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Abstract. This paper shows that stratifying on the conditional expectation of the outcome

given baseline variables is optimal in matched-pair randomized experiments. The assign-

ment minimizes the variance of the post-treatment difference in mean outcomes between

treatment and controls. Optimal pairing depends only on predicted values of outcomes

for experimental units, where the predicted values are the conditional expectations. After

randomization, both frequentist inference and randomization inference depend only on the

actual strata chosen and not on estimated predicted values. This gives experimenters a way

to use big data (possibly more covariates than the number of experimental units) ex-ante

while maintaining simple post-experiment inference techniques. Optimizing the random-

ization with respect to one outcome allows researchers to credibly signal the outcome of

interest prior to the experiment. Inference can be conducted in the standard way by re-

gressing the outcome on treatment and strata indicators. We illustrate the application of

the methodology by running simulations based on a set of field experiments. We find that

optimal designs have mean squared errors 23% less than randomized designs, on average.

In one case, mean squared error is 43% less than randomized designs.
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1. Introduction

Experimenters often face the following situation: they are ready to assign treatment to

some subset of units in an experimental group, they have a rich amount of information

about each unit –from a baseline survey, a pilot, or administrative records– and they would

like to ensure that the treatment and control groups are similar with respect to these vari-

ables. They can pick one or two variables and stratify on those, making those variables

more balanced after randomization, but what about the rest? Furthermore, on which of the

variables should they stratify?

Let’s take for example state prison administrators who want to test interventions that re-

duce recidivism. Their goal is to have released inmates complete a successful twelve-

month post-release supervision regime1. For the experiment, they have drawn a sample of

sixty inmates with six months remaining on their sentences, thirty of whom will receive an

intervention. Detailed state administrative records have been kept for each inmate starting

from the point of arrest. At the beginning of the study, researchers have a large set of base-

line variables: past criminal record, prison behavior, family history, and education.

With only sixty units in the experiment, complete random assignment may produce treat-

ment and control groups that are not comparable2. Researchers in our example have thus

decided on a matched-pair randomization; they will put the sixty inmates into thirty pairs,

and one of the two people in each pair will be assigned treatment. This paper shows that

an optimal way to choose the thirty pairs is to (1) use all available baseline information

to predict whether each inmate will successfully complete post-release supervision, (2)

1Presently, a large portion of released inmates re-enter prison because of technical violations during the

twelve months of post-release supervision.
2More precisely, a significant portion of treatment assignments may produce groups that, absent the treat-

ment, expect to have significant differences in the average outcome, and that the magnitude of these differ-

ences will be large relative to expected treatment effect sizes.
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rank inmates according to this prediction, and (3) match pairs by assigning the two highest

ranked inmates to one pair, the next two highest to the second pair, and so on until the

two lowest ranked inmates are assigned to the last pair. This will require data to estimate

prediction functions. In this example, the estimation can be done using information from

previous inmate cohorts.

This paper considers the gain in efficiency3 from effective stratification. We show that strat-

ifying, in the case of matched pairs, leads to significant efficiency gains, that gains will be

large if baseline variables are good predictors of the outcome of interest, and that it is

optimal to stratify on the conditional expectation of the outcome given baseline variables.

Simulations show that the gain in efficiency is comparable to having controlled for covari-

ates in the analysis after randomization. That is, given a set of covariates X, matching on

predictions based on X and estimating the difference in means ex-post gives estimators

with mean squared error of the same size as performing a complete randomization and

controlling for X with regression ex-post. This paper focuses on the difference in means

since this estimate is typically the key finding from a randomized experiment (Angrist

and Pischke, 2010). Thus this method is helpful to modern researchers who, according to

Angrist and Pischke (2010) “often prefer simpler estimators though they might be giving

up asymptotic efficiency” (p. 12). This paper keeps the estimator simple and shows how

optimal matching can regain lost efficiency via stratification. Simple estimators also aid

in the delivery of research findings to policy makers. Dean Karlan offers the following on

scaling up interventions:

How do we make it easy for government to make the right choices? How

do we make it easy for N.G.O.s to choose the right thing? ... You can,

the fact that you can put up a simple bar chart makes it easy for people

3Stratification is generally done for one of two reasons: to estimate heterogeneous treatment effects across

strata or to make standard errors smaller. This paper considers the latter.
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to get it. Okay, treatment is here, control is there, I see the impact. The

minute you have really fancy econometrics with lots of Greek Letters, you

are not making it easy for policy makers to understand and decipher what

the lessons are from a research paper. (Karlan, 2013)

The method used here is especially useful when the number of baseline covariates is

very large, since the conditional expectation function collapses multi-dimensional covari-

ates onto a single dimension. This gives experimenters a way to use big data (possibly

more covariates than the number of experimental units) ex-ante and maintain simple post-

experiment inference techniques. It leverages both the large amount of available baseline

information and the tools of predictive analysis (Hastie, Tibshirani, and Friedman 2009)

that are increasingly being developed in the field of statistical learning to inform experi-

mental design.

Large detailed datasets are becoming increasingly available to experimenters. Beyond the

example above, experimenters partnered with private firms may be able to use the firm’s

administrative records to inform the design of randomized trials. For example, there have

been trials to measure the effects of working from home on productivity (Bloom et al.,

2013), peer saving habits on contributions to retirement plans (Beshears et al., 2011),

and streamlined college application materials on high-performing, low-income student

enrollment at selective colleges (Hoxby and Turner, 2013).

Whether the experiment is set at a Chinese travel agency (Bloom et al., 2013), an Ameri-

can manufacturing firm (Beshears et al., 2011), or a non-profit entrance exam association

(Hoxby and Turner, 2013), rich information is increasingly available not only for the units

in the experiment but also for the population from which these units are drawn and for

comparable past populations. In the public sphere, Medicare and Medicaid programs store

information on services to participants, and public school districts keep detailed records
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of student academic outcomes, teachers, and classrooms. These agencies have recently al-

lowed academic researchers to evaluate programs in cases where lotteries have been used

for limited numbers of program spots (Finkelstein et al. 2012, Angrist et al. 2013 ). It

is not implausible that in the future, researchers will be brought in earlier and have input

in the design of randomizations explicitly to increase the amount of information gleaned

from these program evaluations (e.g. Kane et al., 2013).

The main worry with using many control variables in the analysis after an experiment is

that the data generating process will be unknown, and researchers have a variety of ways to

add controls. Controls are often tried in many specifications. With a large number of spec-

ifications, experimenters may report only those with significant results. A set of controls,

X, can be outlined in a pre-analysis plan (Casey et al., 2011). But specification searches

can still be done by selectively including or excluding controls not in X. Even within X,

linear models can be specified in {X1, .., Xk}, {X1, X2
1 .., Xk, X2

k }, {X1, X2
1 , X1 · X2, ..., X2

k }, or

any other set of linear controls that take the elements of X as primitive variables. In con-

trast, the method in this paper suggests a unique set of controls, the set of pair indicators.

While an analysis can include other additional controls, perhaps as robustness checks4, a

report of the difference in means with standard errors of correct size will be expected and

our set of controls provide exactly that for the difference in means estimator.

Another worry is that researchers will look for treatment effects across many outcomes.

Optimizing the randomization with respect to one outcome allows researchers to credibly

signal the outcome of interest prior to the experiment5. If there is interest in a variety of

related outcomes then researchers could designate a broad index as the main outcome of

the experiment (e.g. Ludwig et al., 2012).

4For example matching has been coupled with regression adjustment (Rubin, 1973).
5Casey et al., (2011) discuss the practice of having experiment pre-analysis plans and how these plans add

credibility to program analyses by designating controls and outcomes at the design stage of the experiment.
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The next section formalizes the main result. Section 3 describes how the method can

be used in practice. Section 4 will go over the ex-post analysis and show how standard

methods apply. Section 5 will review model selection methods used in prediction and

how they have been used here. To demonstrate those methods, section 6 revisits a set of

field-experiment based simulations by Bruhn and McKenzie (2011) and shows how ex-

perimenters could have used information available at baseline to estimate conditional ex-

pectation functions of outcomes given baseline covariates. Section 7 turns to the literature

and compares this method to others.
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2. Main Result

Set-up

We first lay out the primitives of the experiment. The subjects in the experiment are sam-

pled from an underlying population. For each subject, we observe a vector of covariates

before the experiment is conducted. After the experiment we observe a real valued out-

come. The outcome we observe will depend on whether or not the individual was treated.

We can think of each individual having a pair of potential outcomes that correspond to the

two different exposures to treatment. We refer to exposure to treatment as treatment, and

withholding of the treatment or exposure to a placebo as control. This set of primitives is

commonly referred to as Rubin’s causal model. Within this framework we are interested

in the average causal effect of treatment on the outcome.

A key condition will be that, for every individual, treatment assignment is independent of

potential outcomes. Pairing experimental units will not change this independence. What

pairing changes is the correlation of treatment across individuals. More explicitly, it makes

treatment assignment perfectly negatively correlated between pairs. Across pairs treatment

assignment remains independent.

Throughout we will consider the following setup.

Assumption 1

1. Sampling from a population: We randomly sample N units i = 1, ..,N, where N is

even, from some population. Units of observation are characterized by a vector of

covariates Xi ∈ R
K as well as a potential outcome function Yi(·) : {0, 1} 7→ R. At

this point only the covariate column vector Xi is observed.

2. Treatment assignment: We assign treatment Ti to unit i as a function of the matrix

of covariates X = (X′i , ..., X
′
N)′. Let {Yi(1),Yi(0)} y T j | X ∀i, j.



8 THOMAS BARRIOS DEPARTMENT OF ECONOMICS, HARVARD UNIVERSITY

3. Realization of outcomes: The observed outcome is the potential outcome corre-

sponding to the assigned treatment level: Yi = Yi(Ti)

Note that the second part of Assumption 1.2 encompasses SUTVA, the “stable unit treat-

ment value assumption”, (Angrist et al., 1996)). SUTVA states that given individual

treatment assignment, potential outcomes are independent of other treatment assignments.

