would provide a simple and

convenient approach to inference in regressions with interval data. As usual, results and

conclusions in this approach should be compared with ones obtained above. A sensitivity

analysis is possible and practical in this model.

Remark 3.2: The nature of the identification problem in the linear model is
different from the above nonparametric cases in that the analysis was done

under the maintained assumption that the conditional mean of Y is linear inX,

which is untestable11 generally given the censoring of the outcome Y. Why

were we comfortable with the linearity assumption? We need not be. In fact, if

our parameter of interest is E[YjX], then it is obvious that E[YjX] lies between

E[Y1jX] and E[Y2jX]. However, linearity of the conditional expectation is

widely used in empirical work, and linear least squares, for example, can be

interpreted, absence censoring, as the best linear approximation of this condi-
tional mean function under square loss. If the parameter of interest were the

best linear approximation to the (latent) conditional expectation E[YjX] under

squared loss (i.e., in the case in which the linearity assumption is not necessar-

ily true), then YI above is a subset of the identified set (see Ponomareva &

11It is certainly true that if the identified set in Equation 4 is empty, then the linearity can be rejected. However, if this
identified set is nonempty, then it does not follow that the conditional mean must be linear. Linearity is a sufficient
condition for the identified set to be nonempty, but it is not necessary.
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Tamer 2009). A full analysis of identification in this model depends on the

parameter of interest and the purpose of the analysis. For example, the non-

parametric no-assumption bounds might be uninformative if one is interested
in the density of YjX (as opposed to the conditional mean). However, these no-

assumption bounds are informative if one is interested in the conditional

distribution function of YjX.

Researchers have exploited the above approaches to inference in empirical work. Here I

highlight only two examples. Haile & Tamer (2003) study the problem of inference in

English auctions, when data reveal bids from a set of independent auctions. The object of

interest in these independent private values models of auctions is usually the underlying
distribution of valuations. The question becomes one of linking the observed bids from an

auction to the underlying valuations. The authors make two weak assumptions to analyze

this inferential problem. They first assume that the winning bid is an upper bound on all

losing valuations (within the minimum bid increment), and then they assume that no bidder

is willing to bid above her valuation. These two assumptions, along with the independence

of valuation within an auction, imply nontrivial upper and lower bounds on each valuation

within every auction. These bounds are computed by exploiting natural and well-known

properties of order statistics. In this setup, the authors are able to characterize information
about the bid distribution under weak necessary conditions for equilibria in a set of auction

models, and hence the inferential result based on these assumptions is consistent with all

models within this set. This contrasts with a particular parametric model linking bids to

valuations based on one particular model of auctions, for example. In addition, to conduct

policy experiments, one is interested in the optimal reserve price. The authors show that it

is possible to place bounds on this reserve price with only the weak assumptions on behav-

ior above. This is all done in a nonparametric framework, in which only weak behavioral

assumptions are imposed, motivated by the realities of auction data. Finally, if we assume
that the conditional distribution of valuations is linear in some vector of auctions and/or

bidder characteristics to accommodate auction heterogeneity, the framework now fits

under the interval data example described above. Haile & Tamer (2003) then apply these

bounds to data from U.S. Forest Service timber auctions, focusing on reserve price policy

(for another partial identification approach to inference with auction data, see Tang 2008).

Blundell et al. (2007) is another interesting empirical example that implements partial

identification ideas to deal with the important selection problem into the labor force using

the distribution of wages in the United Kingdom. The authors show that worst-case bounds
on the wage distribution allowing for nonrandom selection into the labor force are infor-

mative. They then use a set of assumptions, motivated by economic theory, to narrow these

bounds further. Using the partial identification approach, they find evidence of increases in

the relative wages of women. We next discuss another example in which the partial

identification approach is fruitful.

3.2. Example 2: Identification in a 2 , 2 Entry Game

This example illustrates the partial identification approach to analyzing the identified
features in a simple 2 , 2 entry game. A discrete entry game is an economics model in

which two players (e.g., firms, individuals, entities) decide to enter or not enter, and their

decision is interdependent: One player’s action impacts the other’s utility or payoff and vice

versa. In an entry game, if a player decides not to enter, that player earns zero profits.

182 Tamer

R

E V I E W

S
 

I
N

 

A
D V A N

C
E

 

Changes may still occur before final publication online and in print.

