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Abstract

We consider identification of parameters in dynamic binary response models with
panel data under minimal assumptions. This model is prominent in empirical eco-
nomics as it has been used to infer state dependence in the presence of unobserved
heterogeneity. The main results in the paper are characterizations of the identified set
under weak assumptions. Relative to the results in the seminal work of Honoré and
Kyriazidou (2000) (HK) we make several advances: 1) our identified set do not require
any restrictions on the support of the observables; for example, unlike HK, we allow
for time trends, time dummies, and/or only discrete covariates; 2) our main results are
derived under the assumption that the idiosyncratic error terms are stationary over
time conditional on only the fixed effect and the covariates (and without conditioning
on initial conditions); this is in contrast to most dynamic nonlinear panel data models
including HK that use stronger restrictions on the initial conditions and require inde-
pendence over time; 3) we show that it is possible to get point identification in some
cases even with T = 2 (two time periods). For inference, and in cases with discrete
regressors, we provide a linear programming approach to constructing confidence sets
for the parameters of interest that is simple to implement. We also simulate the size
and shape of identified sets in varying designs to illustrate the informational content of
different assumptions. As illustration, we estimate women’s labor force participation
using the data set from Chay and Hyslop (2014).
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1 Introduction

We consider the binary dynamic panel data model that relates the outcome in period t for

individual i, yit, to its lagged value yi,t−1 in the following way

yit = I{uit ≤ x′itβ + γyi,t−1 + αi} t = 1, 2, ...T (1)

We are interested in learning about θ = (γ, β′)′ using and iid sample on n entities for T

time periods. This parameter θ is treated as a fixed (but unknown) constant vector while

the unobservables here take the standard form uit−αi where αi is an individual specific and

time independent “fixed effect,” and is meant to capture the systematic correlation of the

unobservables over time1, while uit is an idiosyncratic error term that is both time and entity

specific. The parameter γ is of special interest as it measures the effect of state dependence

(also switching costs or inertia). A fixed effect approach treats αi as possibly arbitrarily

correlated with the regressor vector xi = (x′i1, . . . , x
′
iT )′. The challenge is to identify θ under

general assumptions on the conditional distribution of ui = (ui1, . . . , uiT )′. Another serious

complication in this model is the treatment of yi0, or the initial condition, and in particular

its relationship to the unobservables over time.

In econometric theory, the literature that has studied this model is vast (see Section

1.1 below), but the benchmark theoretical results are in Honoré and Kyriazidou (2000)

(HK). In its most general form, HK considers a particular version of the above model that

maintains the following: 1) ui is independent of (xi, αi), 2) ui is iid over time, i.e., uit is

independent and identically distributed with uit′ for all t, t′ ≤ T, t 6= t′ and in particular

3) ui is independent of yi0. In addition, HK’s identification results, focused on obtaining

point identification, require that one is able to match regressors for the same individual

over time, i.e., point identification (and for that matter consistency of their estimator) is

only guaranteed if there is overlapping support in regressors, and hence there is a set of

observations where xit = xit′ for t 6= t′. So, this point identification strategy rules out models

where the vector xit contains time trends or time dummies. This paper substantively relaxes

all these assumptions. First, we characterize the identified set of the model when a weak

stationarity assumption is maintained on ui. We require that ui1 has the same distribution

as uit for all 1 < t ≤ T conditional on (αi, x
′
i)
′. This weak stationarity restriction is in

1Though in this paper we treat γ as a fixed parameter to be estimated, it is possible to extend the
approaches here to cases where γ can be modeled as some function of regressors.
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line with the stationarity restriction used in Manski (1987) for the analysis of the static

treatment of this model and so we allow for serial correlation, and heteroskedasticity. More

importantly, this stationarity restriction does not condition on the initial condition yi0. Also

and importantly, we do not make any restrictions on the support of xi and so allow for time

trends, time dummies, etc. Finally, our identified sets, which are unions of convex polytopes,

are characterized by sets of linear inequalities that hold for any T and are simple to compute.

These identified sets contain information about θ even in the case when T = 2.

The paper also contains a set of additional results. We first strengthen the stationarity

restriction, but in such a way that the model is still less restrictive than HK. Specifically we

require that stationarity now holds conditional on y0, whereby, similarly to xi, the initial

condition is now strictly exogenous. We then derive our new identified set under this model.

Conditioning on the initial condition adds identifying power, and so by comparing this set

to the one obtained without conditioning on y0 provides information on the strength of this

assumption. This allows one to determine the sensitivity of our inferences to the initial

condition problem.

Given these identified sets, we are able to study sufficient conditions under which the models

lead to point identification of θ. For our main model under stationarity, and when T = 2,

we derive a set of interesting results. The parameter β and the sign of γ can always be

point identified. In addition, γ can be point identified when it is non negative. When γ is

negative, we obtain a sharp upper bound on it. When T = 3, it is possible to point identify

θ, regardless of the sign of γ.

Given the linear structure of our identified sets, we propose a simple and insightful linear

program that solves for min/max of linear functions of θ (such as γ) and show how that leads

to a simple inference strategy. The paper contains insightful numerical experiments in models

with discrete regressors, time trends, and/or time dummies for T = 2, 3 that show that the

model under stationarity (conditional and unconditional) contains information about θ (the

identified set is not trivial). Finally, we illustrate our approach using a data set on women’s

labor supply.
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1.1 Literature

In empirical economics, there is a recent renewed interest in estimating models of discrete

choice over time. This is partly motivated by empirical regularities: certain individuals

are more likely to stay with a choice (like a particular health insurance plan) if they have

experienced that choice in the past. This choice “stickiness” has been attributed variably in

the literature to inertia or switching costs. For example, Handel (2013) estimates a model

of health insurance choice in a large firm where today’s choice depends on last period’s and

where he documents inertia in choices overtime. Dubé, Hitsch, and Rossi (2010) empirically

find that this “inertia” in packaged goods markets is likely caused by brand loyalty. Pakes,

Porter, Shepard, and Wang (2019) also study the choice of health insurance over time using

panel data2. Moreover the recent availability of panel data in such important markets on

the one hand and the central role that the dynamic discrete choice literature played in

econometric theory on the other provide an empirical motivation for this paper.

More broadly, the dynamic discrete choice model has appeared prominently in both the

applied and theoretical econometrics literature. In fundamental work, Heckman (1981) who

considered a version of model (1) discusses two different explanations for the empirical reg-

ularity that an individual is more likely to experience a state after having experienced it in

the past. The first explanation, termed state dependence, is a genuine behavioral response to

occupying the state in the past, i.e., a similar individual who did not experience the state in

the past is less likely to experience it now. The current literature sometimes refers to state

dependence as switching costs, inertia or stickiness and can be thought of as a causal effect of

past occupancy of the state3. The second explanation advanced by Heckman is heterogeneity,

whereby individuals are different in unobservable ways and if these unobservables are corre-

lated over time, this will lead to said regularity. This serial correlation in the unobservables

(or heterogeneity) is a competing explanation to state dependence and each of these lead

to a different policy prescription. Hence, the econometrics literature since then has focused

on models under which we are able to empirically identify state dependence while allowing

2See also Polyakova (2016) that studies the question of quantifying the effect of switching costs in Medicare
Part D markets and its relation to adversely selected plans. Also, Ketcham, Lucarelli, and Powers (2015)
quantifies switching costs in the presence of many choices in Medicare. Other recent papers on switching
costs and inertia include Raval and Rosenbaum (2018) on hospital delivery choice and Illanes (2016) on
switching costs in pension plan choices.

3See the recent work in Torgovitsky (2019) that provides characterization of this causal effect under min-
imal assumptions, but unlike the work here does not identify parameters such as θ under general conditions
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for serial correlation. These models differ in the kinds of assumptions used. For important

work on inference on θ here, and in addition to HK, see Heckman (1981) and Chamberlain

(1984)4. More recently, there has been work on the econometrics question of dynamics in

discrete choice models. For example, Pakes and Porter (2014) provide novel methods for

inference in multinomial choice models with individual fixed effects allowing for partial iden-

tification5. Shi, Shum, and Song (2018) study also a multinomial choice model with fixed

effects (but no dynamics) under cyclic monotonicity requirements. Aguirregabiria, Gu, and

Luo (2018) study a version of the dynamic discrete choice model with logit errors by deriving

clever sufficient statistics for the unobserved fixed effect. Also, Honoré and Tamer (2006)

provide bounds on θ in a parametric random effects model without assumptions on the initial

condition distribution. Khan, Ouyang, and Tamer (2019) extend results in HK to cover point

identified multinomial models with dynamics. Honoré and Kyriazidou (2019) calculate iden-

tified regions for parameters such as θ above in panel data autoregressive models (although

they do not provide an explicit characterization of these identified regions). Aristodemou

(2019) contains informative outer sets under the stronger independence assumptions. See

also Gao and Li (2019) for recent results on identification of parameter in panel data nonlin-

ear models. Finally, there is also a complementary literature that is interested in inference on

average effects in panel data models. See for example Chernozhukov, Fernández-Val, Hahn,

and Newey (2013). In addition, Torgovitsky (2019) constructs identified sets for average

causal effect of lagged outcomes in binary response models under minimal assumptions.

Finally, this paper takes a direct approach to proving that the sets we propose are sharp.

This means that for every parameter in the bounds we propose, we can construct a dgp that

obeys the model restrictions and generate the (observed) data. For other approaches that

can be used to construct identified sets (and conduct inference), see Beresteanu, Molchanov,

and Molinari (2011) and Chesher and Rosen (2017).

The rest of our paper is organized as follows. Section 2 introduces the dynamic binary

4For other work on different dynamic models, see the thorough literature surveys in Arellano and Honoré
(2001) and Arellano and Bonhomme (2011), as well as the papers Honoré and Tamer (2006), Honoré and
Lewbel (2002), Altonji and Matzkin (2005) , Chen, Khan, and Tang (2019). Other recent work that estab-
lished sharp identification regions for structural parameters in nonlinear models includes Khan, Ponomareva,
and Tamer (2011), Khan, Ponomareva, and Tamer (2016) and Honoré and Hu (2020). For recent new devel-
opments on the dynamic Logit model with fixed effects, see Kitazawa (2021), Honoré and Weidner (2020).
These two recent papers rely heavily on the logistic distribution assumption for their moment conditions,
and hence are just as sensitive to distributional misspecification as the early work in this literature, e.g.
Andersen (1970).

5Some of their results were extended and expanded in Pakes, Porter, Shepard, and Wang (2019).
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choice model and addresses the identification of its structural parameters under the assump-

tion of stationarity as was introduced in Manski (1987) for the static binary response panel

data model. Section 3 provides sufficient conditions for point identification of these structural

parameters in T = 2 and T = 3 cases. Section 4 compliments our identification results in the

previous sections by proposing computationally attractive methods to conduct inference on

the structural parameters. This will enable testing, for example, if there is indeed persistence

in the binary variable of interest. Section 5 considers a range of simulation studies that pro-

vide insight into the shape and size of identified region across the different data generating

processes, while Section 6 uses the approach proposed in the paper to investigate persistence

in female labor supply. Section 7 concludes with a summary of results and discussions on

areas for future research.

2 Dynamic Panel Binary Choice Model

Assume a random sample i = 1, . . . , n over T time periods where we observe for each i, a

binary outcome yit ∈ {0, 1}, a vector of covariates xit. In addition, the outcome yi0 is also

observed at the initial time period t = 0 (but no covariates are observed at that time). We

also consider the following binary choice model for the outcome yit:

yit = 1{uit ≤ x′itβ + γyi,t−1 + αi} (2)

where both uit and αi are unobserved and represent unobserved heterogeneity. uit denotes

an idiosyncratic individual and time dependent term while αi is individual/entity-specific

and captures unobserved constant over time heterogeneity. Let yi = (yi0, . . . , yiT )′ and

xi = (x′i1, . . . , x
′
iT )′. Throughout, we assume that observations {(yi, xi), i = 1, . . . , n} are

independent and identically distributed.