More formally θi y T\Ti.

Treatment Effects, Average Treatment Effect (ATE), and Prognostic Score

Our parameter of interest, or target, is the population average causal effect of treatment.

Note that in drawing notation for this parameter we are implicitly assuming this population

moment exists. Individual causal (treatment) effects are defined as differences in individ-

uals’ potential outcomes. These, of course, are unobservable since only one potential

outcome per individual is ever observed.

We can form expectations for each potential outcome conditional on the observed covari-

ates. At the introduction of a new treatment there exists information about how outcomes

evolve absent the treatment. This is formalized by the prognostic score, i.e. the conditional

expectation of the outcome in the absence of treatment. The prognostic score tells us what

is expected, or predicted, to happen in a world where treatment does not yet exist. Errors

from these predictions encompass unobserved determinants of the outcome.

Definition 1

1. Denote the average treatment effect (ATE) θ ≡ E(Yi(1) − Yi(0)).

2. For unit i denote the treatment effect θi ≡ Yi(1) − Yi(0), i = 1, ...,N.

3. Denote the sample average treatment effect (SATE) θS AT E ≡
1
N

∑N
i=1 θi.

4. Denote the prognostic score r(Xi) ≡ E (Yi(0)|Xi) and let εi ≡ Yi(0) − r(Xi).
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Now we can describe the relationships between potential outcomes, treatment, prognostic

score, and prediction error. The potential outcome, absent treatment, is the sum of the

prognostic score and prediction error. The addition of a treatment effect gives the potential

outcome under exposure to treatment. The observed outcome is given by the sum of

prognosis, prediction error, and, if treated, treatment effect. More formally, Definition 1

gives us that

Yi(0) = r(Xi) + εi

Yi(1) = θi + r(Xi) + εi

Yi = Tiθi + r(Xi) + εi

Re-indexing and matched pairs

The paired nature of the experimental units makes it useful for reorder their index i so that

units in the same pair are adjacent to each other. This will allow us to discuss a particular

pair by referring to the individuals’ index. Here we do this so that the kth pair is units 2k−1

and 2k. This also allows us to parsimoniously describe treatment assignments.

Let the index i be re-ordered in a matched pairs randomization scheme where Ti = 1−Ti+1

for i odd, and Ti ∼iid Bernoulli(1/2) for i odd.

With units and treatment assignments as described above we can establish notation for

within pair differences. The average of within pair differences is the difference of averages

between treatment and control units, our statistic of interest.

Definition 2 (Estimator and within pair differences)

1. Denote the within pair differences

Dk = T2k−1 [Y2k−1(1) − Y2k(0)] + (1 − T2k−1) [Y2k(1) − Y2k−1(0)]

for k = 1, ..., N
2
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2. Denote the sample average D ≡ 2
N

∑ N
2
k=1 Dk.

Proposition 1 Unbiasedness: Given Assumption 1 and taking expectations over the dis-

tribution of treatment assignments, then D is an unbiased estimator of the sample average

treatment effect, θS AT E.

proof: Given assumption 1 and definitions 1 and 2, by iterated expectations

E(Dk|Y(1),Y(0)) = E(Dk|Yi(1),Yi(0))

=
1
2

[Y2k−1(1) + Y2k(1) − Y2k−1(0) − Y2k(0)]

=
1
2

[θ2k−1 + θ2k]

By definition 2

E[D|Y(1),Y(0)] =
2
N

N
2∑

k=1

1
2

[θ2k−1 + θ2k]

=
1
N

N∑
i=1

θi

= θS AT E

�

Corollary 1 It follows, by taking expectations over the distribution of X described in As-

sumption 1.1, that D is an unbiased estimator of the average treatment effect. It further

follows, by taking expectations over the conditional distribution of potential outcomes

holding covariates fixed, that D is an unbiased estimator of the conditional average treat-

ment effect, 1
N

∑N
i=1 E[Yi(1) − Yi(0)|X]. �

Now we can evaluate the variance of this statistic as follows.
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By Definition 2 we have

(1) var
(
D|X

)
=

(
2
N

)2


N
2∑

k=1

var(Dk|X) +
∑
h,k

cov(Dk,Dh|X)


Next, we find expressions for each component of the sum in equation 1

Proposition 2: If Assumption 1 holds, θi|X, ε are independent, and E(θi|X, ε) = θ then

var(Dk|X) =
1
2

[var(θ2k−1|X) + var(θ2k|X)](2)

+ var(ε2k−1|X) + var(ε2k|X)

+ [r(X2k−1) − r(X2k)]2, ∀k,

and

cov(Dk,Dh|X) = 0, ∀h , k.(3)

These give

var(D|X)(
2
N

)2 =

N∑
i=1

[
1
2

var(θi|X) + var(εi|X)
]

+

N
2∑

k=1

(r(X2k−1) − r(X2k))2(4)

proof: Given in Appendix B. �

The main result is that of all possible ways to pick pairs the optimal way depends on

covariates only through their prediction. First we need to formally define a pairing and

relate it to our potential outcome notation.

Definition 3 (Pairing)

For N even, a pairing, p, is a permutation of the set {1, ...,N}. The pairs defined by p are

{{p(2k − 1), p(2k)}}
N
2
k=1. Two pairings, p and p′, are different if and only if there exist k

and h s.t. {p(2k − 1), p(2k)} ∩ {p′(2h − 1), p′(2h)} , ∅, and {p(2k − 1), p(2k)} , {p′(2h −

1), p′(2h)}.
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This definition gives an equivalence relation on the set of permutations, i.e. two pairings

are equivalent if at least one experimental unit assigned differently between pairings. The

set of equivalence classes produced by this relation is what we call the set of pairings. Our

goal is to find the pairing that minimizes equation 1.

Proposition 3: Let ri ≡ r(Xi) ∀i, and let r(1), r(2), ..., r(N) denote the order statistics of

r1, r2, ..., rN . If Assumption 1 holds and θi|X, ε are i.i.d with E(θi|X, ε) = θ, then var(D|X)

is minimized by the pairing {(1), (2), ..., (N)}. This pairing is a permutation of {1, ..,N}.

The pairs are {(2k − 1), (2k)}
N
2
k=1.

proof:

By Proposition 1 var(D|X) depends on pairs only via

N
2∑

k=1

r(2k−1)r(2k).

So we must show
N
2∑

k=1

r(2k−1)r(2k) ≥

N
2∑

k=1

rp(2k−1)rp(2k)

for all other pairings p.

Suppose for the purposes of deriving a contradiction that p is maximal for

N
2∑

k=1

rp(2k−1)rp(2k)

and there exists subset {a1, a2, a3, a4} ⊆ {r1, ..., rN} where a1 ≤ a2 ≤ a3 ≤ a4 and are not

paired in order under p. If a1 = a2 = a3 = a4 then it is not possible to pair the subset out

of order. Likewise it is not possible if a1 < a2 = a3 = a4 or a1 = a2 = a3 < a4. Suppose

a1 = a2 < a3 = a4, then it must be that under p the pairs are {a1, a3} and {a2, a4}. Now

consider a1a3 + a2a4, we will show that a1a2 + a3a4 is larger and thus p is not maximal.

We have a1a3 + a2a4 = 2a1a3 and a1a2 + a3a4 = a2
1 + a2

3 . Suppose for contradiction that
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a2
1 + a2

3 ≤ 2a1a3 ⇐⇒ a2
1 + a2

3 − 2a1a3 ≤ 0, but a2
1 + a2

3 − 2a1a3 = (a1 − a3)2 > 0. Thus it

must be that {a1, a2, a3, a4} has at least three distinct elements.

• Case 1: a1 = a2 < a3 < a4. Under p the pairs must be {a1, a3} and {a2, a4} since

a1 = a2. Under p we obtain a1a3 + a2a4 = a1a3 + a1a4 compared to the alternative

pairing {a1, a2} and {a3, a4} where we obtain a1a2 + a3a4 = a1a1 + a3a4 . Now

suppose a1a3 + a1a4 ≥ a1a1 + a3a4 ⇐⇒ a1(a3 − a1) ≥ (a3 − a1)a4 ⇐⇒ a1 ≥ a4

since a3 > a1. But a1 < a4 by transitivity.

• Case 2: a1 < a2 = a3 < a4. Under p it must be {a1, a4} and {a2, a3} are paired.

Under p we obtain a1a4 + a2a2 whereas under the alternative {a1, a2} and {a3, a4}

we obtain a1a2 + a2a4. Now suppose a1a4 + a2a2 ≥ a1a2 + a2a4 ⇐⇒ a1(a4−a2) ≥

a2(a4 − a2) ⇐⇒ a1 ≥ a2, but a1 < a2.

• Case 3: a1 < a2 < a3 = a4. Under p it must be that {a1, a3} and {a2, a4} are paired

and we obtain a1a3 + a2a3. Consider the alternative {a1, a2} and {a3, a4} where we

obtain a1a2 + a3a3. Suppose a1a3 + a2a3 ≥ a1a2 + a3a3 ⇐⇒ a1(a3 − a2) ≥

a3(a3 − a2) ⇐⇒ a1 ≥ a3, but a3 > a1.

• Case 4: a1 < a2 < a3 < a4. Under p either a1 is paired with a3 or it is paired with

a4. First, say a1 and a3 are paired. Then we obtain a1a3 + a2a4. Let us compare

that to a1a2 + a3a4. Suppose a1a3 + a2a4 ≥ a1a2 + a3a4 ⇐⇒ a1(a3 − a2) ≥

a4(a3 − a2) ⇐⇒ a1 ≥ a4 a contradiction. Instead say a1 and a4 are paired un-

der p, then we obtain a1a4 + a2a3. Let us compare that to a1a2 + a3a4. Suppose

a1a4 + a2a3 ≥ a1a2 + a3a4 ⇐⇒ a1(a4 − a2) ≥ a3(a4 − a2) ⇐⇒ a1 ≥ a3, a
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contradiction.