A
nn

u.
 R

ev
. E

co
n.

 2
01

0.
2.

 D
ow

nl
oa

de
d 

fro
m

 a
rjo

ur
na

ls.
an

nu
al

re
vi

ew
s.o

rg
by

 N
O

RT
H

W
ES

TE
RN

 U
N

IV
ER

SI
TY

 - 
Ev

an
sto

n 
Ca

m
pu

s o
n 

06
/1

8/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



3.2.1. What are we interested in? In empirical settings with interactions, a model of

strategic behavior is used in which restrictions on player information, behavior, and equi-

librium are crucial to determining their actions. An essential part of any identification

analysis in these settings is to derive the link between the data and the underlying structure

given the behavioral assumptions made. For instance, the data provide information on who

is in the market; therefore, does observing (1,1) mean that a duopoly is necessarily a pure

strategy equilibrium of the game? What if one allows some form of rational play, but not
full equilibrium, or if one allows for mixed strategies? How would that affect this link?

These are important questions to address in any identification study in these settings.

With data on entry in a cross section of markets, a parameter of interest can be the

probability that player 1 enters the market given that player 2 is in the market, and we can

compare that with the probability that player 1 is in the market when player 2 is not. This

is a treatment-effect-like counterfactual that is of interest because we do not observe what

player 1 would have done had player 2 not entered the market that player 2 is in. Other

parameters of interest include variable profits and the joint distribution of fixed costs.
Therefore, if researchers are interested in answering questions related to policy changes

within a model, then a more parametric approach can be used in which links between

profits, fixed costs, and demand are more transparent and manipulable, and prediction off

the support is possible.

I begin with a parametric version of the game and show how a partial identification

approach to inference allows one to study the robustness of the information provided to

certain assumptions about which researchers have disagreed, such as equilibrium selection

mechanisms. Mechanically, the partial identification approach portrays the sensitivity of
information about the parameter of interest when we relax the nonplausible assumptions

and allow that part of the model to vary in its logical domain. I also describe a nonpara-

metric approach to the game in which worst-case bounds are derived.12

Consider the following bivariate game in which we observe a random sample of obser-

vations (Y1i, Y2i, X1i, X2i) for i ¼ 1, . . ., N, and Yli is the binary 0/1 outcome for firm l in
market i, where l ¼ 1, 2 (Table 1). To abstract away from statistical issues and focus on the

identification question of what the knowledge of the joint distribution of (Y1, Y2, X1, X2)

tells us about the parameter of interest, we assume that this distribution is known. More-
over, throughout this section we assume that the players know (e1, e2) (and theX’s) but that

the econometrician does not observe the e’s. It is possible to relax this complete informa-

tion assumption.13 We also assume throughout that the D’s are negative, as duopoly profits
are lower than monopoly profits.

Here we consider sets of assumptions that are made on the model and relate those to the

parameter of interest. These models are listed in decreasing order, starting with a fully

parametric model and ending with a nonparametric model.

3.2.2. Parametric Model. One approach to the above problem is to assume that (e1, e2)
have a parametric distribution FO that is known up to O, a finite-dimensional parameter,

12The empirical literature on estimation in games is rich and diverse (e.g., see Bresnahan & Reiss 1991, Berry 1992,
Tamer 2003, Sweeting 2004, Aradillas-Lopez 2005, Bajari et al. 2005, Pakes et al. 2005, Aradillas-Lopez & Tamer
2008, Ciliberto & Tamer 2009, Grieco 2009).
13See the work of Grieco (2009), who assumes that the players observe part of e and hence considers two errors, one
observed by all the players and another observed by only one player. Both errors remain unobserved by the
econometrician.
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and that is independent of the X’s. We also assume that the players are playing Nash

equilibrium. One final issue to deal with is that the game above admits multiple equilibria;

i.e., fixing values for all exogenous variables (including the unobserved ones), the model

predicts multiple outcomes in some cases (for more details, see Tamer 2003, Ciliberto &

Tamer 2009). Therefore, even with these parametric assumptions made, the model struc-

ture is incomplete, and we need to model the selection function to obtain a complete
likelihood. This likelihood (or the choice probabilities predicted by the model) depends on