The unknown scalar parameter γ measures persistence (or the degree of state dependence)

in this model. The objective of this paper is to explore the identifiability of parameters β

and γ under relatively weak conditions. This mapping between the restrictions on the

conditional joint distribution of (ui1, . . . , uiT , αi) (the model) and information about γ (and

β) is of preliminary interest. We do not want to restrict the way individual-specific effects

αi can vary with covariates, neither do we want to impose any restrictions on the support of

xi (we do not rule out time trends, time dummies, or discrete regressors for example). The
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main restriction we maintain is that the idiosyncratic error terms ui1, ui2, . . . , uiT all have

the same marginal distribution conditional on observed covariates and fixed effects. This

stationarity restriction is the main assumption we make in the paper.

Assumption 1. (Stationarity) uit|xi, αi
d
= ui1|xi, αi for all t = 2, 3, . . . , T .

Remarks on Assumption 1

This assumption requires that conditional on xi and αi, the distribution of uit remains the

same over time. We note that this assumption does not require conditioning on y0 (nor does

it require independence from yi0) since conditioning on yi0 may rule out certain feedback from

past outcomes. The conditioning on the whole vector of xi is common in panel data models

and is related to a version of strict exogeneity of the regressors. This stationarity (or identical

distribution of idiosyncratic error terms) is the key identifying assumption in Manski (1987)

for the static semiparametric binary response model with fixed effects. It is worth noting

that stationarity allows for dependence between uit’s over time, and naturally, it is satisfied

when idiosyncratic error terms are independent and identically distributed as assumed in

HK. Note also that this assumption does not rule out possible serial correlation in some

components of xit, nor does it rule out time-varying explanatory variables including time

trend or time dummies. This model also does not impose any restriction on the distribution

of αi conditional on xi. Finally, it is worth repeating that benchmark theoretical results in

this literature (such as HK’s) assume that the uit’s are independent of (xi, αi, yi0) and also

are iid over time.

To study the identification power of the assumption above, we also require the conditions

below to hold.

Assumption 2. Suppose that the following conditions hold for model 2:

A1. ui = (ui1, . . . , uiT ) is absolutely continuous conditional on xi, αi.

A2. We observe n i.i.d. draws from (2): {(yi, xi), i = 1, . . . , n}.

A3. Parameter space Θ = {θ = (γ, β′)′ ∈ Rk+1 : ‖θ‖ = 1}
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Remarks on Assumption 2

The first part of the above requires us to use strict monotonicity of the distribution functions

of various objects. The second part A2 describes the sampling process. The third part, A3,

is a normalization and is common in semiparametric binary choice models literature where

the parameter can only be identified up to location and scale. We assume that n is large

relative to T , so any notions of asymptotics are derived under the assumption that n→∞,

while T is fixed.

The stationarity assumption 1 that is imposed on the error terms is pretty weak and

so we cannot expect to be able to pinpoint the true parameters β and γ. However, there

is still some information content in this assumption that allows us to restrict the set of all

possible parameter values to some subset of values that are compatible with the distribution

of observables. What we mean by that is that any value in this set could have generated the

distribution of observables while maintaining assumptions 1 and 2. The result in Theorem

1 below is the main result of this paper: it constructs the identified set for the parameter

of interest θ = (γ, β′)′ and shows that this identified set is sharp under the stationarity

assumption 1. That is, for any parameter value in that set there exists a distribution of

unobservables that follows the stationarity assumption and dynamic binary choice model (2)

such that it produces exactly the same distribution of (yi, xi) as the true parameter.

Let X = supp(xi) be the support of xi. We define ΘI as the set of all θ = (γ, β′)′ ∈ Θ

such that for all x ∈ X and t, s = 1, . . . , T with t 6= s, the following hold (all probability

statements below are conditional on xi = x where xi = (x′i1, . . . , x
′
iT )′ and x = (x′1, . . . , x

′
T )′):

(i) If P (yit = 1) ≥ P (yis = 1), then (xt − xs)′β + |γ| ≥ 0.

(ii) If P (yit = 1) ≥ 1− P (yi,s−1 = 1, yis = 0), then (xt − xs)′β −min{0, γ} ≥ 0.

(iii) If P (yit = 1) ≥ 1− P (yi,s−1 = 0, yis = 0), then (xt − xs)′β + max{0, γ} ≥ 0.

(iv) If P (yi,t−1 = 1, yit = 1) ≥ P (yis = 1), then (xt − xs)′β + max{0, γ} ≥ 0.

(v) If P (yi,t−1 = 1, yit = 1) ≥ 1− P (yi,s−1 = 1, yis = 0), then (xt − xs)′β ≥ 0.

(vi) If P (yi,t−1 = 1, yit = 1) ≥ 1− P (yi,s−1 = 0, yis = 0), then (xt − xs)′β + γ ≥ 0.

(vii) If P (yi,t−1 = 0, yit = 1) ≥ P (yis = 1|xi = x), then (xt − xs)′β −min{0, γ} ≥ 0.
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(viii) If P (yi,t−1 = 0, yit = 1) ≥ 1− P (yi,s−1 = 1, yis = 0), then (xt − xs)′β − γ ≥ 0.

(ix) If P (yi,t−1 = 0, yit = 1) ≥ 1− P (yi,s−1 = 0, yis = 0), then (xt − xs)′β ≥ 0.

Remark on ΘI

The above set is defined in terms of a set of inequalities conditional on regressors x, and the

conditional probabilities in these inequalities are observed in the data. These inequalities

are obtained by first bounding the distribution of the composite error term uit − αi with

probabilities of observed outcomes (so, yit’s), and second, ensuring that the “intersection”

of these bounds is not empty in the sense that there exists a distribution function such that

it passes between these bounds in all time periods. The inequalities obtained this way are

linear in θ which is helpful since the identified set can then be characterized as a solution to

a set of linear half spaces, a union of convex polyhedrons. Note that some of the inequalities

compare marginal probabilities to joint (bivariate) which is interesting and is related to the

model containing one lagged dependent variable. Note also that the comparison is always

between the value of the outcome at t vs at s where t 6= s. So, when T = 2, ΘI is defined

by 18 inequalities (9 inequalities for t = 1 and s = 2 and 9 inequalities for t = 2 and s = 1).

For an arbitrary T , ΘI is defined by 9 ·2 ·
(
T
2

)
inequalities, so the number of these inequalities

increases at rate T !. The set ΘI defined above is a sharp identified set for θ. This result, the

main finding in this paper, is stated in the next Theorem.

Theorem 1. ΘI defined above is the sharp identified set for θ under stationarity assumption

(1) and regularity condition A1 in assumption 2.

Theorem 1 (proof in the Appendix) provides a constructive way to characterize the

identified set under the assumption of stationarity. In other words, we can use the above

inequalities to construct set estimation and inference procedures for the parameters β, γ.

It turns out that comparisons of joint to marginals are also relevant in the proof of the

result. Note also how the comparisons work as T is increased. For instance, only bivariate

comparisons show up and not joints of say 3 or more outcomes in cases when T = 2. This

is so because inequalities that include 3 outcomes are implied by bivariate inequalities for

any T > 2. Also, note that the result in Theorem 1 holds even when the “index” in (2) is

nonlinear in θ. The only complication that results in this case would be that characterizing

the identified set becomes harder with the added nonlinearities.
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The proof of the Theorem 1 does not require the fixed effect αi’s to be additively separated

from uit’s: a model

yit = 1{vit ≤ x′itβ + γyi,t−1}

where vit ∼ vi1 conditional on xi for t = 2, . . . , T produces exactly the same identified set

for θ.6 The model with additively separated fixed effects implies that if uit’s are serially

uncorrelated, the correlation between vit and vis is positive and the same for all t and s.

However, the stationarity assumption also allows for negative correlation between vit and

vis.

Remarks on the Sharp Identified Set ΘI

The above set is defined in terms of a set of inequalities conditional on regressors x, and the

conditional probabilities in these inequalities are observed in the data. The inequalities are

also linear in θ which is helpful since the identified set is a solution to a set of linear half

spaces, a union of convex polyhedrons. Note that some of the inequalities compare marginal

probabilities to joint (bivariate) which is interesting and is related to the model containing

one lagged dependent variable. Note also that the comparison is always between the value

of the outcome at t vs at s where t 6= s. So, when T = 2, then t = 1, s = 2 or t = 2, s = 1.

Also note that the above inequalities characterize the identified set for any T (so no need

to re-derive the identified set for different T ’s). The number of these inequalities increases

with T : the larger T is the more inequalities we get.

2.1 Stationarity Conditional on Initial Condition

In the identification analysis above, no assumptions are made about the distribution of the

initial conditions, yi0. However, a common assumption that is (almost) always assumed

in the nonlinear panel data literature is that yi0, similar to xi, is strictly exogenous; see

e.g. Honoré and Kyriazidou (2000) for a dynamic binary response model and where they

assume serial independence in uit as well as independence between uit and xi, Hu (2002)

for a censored dynamic panel data model, or Ahn and Schmidt (1997) for a linear dynamic

6We thank the anonymous reviewer for pointing that out.
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(linear) panel data model7. In this section, we do not consider full exogeneity of y0, but

rather, we maintain stationarity as in the previous section but make it conditional on y0

(in addition to covariates and fixed effects). This effectively makes y0 strictly exogenous in

the same sense as x being strictly exogenous. One important reason to consider stationarity

conditional on the initial condition is to compare the size of the identified set in Theorem

1 above -when we do not condition on y0- to the one that results when we condition on

y0 (leaving all other assumptions the same). This will clarify the importance - in terms of

identification power- of conditioning on the initial condition. A much tighter identified set

would mean that conditioning on y0 is a key restriction and hence is worthy of discussion.

Specifically, we modify Assumption 1 as follows:

Assumption 3. (Stationarity Conditional on Initial Condition)

uit|yi0, xi, αi
d
= ui1|yi0, xi, αi for all t = 2, 3, . . . , T .

Again, this assumption is weaker than assuming that uit|yi0, xi, αi are independent and

identically distributed and independent of (xi, αi) and yi0 (a common assumption employed

in almost all the parametric and semi-parametric dynamic binary response models such as

HK).

Following our approach in the previous Section, we define two sets: Θ1 and Θ2+. Specifically,

Θ1 is defined as the set of all (β, γ) ∈ Θ such that for all x ∈ X and t = 2, . . . , T , the following

hold (all probability statements below are conditional on xi = x where xi = (x′i1, . . . , x
′
iT )′

in addition to yi0):

(i) If P (yi1 = 1|yi0 = d0) ≥ P (yit = 1|yi0 = d0), then (xt − x1)′β + min{0, γ} − γd0 ≤ 0.

(ii) If P (yi1 = 1|yi0 = d0) ≤ P (yit = 1|yi0 = d0), then (xt − x1)′β + max{0, γ} − γd0 ≥ 0.

(iii) If P (yi1 = 1|yi0 = d0) ≥ 1−P (yi,t−1 = 1, yit = 0|yi0 = d0), then (xt−x1)′β+γ(1−d0) ≤
0.

(iv) If P (yi1 = 1|yi0 = d0) ≥ 1− P (yi,t−1 = 0, yit = 0|yi0 = d0), then (xt − x1)′β − γd0 ≤ 0.

(v) If P (yi1 = 1|yi0 = d0) ≤ P (yi,t−1 = 1, yit = 1|yi0 = d0), then (xt−x1)′β+γ(1−d0) ≥ 0.

7Chay and Hyslop (2014) show that in a context of dynamic binary response model, estimates of the
degree of state dependence, γ, are sensitive to the assumption that initial conditions are exogenous.
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(vi) If P (yi1 = 1|yi0 = d0) ≤ P (yi,t−1 = 0, yit = 1|yi0 = d0), then (xt − x1)′β − γd0 ≥ 0.

The second set, Θ2+, is defined in the same way as ΘI , with two corrections:

• Probabilities are conditional on xi = x, yi0 = d0 (instead of just xi = x);

• Time periods t, s ≥ 2.

Remark on Θ1 and Θ2+

Note that here we condition on the initial value yi0 which allows us to obtain a (conditional

on yi0) version of the inequalities that defined ΘI . In addition, we also have extra inequalities

that form Θ1. The intersection between Θ1 and Θ2+ gives us a sharp identified set for θ

under Assumption 3, as stated by Theorem 2 below. Conditioning on yi0 seems to have

substantive identifying power in that it introduces additional restrictions that do not appear

in the Θ2+ (the conditional on yi0 version of ΘI from Theorem 1).