�

Remarks Use the empirical process notation: En[ f (ωi)] ≡ 1
n

∑n
i=1 f (ωi). Proposition 2

gives

(5)
N
2

var(D|X) = EN[var(θi|X)] + 2EN[var(εi|X)] + E N
2
[(r(X2k−1) − r(X2k))2]

where the first two terms of this equation are irreducible error, and

E N
2
[(r(X2k−1) − r(X2k))2]

is the error from within pair differences in r(Xi). If pairs do not match on the vectors Xi,

but all pairs match on the scalars r(Xi) then E N
2
[(r(X2k−1) − r(X2k))2] = 0, and equation 5

would only involve irreducible error. This provides some intuition for this paper’s main

results.

Other than Assumption 1 the proof of optimality required that treatment effects be inde-

pendent of (X, ε). A requirement, like this one, restricting the relationship between the

conditional expectations of potential outcomes is necessary for matching based on the

prognostic score to be optimal. Consider the following counter example where we do

away with this type of requirement and allow E(Yi(1)|Xi = x) and E(Yi(0)|Xi = x) to be

unrestricted. Let potential outcomes be deterministic functions of a univariate X, and let

X take on the following values in a sample of four. The data could come from four draws

from the functions in Figure 1.

The assumptions in Propositions 2 and 3 imply that the average treatment effect conditional

on covariates is constant for all values of the potential outcomes. In this counter example,

that would require the graphs in Figure 1 to differ by at most a vertical shift. In this
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E(Yi(1)|xi) E(Y(0)i|xi) xi i
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Exampl e: Esti mates of E(Y(0) |X) and E(Y(1) |X)

xi

E(Y (0) |X)

E(Y (1) |X)

deviation from that assumption the optimal pairing depends on more than the order given

by either conditional expectation function.

Pairing on the prognostic score would pair units {1, 2} and {3, 4}, and Var(D|X) would be

52/16. Pairs matched on the predicted outcome for treatment would give {1, 4} and {2, 3}
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with Var(D|X) of 37/16. The optimal pairs in this case are {1, 3} and {2, 4}, they give

Var(D|X) of 36/16.

2.1. General solution to the matching problem. Without making any assumptions we

have the following formula for the variance:

var(D)(
2
N

)2 =
N
2

[
E(θ2

i ) − θ2 + 2E(r(Xi)2) + 2E (θiYi(0)) + 2E(ε2
i )

]

−

N
2∑

k=1

[2E(r(X2k−1)r(X2k)) + E(θ2k−1Y2k(0)) + E(θ2kY2k−1(0))]

+
∑
h,k

1
4

[E(θ2k−1θ2h−1) + E(θ2k−1θ2h) + E(θ2kθ2h−1) + E(θ2kθ2h)]

−
N
2

(N
2
− 1

)
θ2

(6)

This is derived in a web appendix. The second and third rows depend on the way pairs are

matched. Let E(Yi(1)|Xi) ≡ r̃(Xi), and εi ≡ Yi(1) − r̃(Xi).

Therefore θi = r̃(Xi) + ε̃ − r(Xi)− εi. We have that E(θiYi(0)) = E(r̃(Xi)r(Xi))− E(r(Xi)2)−

E(ε2
i ), E(θiY j(0)) = E(r̃(Xi)r(X j))−E(r(Xi)r(X j)), and E(θiθ j) = E(r̃(Xi)r̃(X j))−E(r(Xi)r̃(X j))−

E(r̃(Xi)r(X j)) + E(r(Xi)r(X j)). Each of which are functions of X. Since the set of possible

matches is finite then for every possible realization of X optimization of equation 6 can be

done by exhaustive search over this set.

3. Matching in Practice

In practice the conditional expectation function–also referred to as the ‘prognosis score’

(Hansen, 2008)–is not known and will have to be estimated with data. This data can

come from any sample from the same population, for example a previous experiment, a
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rich baseline survey, an existing observational study, or administrative data. This initial

prediction can be based on many baseline covariates. Since we will be using covariates to

predict the outcome of interest, the goal is to use them to make predictions with the best out

of sample performance. To this end there are many model selection procedures available,

such as, AIC, BIC, Lasso, or ridge regression. This paper provides some guidance on how

to estimate the best predictors in the examples and compares their performance.

Figure 2 shows each of the steps present in the matching procedure. The process starts with

collection of baseline covariates for the units in the experiment, in addition to collection of

auxiliary (training) covariates and outcome data from the same population. Next the train-

ing data is used to estimate a prediction function. This function, coupled with the baseline

covariates from the experiment group form the procedure’s predicted outcomes. Matched

pairs are based on these predictions. The pair assignments are then operationalized as a

set of pair indicators. Next, randomization produces a treatment variable. After the ex-

periment is conducted, an outcome variable is measured. The analysis of this experiment,

however, will use just the pair indicators, outcome, and treatment variable.

To build intuition for the procedure and to draw important distinctions, it is useful to com-

pare the present method with well known propensity score methods. In practice, the two

steps for optimal matched pairs randomization are analogous to matching procedures in

observational studies based on the propensity score (Rubin, 1983). In the first step, rather

than estimating a propensity score (which is the conditional probability of treatment), we

estimate a ‘prognostic score’ (Hansen, 2008), which is a conditional expectation of the

potential outcome absent the treatment. Both scores aggregate the information present in

pre-intervention variables. But while the propensity score describes how observables in-

fluence selection into treatment, the prognostic score describes how observables influence

the outcome.
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Figure 2. How auxiliary data is used in Matched Pair Randomization
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Notes: This figure shows each step in the matching procedure. The process starts with the collection of baseline covariates, Xexpr, for

the units in the experiment and auxiliary (training) data from the same population that contains baseline covariates and outcome,

(X,Y)train. Next the training data is used to estimate a prediction function, r̂. This allows the experiment baseline covariates to

form a predicted outcome. Matched pairs are based on these predictions, r̂(Xexpr). The pair assignments are given by a set of

pair indicators, Mexpr. Randomization produces a treatment variable T , and an outcome variable, Y , which is measured after the

experiment is conducted. The analysis of the experiment will use (Y,T,M)expr.

Since treatment in this model is binary, the propensity score must usually be estimated with

probit or logit models as these both account for the binary dependent variable. On the other

hand, the prognostic score is not restricted in the same manner unless the outcome is also

binary. In propensity score methods the second step would typically involve controlling

for the propensity score non-parametrically. This can more generally include matching

or blocking, as well as fitting flexible univariate functions. However in matched pairs
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randomization, the second step is usually fixed6. That is, inference in the second second

step is performed in one standard way. We describe this in the next section.

4. Inference inMatched Pair Randomization

After randomization, both frequentist inference and randomization inference depend only

on the actual strata chosen and not on estimated predicted values. Covariates are used to

form predictions which are then used to choose pairs. Ex-post analysis is done condition-

ally on the chosen pairs; thus it is unaffected by the process used to pick pairs. However,

so long as good predictors of the outcome are used, significant gains in efficiency will most

likely be realized.

A standard way to obtain the difference in means estimator is from the following linear

regression model (Duflo et al., 2006),

(7) E(Yi j|Ti j,M j) = α + βTi j + δ jM j

where i indexes individuals, j indexes pairs, Ti j is a treatment indicator, and M j is a pair

indicator.

Frequentist inference can be done using either the standard or robust estimates of the least

squares variance. In the case of matched pairs, there is also another procedure available,

i.e. the paired difference test (Rubin, 1973). The simplest way to think of the paired t-test is

to construct within pair differences, D j ≡ Y1 j−Y2 j (indexed so that the first unit is treated).

This gives one difference for each pair. The rest of the procedure amounts to estimating

the mean with the sample average of the differences, D = 1
n

∑
j D j, where n is the number

6Dierh et al (1995), Snedecor and Cochran (1979), and Lynn and McCulloch (1992) discuss ‘breaking the

matches’ ex-post in matched pair randomization and find that tests that ignore the procedure are conservative.

‘Breaking the matches’ is a hybrid design where one matches, but then analyses the data as if matching had

not occurred.
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of pairs. Standard errors for the test come from the appropriately normalized sample

variances of the differences, SE=

√
1
n

1
n−1

∑
j(D j − D)2. A t-statistic, D/SE, is formed and

compared to a critical value from the t-distribution with n − 1 degrees of freedom. The

test can be justified either asymptotically given a central limit theorem holds or in finite

samples with the assumption of normal errors.

Thus given a matched pair randomization one can view the data as a set of N outcome

measurements from the experimental units, where N/2 have been treated. One can then

proceed with analysis by regressing the outcome on a treatment indicator alongside a set

of N/2 pair indicators. Alternatively one can view the data as a set of n = N/2 within

pair differences wherein the statistician is estimating the simple mean of the n within pair

differences7.

Randomization inference can also be conducted ex-post. The method, in general, consid-

ers a test statistic and a sharp null hypothesis. The test statistic is evaluated at all possible

counter-factual assignments that could have been realized by the experiment. A sharp null

hypothesis then specifies exactly what the treatment effect is for every experimental unit

and allows counter-factual potential outcomes to be computed for every unit. It is com-

monly the case that the sharp null hypothesizes exactly zero effect of treatment for every

unit. Under this null both potential outcomes are identical for each unit, so that outcomes

would be the same under any treatment assignment. In a matched pairs experiment with

N/2, pairs there would be 2N/2 possible assignments and the distribution of a test statistic

can be computed over this distribution. Inference would then be conducted by compar-

ing the value of the statistic to the proportion of more extreme values in the underlying

distribution.

7Two interesting but non critical observations are described in appendix A.
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4.1. Treatment Compliance. Often in experiments not all treatment assignments are fol-

lowed. For example experimenters may randomize admission into a work-training pro-

gram, but not all admitted applicants may enroll. Furthermore, some applicants who were

randomized out of the program may be admitted after reapplying. In these cases one can

use the original treatment assignments to estimate the effect of Intent To Treat (ITT) by

redefining Ti in this model’s set-up to denote treatment assignment instead of actual treat-

ment.