(Y1, Y2,X1, X2, y, S), where y ¼ (b1, b2, D1, D2, O). The function S is a probability function
that picks one of the equilibria in regions of multiplicity. It is a function of both the e’s and
the X’s in its most general form. Economists have little information about S. In fact, it is

difficult to think of a future data collection that would contain information that would

allow us to consistently estimate this function. Conversely, the linearity of the systematic

part of utility is not as problematic because this represents variable profits, which are a

function of demand, and economists have information about the shape of demand (perhaps
from other data sources). The joint distribution FO, along with the independence restric-

tion, is more crucial. However, in the discrete choice literature, there has been a lot of work

in the single-agent case relaxing these assumptions. Therefore, as a first step, one would

like to study the identified features of the model—y—and examine whether these infer-

ences are sensitive to the specification of S. The identified set can be defined as

YI ¼ argmin
y

#
argmin

S
(ELðY1;Y2;X1;X2; y; SÞ

$
;

where L(.) is the likelihood of the model (for the exact form of this likelihood, see Berry &

Tamer 2006). Generally, inference about the parameter y is rendered difficult with the

presence of the function S. It is possible that the likelihood above is not point identified;

i.e., there exists (S1, y1) 6¼ (S2, y2) such that

ELðY1;Y2;X1;X2; y1; S1Þ
$
¼ ELðY1;Y2;X1;X2; y2; S2Þ

$
¼ EL0;

where EL0 is the true likelihood. Therefore, this approach to inference embeds sensitivity

analysis within the specification of the likelihood and indexes the class of models by the

nuisance function S. Estimates ofYI can be obtained using sieve semiparametric likelihood

methods as in Chen et. al. (2010) and Grieco (2009). This will take into account the effect
of the nuisance parameter, and hence the identified set contains the set of parameters y
from the various models for S that are consistent with the model and the data. So the

partial identification approach here is geared toward the sensitivity of our inferences with

respect to a key assumption on the selection function. One can also use interesting recent

work on random set theory to characterize the set YI using techniques developed by

Beresteanu et al. (2008) and Galichon & Henry (2009).

With regard to the routinely made behavioral assumption that the players are playing a

Nash equilibrium, analysts can examine the identifying power of this assumption by

0,0 0, Χ2' β2 + ε2

1

0

Χ1' β1 + ε1,0 Χ1' β1 + Δ1 + ε1,  Χ2' β2 + Δ2 + ε2

0 1

Player  1

Player  2

Table 1 Bivariate discrete game
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maintaining only that players be rational [for more details, see Aradillas-Lopez & Tamer

(2008), who study the identifying power of rationalizable strategies in entry games and in

first price auctions].

3.2.3. Nonparametric Model. Now suppose one wants to answer the counterfactual prob-
ability contrast while maintaining minimal assumptions, as in Kline & Tamer (2009). This

is similar to examining the identified feature of the following entry game in which the p’s in
Table 2 are random variables that are arbitrarily distributed and one observes an indepen-

dent and identically distributed data set from a cross section of markets. The data consist of

pairs of outcomes (a1i, a2i) from market i, where aji 2 {0, 1} for j ¼ 1, 2. The object of

interest is to learn P(Y1(1) ¼ 1) and P(Y2(1) ¼ 1) using our knowledge of the data

frequencies. The function Y1(1) is player 1’s best response to player 2 entering the market,

and similarly for Y2(1). The function Y1(.) can be considered a treatment response function
for player 1, in which the treatment is whether player 2 is in the market. As in the

parametric game above, the link between the observed outcomes and the underlying best

responses is complicated because of the presence of multiple equilibria and mixed strategies,

both common in these setups. Then how do we proceed? Without making any assumptions

on the p’s, it is easy to show that under complete information, P(Y1(1)) is equal to

Pðy1ð1Þ ¼ 1Þ ¼ Pðp11 ' 0Þ
¼ Pðp11 ' 0jð1; 1ÞÞð1ÞPð1; 1Þ þ Pðp11 ' 0jð0; 0ÞÞPð0; 0Þ

þ Pðp11 ' 0jð1; 0ÞPð1; 0Þ þ Pðp11 ' 0jð0; 1ÞÞPð0; 1Þ;

where the unconditional probabilities are identified from the data [i.e., P(1,1) ¼ P(a1 ¼ 1,
a2 ¼ 1)] (for more details, see Kline & Tamer 2009). The object of interest P(Y1(1)) is not

point identified, but rather under rationality (which is weaker than Nash), we get