Theorem 2. Let ΘI,0 = Θ1 ∩ Θ2+. Then, ΘI,0 is the (sharp) identified set for θ under

stationarity assumption 3 with exogenous initial conditions and regularity condition A1 in

assumption 2.

The main usefulness of the identified in the Theorem 2 is its size relative to the identified set

in Theorem 1. A comparison between these two sets indicates sensitivity to the exogeneity

assumption on the initial condition. Indeed, if the identified set under Theorem 2 is empty

while the set under Theorem 1 is not would mean that the conditional on initial condition

distribution is false. Note also that Theorems 1 and 2 provide sharp sets without any

restrictions on the covariate distribution, such as whether the covariates vary over time,

whether there is overlap in their support, or whether these covariates admit discrete or

continuous distribution, etc.

Finally, it remains interesting to ask under what conditions do the identified sets in Theorems

1 and 2 shrink to a point. Typically, these (sufficient) point identification conditions are made

on the support of the regressors. We examine this question of point identification in the next

Section. We also analyze whether anything can be learned about γ (its sign in this case) in

a model without any covariates.

12



3 Point Identification

Here we explore the question of whether and under what conditions do the sharp sets char-

acterized in Theorem 1 shrink to a single point. Naturally, we expect sufficient point iden-

tification conditions to rely on enough variation in the regressor distribution. As will be

shown, it turns out that with T = 2, β can be point identified as well as the sign of γ. In

addition, γ can be point identified when it is non-negative.

3.1 Point Identification with T = 2

Even when only two periods of data are available (in addition to the initial value yi0),

there are implications of Theorem 1 that can be explored to study whether and under what

conditions would the identified set shrinks to a point (point identification). Most notably,

we establish here that under certain support conditions on x the parameter vector β can be

point identified (up to scale), and so can the sign of γ. Also, when γ is non negative, it can

be point identified.

When T = 2 and considering both t = 1, s = 2 and t = 2, s = 1 we end up with the

following restrictions (again all probability statements are conditional on xi = x):

(1) If P (yi2 = 1) ≥ P (yi1 = 1), then (x2 − x1)′β + |γ| ≥ 0;

(2) If P (yi1 = 1) ≥ P (yi2 = 1), then (x2 − x1)′β − |γ| ≤ 0;

(3) If P (yi1 = 0, yi2 = 1) ≥ P (yi1 = 1) or P (yi0 = 1, yi1 = 0) ≥ P (yi2 = 0), then (x2 −
x1)′β −min{0, γ} ≥ 0;

(4) If P (yi1 = 1, yi2 = 0) ≥ P (yi1 = 0) or P (yi0 = 0, yi1 = 1) ≥ P (yi2 = 1), then (x2 −
x1)′β + min{0, γ} ≤ 0;

(5) If P (yi0 = 0, yi1 = 0) ≥ P (yi2 = 0), then (x2 − x1)′β + max{0, γ} ≥ 0;

(6) If P (yi0 = 1, yi1 = 1) ≥ P (yi2 = 1), then (x2 − x1)′β −max{0, γ} ≤ 0;

(7) If P (yi0 = 0, yi1 = 0) + P (yi1 = 0, yi2 = 1) ≥ 1, then (x2 − x1)′β ≥ 0;

(8) If P (yi0 = 1, yi1 = 1) + P (yi1 = 1, yi2 = 0) ≥ 1, then (x2 − x1)′β ≤ 0;
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(9) If P (yi0 = 1, yi1 = 0) + P (yi1 = 0, yi2 = 1) ≥ 1, then (x2 − x1)′β − γ ≥ 0;

(10) If P (yi0 = 0, yi1 = 1) + P (yi1 = 1, yi2 = 0) ≥ 1, then (x2 − x1)′β + γ ≤ 0

Based on these restrictions, we define subsets (one for each restriction) of X that can help

us to identify the sign of γ (as before, X = supp(xi = (xi1, . . . , xiT ))):

∆X1 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that P (yi1 = 1|xi = x) > P (yi2 = 1|xi = x)}

∆X2 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that P (yi2 = 1|xi = x) > P (yi1 = 1|xi = x)}

∆X3 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that

P (yi1 = 0, yi2 = 1|xi = 1) ≥ P (yi1 = 1|xi = x) or P (yi0 = 1, yi1 = 0|xi = x) ≥ P (yi2 = 0|xi = x)}

∆X4 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that

P (yi1 = 1, yi2 = 0|xi = x) ≥ P (yi1 = 0|xi = x) or P (yi0 = 0, yi1 = 1|xi = x) ≥ P (yi2 = 1|xi = x)}

∆X5 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that P (yi0 = 1, yi1 = 1|xi = x) > P (yi2 = 0|xi = x)}

∆X6 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that P (yi0 = 1, yi1 = 1|xi = x) > P (yi2 = 1|xi = x)}

∆X7 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that

P (yi0 = 0, yi1 = 0|xi = x) + P (yi1 = 0, yi2 = 1|xi = x) > 1}

∆X8 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that

P (yi0 = 1, yi1 = 1|xi = x) + P (yi1 = 1, yi2 = 0|xi = x) > 1}

∆X9 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that

P (yi0 = 1, yi1 = 0|xi = x) + P (yi1 = 0, yi2 = 1|xi = x) > 1}

∆X10 = {∆x ∈ Rk : ∃x = (x1, x1 + ∆x) ∈ X such that

P (yi0 = 0, yi1 = 1|xi = x) + P (yi1 = 1, yi2 = 0|xi = x) > 1}

Similarly, define the two sets that can be used to point identify β:

X7 = {x ∈ X such that P (yi1 = 1, yi2 = 1) + P (yi0 = 1, yi1 = 0) ≥ 1}

X8 = {x ∈ X such that P (yi0 = 1, yi1 = 1|xi = x) + P (yi1 = 1, yi2 = 0|xi = x) ≥ 1}

X7,8 = X7 ∪ X8

Theorem 1 implies that ∆X7 ⊆ {∆x ∈ Rk : ∆xβ > 0} and ∆X8 ⊆ {∆x ∈ Rk : ∆xβ < 0}. If

these two sets are large enough (as formalized in the assumption below), we will be able to

identify β.
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Assumption 4. Suppose that for the sets defined above, the following holds:

PID-STAT1. ∆X7,8 = {∆x = x2 − x1 : x = (x1, x2) ∈ X7,8} is not contained in any proper

linear subspace of Rk.

PID-STAT2. There exists at least one j ∈ {1, . . . , k} such that βj 6= 0 and for any ∆x ∈
∆X 7,8 the support of ∆xj = x2j − x1j is the whole real line (x2j − x1j has everywhere

positive Lebesgue measure conditional on ∆x−j = x2,−j − x1,−j where x2,−j denotes all

the other components of x2 besides the jth one).

Conditions PID-STAT1 and PID-STAT2 require that there is at least one covariate with

large support. This assumption is common in the literature and is e.g. used in Manski (1985)

for the cross-sectional semiparametric binary choice model or in Manski (1987) for the static

panel data binary choice model. This assumption is both necessary and sufficient for point

identification of β: first, if x2 − x1 has a discrete support, then the number of inequalities

that define the identified set is finite and does not have to shrink to a single point. For a

simple set up of a semiparametric binary choice model of Manski (1985), Komarova (2013)

illustrates what the identified set looks like when the distribution of covariates is discrete.

Second, the inequalities that define the identified set are based on comparing (x2 − x1)′β to

0, so for any β̃ 6= β we want to be able to find a point in the support such that the signs of

(x2− x1)′β and (x2− x1)′β̃ are different, which may be difficult without PID-STAT1 part of

Assumption 4.

Under these assumptions we can attain point identification for β and the sign of γ, as

stated in the following Theorem 3 that gives sufficient conditions for point identification of

β and the sign of γ. Also, the Theorem 3 contains upper and lower bounds that can be used

to obtain point identification of γ when it is positive.

Theorem 3. The following hold.

1. Let Assumptions 1, 2, and 4 hold. Then β is point identified (up to scale).

2. Further,

(1) If (∆X1 ∪∆X5)∩∆X10 6= ∅ or (∆X2 ∪∆X6)∩ (∆X9) 6= ∅ or ∆X3 ∩∆X8 6= ∅ or

∆X4 ∩∆X7 6= ∅, then γ < 0.

(2) If ∆X5 ∩∆X8 6= ∅ or ∆X6 ∩∆X7 6= ∅, then γ > 0.
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(3) If sets in both (1) and (2) have a non-empty intersection, then γ is zero (so it is

point identified).

(4) Finally, when β is point identified, we can bound γ as follows:

|γ| ≥ max{−m1,M2}

γ ≤ min{m9,−M10}
(3)

where for j = 1, 2, 9, 10:

mj = inf
∆x∈∆Xj

∆x′β, Mj = sup
∆x∈∆Xj

∆x′β

.

Remarks: Some Implications of Theorem 3

Note that the identification of the sign of γ in this result does not rely on β being point

identified. However, when the sign of γ is identified, we can weaken Assumption 4. In

particular, if γ is positive, then we can replace X7 and X8 in Assumption 4 with X3∪X7 and

X4 ∪ X8, respectively, where

X3 = {x ∈ X such that

P (yi1 = 0, yi2 = 1|xi = x) + P (yi0 = 1, yi1 = 0|xi = x) ≥ P (yi1 = 1|xi = x) + P (yi2 = 0|xi = x)}

X4 = {x ∈ X such that

P (yi0 = 1, yi1 = 0|xi = x) + P (yi0 = 0, yi1 = 1|xi = x) ≥ P (yi1 = 0|xi = x) + P (yi2 = 1|xi = x)}

If γ is negative, then we can replace X7 and X8 with X5∪X7 and X6∪X8, respectively, where

X5 = {x ∈ X such that P (yi0 = 1, yi1 = 1|xi = x) ≥ P (yi2 = 0|xi = x)}

X6 = {x ∈ X such that P (yi0 = 1, yi1 = 1|xi = x) ≥ P (yi2 = 1|xi = x)}

Note also that if 0 belongs to the support of (x2 − x1) and if there exists x̃ = (x̃1, x̃2 = x̃1)′

such that P (yi0 = 1, yi1 = 0|xi = x = x̃) + P (yi1 = 0, yi2 = 1|xi = x = x̃) ≥ 1, then γ > 0.

Similarly, if there exists x̃ = (x̃1, x̃2 = x̃1)′ such that P (yi0 = 0, yi1 = 1|xi = x = x̃)+P (yi1 =

1, yi2 = 0|xi = x = x̃) ≥ 1, then γ < 0.

Finally, note that from the inequalities in (3) it is possible that γ can be point identified
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when it is non negative given enough variation on the support of the regressors. Heuristically,

when γ is non negative, if the lhs and the rhs of these inequalities are the same for some

x, then γ is point identified. On the other hand, the situation is not the same when γ is

negative. This is so because inequalities in (3) place only an upper bound on γ when it is

negative. Indeed, looking at the identified set in Theorem 1, we see that the inequalities do

not place a lower bound for γ when it is negative when T = 2.

3.1.1 Point Identification of θ with T=2 under Conditional Exogeneity

Under Assumption 3 the identified set for θ is a subset of the one derived under Assumption

1. So, the results stated in Theorem 3 on point identification apply also for the case when

T = 2 under conditional exogeneity of y0 (with a weaker set of restrictions on the support

of x). Also, the additional inequalities that constitute Θ1 do not place a lower bound on γ

when γ is negative8. So, under either Assumption 1 and 3, γ can be point identified when

T = 2 if it is non negative. The situation is different when T > 2. We illustrate with the

case where T = 3 next.

3.2 Point Identification with T = 3

Next, we provide sufficient conditions for point identification of the parameters β, γ under

only the stationarity assumption in the case for T = 3. With 3 time periods, in addition

to the ten restrictions defined in the previous section, we get two more sets of restrictions.