5. Model Selection and PredictionMethods

In this section we present and discuss four model selection methods: AIC, the Akaike In-

formation Criterion; BIC, Bayes’ Information Criterion; Lasso, the least absolute shrink-

age and selection operator; and Ridge regression. This paper uses each of these four

methods to select models in simulations.

5.1. AIC and BIC. The Akaike (1974) Information Criterion comes from a correction for

over-fitting in a maximum likelihood model. In the likelihood model, this means that the

Kullback-Leiber distance between the selected model and the true model is smaller than

would be expected. The expected bias is then computed and the estimate is subtracted

out. AIC is a transformation of the bias corrected distance between the true model and

the given model. On the other hand, the Bayes’ Information Criterion (BIC) comes from

a Laplace approximation of the probability of observing a given set of data conditional on

a particular model. Both AIC and BIC have a long history of application in time series

where one of the main questions is regarding how to select the order of AR and ARMA

models (c.f. Shibata, 1976 and Brockwell and Davis, 2002). Researchers with access

to long panel data sets, such as semester grades from kindergarten to tenth grade, may
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find AR models useful for predicting class 11 grades. The methods noted above are more

generally useful in classifying how well different models fit a dataset.

We use the AIC in the case of independent identically distributed data. This derivation

follows Claskens and Hjort (2008). Let Y1, ...,Yn be i.i.d. from an unknown density g.

Consider a parametric model with density fθ(y) = f (y, θ) where θ = (θ1, ..., θp)′ belongs to

some subset of Rp. MLE minimizes the Kullback-Leibler distance (KL) between the fitted

and true model,

KL =

∫
g(y) log g(y)dy −

∫
g(y) log f (y, θ̂)dy.

The first term is constant across models fθ so consider

Rn =

∫
g(y) log f (y, θ̂)dy.

This is a random variable, dependent on the data via θ̂. Now consider it’s expected

value

Qn = Eg[Rn] = Eg

[∫
g(y) log f (y, θ̂)dy

]
.

and estimate Qn from data via

Q̂n =
1
n

n∑
i=1

log f (Yi, θ̂) =
1
n

ln,max.

We can show that Q̂n is higher than Qn on average, and the bias is

E(Q̂n − Qn) ≈ p∗/n, where p∗ = trace(J−1K)

where

J = −Eg

[
∂2 log f (Y, θ0)

∂θ∂θ′

]
, K = Varg

[
∂ log f (Y, θ0)

∂θ

]
.

If g = fθ0 then J = K. A bias-corrected estimator of Qn is

Q̂n − p∗/n = (1/n)(ln,max − p∗).
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When the model actually holds, i.e.

g(y) = f (y, θ0),

then K = J is the Fisher information matrix of the model, and

p∗ = tr(J−1K) = p = dim(θ).

If we take p∗ = p, the number of parameters in the model, this gives the AIC crite-

rion

AIC = −2ln,max + 2p

In the normal linear model Yi|xi ∼ N(xiβ, σ
2I) we have that −2ln,max = nlog( S S R

n ), where

S S R =
∑n

i=1(ŷi − y)2 so AIC = n log( S S R
n ) + 2p.

The BIC comes from comparing the posterior probability that a model is the true model.

We have that M1,M2, ... are potential models. The probability that data come from model

M j given the observation of data, Y , is

P(M j|Y) =
P(M j)
f (Y)

∫
Θ

f (Y |M j|θ)π(θ|M j)dθ

where P(M j) is the prior probability that data come from M j, and f (Y) is the unconditional

likelihood of observing data Y . For selecting among models using the same data, f (Y)

is fixed. We also give each model equal prior by fixing P(M j). Now we can rewrite∫
Θ

f (Y |M j|θ)π(θ|M j)dθ as ∫
Θ

exp(n
1
n

ln, j(θ))π(θ)dθ

and apply a Laplace transformation to give the approximation(
2π
n

)p/2

exp(n
1
n

ln, j(θ))
[
π(θ)|J(θ)|−1/2

]
= (2π)p/2n−p/2 f (Y |M j)π(θ)|J(θ)|−1/2
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where p is the dimension of the parameters in model j. The BIC that we use comes

from the first two dominant terms after taking the log of this expression. Taking the log

gives

p
2

log(2π) −
p
2

log(n) + ln, j(θ) + log(π(θ)) −
1
2

log|J(θ)|

and the two dominant terms are

−
p
2

log(n) + ln, j(θ)

since they get arbitrarily large with n. The BIC for model j is this expression multiplied

by −2.

BIC = p log(n) − 2ln, j(θ).

For the normal linear model we have that

BIC = n log
(S S R

n

)
+ p log(n).

Models are compared with BIC or AIC by taking the set of models under consideration,

and then computing AIC and BIC values for each one. Since the penalty term p log(n)

is higher for BIC than for AIC (which has a penalty of p2), BIC will have a tendency to

select lower dimensional models. As the number of models grows large, evaluating each

model individually becomes burdensome. In the next section we turn to model selection

methods that choose models without the need to compute a value for each.

5.2. Ridge and Lasso. Ridge and Lasso are methods that select from many possible mod-

els simultaneously. Here we describe Lasso and Ridge and follow Hastie, Tibshirani, and

Friedman (2009). Although more amenable to large parameter spaces (models can be es-

timated with more covariates than observations), Ridge and Lasso are defined for linear

models. Instead of introducing a penalty term after model parameters have been estimated,
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these shrinkage methods include a penalty within a modified least squares optimization

problem. Solving the optimization problem produces the best model.

For comparison recall the OLS estimator

β̂ = arg min
β

(y − xβ)′(y − xβ)

where y is an N × 1 vector of outcomes, x is a N × k matrix of covariates that includes

a constant in the first column, and β is a k × 1 parameter vector. Let us decompose the

covariates into the constant and the remaining columns x = [1, x̃], and let us do the same

for the parameters β = (β0, β̃
′)′. Now we can write down the ridge estimator as

arg min
β

[
(y − xβ)′(y − xβ) + λβ̃′β̃

]
.

Instead of minimizing the sum of squared residuals as in OLS, the Ridge estimator is

minimizing the sum of squared residuals plus a linear penalty in the sum of the squares of

the coefficients. One drawback of this method is that changes in the scale of the inputs have

non-trivial effects on the estimand. This paper follows standard practices and normalizes

covariates to have mean zero and variance one before we estimate both Ridge and Lasso

models.

Ridge can also be reconciled in the following Bayesian model. Let yi ∼ N(xβ, σ2) i.i.d.

for all i and let β j ∼ N(0, τ2) i.i.d. for all j. Then the posterior density of β with σ and τ

known is

f (β|y, x) ∝ exp
(
−

1
2σ2

[
(y − xβ)′(y − xβ) + λβ̃′β̃

])
where λ = σ2/τ28.

8This Bayesian interpretation of the Ridge model suggests a two step procedure as an alternative to

the standard practice of normalizing the variance of covariates to one. In the first step, if k < N one

can orthonormalize the covariates and estimate the full model to obtain measures of the precision of the

coefficients and an initial measure of σ. In the second step Ridge is estimated with λ set to σ2.
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Lasso follows a similar optimization to Ridge but changes the penalty so that it is linear in

the sum of absolute deviations of the coefficients instead of linear in the sum of the squares

like Ridge. More formally the estimator is described by

arg min
β

(y − xβ)′(y − xβ) + λ

k∑
j=1

|β j|

 .
The effect of changing the penalty on estimated coefficients is substantial. Lasso can

produce models with coefficients set to zero. In this way, it can be interpreted as doing

subset selection over the set of covariates.

Ridge and Lasso estimates will depend on the magnitude of the penalty coefficient, λ. Our

choice of this parameter starts by estimating models for various values of λ. For each

model we estimate the mean squared error using ten-fold cross validation, then we chose

the value λ with the lowest estimated mean squared error.

6. Data and Simulations

6.1. Dataset descriptions. Using data from Bruhn and McKenzie (2011), I conduct sim-

ulations in six cases. In some cases, the data come from actual field experiments. In others,

the data is observational and the outcome and baseline variables are chosen to represent

a hypothetical field experiment. Data come from four sources: Mexico’s national labor

survey, a Sri Lankan micro-enterprise survey, a Pakistan education survey, and Indonesia’s

Family Life survey. Table 1 gives summary statistics for variables in the six samples.

The Mexican survey has data on monthly income9 and weekly work hours for households

surveyed by the Mexican Encuesta Nacional de Empleo (ENE). This was Mexico’s na-

tional labor survey from 1988 to 2005. The ENE sample we use is for household heads

between 20 and 65 who were first interviewed in the second quarter of 2002 and who were

9Income is measured in pesos (MX$1=US$0.1)
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reinterviewed in the next four quarters. We keep only those at the initial interview and

imagine a treatment aimed at increasing their income.

Sri Lankan data is on small enterprises and measures monthly profits and sales, weekly

work hours, capital assets, demographic information on the business owner, and whether

the business was affected by the 2004 Indian ocean earthquake and accompanying tsunami.

Data collection was done in 2005 by De Mel, McKenzie, and Woodruff (2008), who

also randomly assigned grants of 10,000 or 20,000 rupees (LKR) to Sri Lankan micro-

enterprises. They surveyed firms with less than 100,000 LKR (US$1,000) in capital other

than land and buildings. We imagine an experiment aimed at increasing firm profits.

The sample of micro-enterprise firms is roughly evenly split between retail sales and man-

ufacturing. Retail firms tend to be small grocery stores. Manufacturing firms range from

clothing manufacturing to bicycle repair. The household asset index is the first principal

component of a set of indicators or ownership of durable assets10. The Capital variable

measures the value of assets in the firm excluding land and buildings.

