How to Randomize Using Many Baseline Variables: Guest post by Thomas Barrios

Stratification is a widely used tool in randomized controlled trials. However experimenters often face
the following situation: they are ready to assign treatment, they have a rich amount of information
about each unit in the randomization, they would like to ensure that the treatment and control groups
are similar with respect to these variables, but they must trade off balance on some variables versus
others. In cases where there are many, possibly continuous, variables how should randomization pro-
ceed?

Matched pair designs solve the dimensionality problem by assigning each of the subjects in the experi-
ment into pairs and picking one subject in each pair to receive treatment. This takes the stratification to
the limit of what is possible with half the number of strata as units in the experiment and exactly two

units within each stratum. Now the question becomes, how to assign pairs. My job market paper finds

an optimal way to select pairs in matched pairs designs. | consider the key comparison in many exper-
iments, the difference in average outcome between the treatment and control groups, and | show that
using all baseline information to form a prediction of the outcome of interest and then stratifying based
on that prediction minimizes the variance of the estimator.

Let's take for example school administrators who want to test interventions that increase student per-
formance as measure by exam scores. Eighteen elementary schools have volunteered for an experiment
and students in nine schools will receive an intervention (Fryer, 2013). Detailed administrative records
have been kept for each school and for each student. So at the beginning of the study, researchers have
a large set of baseline variables: graduation rates, previous exam scores, grades, attendance, proxies for
family income, local crime, and many others.

A matched-pair randomization will put the eighteen schools into nine pairs, and one of the two schools
in each pair will be assigned treatment. This paper shows that an optimal way to choose the nine pairs
is to (1) use all available baseline information to predict exam performance at each school, (2) rank
schools according to this prediction, and (3) match pairs by assigning the two highest ranked schools
to one pair, the next two highest to the second pair, and so on until the two lowest ranked schools are
assigned to the last pair. This will require data to estimate prediction functions. In this example, the es-
timation can be done using information from previous school cohorts.



The difference in means is typically the key finding from a randomized experiment (Angrist and Pischke,

2010) and my design minimizes the variance of this estimator. Estimators that are easy to explain also
aid in the delivery of research findings to policy makers.

What are the assumptions?

e The treatment effect is independent of the predicted outcome. (This is a strong assumption. My
paper also discusses finding computational solutions to the matching problem without this as-
sumption.)

e The experimenter is interested in measuring impact using the difference in average outcome be-
tween treatment and control.

e The goal of the stratification is to minimize the variance (or maximize the precision) of this esti-
mator.

e At the point of randomization there is information about how the baseline variables relate to
the outcome of interest.

e All units are randomized at the same time.

The independence assumption is strong. A treatment effect that is constant across all subjects would
satisfy this condition. My paper discusses the more general solution without the independence assump-
tion, it too only depends on conditional expectations of potential outcomes.
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How does this work in practice?
The figure above illustrates the steps involved in the matching procedure. The process starts with base-
and with “training data" (X,Y)

line variables for the units in the experiment X the key feature

expr ! train
of which is that both baseline variables and the outcome are observed (often for a previous cohort). A
prediction function 7 that maps covariates to outcomes is estimated from the training data. | go over
methods that prevent over-fitting at this step. The baseline covariates from the experiment are then

brought in and a prediction of the outcome for each one is made. The predictions are ranked, and pairs

are made based on the ranking. In the figure M __ represents pair indicators. Next treatment T is as-

expr
signed, the experiment is done, and outcomes Y are measured. The ex-post analysis of the experiment

is standard (Duflo et al., 2006) and uses just the outcome Yij, the treatment Tij, and pair dummies

Mjwhere i indexes individuals and j indexes pairs. Inference can be conducted by fitting the model

EQY,IT;,M))=a+pT;+0,M,;.

How well does this do in practice?
Using data from Bruhn and McKenzie (2011), | conduct simulations of six experiments. The settings are

modeled on plausible or actual development field experiments. Mexico’s national labor survey simu-
lates a treatment that increases income. A Sri Lankan micro-enterprise survey simulates an intervention
that increases firm profits. A Pakistani education survey is used in simulated experiments that increase
education and height. Finally Indonesia’s Family Life survey is used to simulate interventions that in-
crease child schooling and household income.

For the simulations, | use the survey samples as the population and independently draw training and
experiment samples. The former is used to fit a prediction model, and the later is taken as the experi-
ment sample where only baseline variables are known at the point of randomization and outcomes are
observed after.

| vary the number of observations from 30 to 300 in the experiment sample and the number of observa-
tions in the training data from 2000 to 100. In each case | estimate the prediction function using four
common prediction techniques: Lasso, Ridge regression, and model selection based on AIC and BIC and
match based on each one. For comparison | also match based on the baseline value of the outcome
when available.



Simulation Results:

¢ | find that optimal designs have mean squared errors 23% less than completely randomized
designs, on average. In one case, mean squared error is 43% less than randomized designs.

e Matching on the predicted value of the outcome always does as well or better than matching
just on the baseline value of the outcome.

e Among the four prediction methods all perform equally well in five of the six experiments. In the
remaining case (using Indonesian data with household expenditure as an outcome) Lasso and
Ridge perform better than AIC and BIC.

e The experiments where the baseline data had the highest predictive power showed the biggest
increases in relative precision compared to complete randomization. The relative gains, relative
to complete randomization, were the same across sample sizes.

e The reductions in relative mean squared error come close (except in the case of Indonesian
household expenditures) to that achieved under perfect balance on baseline variables.

e The relative decrease in variance from matching can be fairly well approximated by using

the R from the model fit in the training data.

Limitations:

There won't always be available training data from the same population as the experiment. With
matching based on imprecise predictions there would possibly be gains from adjusting for covariate im-
balance ex-post as in Rubin (1973). A strong assumption, that the treatment effect is independent of the
predicted outcome, yields an analytic solution. My paper discusses optimizing in the more general case.

Conclusion:

| derive a method for optimal pairing in matched-pair randomization that minimizes the variance of a
common estimator. | find that all covariate information relevant to precision is contained in the condi-
tional expectation function. This method shows how information beyond the variables for the sample in

the experiment can be used to inform randomization.
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