Specifically, for t, s ∈ {1, 3} (again all probabilities are conditional on xi = x):

(1) If P (yi3 = 1) ≥ P (yi1 = 1), then (x3 − x1)′β + |γ| ≥ 0;

(2) If P (yi1 = 1) ≥ P (yi3 = 1), then (x3 − x1)′β − |γ| ≤ 0;

(3) If P (yi0 = 0, yi1 = 0) ≥ P (yi3 = 0) or P (yi2 = 1, yi3 = 1) ≥ P (yi1 = 1), then (x3 −
x1)′β + max{0, γ} ≥ 0;

(4) If P (yi0 = 1, yi1 = 1) ≥ P (yi3 = 1) or P (yi2 = 0, yi3 = 0) ≥ P (yi1 = 0), then (x3 −
x1)′β −max{0, γ} ≤ 0;

8Note for example that inequality (ν) in Definition 2 which can be used to bound γ from below (when
d0 = 0) will never hold as when t = 2, the lhs P (yi1 = 1) is never less than P (yi1 = 1; yi2 = 1|d0).
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(5) If P (yi0 = 1, yi1 = 0) ≥ P (yi3 = 0) or P (yi2 = 0, yi3 = 1) ≥ P (yi1 = 1), then (x3 −
x1)′β −min{0, γ} ≥ 0;

(6) If P (yi0 = 0, yi1 = 1) ≥ P (yi3 = 1) or P (yi2 = 1, yi3 = 0) ≥ P (yi1 = 0), then (x3 −
x1)′β + min{0, γ} ≤ 0;

(7) If P (yi2 = 1, yi3 = 1) + P (yi0 = 1, yi1 = 0) ≥ 1, then (x3 − x1)′β ≥ 0;

(8) If P (yi2 = 1, yi3 = 0) + P (yi0 = 1, yi1 = 1) ≥ 1, then (x3 − x1)′β ≤ 0;

(9) If P (yi2 = 0, yi3 = 1) + P (yi0 = 1, yi1 = 0) ≥ 1, then (x3 − x1)′β − γ ≥ 0;

(10) If P (yi2 = 1, yi3 = 0) + P (yi0 = 0, yi1 = 1) ≥ 1, then (x3 − x1)′β + γ ≤ 0;

(11) If P (yi2 = 0, yi3 = 0) + P (yi0 = 1, yi1 = 1) ≥ 1, then (x3 − x1)′β − γ ≤ 0;

(12) If P (yi2 = 1, yi3 = 1) + P (yi0 = 0, yi1 = 0) ≥ 1, then (x3 − x1)′β + γ ≥ 0.

and for t, s ∈ {2, 3}:

(1) If P (yi3 = 1) ≥ P (yi2 = 1), then (x3 − x2)′β + |γ| ≥ 0;

(2) If P (yi2 = 1) ≥ P (yi3 = 1), then (x3 − x2)′β − |γ| ≤ 0;

(3) If P (yi2 = 0, yi3 = 1) + P (yi0 = 1, yi2 = 0) ≥ P (yi2 = 1|xi = x) + P (yi3 = 0), then

(x3 − x2)′β −min{0, γ} ≥ 0;

(4) If P (yi2 = 1, yi3 = 0) +P (yi0 = 0, yi2 = 1) ≥ P (yi2 = 0) +P (yi3 = 1), then (x3− x2)′β +

min{0, γ} ≤ 0;

(5) If P (yi0 = 0, yi2 = 0) ≥ P (yi3 = 0), then (x3 − x2)′β + max{0, γ} ≥ 0;

(6) If P (yi0 = 1, yi2 = 1) ≥ P (yi3 = 1), then (x3 − x2)′β −max{0, γ} ≤ 0;

(7) If P (yi0 = 0, yi2 = 0) + P (yi2 = 0, yi3 = 1) ≥ 1, then (x3 − x2)′β ≥ 0;

(8) If P (yi0 = 1, yi2 = 1) + P (yi2 = 1, yi3 = 0) ≥ 1, then (x3 − x2)′β ≤ 0;

(9) If P (yi0 = 1, yi2 = 0) + P (yi2 = 0, yi3 = 1) ≥ 1, then (x3 − x2)′β − γ ≥ 0;

(10) If P (yi0 = 0, yi2 = 1) + P (yi2 = 1, yi3 = 0) ≥ 1, then (x3 − x2)′β + γ ≤ 0
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Theorem 1 provides 6 conditions that involve β only, so we can use these conditions to

point identify β in a similar way we did for T = 2. In particular, we define the following sets

X {1,2}7 = {x ∈ X such that P (yi0 = 0, yi1 = 0|xi = x) + P (yi1 = 0, yi2 = 1|xi = x) ≥ 1}

X {1,2}8 = {x ∈ X such that P (yi0 = 1, yi1 = 1|xi = x) + P (yi1 = 1, yi2 = 0|xi = x) ≥ 1}

X {1,3}7 = {x ∈ X such that P (yi0 = 1, yi1 = 0|xi = x) + P (yi2 = 1, yi3 = 1|xi = x) ≥ 1}

X {1,3}8 = {x ∈ X such that P (yi0 = 1, yi1 = 1|xi = x) + P (yi2 = 1, yi3 = 0|xi = x) ≥ 1}

X {2,3}7 = {x ∈ X such that P (yi1 = 0, yi2 = 0|xi = x) + P (yi2 = 0, yi3 = 1|xi = x) ≥ 1}

X {2,3}8 = {x ∈ X such that P (yi1 = 1, yi2 = 1|xi = x) + P (yi2 = 1, yi3 = 0|xi = x) ≥ 1}

∆X {1,2}7,8 = {∆x = x2 − x1 : x ∈ X {1,2}7 ∪ X {1,2}8 }

∆X {1,3}7,8 = {∆x = x3 − x1 : x ∈ X {1,3}7 ∪ X {1,3}8 }

∆X {2,3}7,8 = {∆x = x3 − x2 : x ∈ X {2,3}7 ∪ X {2,3}8 }

and make the following assumption:

Assumption 5. Suppose that for the sets defined above, the following holds:

PID3-STAT1. ∆X7,8 = ∆X {1,2}7,8 ∪∆X {1,3}7,8 ∪∆X {2,3}7,8 is not contained in any proper linear

subspace of Rk (where xt = (xt1, . . . , xtk)
′).

PID3-STAT2. There exists at least one j ∈ {1, . . . , k} such that βj 6= 0 and for any

∆x ∈ ∆X 7,8 the support of ∆xj is the whole real line (∆xj has everywhere positive

Lebesgue measure conditional on ∆x−j = (∆x1, . . . ,∆xj−1,∆xj+1, . . . ,∆xk)
′).

Note that with T = 3 this assumption is more likely to hold than a similar assumption

for T = 2 (Assumption 4) as the set on which for example the full rank condition must hold

is not richer. Similar to the T = 2 case, β is point identified if Assumption 5 holds.

We will not present here identification results for the sign of γ (again, these are very

similar to Theorem 3). Instead, we focus on discussing what can be learned about sign and

magnitude of γ with that one extra period of observation. In particular, in contrast to the

result in Theorem 3, we can bound γ both from above and from below. In particular, we
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now have the following restrictions on γ when β is point identified:

|γ| ≥ max{−m{1,2}1 ,−m{1,3}1 ,−m{2,3}1 ,M
{1,2}
2 ,M

{1,3}
2 ,M

{2,3}
2 }

γ ≤ min{m{1,2}9 ,m
{1,3}
9 ,m

{2,3}
9 ,−M{1,2}

10 ,−M{1,3}
1 ,−M{2,3}

10 }

γ ≥ max{M{1,3}
11 ,−m{2,3}12 }

(4)

where m
{t,s}
j and M

{t,s}
j are defined similar to Theorem 3.

In comparison to the T = 2 case in Theorem 3 where we only had an upper bound on γ,

with T = 3 we now also can bound γ from below (if a certain set is not empty), while the

upper bound becomes more tight as well. Enough variation in the support of the covariates

could lead to point identification of γ. Point identification of γ was attained in Honoré and

Kyriazidou (2000) but under much stronger restrictions, such as serial independence in uit

and strict overlap in the support of xit, which as we mentioned previously, rules out time

trends.

3.3 Identification in a Model without Covariates

Here, we consider identification of the sign of γ in the following model:

yit = I{uit ≤ γyi,t−1 + αi} t = 1, 2, ...T

Although the scale of γ cannot be identified in this model (without covariates), its sign

sometimes can be identified. Below we characterize the conditions under which this is possible

to do.

We start with T = 2 and stationarity Assumption 1. With T = 2, the identified set in

Theorem 1 is given by these inequalities (without covariates where we eliminated ones where

γ does not show up):

(1) If P (yi2 = 1) ≥ P (yi1 = 1), then |γ| ≥ 0;

(2) If P (yi1 = 1) ≥ P (yi2 = 1), then −|γ| ≤ 0;

(3) If P (yi1 = 0, yi2 = 1)+P (yi0 = 1, yi1 = 0) ≥ P (yi1 = 1)+P (yi2 = 0), then −min{0, γ} ≥
0;
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(4) If P (yi1 = 1, yi2 = 0)+P (yi0 = 0, yi1 = 1) ≥ P (yi1 = 0)+P (yi2 = 1), then min{0, γ} ≤ 0;

(5) If P (yi0 = 0, yi1 = 0) ≥ P (yi2 = 0), then max{0, γ} ≥ 0;

(6) If P (yi0 = 1, yi1 = 1) ≥ P (yi2 = 1), then max{0, γ} ≤ 0;

(7) If P (yi0 = 1, yi1 = 0) + P (yi1 = 0, yi2 = 1) ≥ 1, then −γ ≥ 0;

(8) If P (yi0 = 0, yi1 = 1) + P (yi1 = 1, yi2 = 0) ≥ 1, then γ ≤ 0

In the absence of covariates, any inequalities above that involve |γ|, max{0, γ} and min{0, γ}
are trivial. But the last two inequalities here allow us (sometimes, if a particular relationship

between conditional probabilities of certain events holds) to tell if γ is negative. Specifically,

we summarize our results in the corralary below.

Corollary 1. Under the conditions of Theorem 1 (with T = 2), if

max
(
P (y0 = 1, y1 = 0) + P (y1 = 0, y2 = 1), P (y0 = 0, y1 = 1) + P (y1 = 1, y2 = 0)

)
≥ 1

then γ is negative.

When T = 3, it is possible to identify the sign of γ when γ is positive (unlike in T = 2

case) so when T = 3 it is possible to identify the sign of γ. In the absence of covariates, an

extra time period in Theorem 1 adds nontrivial restrictions on γ to what we have above with

T = 2 (again, any restrictions involving |γ|, max{0, γ} and min{0, γ} are trivial and therefore

non-informative without conditioning covariates). We state our results for the identification

of the sign of γ in the case with T = 3 in the following Corollary.

Corollary 2. Let the conditions of Theorem 1 hold. Let T = 3. Then, the following holds.

If P (y0 = 1, y1 = 0) + P (y2 = 0, y3 = 1) ≥ 1, then γ ≤ 0

If P (y0 = 0, y1 = 1) + P (y2 = 1, y3 = 0) ≥ 1, then γ ≤ 0

If P (y0 = 1, y1 = 1) + P (y2 = 0, y3 = 0) ≥ 1, then γ ≥ 0

If P (y0 = 0, y1 = 0) + P (y2 = 1, y3 = 1) ≥ 1, then γ ≥ 0

If P (y1 = 1, y2 = 0) + P (y2 = 0, y3 = 1) ≥ 1, then γ ≤ 0

If P (y1 = 0, y2 = 1) + P (y2 = 1, y3 = 0) ≥ 1, then γ ≤ 0

(5)

21



4 Inference

Though the main contribution of the paper is the characterization of the identified sets in

dynamic discrete choice models under weak assumptions, we suggest an approach to conduct

inference that is computationally attractive under the assumption that the regressor vector

x has finite support. This inference approach leads to a confidence region for the identified

set. The idea is to first construct a confidence region for the choice probabilities, which is a

vector of multinomial probabilities. Then, heuristically, a confidence region for the identified

set can be constructed by using draws from this confidence region for the choice probabilities.