We run simulations in two cases with data on test scores and child height from Pakistan

(Andrabi et al., 2008). Andrabi et al. study teacher value added estimates with three

years of data from the Learning and Educational Achievement in Punjab Schools (LEAPS)

project, an ongoing survey of learning in Pakistan. The sample comes from 112 villages

in 3 Punjabi districts. Villages were chosen from the set of villages with at least one

private school. Thus the sample has higher income and more education than the average

rural village in the districts. The initial panel consisted of 13,735 third graders who were

tested in Urdu, math, and English. These children were subsequently tested in fourth and

fifth grade. We use a subsample of 6,379 children who were additionally surveyed on

10The asset index uses seventeen indicators: cell phone; land-line phone; household furniture; clocks and

watches; kerosene, gas or electric cooker; iron and heaters; refrigerator or freezer; fans; sewing machines;

radios; television sets; bicycles; motorcycles; cars and vans; cameras; pressure lamps; and gold jewelry.
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anthropometrics (height, weight) and detailed family characteristics. Variables include a

family wealth index, an indicator for having a high education mother, and district private

school dummies. Math test scores are given as “knowledge scores” which range from zero

to 1000 on the LEAPS exam. The variable wealth index is from a principal component

analysis of twenty household assets.

The last dataset comes from the Indonesian Family Life Survey (IFLS), an on-going lon-

gitudinal survey in Indonesia. The first wave was conducted jointly in 1993 by RAND

and Lembaga Demografi, University of Indonesia. We use data from 1997 and 2000, the

second and third waves respectively. In one sample we use children in 6th grade during

the first survey and simulate a survey that keeps them in school. Our outcome is Child

Schooling, an indicator for whether the child was in school in 2000. In the second sam-

ple we use household per capita expenditure data as an outcome and simulate a treatment

that increases this outcome variable for households. The variable Household expenditure

represents the log of household expenditures per capita.

6.2. Data generating process. In order to allow an arbitrary number of draws to be taken,

and so that the true data generating process is known and can be used as a benchmark

for each dataset, I first regress the outcome on a set of covariates chosen by Bruhn and

McKenzie (2011)11. Next, I take the estimated coefficients and the mean squared error

from this regression in each dataset and treat these estimates as the true parameters, (β, σ2)

in a normal linear model y|x ∼ N(xβ, σ2I). Tables 2 and 3 describe the regressions used

for the data generating process and present the coefficients and MSE for each dataset. To

generate observations I draw covariate vectors xi from those that are in the BM samples.

That is, I take the joint distribution of xi, Fx, to be the sample distribution in the BM

data.
11Bruhn and McKenzie call these “balancing variables” and each of the six datasets has seven of these

covariates. Each dataset from Bruhn and McKenzie (2011) has three hundred observations.
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A simulated experiment draws two independent samples from this distribution, a training

sample and an experiment sample. With the experiment sample it estimates prediction

functions using the four methods from section 5, AIC, BIC, Ridge, and Lasso.

Ridge uses ridge regression (Tibshirani, 1996) where the penalty term is chosen to mini-

mize the mean squared error under ten-fold cross validation. LAS S O uses the least abso-

lute shrinkage and selection operator (Tibshirani, 1996) where the penalty term is chosen

to minimize the mean squared error under ten-fold cross validation. AIC uses the model

among the 27 sub-models that has the lowest value of the Akaike information criterion

(Akaike, 1974). BIC uses the model among the 27 sub-models that has the lowest value

of the Bayes information criterion (Schwarz, 1978). In each of the four methods the full

model is linear in a constant and the seven “balancing variables” and corresponds to the

data generating process. After this is done the training data is discarded and only the esti-

mated prediction functions are kept. These are used to form predictions of the outcome in

the experiment sample.

We investigate how matching pairs according to the predicted outcome performs against

complete randomization, and against matching pairs according to the baseline outcome12.

We are interested in the lagged outcome because this covariate is highlighted by Bruhn

and McKenzie and performs well in their simulations. For matching according to the

predicted outcome we compare the four methods of forming predictions from section 5.

Our benchmark estimates draw a training sample of 2000 observations of the outcome and

covariates and form predictions for an independent placebo experiment sample of 100.

For each method we report the mean squared error of the difference in means; we form .95

confidence intervals and report the proportion of estimates that fall outside the confidence

12For the schooling outcome in the IFLS data set, since all children are in school at baseline we match on

mother’s level of education.
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interval; lastly we estimate rejection probabilities (power) for plausible treatment effects

in each experiment.

A second set of simulations investigates how performance changes when we decrease the

size of the training sample. Finally two additional sets of simulations investigate the same

measures of performance when we first decrease then increase the size of the experimental

sample. This is motivated by findings from BM who observe smaller gains from matching

with samples sizes of 300 and above.

6.3. Benchmark performance. Table 4 shows the relative mean squared error from each

method in our benchmark case. In this first set of simulations the size of the training

sample is 2000, the size of the experiment sample is 100, and the number of simulations

per dataset per method is 10,000. We call a training sample of 2000 and an experiment

of 100 the benchmark case. The values in table 4 are scaled so that, for each data set, the

mean squared error under complete randomization is one. For example, row 1 column 3

implies that the mean squared error using matched pairs and matching using the predicted

value from Ridge regression produces mean squared error that is .748 times the size of the

mean square error under complete randomization.

6.4. Choice of matching variable. Generally in table 4, matching on the predicted values

does better than matching the lagged values of the outcomes. In these datasets, matching

on the lagged values of the outcome produces mean squared errors that are the about

the same size or 2 percent smaller than complete randomization. Note that the biggest

improvement comes from dataset 3 and that the least improvement comes from dataset 2.

This is in line with the predictive power i.e. R2, from the data generating process. The

gain in mean squared error relative to complete randomization is 1 − R2 and dataset 3 has

the highest R2 while dataset 2 has the lowest R2.
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6.5. Are standard errors the correct size? Table 5 considers whether tests using the

various randomization methods have correct size. This is a first order concern before

efficiency gains are considered. That is whether .95 confidence intervals formed following

the linear regression model in equation (1) reject the null of no effect when there is in

fact no effect of treatment. Table 5 shows that across all methods, size is well controlled.

Rejection rates over 10000 simulations stay very close to .05 with the highest deviation to

.055 and the lowest to .046.

Table 6 compares the methods under plausible treatment effects. The effects for each

method are described in the first column of the table. BM chose these treatment effects to

be relatively small in magnitude so that differences can be seen in power across random-

ization methods.

6.6. Performance with smaller training set. Tables 7 to 9 in Appendix C present sim-

ulation results that move from the benchmark case and reduce the size of the training

set from 2000 to 100. As one would expect we see in Table 8 that size continues to be

controlled well across datasets and randomization methods. Table 7 shows that the re-

ductions in mean squared error are about the same as in the benchmark case. For Math

test scores (Pakistan) matching pairs reduces MSE by forty to forty-three percent with a

training sample of 100. With a training sample of 2000 the Pakistani Math test score sim-

ulation produced reductions in MSE of about the same size. Table 9 shows that increases

in power are about the same as in the benchmark case or slightly smaller. For the Mexican

Labor income simulation with a smaller training sample, power under matching based on

predicted outcomes gives results between .178 and .183. However in the benchmark case

with a training sample of 2000, power is between .186 and .190.

6.7. Performance in small experiments. Tables 10 to 12 present simulations that move

from the benchmark case and instead reduce the size of the units in the experiment from
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100 to 30. Table 10 shows that this does cause a noticeable attenuation of the reductions in

MSE relative to the benchmark case. In the benchmark case with the strongest reduction in

MSE, i.e. the math test score example with Pakistani data, MSE drops by 40 percent with

30 experimental units. The reduction was .44 percent with Lasso in the benchmark case.

Table 14 shows that tests still correctly reject 5 percent of samples when no treatment effect

is present. By far, the biggest differences from the benchmark case come with respect to

losses in the level of power from the reduction of sample size, relative to the benchmark

case. The degrees of freedom reduction from the matched pairs method becomes an issue

in Table 12. While power remains as high as complete randomization for methods that

match on the predicted outcome, for matching on the lagged value of the outcome 4 of 6

datasets show lower power under matching on the lagged value of the outcome.

6.8. Performance in large experiments. The next case we consider takes the benchmark

case and increases the size of the experiment to 300. Recall that the previous case reduced

this sample to 30. Therefore, between the previous case of 30, the benchmark case of 100,

and this case of 300 once can observe the performance of randomization methods over

a tenfold increase in sample size. Tables 13 to 15 present results on MSE, size control

and power. Comparing the relative MSE results in table 13 to 4 and 10 we see that the

relative reduction in MSE is remarkably stable across sample sizes. Taking for example

the intervention on Pakistani math test scores, there remains a forty percent reduction in

mean squared error from complete randomization to either one of the four methods that

match on the predicted values of the outcome. This performance is remarkably similar to

tables 4 and 10.

In similar simulations on math test scores, Bruhn and McKenzie find that the 95th per-

centile of the difference in means go from 0.23 to 0.17 as the randomization methods goes

from complete randomization to matched pairs. They compare this to sample sizes of 30

where the reduction in this statistic is from 0.72 to 0.36. There are at least three reasons
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for the discrepancy, (1) the statistic they report is different from the MSE reported here, (2)

they match pairs using the Mahalanobis distance as a metric and the Greedy algorithm for

selection, (3) each of their simulations uses the same sample of 30 and the same sample of

300 observations in terms of both outcomes and covariates. Each of these three could play

a role. It is not obvious that relative percentiles of the distribution should scale proportion-

ately with sample size. Furthermore the 95th percentile of the sampling distribution of the

estimator may be a more important statistic than its mean square error. It is less likely that

the Mahalanobis metric would play a significant role in the discrepancy, but how this bal-

ances covariates should be studied further. More worrisome is that a single sample of 30

was repeatedly used in the BM simulations. If the balancing variables had more predictive

power for that sample than for the remaining sample of 270 that then this could lead to the

dramatic differences that BM observes.