PðY1ð1Þ ¼ 1Þ 2 ½0;PðY1 ¼ 1Þ*;

whereas if we assume that the players are playing only pure strategies, then the sharp

bounds become

PðY1ð1Þ ¼ 1Þ 2 ½PðY1 ¼ 1;Y2 ¼ 1Þ;PðY1 ¼ 1Þ*:

Therefore, it is possible to learn about these counterfactual probabilities without making

assumptions on the forms of the profit function. Which way to proceed, a top-down
approach or a bottom-up approach, depends on the interest of the empirical researcher.

As demonstrated above, the partial identification approach to inference in this section

enriches and strengthens the exercise, allowing the researcher to really explore the source

of the results and the influences of her estimates. This approach to inference is not a

substitute for economic modeling, but rather is a disciplining tool that measures the cost

of information with respect to the assumptions made.

0,0 0,π2
0

π1
0 ,0 π1

1,π2
11

0

0 1

Player 1

Player 2
Table 2 Bivariate discrete game with general payoffs
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4. STATISTICAL INFERENCE

The identification analysis above supposes that we have access to an arbitrarily large

sample size. This allows us to focus on the problem of identification, or the question of

what we can learn under ideal conditions. Practically, empirical work deals with data with

a finite sample size, and hence one needs to account for statistical uncertainty when

conducting inference about parameters. The general problem that arises in partially identi-

fied models is inference on the set of minimizers of an objective function and, more
crucially, allows for cases in which this set is nonsingleton. The literature on inference is

involved, so here we highlight some important issues, describe general methods for infer-

ence, and point to relevant papers for more detailed results. We first study the general

inference problem with a generic objective function. Then we analyze a case in which the

identified set can be written as the set of parameters that satisfy a vector of moment

inequalities. We discuss only cases in which y belongs to some finite-dimensional space.

Partial identification approaches in semiparametric models in which the parameter of

interest is infinite dimensional compose a developing area of research.

4.1. Is the Identified Set the Parameter of Interest?

It is certainly interesting to conduct inference on the set of minimizers of an objective

function. This set represents generally the values of the parameter that are consistent with

the maintained assumptions. Each parameter within this set is related to a complete model.

This is particularly useful in parametric cases in which sets of parametric models are

considered, with each of these models corresponding to a different parameter that belongs
to the identified set.14

Another parameter of interest is the so-called true parameter that generated the data, y*.
This parameter is not point identified, but all we know is that y* 2 YI. Inference on the

(potentially) non-point-identified parameter takes the view that the unique data-generating

process (DGP) lies in the basin of the class of models under consideration, which is not the case

if the class of models is misspecified. In general, both the identified set and the true parameter

are objects of interest, and in doing statistical inference on either, one faces delicate and subtle

problems that are different than those faced in models with point-identified parameters.
The general framework for statistical inference is one of m-estimation in cases in which

the objective functionQ(.) admits a nonunique minimum. The identified set of interest can

be expressed as

YI ¼ argmin
y

QðyÞ; ð5Þ

where we assume for convenience thatQ(y) ' 0 for all y. We first define a set estimator for

YI and discuss the consistency of this estimator in the Hausdorff distance. Consistency is

naturally only worked out for the identified set. The formal results, and assumptions

needed, including regularity conditions, are only referenced, and I focus on heuristic de-

scriptions that are meant to give a sample of statistical work in this area.

14Also, in misspecified partially identified models, one can define the parameter of interest as the set of parameters
that minimize a certain distance between the model set and the DGP (the data). There is not a true parameter in this
set, but rather the parameters in this set are defined through the distance function, and hence inference on the whole
set is more plausible.
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4.2. Consistency

The object of interest is YI, defined in Equation 5 above, where the function Q(.)

must obey a set of conditions, such as lower semicontinuity, and where there exists a

well-defined sample objective function Qn(.) that converges uniformly to Q(.) (see the

exact conditions in Chernozhukov et al. 2007, condition C.1, p. 1252). The sample esti-

mators we consider are sequences of properly defined level sets for the objective function