The mechanics of this exercise is computationally simple as it exploits the linear (in (β, γ))

nature of the inequalities and so linear programs can be used to check whether a particular

parameter vector θ belongs to the identified set. We describe this procedure in more details

next. In the discussion below, we focus on T = 2 for simplicity of exposure.

4.1 A Confidence Region for the Choice Probabilities

One way to construct a confidence region for ~p(y0, x) = (p2(0, 0|y0, x), p2(0, 1|y0, x), p2(1, 0|y0, x))′

is as follows (here we illustrate this for the case where we condition on y0 wlog). Let

(y1
0, x

1), . . . , (yJ0 , x
J) denote the support of (y0, x). Then, as sample size increases, we have

√
nW (~p(·)) ≡

√
n



( 1
n

∑
i ŵ

1,0
i (y1

0, x
1)− p2(1, 0|y1

0, x
1))1{0 < p2(1, 0|y1

0, x
1) < 1}

( 1
n

∑
i ŵ

0,1
i (y1

0, x
1)− p2(0, 1|y1

0, x
1))1{0 < p2(0, 1|y1

0, x
1) < 1}

( 1
n

∑
i ŵ

0,0
i (y1

0, x
1)− p2(0, 0|y1

0, x
1))1{0 < p2(0, 0|y1

0, x
1) < 1}

· · ·
( 1
n

∑
i ŵ

1,0
i (yJ0 , x

J)− p2(1, 0|yJ0 , xJ))1{0 < p2(1, 0|yJ0 , xJ) < 1}
( 1
n

∑
i ŵ

0,1
i (yJ0 , x

J)− p2(0, 1|yJ0 , xJ))1{0 < p2(0, 1|yJ0 , xJ) < 1}
( 1
n

∑
i ŵ

0,0
i (yJ0 , x

J)− p2(0, 0|yJ0 , xJ))1{0 < p2(0, 0|yJ0 , xJ) < 1}


⇒ N(0,Σ(~p(·)))

where Σ(~p(·)) is the variance-covariance matrix and

ŵd,si (y0, x) =
1{y1i = d, y2i = s, y0i = y0, xi = x}

p̂z(y0, x)
for d, s ∈ {0, 1}

and

p̂z(y0, x) =
1

n

∑
i

1{y0i = y0, xi = x}
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Note that some rows and columns of Σ(~p(·)) may be zero, so in general this matrix can

be singular. Let Σ∗(~p(·)) be a sub-matrix of Σ(~p(·)) that corresponds to all non-zero rows

and columns. Then Σ∗(~p(·)) has full rank. Let W ∗(~p(·)) be a sub-vector of W (~p(·)) that

corresponds to those non-zero columns (rows). Then

√
nW ∗(~p(·))⇒ N (0,Σ∗(~p(·)))

and

T asn (~p(·) ≡ nW ∗(~p(·))′ (Σ∗(~p(·)))−1W ∗(~p(·))⇒ χ2
q(~p(·))

where q(~p(·)) = dim(W ∗(~p(·))).

Then, an asymptotic 100(1− α)% confidence set for ~p(y0, x):

CSp1−α =
{
~p(y0, x) ≥ 0 : for all (y0, x), p2(0, 0|y0, x) + p2(0, 1|y0, x) + p2(1, 0|y0, x) ≤ 1

and T asn (~p(·)) ≤ c∗1−α(~p(·))
} (6)

where c∗1−α(~p(·)) is the (1 − α) quantile of χ2 distribution with q(~p(·)) = dim(W ∗(~p(·)))
degrees of freedom (the number of probabilities in ~p(·) that are strictly between 0 and 1).

One simple way to obtain a draw from this confidence region is to use the weighted

bootstrap via a posterior distribution for these choice probabilities9. This can be done

by exploiting properties of the interplay between the gamma distribution and the dirichlet

priors. See for example Kline and Tamer (2016) for details on how to implement this.

4.2 Confidence Region for θ

We illustrate here how we map the confidence region for the choice probabilities to a confi-

dence region for the identified set. We will be using the T = 2 case with the strict exogeneity

of initial conditions to illustrate our approach and use the following 4 inequalities to illus-

trate:

9Another approach that is easy to compute is to use a sup test to contruct a rectangular CI. These
rectangles are such P (p ∈ [a, b]) = P (p1 ∈ [a1, b1], . . . , pJ ∈ [aJ , bJ ])→ 1− α. A simple way to obtain these
a, b’s is to simulate a cutoff for the sup statistic ‖N (0, U−1/2ΣU−1/2)‖∞ and use rectangles of the form

[ai, bi] = [p̂i ± ĉ
√

Σ̂ii/n]. We find that getting draws from the posterior via a Bayesian Bootstrap to be

simpler to implement in this case.

23



p1(1|y0, x) ≥ P (y2 = 1|y0, x)⇒ ∆x′β + min{0, γ} − γy0 ≤ 0

p1(1|y0, x) ≤ P (y2 = 1|y0, x)⇒ ∆x′β + max{0, γ} − γy0 ≥ 0

p2(0, 1|y0, x) ≥ p1(1|y0, x)⇒ ∆x′β − γy0 ≥ 0

p2(1, 0|y0, x) ≥ p1(0|y0, x)⇒ ∆x′β + γ(1− y0) ≥ 0

(7)

where ∆x = x2 − x1 and where at least one strict inequality on the left-hand side implies a

strict inequality on the right-hand side.

Generally, a confidence set for the partially identified θ can be constructed based on the

chi-squared approximation above as follows:

CSθ1−α = {θ ∈ Θ : conditions (7) hold for some ~p(·) ∈ CSp1−α}

where CSp1−α is defined in (6) above. It is computationally tedious to check whether the

inequalities above are satisfied for a given vector of choice probabilities. However, it is

possible to exploit the linearity in the model (7).

Conditions (7) are straightforward to verify for a given ~p(·) ∈ CSp1−α. The following

algorithm builds a confidence region for θ based on a linear program10 (a similar approach

is used in Honoré and Tamer (2006)).

(1) Pick an element ~p(k)(·) from CSp1−α. Alternatively, use the Bayesian bootstrap to get a

draw ~p(k)(·) from the confidence ellipse for the choice probabilities. This can be done

instantaneously.

(2) Get Θ+
(k), the set of parameters θ that solve

max
(γ,β)∈Θ

c

subject to

10Since the identified set is one where the set of contraints are feasible, we augment these constraints with
a an objective of maximizing “‘c”’ which is just a scalar and is not useful. Essentially, for a given set of
parameters, if the LP is feasible then the parameter belongs to the identified set and so the optimal value of
c is not relevant.
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

γ ≥ 0

1{p1,(k)(1|y1
0, x

1) ≥ P(k)(y2 = 1|y1
0, x

1)}(−∆x1′β + γy1
0) ≥ 0

1{p1,(k)(1|y1
0, x

1) ≤ P(k)(y2 = 1|y1
0, x

1)}(∆x1′β + γ(1− y1
0)) ≥ 0

1{p2,(k)(0, 1|y1
0, x

1) ≥ p1,(k)(1|y1
0, x

1)}(∆x1′β − γy1
0) ≥ 0

1{p2,(k)(0, 1|y1
0, x

1) ≤ p1,(k)(1|y1
0, x

1)}(∆x1′β + γ(1− y1
0)) ≥ 0

1{p1,(k)(1|y2
0, x

2) ≥ P(k)(y2 = 1|y2
0, x

2)}(−∆x2′β + γy2
0) ≥ 0

1{p1,(k)(1|y2
0, x

2) ≤ P(k)(y2 = 1|y2
0, x

2)}(∆x2′β + γ(1− y2
0)) ≥ 0

1{p2,(k)(0, 1|y2
0, x

2) ≥ p1,(k)(1|y2
0, x

2)}(∆x2′β − γy2
0) ≥ 0

1{p2,(k)(0, 1|y2
0, x

2) ≤ p1,(k)(1|y2
0, x

2)}(∆x2′β + γ(1− y2
0)) ≥ 0

. . .

1{p1,(k)(1|yJ0 , xJ) ≥ P(k)(y2 = 1|yJ0 , xJ)}(−∆xJ
′
β + γyJ0 ) ≥ 0

1{p1,(k)(1|yJ0 , xJ) ≤ P(k)(y2 = 1|yJ0 , xJ)}(∆xJ ′β + γ(1− yJ0 )) ≥ 0

1{p2,(k)(0, 1|yJ0 , xJ) ≥ p1,(k)(1|yJ0 , xJ)}(∆xJ ′β − γyJ0 ) ≥ 0

1{p2,(k)(0, 1|yJ0 , xJ) ≤ p1,(k)(1|yJ0 , xJ)}(∆xJ ′β + γ(1− yJ0 )) ≥ 0

(8)

(3) Similarly, get Θ−(k), the set of parameters θ that solve

max
(γ,β)∈Θ

c

subject to
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

γ ≤ 0

1{p1,(k)(1|y1
0, x

1) ≥ P(k)(y2 = 1|y1
0, x

1)}(−∆x1′β + γ(y1
0 − 1)) ≥ 0

1{p1,(k)(1|y1
0, x

1) ≤ P(k)(y2 = 1|y1
0, x

1)}(∆x1′β − γy1
0) ≥ 0

1{p2,(k)(0, 1|y1
0, x

1) ≥ p1,(k)(1|y1
0, x

1)}(∆x1′β − γy1
0) ≥ 0

1{p2,(k)(0, 1|y1
0, x

1) ≤ p1,(k)(1|y1
0, x

1)}(∆x1′β + γ(1− y1
0)) ≥ 0

1{p1,(k)(1|y2
0, x

2) ≥ P(k)(y2 = 1|y2
0, x

2)}(−∆x2′β + γ(y2
0 − 1)) ≥ 0

1{p1,(k)(1|y2
0, x

2) ≤ P(k)(y2 = 1|y2
0, x

2)}(∆x2′β − γy2
0) ≥ 0

1{p2,(k)(0, 1|y2
0, x

2) ≥ p1,(k)(1|y2
0, x

2)}(∆x2′β − γy2
0) ≥ 0

1{p2,(k)(0, 1|y2
0, x

2) ≤ p1,(k)(1|y2
0, x

2)}(∆x2′β + γ(1− y2
0)) ≥ 0

. . .

1{p1,(k)(1|yJ0 , xJ) ≥ P(k)(y2 = 1|yJ0 , xJ)}(−∆xJ
′
β + γ(yJ0 − 1)) ≥ 0

1{p1,(k)(1|yJ0 , xJ) ≤ P(k)(y2 = 1|yJ0 , xJ)}(∆xJ ′β − γyJ0 ) ≥ 0

1{p2,(k)(0, 1|yJ0 , xJ) ≥ p1,(k)(1|yJ0 , xJ)}(∆xJ ′β − γyJ0 ) ≥ 0

1{p2,(k)(0, 1|yJ0 , xJ) ≤ p1,(k)(1|yJ0 , xJ)}(∆xJ ′β + γ(1− yJ0 )) ≥ 0

(9)

(4) Repeat the above M times

(5) A (1− α) CS for θ would be the
(
∪k≤MΘ+

(k)

)
∪
(
∪k≤MΘ−(k)

)
The computationally tedious part in the above linear program is part (2) which builds the

set of all θ’s for which the linear program is feasible. One approach for this is to get a grid

for θ and check whether each point on this grid is feasible. Checking feasibility is simple

even when J is large. Hence, we can then use the same algorithm as above by repeatedly

drawing a vector of choice probabilities from the confidence ellipse and then collecting all

the parameters that solve the above program for at least one of these draws.

A computationally simple approach for linear functionals of θ = (β′, γ)′:

Suppose that one is interested in the linear functional a′θ where θ = (β′, γ)′. So, for

example, if a is a column of zeros except for the last entry, then a′θ = γ. Then, we can

replace the objective function in (2) and (3) above with
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min /max
θ

a′θ

subject to . . .

the same constraints as in (2) and (3) above. This simplifies the computations tremendously

as no need for a grid search to construct the identified set corresponding to a given draw

from the confidence region. The algorithm in this case would be: 1) take a draw from a CI

for the choice probabilities, 2) solve linear program for min/max of a′θ which would be an

interval, 3) repeat. One can then take as the CI the interval that contains 95% of all the

intervals. We find that this method works very well in practice.