7. Literature

The optimization problem of exhaustively paring subjects from a common pool is called

optimal non-bipartite matching (Papadimitriou and Steiglitz, 1998). It has previously been

taken up by Greevy et al (2004). The general staring point, if the total number of units is

N, is an N×N matrix that holds a weakly positive real valued measure of distance between

each subject. Greevy et al (2004) use the Mahalanobis distance (MD) metric suggested by

Rubin (1979) in this matrix. Distances are then summed for each candidate set of pairs,

and the set with the lowest sum is chosen.

Under MD if xp,1 and xp,2 are the vectors of covariates for the two units of the pth pair,

p = 1, ..., N
2 , and Ĉ is an estimate of Cov(X), then the sum of within pair Mahalanobis

distances is

(8)

N
2∑

p=1

√
(xp,1 − xp,2)Ĉ−1(xp,1 − xp,2)′.
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One can set xp,i to the covariates themselves, or to their ranks to minimize the influence

of outliers. It is commonly suggested that covariates be normalized by setting means to

zero and variances to one. One, benefit of weighting by the inverse covariance matrix is

that covariates that are highly correlated will be given less collective weight and covari-

ates that are orthogonal to the rest are given greater weight. This captures the problem of

over counting covariates that are very similar. Greevy et al (2012) extends this method to

incorporate missing data dummies, and pre and post multiplying C−1 by a matrix of user

specified weights. The method in this paper uses the conditional expectation function to

weigh covariates. Thus missing covariate values do not pose a problem since conditional

expectation functions are comparable and can be constructed for any set of covariates. If

there were fewer observed covariates for a particular observation then a conditional expec-

tation function that uses just the non-missing variables as its argument can be estimated.

For example, in the extreme case, if one particular experimental unit has no covariate

information, then the best prediction of the outcome for this unit is the mean of the out-

come.

While the Mahalanobis distance solves a well-posed optimization problem, it leaves much

to be desired. Experimenters must choose which variables to include and in what func-

tional form to include them. For example, the number of years of labor market experience

can be included, as can the square of experience. Greevy et al (2004) suggest that co-

variates that matter for the outcome be chosen, but they go no further. If many irrelevant

covariates are included in addition to strong predictors then this method will produce less

of a gain than if the irrelevant variables were excluded. Matching on the predicted out-

come (as is done in this paper) is not immune from the selection of an overly complex

model. However, prediction is a richly studied concept in model selection, forecasting,

machine learning and computer science, and there are many suggested solutions to resolve
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the issue of over-fitting. Thus if many irrelevant covariates are included among the set of

predictors, those covariates will be given very little weight or excluded completely.

Two very notable contributions to the experimental design literature from within the field

of economics are Hahn et al. (2011) and Kasy (2012). Hahn et al’s method requires at least

two experiments. The first experiment is conducted with complete randomization, and

the data from that experiment are used to compute estimates of the conditional variance,

Var(Yi(t)|Xi = x), where t ∈ {0, 1} is realized treatment, and Yi(·) is a potential outcome

function. In principle, conditional variances for untreated potential outcomes could also be

estimated in observational data. From these estimates the optimal treatment probabilities

(propensity scores) p(x) ≡ Pr(Ti = 1|Xi = x) are computed and used in subsequent

experiments. In the end inference is done by pooling the data from all the experiments.

The optimization minimizes the asymptotic variance of the average treatment effect. Hahn

et al. consider the two-step estimator proposed by Hirano, Imbens, and Ridder (2003) and

others

(9) β̂ =
1
N

N∑
i=1

(
TiYi

p̂(Xi)
−

(1 − Ti)Yi

1 − p̂(Xi)

)
.

This estimator achieves the asymptotic variance bound given by Hahn (1998). In a matched

pairs design p̂ is set to 1
2 for all values of Xi. Hahn et al (2011) consider assignment prob-

abilities as a function of each unit’s own covariate values, Xi. This rules out a method like

stratification where the treatment assignment vector is a function of the joint set of covari-

ates X = (X1, ..., XN)′. Their method is an extension of the Neyman allocation formula

(Neyman, 1934), where variance is now conditioned on covariates as well as treatment

status.

One could possibly reconcile the approach with stratification by using estimates of the

conditional variance. Using those estimates, one can compute optimal treatment proba-

bilities as a function of the conditional expectation of the outcome. Then one can stratify
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based on the conditional expectation where the relative number treated within each stra-

tum is set to match the optimal treatment probability for the average covariate value of the

stratum.

Kasy (2012) formalizes the most balanced distribution of relevant characteristics across

treatment groups and explicitly describes Bayesian and frequentist inference. The most

balanced distribution of covariates is unique with probability 1 if the set of covariates in-

cludes at least one continuous covariate. Since randomization in general gives weight to

assignments that are not the most balanced, efficiency gains can be had by not randomiz-

ing. The formal structure is Bayesian and implies an optimal assignment and best linear

estimator. Frequentist inference can be conducted treating conditional potential outcomes

as random given covariates and treatment. Frequentist inference, however, requires esti-

mating the conditional variance. Kasy suggests first estimating the residuals ε̂i = Yi − f̂i,

where f̂ is a non-parametric Bayes estimator of the conditional expectation of the outcome.

Then these residuals can be used to estimate the conditional variance.

Within the stratification literature there are frequent recommendations on which variables

to use. But guidance never goes beyond advocating for variables that are strongly related

to the outcome. In particular there is an absence of recommendations on how to trade-off

the balance between multiple variables that are either continuous or discrete with a large

support. Here are some quotes from recommendations in the literature.

• “Statistical efficiency is greatest when the variables chosen are strongly related to

the outcome of interest (Imai et al., 2008).”

• “Matching is most effective if the matching variable is highly correlated with the

endpoint. In most cases, the closest correlation is likely to be with the baseline

value of the same endpoint, and so this is a natural candidate for matching (Moul-

ton and Hayes, 2009).”
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• “The strength of the correlation within matched pairs or strata may be increased by

matching on more than one variable, each of which is correlated with the endpoint

(Moulton and Hayes, 2009).”

• “This paired or blocked design produced a sizeable increase in information in

comparison with the completely randomized design by reducing the noise (ex-

perimental error) affecting the estimation of the difference in the treatment means

(Mendenhall, 1968).”

• “Blocking on variables related to the outcome is of course more effective in in-

creasing statistical efficiency than blocking on irrelevant variables, and so it pays

to choose the variables to block carefully (Imai, King and Stuart, 2008).”

• “Matching should lead to greater comparability of the intervention and control

groups, and precision and power should be increased to the extent that the matching

factors are correlated with the outcome” (Hayes and Bennett, 2009).

This paper goes further than these suggestions by offering an explicit method for the choice

of matching variables.

Matched pair randomization has been studied extensively by statisticians. Mosteller (1947)

and Mc Nemar (1949) studied inference with matched pairs where the response was bi-

nary. Each proposes a χ2
1 test conditional on the number of pairs whose responses do not

match and testing the null that the probability of observing (0,1) and (1,0) is the same

based on the normal approximation to the binomial distribution.

Cox (1958) showed that in some cases the McNemar test is uniformly most powerful

unbiased. Cox used a logistic model. Chase (1968) compares the efficiency loss from

pairing on irrelevant X in models with a binary response.
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Bruhn and McKenzie (2009), in simulations, find that pair-wise matching and stratification

appear to dominate re-randomization. Re-randomization is the practice of constructing

criteria for balance, then randomizing over the set of treatment assignments that meet the

criteria. For example, Casey et al (2011) use as their criteria no statistically significant

differences between treatment and control groups, in tests with size of five percent, on

either of two covariates. Ex-post, Bruhn and McKenzie (2009) show that correct analysis

can be done by including the covariates in regression analysis.

McKinlay (1977) lays out several limitations of pair matching; in particular, the loss of

sample from discarding control units in observational studies where the number of treat-

ment units is smaller than the number of control units or when matches are hard to find. In

our set-up neither of these things are possible because the number of control units is fixed

at half the experiment sample and no units are discarded. Discarding units from a simple

random sample would change the target parameter away from the ATE.

Shipley, Smith and Dramaix (1989) calculate power in clustered and unclustered matched

pair experiments. They focus on the t-test of the n/2 differences and give a formula for

the power of a test of size α. If we let di be the ith within pair difference for i = 1, ...,m

where there are m total pairs, then d =
∑m

i=1 di/m, and the variance of d is estimated as∑
(di − d)2/m(m − 1) . Power, the probability of rejecting the null when the true effect size

is ∆ is given by 1 − β where β comes from

cβ =
|∆|m1/2

SE(d)(m + 2)1/2
− cα/2

where cx denotes the value cutting off a portion x of the upper tail of the standard normal

distribution. They give a similar formula for clustered randomizations where many indi-

viduals make up the unit of randomization. Lynn and McCulloch (1992) consider the case

where experimenters have conducted a matched pairs randomization but will be ignoring

the paired nature of the data in the ex-post analysis. In simulations they find that tests are
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conservative when ignoring the matching. They also compare matching against ex-post

regression to control for the influence of covariates. They set up a linear model but they

consider the case where matching was exact for a set of variables. That is where a subset

of covariates are identical within pairs.

7.1. Extensions to other randomization settings. Use of the prognostic score as a way

of aggregating covariate information extends beyond the matched-pair setting. Here I ex-

plore two other randomization procedures where the prognostic score is useful and is a

better aggregator of information than current standards. First I explore designs for sequen-

tial randomization as used in clinical trials and job training program evaluation. Next, I

return to non-sequential experiments and discuss re-randomization methods.