Qn(.). Results on the consistency of level sets in econometrics were first given by Manski &
Tamer (2002) and Chernozhukov et al. (2007), who also provide rates of convergence

under more general conditions. The estimator for YI is the level set

CnðcnÞ ¼ fy : QnðyÞ & cng; ð6Þ

and we use the Hausdorff distance between sets to define consistency. When cn - ln n

n
, for

example, Chernozhukov et al. (2007) show that

dH Cn
ln n

n

% &
;YI

% &
¼ Op

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðln n; 1Þ=n

q% &
;

which is close15 to the
ffiffiffi
n

p
parametric rate.16

The consistency theorem is not as useful with general objective functions as it is not

clear in practice how one would choose cn. In cases in which the boundary of the identified
set is an explicit function that can be estimated consistently, then a consistent estimator of

the identified set can be obtained easily by replacing the boundary by its sample analog.

This is a common class of problem in which the identified set is an interval, for example, as

in YI ¼ [y1, y2], where y1 and y2 can both be estimated consistently from the data.

4.3. Confidence Regions

It is important for empirical work to summarize sampling uncertainty due to small sample

sizes using a confidence region. Typically, econometricians use large sample approxima-

tions to do that. I highlight this approach here from a frequentist perspective (for recent

work on inference in partially identified models from a Bayesian perspective, see Liao &

Jiang 2009, Moon & Schorfheide 2009). The confidence regions for YI and those for y*
are different here. We first highlight a subsampling-based empirical approach to construct

these confidence regions. Subsampling is a resampling technique used to approximate large

sample distributions. This technique is general and can be used in identified sets defined as
minimizers of an objective function. I then discuss different approaches, some of which

have been shown to be more powerful than subsampling, for the class of problems in which

the identified set is defined through moment inequalities. Inference in these models is

complicated because there exist problems with nuisance parameters that are manifested

through a subtle property, mainly that of uniformity of coverage with respect to all possible

DGPs. This uniformity issue is described in more detail below. Overall, the discussion is

descriptive but sufficiently detailed to allow one to obtain a snapshot of the kinds of work

in this literature.

15For exact conditions, such as the existence of polynomial minorants on Qn(y), see Chernozhukov et al. (2007).
16In cases in which the identified set YI has a nonempty interior, or more precisely when any point on the boundary
of YI is arbitrarily close to some point on the interior, it is possible to set cn ¼ 0 and get the sharp rate of

ffiffiffi
n

p
.
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4.3.1. Confidence regions for an identified set using subsampling. Consider the objective

function Qn(.), where we are interested in constructing a confidence region for the set YI.

One approach, described here, follows Chernozhukov et al. (2007) and is based on

subsampling. Another similar approach is detailed in Romano & Shaikh (2008). The set

that we construct, similar to the consistent set, is a level set Cn(cn), where cn is chosen in a

particular way. For instance, we consider the level set in Equation 6. Consider Bn subsets
17

of size b . n. First, let c0n ' infy Qn(y). Usually, one can set C0n to be 10% higher
than the infimum of Qn. Second, compute c1n as the a-quantile of the sample

Ĉj;b ¼ fsupCnðc0nÞ Qj;bð:Þ : j ¼ 1; . . . ;Bng, where Qj,b is the objective function evaluated at

the j-th subsample. Third, repeat the second step above three to four times to get ĉ. Report
Cn(ĉ), which is a valid confidence region, i.e., P{YI / Cn(ĉ)} ¼ a, and a consistent set

estimator (for the precise statement of the theorem, see Chernozhukov et al. 2007, theorem

3.3; see also Romano & Shaikh 2010).

The result above is powerful and applies to general objective functions, but the

approach using subsampling relies on conditions on the objective function that need to be
satisfied. For specific problems, such as objective functions based on moment inequalities,

it is possible to use a modified bootstrap procedure, or simulation methods to do inference

on the setYI (e.g., see Chernozhukov et al. 2007, remarks 4.5 and 4.6). Finally, for another

approach to do inference on sets based on random set theory, we refer the reader to

Beresteanu & Molinari (2008).

4.3.2. Confidence regions for an identified parameter using subsampling. Imbens &

Manski (2004) consider inference on the identified parameter in simple setups. They argue

that there is usually a unique parameter y* that is the true parameter of interest, even

though this parameter is not point identified. Most importantly, confidence regions for y*
are no larger that the confidence regions for the identified set. Here, we highlight

an approach to obtaining a confidence region Cn for y*, i.e., P(y* 2 Cn) ' a as n ! 1.