5 Simulation Results

In this section we perform a simulation study to explore the shapes and sizes for identified

sets in simple designs. We view this as an important exercise since with weak assumptions

it is possible that identified sets are the trivial ones (i.e. the model does not restrict the

parameters in anyway). So, it is important to offer some evidence as to whether the stationary

model in our paper contains any information. To that end, the sets of inequalities that define

our identified sets are used in simple designs to construct the identified sets. Again, the

designs are noteworthy as they give an idea of the size of the identified sets in short panels,

such as T = 2 and T = 3, and in cases with time trends and time dummies.

In establishing our theoretical results we reached the following conclusions regarding

identifying the parameters in the model:

• Regression coefficients on strictly exogenous variables (β) were generally easier to iden-

tify than the coefficient on the lagged binary dependent variable (γ), which was our

measure of the persistence in the model.

• Allowing for the initial condition to be strictly exogenous adds information and hence

in principle should reduce the size of the identified set.

• Increasing the richness of the support of the exogenous variables facilitates the identi-

fication.

27



• Increasing the length of the time series added informational content. This is evident

from the fact that with larger T ’s we get more inequalities.

• The value of the parameters themselves could effect their identifiability. For example,

a negative value of the persistence parameter made its identification more difficult.

We will illustrate these results by simulating data from the following model:

yit = I{uit ≤ vit + xitβ + γyi,t−1 + αi} i = 1, 2, ...10000; t = 0, 1, ...T (10)

yit is the observed binary dependent variable and yi,t−1 is its lagged value. vit, xit are each

observed scalar exogenous variables, the first whose coefficient is normalized to 1, and the

second, whose coefficient β we aim to identify, along with persistence parameter γ. αi, a

scalar, denotes the unobserved individual specific effect and uit denotes the unobserved scalar

idiosyncratic term. The simulation exercise explores identification of β, γ under varying

models, with T = 2, 3, varying support conditions on (vit, xit), and different values of γ.

We demonstrate identification graphically with projections of three dimensional plots of

our objective function. Specifically we look at values of the objective function of different

values of β and γ along a grid in a two dimensional plane. In models where point identification

is attainable, a single value will be in the plot, whereas in partially identified models, a subset

of the grid will be plotted.

5.1 Stationary Model, T=2

In this model we simulated data where vit, xit were each discretely distributed, with the

number of support points for vit, increasing from 2 to 7, and then continuously (standard

normal) distributed. The number of support points for xit was always two, though there

were two distinct designs- one with identical support in each time period, and the other with

strictly nonoverlapping support- xit = t, with t = 1, 2, i.e. a time trend. Recall that this

typse of design (or any design with only discrete covariates) could not be handled by any

existing methods. The idiosyncratic terms uit were bivariate normal, mean 0 variance 1,

correlation 0.5, and the fixed effect αi was standard normal. We assumed that all variables

were mutually independent. The parameters where set to 1 for β and either 0.5 or -0.5 for

γ.
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Our plots for this model agree with our theoretical results. We note that when xit, vit are

discrete, neither parameter is point identified. For example, in Figure 1, we have x is binary

while v starts out as binary and then we add points of support ending with 14. This Figure

is repeated for when true γ is negative. As we can see the identified set is not the trivial set.

The same design is replicated in Figure 2 with γ = −.5.

Now, when v is normally distributed, the size of the identified set shrinks. This is

illustrated for γ = .5 in Figure 3 and in Figure 4 with γ = −.5 with v is normally distributed

with increasing variance. Notice here that in all the plots, β appears well identified relative

to γ.

In Figure 5, we change x to a time trend (x = t) and in the top lhs plot, we have the

identified set in the case when v is binary. Here, we cannot pin down the sign of γ. But, as

we increase the points of support for v, the identified set shrinks and eventually it appears

that the sign of γ is identified. The same story holds for when γ is negative. The next

Figures allow for time trend in the case when v is normal. For instance, in Figure 7 we plot

the case with a time trend and a normal covariate with increasing variance when γ = .5. We

repeat the exercise

We also simulate the identified set for the T = 2 case for the model that conditions on

y0. In this case, the model is isomorphic to an “exchangeable model,” a label we use in the

Figures. In Figure 9, we start with the discrete regressors for γ = .5 and the next figure

replicates it for γ = −.5. These should be compared to Figures 1 and 2 in the case without

conditioning on the initial condition. In Figures 11 and 12 we plot the identified set when

one of the regressors is normal with different variances. As we can see from these plots, the

idenfied set for (β, γ) is very small.

In Figures 13 and 14 we plot the identified sets in the case with time trends when the other

regressor is discrete and when it is normal respectively. Notice here that the identified set

with a normal covariate is very tight.

5.2 Stationary Model, T=3

Here we simulated data with an extra time period, maintaining the stationarity assumption,

so that uit was trivariate normal with pairwise correlations of 0.25. The graphs now demon-

strate that both β and γ will be point identified when even when γ is negative and xt = t.
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This matches up with our theoretical conclusion that point identification can be achieved

with all of nonoverlapping support, serial correlation and state dependence. In Figure 15

we provide the identified sets for a few designs. In the top, the two designs correspond to

the case when xt = t and v is discrete (top left) and when v is standard normal (top right).

The bottom of the figure plots the case when v is normal (variance 1 on the left and 2.5 on

the right).

6 Empirical Illustration

Here we illustrate our methods with the Panel Data forWomen′sLabor Force Participation

used in Chay and Hyslop (2014), which contains data on N=5663 married women over T = 5

periods, where the periods are spaced four months apart11. The response variable lfpit is a

binary indicator for labor force participation. The key explanatory variables we use are kidsit

(number of children under 18) and lhincit=log(hincit), where husband’s income, hincit, is in

dollar per month and is positive for all i and t. There are also time-constant variables educ,

black,age and agesq, these variables are dropped out when using fixed effects estimators.

In the following analysis, a binary version of lhincit and kidsit, newlhincit and newkidsit

respectively, enter regressions as explanatory variables. These are defined as:

newkidsit =

{
0, kidsit = 0 or 1,

1, kidsit > 1.
(11)

newlhincit =

{
0, lhincit ≤Median (lhinct),

1, lhincit > Median (lhinct).
(12)

We also use 3 time periods. A table of brief descriptive statistics is provided below.

Table 1: Summary Statistics

obs mean sd min max
lfp 16989 .6812643 .466 0 1
newkids 16989 .4139737 .4925584 0 1
newlhinc 16989 .4997351 .5000146 0 1

11The data set can be downloaded from the website that accompanies Wooldridge (2010).
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We compare our estimates of the model introduced in this paper to three dynamic models.

First, we use two random effects Probit: the reprobit where the random effect is mean zero

and independent of the regressors, and another reprobitci where the random effect is a

function of the vector of covariates at all time periods. The third model is the dynamic

Logit FE model of Honoré and Kyriazidou (2000). Table 2 reports the estimates along with

confidence regions. The FE logit model uses the following conditional likelihood

n∑
i=1

1[xi2 = xi3]1[yi1 6= yi2]× log
(
exp((xi1 − xi2)

′
b+ g(yi0 − yi3))yi1

1 + exp((xi1 − xi2)′b+ g(yi0 − yi3))

)
(13)

We found that the above objective function was easy to optimize and is robust to starting

values. The 95% CI for γ from this model (assumes that y0 is strictly exogeneous in addition

to assuming that the uit is iid logistic) is approximately [1.3, 3.4] which is large and positive

meaning that being employed last period is highly predictive of being employed this period

even controlling for unobserved time invariant fixed effects. This model provides support for

state dependence of past employment.

Implementation Via Linear Program: To implement the procedure described in the

inference section above and obtain a confidence region, we require that one obtains draws

from the confidence region of the choice probabilities in (6) above. One computationally

automatic way to get such draws is to use the Bayesian bootstrap which is equivalent to

drawing from the posterior distribution of a multinomial with the usual Dirichlet priors12.

For each draw from this posterior, we solve the linear program for min /max of the scalar

a = l′(γ, β′)′. For example, the maginal CIs for γ would take a = γ = (1, 0, 0) ∗ (γ, β′)′ as

the objective function to optimize using the linear program subject to the linear constraints.

This allows us to get (marginal) CIs for every scalar component of the parameter vector13.

Using 1000 draws from the posterior of the choice probabilities, we obtain 1000 copies of the

identified set. Then, we report in the table below the smallest set that contains 95% of the

12In cases when the regressors have many support points, one can use a “reduced form” estimator for the
choice probabilities such as a multinomial logit and use that model to get draws from its posterior predictive
distribution.

13It may be that with real data, the set of inequalities that define the stationary set does not have
a nonempty interior. In this case, one can add add a tolerance parameter t to each inequality (so now
the inequalities are less than a positive t rather than less then 0 and this tolerance can be weighted by
the standard error), and in the first pass through the linear program one can minimize t subject to the
constraints that define the problem (optimizing over (γ, β)) to obtain a feasible tolerance t∗. Then, one can
then fix the tolerance at t∗ when computing the confidence set. In our data setup, our inequalities had a
nonempty interior and so the linear program was feasible (t∗ = 0).
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intervals. This procedure is simple to compute even with many of inequalities.

(1) (2) (3) (4)
reprobit reprobitci HK Logit FE Stationary FE - Tolerance =0

newkids -0.139 -0.063 -.443 -.5
(0.037) (0.374) (.214)

newlhinc -0.161 -0.150 -.273 [.5, 3]
(0.036) (0.095) (.72) [−.5, 3.2]

lag lfp 2.475 1.163 2.331 [.5, 3.1]
(0.034) (0.134) (.53) [−.2, 3.2]

Table 2: Dynamic Models: RE, Logit FE (HK), Stationary FE/T=2 using Linear Programs

Notice here that consistently across all the models, the γ coefficient appears positive. In

the model only assuming stationarity, we fix the parameter on newkids to −.5 for normaliza-

tion to match the point estimate from the HK FE model. Compared to HK’s estimates, our

CI for γ is wider on the lhs and covers zero while HK’s does not. Note here that our model

also provides a consistent estimator for the identified set in addition to a CI for this iden-

tidied set. Moreover, computing such CIs is computationally trivial since for every draw,

it involves solving a linear program. Of course in more complicated models with lots of

covariate values, the size of the linear program may increase. We leave exploring in more

details this empirical model and its computational task for future work.

7 Conclusion

This paper analyzes the identification of slope parameters in panel binary response models

with lagged dependent variables under minimal assumptions on the distribution of idiosyn-

cratic error terms. In particular, we consider two versions of stationarity assumptions: with

and without strictly exogenous initial conditions, and provide the identified set under these

two restrictions without making any assumptions on the fixed effect. We show that the

characterization yields the sharp set that can easily be characterized through a certain lin-

ear programming problem. Our identification approach is quite flexible in that it does not

rely on conditioning on a sub-population for whom covariates do not change between time
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periods (in contrast to Honoré and Kyriazidou (2000)), so it can cover dynamic binary

response models with time trend and, in general, explanatory variables that grow over time.

In addition, we provide sufficient conditions for point identification in models with T = 2

and T = 3 time periods. Overall, our analysis highlights the interplay between the strength

of the assumptions, the number of time periods and the support of the exogenous regressors.

The work here suggests many areas for future research. One such direction would be

to establish identified sets for the same parameters under alternative sets of restrictions in

the models. Two examples we already considered in companion work were based on the

assumptions of nonstationarity and independence. In the former setting we allowed the

distribution of the idiosyncratic error terms uit to vary over time but imposed cross sectional

homoskedasticity, resulting in a class of models non nested with the ones studied here. In

the latter setting we considered a model with serially independent, identically distributed

and homoskedastic error terms (with unknown distribution) and showed how much smaller

the identified sets were for this class of models nested by the ones considered in this paper.