Designs for sequential treatment allocation over a span of time, as would occur in clinical

trials, have been developed by Efron (1971) and others13. Efron (1971) suggests a biased

coin design14. His aim is to balance the size of the treated and control groups within a

discrete covariate category15. As an example consider four age categories. His method

13White and Freedman (1978), Pocock and Simon (1975), Pocock (1979), Simon (1979), Birkett (1985),

Aickin (2001), Atkinson (2002), Scott et al. (2002), McEntegart (2003), and Rosenberger and Sverdlov

(2008) are some in a very extensive literature that addresses various issues in sequential trials. In each case

the problem is complicated by many covariates.
14An upwardly biased probability rather than a completely deterministic assignment rule that places the

new patient in the smaller control group of 16 to 25 year olds addresses a worry of having the experimenter

bias treatment assignment. Efron (1971) notes that “If the experimenter knows for certain that the next

assignment will be a treatment, or a control, he may consciously or unconsciously bias the experiment by

such decisions as who is or is not a suitable experimental subject, in which category the subject belongs,

etc.”
15There are many extensions of this design. The most well known is Wei (1978) which has an adaptive

design that increases the bias with the magnitude of the difference is sizes between the treatment and control

group.
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tries to balance the number of treated and control subjects in each category. E.g. if there

are more 16 to 25 year olds in the treatment group than in the control group and the next

patient is 24 then that patient would be given a .6 probability16 of assignment to the control

group and a .4 probability of assignment to the larger treatment group.

Normally, in the biased coin design additional variables require an increase in the num-

ber of categories. Using the prognostic score here would be helpful since the number of

categories would not increase with the number of covariates. Following Efron’s example

with four age categories, the prognostic score could similarly be split into four categories,

cutting at the quartiles of its distribution. Additional variables would change the amount

of information represented in the prognostic score but not the four quartiles.

A large number of categories in Efron’s sequential design motivated the Big Stick approach

of Pocock and Simon (1975). They say, the “main difficulty” with methods like Efron’ is

the rapid increase in strata as the number of covariates increases. Pocock and Simon’s

method starts with choosing categories for covariates, like Efron (1971). The method then

aggregates variation of covariates across treatment arms, and proceeds to aggregate infor-

mation across covariates. This requires choices of simple aggregation functions at each

stage that throw away covariate information. The prognostic score would be helpful here.

If a prognostic score were used as the single covariate, then there would be no need to

chose a function for ”the total amount of imbalance” in treatment numbers across covari-

ates. In short section 3.2 of Pocock and Simon (1975) would not be needed, and, in the

case of two treatment arms, the method would reduce to Efron’s biased coin design.

Lock and Rubin (2012) suggests re-randomization and randomization inference in non-

sequential trials. The method requires the researcher to designate a measure of covariate

16In general this can be any probability greater than 1/2.
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balance. They consider the Mahalanobis distance as a re-randomization criterion. A ran-

domization is deemed acceptable whenever the Mahalanobis distance between the treat-

ment and control groups falls below a certain threshold. The method in this paper suggests

an alternative distance measure that is more directly related to the outcome of the exper-

iment. We suggest using the predicted difference in average outcomes. The intuition for

how the predicted outcome and the Lock and Rubin (2012) procedure are complimentary

uses the same intuition as before. The predicted outcome function collapses the covari-

ate space into one dimension, so once can use this single covariate in Lock and Rubin.

The Mahalanobis distance with a single covariate is exactly the average difference in the

covariate.

8. Conclusion

This paper discusses how stratification can be done so that the variance of the difference in

means is minimized. We show that in a matched pairs setting, the variance of the difference

in means is minimized when pairs are chosen according to their predicted outcome. That

is the prediction of the outcome as a function of baseline covariates. We show that the op-

timal predictor is the minimizer of the mean squared error, i.e. the conditional expectation

function.

Here we only consider strata that are pairs and where there is exactly one treated unit and

one control unit in each pair. The main result is that pairs should be assigned by ranking

units according to their predicted outcome. It remains to be seen whether this result holds

for larger strata, for situations where there are different numbers of treated and control

units, and more than two treatment arms. This method seems fruitful to examine in other

settings too. Future research can extend the results here to the more general stratification

problem.
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Another avenue for further research is to examine alternative optimality criteria. Mini-

mizing the mean squared error of the difference in mean outcomes naturally aligns with

forming predictions of the outcome according to the conditional expectation function.

Minimizing the mean absolute value of the error might lead to optimal matching based

on predictions of the outcome using the conditional median function. Similar optimiza-

tion problems involving quantiles of the distribution of the difference in means can also be

examined. These may lead to a more direct way of increasing power of tests.

The formula derived in Proposition 1 can be used in power calculations; at the point of

randomization the experimenter, as we have seen, can estimate the function r and E(ε2).

Since baseline variables Xi are also known then one can calculate power treating r as

known for various stratifications or other experimental designs.
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Table 1. Dataset Descriptions

Variable name Mean SD Variable name Mean SD

Labor income (Mexico, ENE) Height z-scores (Pakistan, LEAPS)

Labor income 4.33e+03 4.93e+03 Height z-score -0.28 1.17

Baseline income 4.56e+03 5.4e+03 Baseline height -0.162 1.21

Hours worked 48.1 14.1 Baseline weight -0.581 0.991

Female dummy 0.13 0.337 Female dummy 0.443 0.498

Rural dummy 0.27 0.445 Wealth index -0.0962 1.72

Number of rooms in home 3.83 1.5 High educ. mother dummy 0.223 0.417

Business owner dummy 0.35 0.478 District 1 dummy 0.303 0.46

1 to 5 employees dummy 0.507 0.501 District 2 dummy 0.31 0.463

Microenterprise profits (Sri Lanka) Household expenditures (Indonesia, IFLS)

Microenterprise profits 5.77e+03 8.22e+03 Household expenditure 12.3 0.766

Baseline profits 3.9e+03 3.5e+03 Urban dummy 0.48 0.5

Hours worked 52.2 22 Household size 4.53 2.19

Female dummy 0.477 0.5 Male household head dummy 0.827 0.379

Baseline sales 1.18e+04 1.53e+04 Age of household head 47.7 14.9

Capital 2.63e+04 2.65e+04 Years educ. household head 5.29 4.3

Asset index 0.198 1.77 Baseline h.hold expenditure 12.3 0.74

Tsunami dummy 0.26 0.439 Number of children below 5 0.537 0.755

Math test scores (Pakistan, LEAPS) Child schooling (Indonesia, IFLS)

Math test score 545 171 Child Schooling 0.737 0.441

Baseline math score 508 155 Age 12.4 1.16

Baseline english score 501 166 Female dummy 0.513 0.501

Age 9.65 1.06 Govt. school dummy 0.83 0.376

Female dummy 0.487 0.501 Mothers educ. 4.73 4.03

Wealth index 0.174 1.74 Urban dummy 0.48 0.5

High educ. mother dummy 0.243 0.43 Household size 5.5 1.62

Private school dummy 0.313 0.465 Baseline h.hold expenditure 12.3 0.747

Notes: This table describes the datasets used in our simulations. Each dataset contains 300 observations. The first row of

each panel describes the variable we treat as the outcome in out simulations. The next seven rows describe variables we use

as covariates. The models are linear in these covariates.
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Table 2. Dataset Descriptions

Labor income (Mexico) Microenterprise (Sri Lanka) Math test (Pakistan)

Constant 2213.82 Constant 547.00 Constant 236.50

(1165.17) (1439.47) (77.29)

Baseline income 0.433 Baseline profits 0.441 Baseline math score 0.581

(0.05) (0.15) (0.06)

Hours worked 4.65 Hours worked 35.6 Baseline english score 0.107

(17.23) (21.81) (0.07)

Female dummy -1.15e+03 Female dummy -115 Age -3.95

(740.63) (959.90) (7.19)

Rural dummy -1.17e+03 Baseline sales 0.036 Female dummy -32.1

(568.57) (0.03) (15.37)

Number of rooms in home 132 Capital 0.041 Wealth index -0.143

(178.48) (0.02) (4.77)

Business owner dummy 156 Asset index 84.3 High educ. mother dummy -5.21

(742.99) (280.87) (17.98)

1 to 5 employees dummy -353 Tsunami dummy 749 Private school dummy 46.8

(691.98) (1039.68) (19.59)

F stat 17.31 F stat 5.81 F stat 32.19

Ad. R2 0.280 Ad. R2 0.100 Ad. R2 0.420

Root MSE 4190.740 Root MSE 7789.430 Root MSE 129.700

Notes: This table describes the datasets used in our simulations. Each dataset contains 300 observations. Each column in this table

describes a regression of that data set’s outcome on a constant term and seven covariates. Coefficients are reported with standard

errors in parentheses. The coefficients from these regressions and the root mean squared error were used to define part of the

data generating process for each simulation. The data generating process is completely described by noting that we use the joint

empirical distribution of the covariates to draw observations.



OPTIMAL STRATIFICATION IN RANDOMIZED EXPERIMENTS 45

Table 3. Dataset Descriptions (cont)

Height z-score (Pakistan) Household Exp. (Indonesia) Child Schooling (Indonesia)

Constant -0.27 Constant 7.88 Constant 0.54

(0.11) (0.77) (0.52)

Baseline height 0.46 Urban dummy -0.006 Age -0.055

(0.07) (0.07) (0.02)

Baseline weight 0.106 Household size 0.004 Female dummy 0.021

(0.08) (0.02) (0.05)

Female dummy 0.25 Male household head dummy -0.214 Govt. school dummy 0.138

(0.11) (0.11) (0.06)

Wealth index -0.04 Age of household head 0.001 Mothers educ. 0.025

(0.03) (0.01) (0.01)

High educ. mother dummy -0.15 Years educ. household head 0.048 Urban dummy 0.095

(0.14) (0.01) (0.05)

District 1 dummy -0.12 Baseline h.hold expenditure 0.356 Household size -0.017

(0.14) (0.06) (0.01)

District 2 dummy 0.261 Number of children below 5 -0.105 Baseline h.hold expenditure 0.056

(0.14) (0.06) (0.03)

F stat 22.77 F stat 16.42 F stat 8.34

Ad. R2 0.340 Ad. R2 0.270 Ad. R2 0.150

Root MSE 0.950 Root MSE 0.660 Root MSE 0.410

Notes: This table describes the datasets used in our simulations. Each dataset contains 300 observations. Each column in this table

describes a regression of that data set’s outcome on a constant term and six covariates. Coefficients are reported with standard

errors in parentheses. The coefficients from these regressions and the root mean squared error were used to define part of the

data generating process for each simulation. The data generating process is completely described by noting that we use the joint

empirical distribution of the covariates to draw observations.
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Table 4. Mean Squared Error for Multiple Randomization Methods

Ntrainingsample = 2000,Nexperiment = 100 Randomization Method

CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 1.000 1.036 0.750 0.735 0.755 0.760 0.752

Microenterprise profits (Sri Lanka) 1.000 0.985 0.871 0.891 0.851 0.850 0.840

Math test score (Pakistan) 1.000 1.003 0.586 0.578 0.566 0.566 0.567

Height z-score (Pakistan) 1.000 1.013 0.670 0.642 0.682 0.675 0.647

Household expenditures (Indonesia) 1.000 0.998 0.711 0.732 0.747 0.776 0.720

Child schooling (Indonesia) 1.000 1.001 0.833 0.823 0.821 0.835 0.830

Notes: This table gives mean squared error estimates relative to complete randomization. CR is complete randomization, that is,

under no stratification. MPY0 is matching on the lagged value of the outcome in each dataset. The next four columns MPŶx match

pairs according to the predicted outcome, where the prediction is formed from a training dataset using method x. Ridge uses ridge

regression (Tibshirani, 1996) where the penalty term is chosen to minimize the mean squared error under ten-fold cross validation.