Imbens & Manski (2004) also point out that there is a subtle but important property that

comes up while constructing these confidence regions, mainly that one needs to ensure that

these confidence regions are uniform in the DGP, i.e., that in cases in which the underlying

model is point identified, or close to point identified, the size of these confidence regions is

maintained. This is a problem similar to inference in models with parameters on the

boundary, in which values of the true parameter near or on the boundary cause problems
for standard large-sample approximations. Uniformity problems arise typically in nonstan-

dard models in which the asymptotic distribution is a nondifferentiable function of the true

parameter. The validity of subsampling methods in non-point-identified models has been

considered by Chernozhukov et al. (2007), Romano & Shaikh (2008), and especially

Andrews & Guggenberger (2009a,b).

The general idea of constructing a confidence interval for the true parameter y* is to

exploit the duality between testability and the confidence region. In essence, a confidence

region is the set of parameters that cannot be rejected. Therefore, this pointwise approach
to constructing a confidence region for the true parameter considers every parameter in the

parameter space and uses a criterion-based test to determine whether one fails to reject the

hypothesis of whether this parameter is the truth. The collection of all the parameters that

17In larger samples, confidence regions should be computed for a series of subsample sizes starting with b ¼ n/5, for
example (for more details on subsample sizes, see Politiset al. 1999).
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cannot be rejected constitutes the confidence region. There are many approaches to do this

in econometrics, especially for models defined by moment inequalities (e.g., see Bugni

2007, Canay 2007, Chernozhukov et al. 2007, Romano & Shaikh 2008, Rosen 2008,
Andrews & Soares 2009). Andrews & Jia (2008) provide a way to construct an objective

function based on moment inequalities that allows for confidence regions that are size valid

but also optimal from some power criterion (see also Chiburis 2009). Here, we follow the

approach in Chernozhukov et al. (2007) and Romano & Shaikh (2008) in constructing a

confidence region. These methods apply not just to moment inequalities, but also to other

general models based on minimizing objective functions.

Start by choosing a parameter y in the parameter space, and then use the value of nQn(y)
as the test statistic under the null that y* ¼ y, where we add y to the confidence region if
nQn(y)& ĉ(y), where ĉ(y) is a critical value that we construct using subsampling (for example

conditions needed and statements of the theorems, see Chernozhukov et al. 2007, section 5,

and Romano & Shaikh 2008, section 3.2; Chernozhukov et al. 2007, see theorem 5.2, also

provide critical values constructed using bootstrap and simulations). We outline an approach

for general objective functions and then consider a simple example below.

We assume here thatQ(y)' 0, for all y, andQ(y0)¼ 0. Therefore, to test the hypothesis

that y0 ¼ y, we compute the critical value, cn(a, y), of the test statistic nQn(y) as follows.

Let

cn a; yð Þ ¼ inf t :
1

Bn

X

i

b Qi;b yð Þ (Qn yð Þ
( )

& t
* +

' a

( )
;

where we recenter, as recentering can lead to better finite sample values. The confidence

region is then Cn ¼ {y 2 Y: nQn(y) & cn(y, a)}. In empirical examples, it is preferable to

redefine Qn(y) and use instead Q
0

nðyÞ ¼ QnðyÞ ( inftQnðtÞ to ensure that the confidence

region is nonempty.

4.4. Confidence Regions in Interval Bounds: A Simple Example

Here, I highlight the inference approaches in the canonical example of a scalar parameter

y* and where the identified set is

YI ¼ ½yl; yh*; ð7Þ

where yl and yh can be consistently estimated. This is a simple and important example
covering cases in which the parameter of interest is scalar and one is able to solve for the

upper and lower bounds as functionals of the observed data distribution. We first start with

a confidence interval that covers YI with a prespecified probability a. Then we highlight

various approaches to construct intervals that cover the identified parameter y* with

probability a.