Another direction for future research would be to consider models with a more general

time series structure, such as AR(p) models where p > 1 is a known integer, and derive the

identified set for the larger parameter θp ≡ (β, γ1, ...γp) under our weak conditions of serial

correlation and cross sectional heteroskedasticity. We leave this and conducting inference on

this larger parameter set for future work.
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A Figures

Figure 1: Stationary with T = 2 and Discrete Support with γ = .5
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Figure 2: Stationary with T = 2 and Discrete Support with γ = −.5
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Figure 3: Stationary with T = 2 and Normal v with γ = .5
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Figure 4: Stationary with T = 2 and Normal v with γ = −.5
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Figure 5: Stationary with T = 2 and Time Trend and Discrete Support for v with γ = .5
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Figure 6: Stationary with T = 2 and Time Trend and Discrete Support for v with γ = −.5
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Figure 7: Stationary with T = 2 and Time Trend and Normal v with γ = .5
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Figure 8: Stationary with T = 2 and Time Trend and Normal v with γ = −.5
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Figure 9: Exchangeability with T = 2 Discrete Support for v with γ = .5
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Figure 10: Stationary with T = 2 Discrete Support for v with γ = −.5
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Figure 11: Exchangeability with T = 2 Normal v with γ = .5
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Figure 12: Exchangeability with T = 2 Normal v with γ = −.5
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Figure 13: Exchangeability with T = 2 x = t Discrete v with γ = .5
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Figure 14: Exchangeability with T = 2, x = t Normal v with γ = .5
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Figure 15: Stationarity with T=3: Various Designs

52



Figure 16: Exchangeability with T=3: Various Designs
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B Proofs

B.1 Proof of Theorem 1 and Theorem 2

We start with the proof of our main result (Theorem 1) to demonstrate our approach. The

proof has two parts: First, we show that the true parameter belongs to ΘI (i.e. it satisfies the

conditions of Theorem 1). Next, we show that for any parameter θ̃ ∈ ΘI we can construct

the distribution of unobservable α̃i’s and ũit’s that follows assumptions 1 and 2 so that in

the dynamic binary choice model

ỹit = 1{ũit ≤ x′itβ + γỹit−1 + α̃i}

the distribution of (ỹi, xi) is identical to the distribution of (yi, xi). In that case, we say that

θ̃ is observationally equivalent to θ.

True parameter belongs to ΘI:

Let vit = uit − αi and vis = uis − αi. Note that if uit and uis are identically distributed

conditional on xi and αi then vit and vis must be identically distributed conditional on xi.

Let Fv(·|x) denote the (conditional on xi = x) marginal distribution of vit for t = 1, 2, . . . , T .

Then we have the following restrictions on Fv(·|x) for time period t:

P (yit = 1|xi = x) ≤Fv(x′tβ + max{0, γ}|x)

P (yit−1 = 1, yit = 1|xi = x) ≤Fv(x′tβ + γ|x)

P (yit−1 = 0, yit = 1|xi = x) ≤Fv(x′tβ|x)

Fv(x
′
tβ + min{0, γ}|x) ≤ P (yit = 1|xi = x)

Fv(x
′
tβ + γ|x) ≤ 1− P (yit−1 = 1, yit = 0|xi = x)

Fv(x
′
tβ|x) ≤ 1− P (yit−1 = 0, yit = 0|xi = x)

(14)
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and for time period s:

P (yis = 1|xi = x) ≤Fv(x′sβ + max{0, γ})

P (yis−1 = 1, yis = 1|xi = x) ≤Fv(x′sβ + γ|x)

P (yis−1 = 0, yis = 1|xi = x) ≤Fv(x′sβ|x)

Fv(x
′
sβ + min{0, γ}|x) ≤ P (yis = 1|xi = x)

Fv(x
′
sβ + γ|x) ≤ 1− P (yis−1 = 1, yis = 0|xi = x)

Fv(x
′
sβ|x) ≤ 1− P (yis−1 = 0, yis = 0|xi = x)

(15)

Part A1 of assumption 2 implies that Fv(·|x) is a strictly increasing function, and condi-

tions (1)-(9) in Theorem 1 immediately follow from restrictions in (14) and (15).

Any parameter in ΘI is observationally equivalent to the true parameter:

Now let θ̃ = (γ̃, β̃′)′ ∈ ΘI , where ΘI is characterized by the conditions (1)-(9) in Theorem 1.

In what follows, we construct a sequence of random variables {ṽi1, . . . , ṽiT} such that for all

(d0, . . . , dT ) ∈ {0, 1}T+1 and all x ∈ X ,

P (yi0 = d0, . . . , yiT = dT |xi = x) ≡ P (ỹi0 = d0, . . . , ỹiT = dT |xi = x)

where

ỹit = 1{ṽit ≤ x′itβ̃ + γ̃ỹit−1}

and ṽit satisfies a stationarity property.

We start with ỹi0 ≡ yi0. Suppose that we already found a sequence {ṽi1, . . . , ṽit−1} that

matches the distribution of the first t outcomes: for all (d0, . . . , dt−1) ∈ {0, 1}t and all x ∈ X ,

P (yi0 = d0, . . . , yit = dt−1|xi = x) ≡ P (ỹi0 = d0, . . . , ỹit−1 = dt−1|xi = x)

There exists a random variable ṽit such that

P (ṽit ≤ x′itβ̃|ỹit−1 = 0, ỹit−2 = dit−2, . . . , ỹ0 = d0, xi = x) =

= P (yit = 1|yit−1 = 0, yit−2 = dit−2, . . . , yi0 = d0, xi = x)

P (ṽit ≤ x′itβ̃ + γ̃|ỹit−1 = 1, ỹit−2 = dit−2, . . . , ỹi0 = d0, xi = x) =

= P (yit1 = 1|yit−1 = 1, yit−2 = dit−2, . . . , yi0 = d0, xi = x)
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Then the sequence {ṽi1, . . . , ṽit} matches the distribution of the first t+ 1 outcomes:

P (yi0 = d0, . . . , yit = dt|xi = x) ≡ P (ỹi0 = d0, . . . , ỹit = dt|xi = x)

We can continue this procedure until we match the distribution of all T + 1 outcomes.

Next step is to verify that the marginal distributions of ṽit and ṽi1 can be made identical

for all t = 1, . . . , T , conditional on xi. That is, conditional on xi, ṽit is stationary.

For each t, the construction of the sequence ỹi0, . . . , ỹiT places restrictions on P (ṽit ≤
v|xi = x) only at these two points: v = x′itβ̃ and v = x′itβ̃ + γ̃. Specifically,

P (ṽit ≤ x′itβ̃|xi = x) =

=
∑

(d0,...,dt−2)∈{0,1}t−1

P (ṽit ≤ x′itβ̃|ỹit−1 = 1, . . . , ỹi0 = d0, xi = x)P (ỹit−1 = 1, . . . , ỹi0 = d0|xi = x)

+
∑

(d0,...,dt−2)∈{0,1}t−1

P (ṽit ≤ x′itβ̃|ỹit−1 = 0, . . . , ỹi0 = d0, xi = x)P (ỹit−1 = 1, . . . , ỹi0 = d0|xi = x)

=
∑

(d0,...,dt−2)∈{0,1}t−1

P (ṽit ≤ x′itβ̃|ỹit−1 = 1, . . . , ỹi0 = d0, xi = x)P (ỹit−1 = 1, . . . , ỹi0 = d0|xi = x)

+ P (yit−1 = 0, yit = 1|xi = x)

and similarly,

P (ṽit ≤ x′itβ̃ + γ̃|xi = x) =

=
∑

(d0,...,dt−2)∈{0,1}t−1

P (ṽit ≤ x′itβ̃ + γ̃|ỹit−1 = 0, . . . , ỹi0 = d0, xi = x)P (ỹit−1 = 0, . . . , ỹi0 = d0|xi = x)

+ P (yit−1 = 1, yit = 1|xi = x)

Note that probabilities P (ṽit ≤ x′itβ̃|ỹit−1 = 1, . . . , ỹi0 = d0, xi = x) and P (ṽit ≤ x′itβ̃ +

γ̃|ỹit−1 = 0, . . . , ỹi0 = d0, xi = x) are not restricted by the sequential process of constructing

ỹi0, . . . , ỹiT described above, and so these probabilities can be anything between 0 and 1.

Setting all these probabilities to 0 bounds P (ṽit ≤ x′itβ̃|xi = x) and P (ṽit ≤ x′itβ̃ + γ̃|xi = x)
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from below by

P (yit−1 = 0, yit = 1|xi = x) ≤ P (ṽit ≤ x′itβ̃|xi = x)

P (yit−1 = 1, yit = 1|xi = x) ≤ P (ṽit ≤ x′itβ̃ + γ̃|xi = x)

and setting all these probabilities to 1 gives us the upper bounds on P (ṽit ≤ x′itβ̃|xi = x)

and P (ṽit ≤ x′itβ̃ + γ̃|xi = x)

P (ṽit ≤ x′itβ̃|xi = x) ≤P (yit−1 = 0, yit = 1|xi = x) + P (yit−1 = 1|xi = x)

= 1− P (yit−1 = 0, yit = 0|xi = x)

P (ṽit ≤ x′itβ̃ + γ̃|xi = x) ≤P (yit−1 = 1, yit = 1|xi = x) + P (yit−1 = 0|xi = x)

= 1− P (yit−1 = 1, yit = 0|xi = x)

Additionally, if γ̃ is positive, then∑
(d0,...,dt−2)∈{0,1}t−1

P (ṽit ≤ x′itβ̃|ỹit−1 = 1, . . . , ỹi0 = d0, xi = x)P (ỹit−1 = 1, . . . , ỹi0 = d0|xi = x)

≤
∑

(d0,...,dt−2)∈{0,1}t−1

P (ṽit ≤ x′itβ̃ + γ̃|ỹit−1 = 1, . . . , ỹi0 = d0, xi = x)P (ỹit−1 = 1, . . . , ỹi0 = d0|xi = x)

= P (yit−1 = 1, yit = 1|xi = x)

and so we bound P (ṽit ≤ x′itβ̃|xi = x) from above by:

P (ṽit ≤ x′itβ̃|xi = x) ≤ P (yit−1 = 1, yit = 1|xi = x)+P (yit−1 = 0, yit = 1|xi = x) = P (yit = 1|xi = x)

Similarly,∑
(d0,...,dt−2)∈{0,1}t−1

P (ṽit ≤ x′itβ̃ + γ̃|ỹit−1 = 0, . . . , ỹi0 = d0, xi = x)P (ỹit−1 = 0, . . . , ỹi0 = d0|xi = x)

≥
∑

(d0,...,dt−2)∈{0,1}t−1

P (ṽit ≤ x′itβ̃|ỹit−1 = 0, . . . , ỹi0 = d0, xi = x)P (ỹit−1 = 0, . . . , ỹi0 = d0|xi = x)

= P (yit−1 = 0, yit = 1|xi = x)

and so we bound P (ṽit ≤ x′itβ̃ + γ̃|xi = x) from below by:

P (ṽit ≤ x′itβ̃+γ̃|xi = x) ≥ P (yit−1 = 0, yit = 1|xi = x)+P (yit−1 = 1, yit = 1|xi = x) = P (yit = 1|xi = x)
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Using a similar approach for negative γ̃, we get the following bounds on P (ṽit ≤ x′itβ̃|xi =

x) and P (ṽit ≤ x′itβ̃ + γ̃|xi = x):

P (ṽit ≤ x′itβ̃|xi = x) ≥ P (yit = 1|xi = x)

and

P (ṽit ≤ x′itβ̃ + γ̃|xi = x) ≤ P (yit = 1|xi = x)

That is, we have the following:

P (ṽit ≤ x′itβ̃ + min{0, γ̃}|xi = x) ≤ P (yit = 1|xi = x) ≤ P (ṽit ≤ x′itβ̃ + max{0, γ̃}|xi = x)

To summarize: our sequential construction of ỹi0, . . . , ỹiT only bounds each P (ṽit ≤ v|xi = x)

for t = 1, . . . , T in the following ways:

P (yit−1 = 0, yit = 1|xi = x) ≤ P (ṽit ≤ x′itβ̃|xi = x)

P (yit−1 = 1, yit = 1|xi = x) ≤ P (ṽit ≤ x′itβ̃ + γ̃|xi = x)

P (ṽit ≤ x′itβ̃|xi = x) ≤ 1− P (yit−1 = 0, yit = 0|xi = x)

P (ṽit ≤ x′itβ̃ + γ̃|xi = x) ≤ 1− P (yit−1 = 1, yit = 0|xi = x)

P (ṽit ≤ x′itβ̃ + min{0, γ̃}|xi = x) ≤ P (yit = 1|xi = x)

P (ṽit ≤ x′itβ̃ + max{0, γ̃}|xi = x) ≥ P (yit = 1|xi = x)

(16)

Other than having to satisfy the restrictions in (16), the distribution of ṽit conditional on xi

can move freely by varying conditional probabilities P (ṽit ≤ v|ỹit−1 = dt−1, . . . , ỹi0 = d0, xi =

x).

The restrictions in (16) are identical to the restrictions in (14). Since (β̃, γ̃) ∈ ΘI , there

exists a (conditional on xi = x) probability distribution F (·|x) such that for all t = 1, . . . , T
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the following holds:

P (yit−1 = 0, yit = 1|xi = x) ≤ F (x′itβ̃|x)

P (yit−1 = 1, yit = 1|xi = x) ≤ F (x′itβ̃ + γ̃|x)

F (x′itβ̃|x) ≤ 1− P (yit−1 = 0, yit = 0|xi = x)

F (x′itβ̃ + γ̃|x) ≤ 1− P (yit−1 = 1, yit = 0|xi = x)

F (x′itβ̃ + min{0, γ̃}|x) ≤ P (yit = 1|xi = x)

F (x′itβ̃ + max{0, γ̃}|x) ≥ P (yit = 1|xi = x)

(17)

It remains to verify that F (·|xi = x) can be the marginal distribution of {ṽi1, . . . , ṽiT}.
We start with ṽi1: the marginal distribution of ṽi1 evaluated at x′i1β̃ is given by

P (ṽi1 ≤ x′i1β̃|xi = x) =P (yi0 = 0, yi1 = 1|xi = x)

+ P (ṽi1 ≤ x′i1β̃|ỹi0 = 1, xi = x)P (ỹi0 = 1|xi = x)

=P (yi0 = 0, yi1 = 1|xi = x)

+ P (ṽi1 ≤ x′i1β̃|ỹi0 = 1, xi = x)P (yi0 = 1|xi = x)

where the last equality holds because by construction, P (ỹi0 = 1|xi = x) = P (yi0 = 1|xi = x).

If P (yi0 = 1|xi = x) = 0, then the first and third restrictions in (17) imply that

F (x′i1β̃|x) = P (yi0 = 0, yi1 = 1, |xi = x) and so we can set P (ṽi1 ≤ x′i1β̃|ỹi0 = 1, xi = x) to

be anything between 0 and 1.

If P (yi0 = 1|xi = x) > 0, the we can set

P (ṽi1 ≤ x′i1β̃|ỹi0 = 1, xi = x) =
F (x′i1β̃|x)− P (yi0 = 0, yi1 = 1|xi = x)

P (yi0 = 1|xi = x)

Note that the first and third restrictions in (17) ensures that the right-hand side of the above

equation is between 0 and 1.

By setting these conditional probabilities as described we guarantee that

P (ṽi1 ≤ x′i1β̃|xi = x) = F (x′i1β̃|x)
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Similarly, the marginal distribution of ṽi1 evaluated at x′i1β̃ + γ̃ is given by

P (ṽi1 ≤ x′i1β̃ + γ̃|xi = x) =P (yi0 = 1, yi1 = 1|xi = x)

+ P (ṽi1 ≤ x′i1β̃ + γ̃|ỹi0 = 0, xi = x)P (yi0 = 0|xi = x)

If P (yi0 = 0|xi = x) = 0, then the second and fourth restrictions in (17) imply that

F (x′i1β̃ + γ̃|x) = P (yi0 = 1, yi1 = 1, |xi = x) and so we are free to set P (ṽi1 ≤ x′i1β̃ + γ̃|ỹi0 =

1, xi = x) to be anything between 0 and 1.

If P (ỹi0 = 0|xi = x) > 0, the we can set

P (ṽi1 ≤ x′i1β̃ + γ̃|ỹi0 = 0, xi = x) =
F (x′i1β̃ + γ̃|x)− P (yi0 = 1, yi1 = 1|xi = x)

P (yi0 = 0|xi = x)

Here the second and fourth restrictions in (17) ensures that the right-hand side of the above

equation is between 0 and 1.

By setting these conditional probabilities as described we guarantee that

P (ṽi1 ≤ x′i1β̃ + γ̃|xi = x) = F (x′i1β̃ + γ̃|x)

We can repeat this construction step for any t > 2. Specifically, for an arbitrary t > 2

we have

P (ṽit ≤ x′itβ̃|xi = x) =P (ỹit−1 = 0, ỹit = 1|xi = x)

+ P (ṽit ≤ x′itβ̃|ỹit−1 = 1, xi = x)P (yit−1 = 1|xi = x)

and

P (ṽit ≤ x′itβ̃ + γ̃|xi = x) =P (ỹit−1 = 1, ỹit = 1|xi = x)

+ P (ṽit ≤ x′itβ̃ + γ̃|ỹit−1 = 0, xi = x)P (yit−1 = 0|xi = x)

If P (yit−1 = 1|xi = x) = 0, then we already have that P (ṽit ≤ x′itβ̃|xi = x) = F (x′itβ̃|xi =

x). Similarly, if P (yit−1 = 0|xi = x) = 0, then we already have P (ṽit ≤ x′itβ̃ + γ̃|xi = x) =

F (x′itβ̃ + γ̃|x).
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If P (yit−1 = 1|xi = x) > 0, then we can set

P (ṽit ≤ x′itβ̃|ỹit−1 = 1, xi = x) =
F (x′itβ̃|x)− P (yit = 1, yit−1 = 0|xi = x)

P (yit−1 = 1|xi = x)

so that P (ṽit ≤ x′itβ̃|xi = x) = F (x′itβ̃|x).

And if P (yit−1 = 0|xi = x) > 0, then we can set

P (ṽit ≤ x′itβ̃ + γ̃|ỹit−1 = 0, xi = x) =
F (x′itβ̃ + γ̃|x)− P (yit = 1, yit−1 = 1|xi = x)

P (yit−1 = 0|xi = x)

so that P (ṽit ≤ x′itβ̃ + γ̃|xi = x) = F (x′itβ̃ + γ̃|x)

For any v /∈ {x′itβ̃, x′itβ̃ + γ̃} the construction of sequence {ỹi0, . . . , ỹiT} doesn’t restrict the

distribution of ṽit evaluated at v in any way, so we can set

P (ṽit ≤ v|xi = x) = F (v|x)

To sum up: for a model ỹit = 1{ṽit ≤ x′itβ̃ + γ̃ỹit−1}, we found a distribution of

{ṽi1, . . . , ṽiT} such that the following holds:

• This model is observationally equivalent to the original model: P (yi0 = d0, . . . , yiT =

dT |xi) = P (ỹi0 = d0, . . . , ỹiT = dT |xi) for all (d0, . . . , dT ) ∈ {0, 1}T+1

• Distribution of error terms ṽit’s in this model is stationary: P (ṽit ≤ v|xi = x) = F (v|x)

for all t = 1, . . . , T .

Now let α̃i = 0 and let ũit = ṽit. Then

ỹit = 1{ũit ≤ x′itβ̃ + γ̃ỹit−1 + α̃i}

where ũit|xi, α̃i
d
= ũi1|xi, α̃i for all t = 2, . . . , T and where

P (yi0 = d0, . . . , yit = dT |xi = x) ≡ P (ỹi0 = d0, . . . , ỹit = dT |xi = x)
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for all (d0, . . . , dT ) ∈ {0, 1}T+1 and all x ∈ X . That is, any θ̃ = (γ̃, β̃′)′ ∈ ΘI is observationally

equivalent to the true parameter θ. This completes the proof of Theorem 1.

The proof of Theorem 2 closely follows the proof of Theorem 1 with the these two differ-

ences: conditioning on xi, yi0 rather than just xi, and matching P (yi1 = 1|xi, yi0) directly:

P (ṽi1 ≤ x′1β̃ + γ̃d0|xi = x, yi0 = d0) = P (yi1 = 1|xi = x, yi0 = d0)

�

B.2 Proof of Theorem 3

We establish point our conclusions sequentially. We first show β̃ is point identified without

having established point identification for γ̃. Next we explore identification for γ̃, assuming

that β̃ is point identified. For this, we will first show the sign of γ̃ is identified. Then,

assuming the sign of γ̃ is known, we show its magnitude generally cannot be identified.

To show the first result, suppose that β̃ 6= λβ for any λ > 0. Note that in this case,

conditions PID− STAT1 and PID− STAT2 in Assumption 4 imply that P (sign(∆xβ̃) 6=
sign(∆xβ)|x ∈ X7 ∩ X8) > 0 (see Lemma 2 in Manski (1985)). That is, there exist a subset

of X7 ∩ X8 (that has a positive probability measure) where sign(∆xβ̃) 6= sign(∆xβ). For

example, let x∗ ∈ X7 ∩ X8 be such that ∆x∗β̃ > 0 and ∆x∗β < 0. Since x∗ belongs to the

union of X7 and X8 and ∆x∗β < 0, Theorem 1 implies that it must be that P (yi0 = 1, yi1 =

1|xi = x∗) + P (yi1 = 1, yi2 = 0|xi = x∗) > 1 holds, which in turn rules out any β̃ such that

∆x∗β̃ > 0. Similar argument applies if ∆x∗β̃ < 0 abut ∆x∗β > 0. Note that the above

reasoning does not work when β̃ = λβ for some λ > 0, so β is point identified (only up to

scale) on X7 ∩ X8 under Assumption 4.

With β identified we can turn attention to the point identification of γ. We first establish

62



when the sign of γ can be identified. First note that if γ ≥ 0, then Theorem 1 implies that

∆X1 ⊆ {∆x ∈ Rk : ∆xβ + γ > 0}

∆X2 ⊆ {∆x ∈ Rk : ∆xβ − γ < 0}

∆X3 ⊆ {∆x ∈ Rk : ∆xβ > 0}

∆X4 ⊆ {∆x ∈ Rk : ∆xβ < 0}

∆X5 ⊆ {∆x ∈ Rk : ∆xβ + γ > 0}

∆X6 ⊆ {∆x ∈ Rk : ∆xβ − γ < 0}

∆X7 ⊆ {∆x ∈ Rk : ∆xβ > 0}

∆X8 ⊆ {∆x ∈ Rk : ∆xβ < 0}

∆X9 ⊆ {∆x ∈ Rk : ∆xβ − γ > 0}

∆X10 ⊆ {∆x ∈ Rk : ∆xβ + γ < 0}

So if (∆X1 ∪ ∆X5) ∩ ∆X10 6= ∅ or (∆X2 ∪ ∆X6) ∩ (∆X9) 6= ∅ or ∆X3 ∩ ∆X8 6= ∅ or

∆X4 ∩∆X7 6= ∅, then γ cannot be non-negative.

Similarly, if γ ≤ 0, then we have (from Theorem 1)

∆X1 ⊆ {∆x ∈ Rk : ∆xβ − γ > 0}

∆X2 ⊆ {∆x ∈ Rk : ∆xβ + γ < 0}

∆X3 ⊆ {∆x ∈ Rk : ∆xβ − γ > 0}

∆X4 ⊆ {∆x ∈ Rk : ∆xβ + γ < 0}

∆X5 ⊆ {∆x ∈ Rk : ∆xβ > 0}

∆X6 ⊆ {∆x ∈ Rk : ∆xβ < 0}

∆X7 ⊆ {∆x ∈ Rk : ∆xβ > 0}

∆X8 ⊆ {∆x ∈ Rk : ∆xβ < 0}

∆X9 ⊆ {∆x ∈ Rk : ∆xβ − γ > 0}

∆X10 ⊆ {∆x ∈ Rk : ∆xβ + γ < 0}

So if ∆X5 ∩∆X8 6= ∅ or ∆X6 ∩∆X7 6= ∅, then γ cannot be non-positive. Finally, if γ both

cannot be positive or negative, it has to be zero (so it’s point identified).

Finally, result in part (4) follows directly from Theorem 1. �
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