4.4.1. Confidence region forQI ¼ [ul,uh]. Here, we are covering the interval in Equation 7

above, so heuristically a confidence region would be a set of intervals. One way to do that

is to use a joint confidence region on the end points and map that into a confidence region
for YI, imposing the fact that the joint confidence region on the end points is under the

constraint that it is an interval in which the right end point is higher than the left one. One

easy approach is to generate via the bootstrap a set of intervals and take the smallest

interval that fits a% of the generated intervals within it. This approach was used, for
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example, in Horowitz & Manski (2000) and other papers. Here we follow our analysis

above and derive an objective function that is minimized on YI. One such objective

function is

QðyÞ ¼ ðyl ( yÞ2þ þ ðyh ( yÞ2(; ð8Þ

where ðaÞ2þ ¼ a21½a > 0* and similarly for ðaÞ2(. Notice that Q(y) ' 0 and Q(y) ¼ 0 if and

only if y 2 YI. Assume that we have ŷl and ŷh such that
!
ŷl ( yl
ŷh ( yh

"
!dZ( ¼

!
Z(1

Z(2

"
;

where Z(( is a bivariate normal distribution with a strictly positive variance. As above, our
confidence region will be a level set as in Cn(c) ¼ {y: nQn(y) & c}, where

QnðyÞ ¼ ðŷl ( yÞ2þ þ ðŷh ( yÞ2(: ð9Þ

We know that the event {YI / Cn(c)} is equivalent to the event supy2YI
nQn (y) & c, so the

asymptotic behavior of supy2YI
nQn (y) is used to determine the coverage probability. In

particular, it is easy to show that

sup
y2YI

nQnðyÞ!dmax
#
ðZ(1Þ2þ; ðZ(2Þ2(

$
:

Therefore, one can obtain ca, the a-quantile of the asymptotic distribution above, via

simulation to get the confidence region Cn(ca).

4.4.2. Confidence region for u* 2 [ul, uh]. Imbens & Manski (2004) argue that one can

report the confidence region on the parameter y* 2 [yl, yh]. To build this confidence

interval, one can collect all the parameters y that cannot be rejected under some appropri-
ate test that they belong to YI. There are many approaches to building such an interval.

Here, as in above, we build these based on the simple objective function (Equation 8). The

choice of the objective is relevant in moment inequality models and can impact the power

of the test (for more details, see Andrews & Jia 2008). An important issue that arises in

these settings is that of the uniform consistency of the testing procedure, which impacts the

asymptotic behavior of the test statistic.

I provide here a simple and heuristic discussion of the issue of uniformity (for a discus-

sion of uniformity in the interval bounds setting, see Imbens & Manski 2004; for a
thorough discussion of uniformity in these, and other, contexts, see Andrews &

Guggenberger 2009a,b). Some, but not all, procedures are uniformly consistent, which is

a property stronger than consistency. Recall that a procedure is consistent if, for any true

null hypothesis, the rejection rate in repeated sampling is not much more than the nominal

rejection rate, as long as the samples are at least of some minimal size. The exact definition

of uniform consistency is technical and varies somewhat between papers, but at a mini-

mum, uniform consistency strengthens consistency to require that the same minimal sam-

ple size controls the rejection rate for all true null hypotheses. In addition, uniform
consistency often requires also that the rejection rate be controlled across not only different

true null hypotheses, but also different DGPs.

Uniform consistency is best understood in the context of a simple example. Consider

again the moment inequality model with the identified set YI ¼ {y: yl & y & yh}. Suppose
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that we are interested in constructing a 95% confidence set for y* 2 YI. Consistency

requires that any y 2 [yl, yh] is an element of the confidence set with a probability close

to at least 95% in repeated sampling, as long as the samples are at least of some
minimal size. The minimal sample size is allowed to depend on the exact value of the

parameter y, and therefore consistency does not rule out that, for any sample size, there

are many elements of the identified set that are rejected by the procedure with very high

probability. Uniform consistency, conversely, guarantees that there is one fixed minimal

sample size such that any y 2 [yl, yh] is an element of the confidence set with a

probability close to at least 95%, as long as the samples are at least that one fixed

minimal size. In other words, the minimal sample size is no longer allowed to depend on

the exact value of y. In particular, uniform consistency will maintain the size of the
confidence regions even when the DGP is such that yl ¼ y* ¼ yh; i.e., y* is point

identified. This requires some modification of the standard approach of constructing

the confidence interval for a fixed DGP (e.g., see Imbens & Manski 2004 for a discus-

sion of a procedure that is consistent but not uniformly consistent across a family of

DGPs including point identification).

There are many ways to construct a confidence region that is uniformly consistent. We

use an approximation to the asymptotic distribution of Qn(.) above in which we can easily

show under the null (see Chernozhukov et al. 2007, section 5) that

nQnðyÞ!dQ ¼
#
Z(1 þ x1ðyÞ

$2

þ
þ
#
Z(2 þ x2ðyÞ

$2

(
; ð10Þ

where 11(y) ¼ –1 if yl 5 y and is equal to zero otherwise, and x2 ¼ þ 1 if yh > y and is
equal to zero otherwise. The x’s are parameters that cannot be estimated consistently.

However, we can estimate the a-quantile of Q by simulating the distribution of the random

variableQn,

Qn ¼
#
Z(1 þ xn1ðyÞ

$2

þ
þ
#
Z(2 þ xn2ðyÞ

$2

(
;

where we can simulate the distribution of (Z(1, Z((2) and set, for example, xn1 ¼ (1 if

ŷl þ c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn=n

p
5y and is equal to zero otherwise for some positive constant c1, and

similarly for xn2. Other approaches to constructing a confidence interval in this case can be

used, such as ones based on the pseudo-likelihood approach of Rosen (2008), empirical
likelihood (as in Canay 2007), bootstrap (as in Bugni 2007), or the generalized moment

selection procedures (introduced in Andrews & Soares 2009 and further refined in

Andrews & Jia 2008). Subsampling-based intervals can also be constructed, as in

Chernozhukov et al. (2007) and Romano & Shaikh (2008).

5. CONCLUSION

The partial identification approach to inference in econometric models takes as its starting

point a set of assumptions that define a model and the data to learn about a parameter of

interest, which is a finite-dimensional parameter or a function in a general space. This
approach to identification clarifies what and how can one learn about this parameter, by

first describing what can we hope to learn about this parameter with an infinite data set

and then setting out to characterize the statistical uncertainty with a finite sample (as

opposed to knowledge of the population). The key distinguishing feature of this approach
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to inference is the view that identification is not a one or zero event and that instead of

looking for esoteric point identification assumptions, researchers should understand the

map between information and assumptions characterizing what can be learned under
different sets of assumptions.

Economists have long valued models to gain insights, polish and discipline their com-

munication, and examine what can happen within these toy economies under different

policies. Data also play an important role in shedding light on certain postulates, disciplin-

ing theories and informing policy. However, most models contain a subset of assumptions

based only on convenience—analytical or computational—such as functional forms or

distributional assumptions. The choice of assumptions for investigation is problem spe-

cific. However, in most cases, these suspect assumptions are ones where there is no wide-
spread consensus and accord about their validity. The partial identification approach

allows one to probe and scrutinize the importance of these assumptions by examining their

effects on conclusions drawn about the parameter of interest. It quantifies the (old) view

that sensitivity analysis is important.

There is a lot of work ahead. For example, some inference methods referenced above are

computationally intensive—e.g., to construct level sets—so advances in computational

methods tailored toward these problems are essential. Also, inference in models in which

the parameter of interest is infinite dimensional, and in which this parameter is partially
identified, is also an important area of research. A good step in that direction is the work of

Santos (2008). On a broader level, theoretical work such as that of Gilstein& Leamer (1983)

is certainly in the spirit of partial identification, but its practical usefulness has not been

exploited. I conjecture that this may be because this robustness approach implements what is

theoretically attractive—collecting the estimates from a large set of models—but is practi-

cally challenging in a general setup. I believe one can take Gilstein & Leamer’s (1983) vision

to more specific problems andmake use of the body of work thus far on inference procedures

to implement it. A step toward this goal is the recent work of Chen et. al. (2010).
The hallmark of microeconometric work in the past 30 years has been concern with

semiparametric models, with its main motivation being that of robustness against one class

of assumptions or another. In the past two decades, partial identification, and the analysis

of econometric models that are not necessarily point identified, has entered the realm of

what econometricians accept, think about, and consider, and this approach to inference has

appeared in important empirical work. Therefore, there is no better time for empirical

economists to be clear about what inferences can be made with what assumptions. This

will lead to a better empirical program, one that is clear and transparent, combining both
the data and valid economic assumptions. This is exactly what is required from any serious

scientific program.
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