LAS S O uses the least absolute shrinkage and selection operator (Tibshirani,1996) where the penalty term is chosen to minimize the

mean squared error under ten-fold cross validation. AIC uses the model among the 27 sub-models that has the lowest value of the

Akaike information criterion (Akaike, 1974). BIC uses the model among the 27 sub-models that has the lowest value of the Bayes

information criterion (Schwarz, 1978). In each of the four methods the full model is linear in a constant and the seven “balancing

variables” and corresponds to the data generating process. The size of the the training sample used to estimate these predictors is

Ntrainingsample = 2000 and the total number of unit in each simulated experiment is Nexperiment = 100.
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Table 5. Size control for Multiple Randomization Methods

Ntrainingsample = 2000,Nexperiment = 100 Randomization Method

CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 0.047 0.054 0.048 0.050 0.049 0.048 0.048

Microenterprise profits (Sri Lanka) 0.051 0.052 0.052 0.055 0.047 0.047 0.046

Math test score (Pakistan) 0.054 0.049 0.047 0.052 0.047 0.048 0.051

Height z-score (Pakistan) 0.049 0.049 0.054 0.048 0.052 0.052 0.048

Household expenditures (Indonesia) 0.052 0.052 0.051 0.055 0.050 0.051 0.050

Child schooling (Indonesia) 0.050 0.050 0.052 0.051 0.052 0.050 0.048

Notes: This table gives the rejection rates for .95 significance tests using multiple randomization methods. The randomization

methods and sample sizes are described in Table 4.

Table 6. Power for Multiple Randomization Methods

Ntrainingsample = 2000,Nexperiment = 100 Randomization Method

TE CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 0.17 0.149 0.151 0.180 0.185 0.177 0.184 0.187

Microenterprise profits (Sri Lanka) 0.12 0.096 0.093 0.099 0.100 0.093 0.095 0.092

Math test score (Pakistan) 0.22 0.196 0.200 0.295 0.311 0.302 0.304 0.308

Height z-score (Pakistan) 0.25 0.250 0.243 0.345 0.330 0.338 0.334 0.350

Household expenditures (Indonesia) 0.51 0.716 0.709 0.847 0.840 0.817 0.817 0.841

Child schooling (Indonesia) 0.24 0.225 0.218 0.248 0.240 0.235 0.241 0.251

Notes: This table gives the rejection rates for .95 significance tests, under the treatment effect given under column T E, using multi-

ple randomization methods. The treatment effects are presented as standard deviations of the outcome variable. The randomizations

methods and sample sizes are described in Table 4.
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9. Appendix A, Complimentary Results

Given a matched pairs randomization one may wish to estimate an average treatment

effect and/or test the null of no effect using t-statistic based tests. On the one hand, one

can view the data as a set of N outcome measurements from the experimental units where

N/2 have been treated. Given the paired nature of the data proper standard errors can be

computed by regressing the N outcome measurements on a treatment indicator alongside

a set of N/2 pair indicators.

On the other hand, one can view the data as a set of n = N/2 within pair differences,

where one is simply estimating the mean of the differences. Proper standard errors here

can be computed using the sample standard deviation of the differences.

In fact, tests using the mean of within-pair differences, and regressions of the pooled exper-

imental units with pair dummies both accounting for and not accounting for heteroskedas-

ticity in standard ways, are equivalent. We show this below.

The first of two complimentary results is that these two procedures are mathematically

equivalent. They produce the same estimates of the treatment effect and the same standard

errors. One may note that standard errors in the first case will depend on whether or not

the experimenter makes an assumption about homoskedasticy. The second complimentary

result we present is that in the first procedure standard errors constructed under the ho-

moskedasticy assumption and standard errors constructed using the Huber-Eicker-White

procedure are equivalent.

This second result holds more generally for all stratifications with equal sized strata and

equal numbers of treated and control units within each stratum, for example when experi-

mental units are blocked into groups of four and in each block two units are treated.



OPTIMAL STRATIFICATION IN RANDOMIZED EXPERIMENTS 55

9.1. The mean of the differences. Let d1, ..., dn be the set of within pair differences

where the untreated unit is subtracted from the treated unit in each pair. Let b ≡ 1
n

∑n
i=1 di

be the treatment effect estimator.

Further let us test the the null of no treatment effect with a two tailed test using the test

statistic. There is a finite sample justification for this test that comes from an assumption

of i.i.d normal errors,

(10) tstat1 ≡
b√

1
n

1
n−1

∑n
i=1(di − b)2

and compare it to the critical values from a t-distribution with n − 1 degrees of free-

dom.

9.2. Individual units with pair dummies and regression. Let Y be an N × 1 vector

of outcomes of experimental units where we denote the ith element of this vector yi for

i = 1, ...,N. Also let X be an N × k matrix, where k = N/2 + 1, the first column of X is a

treatment indicator and the next N columns of X are pair indicators.

Without loss of generality let the rows of Y and X that correspond to the same pair be

grouped together such that the odd numbered rows correspond to treated observations.

Now consider the projection of Y onto the column space of X. It is a standard result

that least squares with group indicators is equivalent to within group least squares and

with two observations per group, this is the same as least squares on the difference which

here is the mean of di. The coefficient on the treatment indicator in the least squares fit is
2
N

∑N
i=1(−1)i+1yi = 1

n

∑
di = b. The coefficient on the first pair dummy is 1

2 (y1 − b + y2), the

coefficient on the second pair dummy is 1
2 (y3 − b + y4) and in general the coefficient for

the ith pair dummy is 1
2 (y2i−1 − b + y2i). The formulas for these coefficients can be verified
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by checking that the implied residuals are in fact orthogonal to the columns of X. Let the

residual for the ith be ei for i = 1, ...,N.

Denote Huber-Eicker-White heteroskedasticity consistent covariance estimator as

(11) Σ̂W ≡
N

N − k
(X′X)−1

 N∑
i=1

xix′ie
2
i

 (X′X)−1

where xi is the ith row of X.

One would test the null of no treatment effect using the test statistic

(12) tstat2 ≡
b√

Σ̂W1,1

where Σ̂W1,1 is the (1, 1) element of Σ̂W .

Assuming homoskedasticity the standard covariance estimator is

(13) Σ̂H ≡ (X′X)−1 1
N − k

N∑
i=1

e2
i

One would test the null of no treatment effect using the test statistic

(14) tstat3 ≡
b√
Σ̂H1,1

where Σ̂H1,1 is the (1, 1) element of Σ̂H.

In each case following the linear regression model one would use critical values from a

t-distribution with N − k = N − N
2 − 1 = n − 1 degrees of freedom.

Claim 1: Σ̂W1,1 = Σ̂H1,1

proof:
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Let Is be the identity matrix of size s, let k = N
2 + 1, and let 1s,t be a matrix of size s × t

where each element is a one. First notice that X =
(
1k−1,1 ⊗

(
1
0

)
, Ik−1 ⊗

(
1
1

))
so

X′X =

 (11,k−11k−1,1) ⊗ ((1, 0)
(

1
0

)
) (11,k−1Ik−1) ⊗ ((1, 0)

(
1
1

)
)

(Ik−11k−1,1) ⊗ ((1, 1)
(

1
0

)
) (Ik−1Ik−1) ⊗ ((1, 1)

(
1
1

)
)


=

 k − 1 11,k−1

1k−1,1 2Ik−1

 ,
and that the inverse of this block matrix is

(15) (X′X)−1 =
2
N

 2 −11,k−1

−1k−1,1
N
4 Ik−1 + 1k−1,k−1

 .
So Σ̂H1,1 = 4

N
1

N−k

∑N
i=1 e2

i .

Now we show that Σ̂W1,1 = 4
N

1
N−k

∑N
i=1 e2

i .

Consider

(16) Σ̂W ≡
N

N − k
(X′X)−1

 N∑
i=1

xix′ie
2
i

 (X′X)−1 =
N

N − k
(X′X)−1X′Ω̂X(X′X)−1

where xi is the ith row of X, and Ω̂ is N × N where Ωi, j = e2
i 1{i = j}.

Next note that (X′X)−1X′Ω̂ =

1
N



2e2
1 −2e2

2 2e2
3 −2e2

4 . . . 2e2
N−1 −2e2

N

( N
2 − 1)e2

1 ( N
2 + 1)e2

2 −e2
3 e2

4 . . . −e2
N−1 e2

N

−e2
1 e2

2 ( N
2 − 1)e2

3 ( N
2 + 1)e2

4 . . . −e2
N−1 e2

N

−e2
1 e2

2 −e2
3 e2

4 . . . −e2
N−1 e2

N
...

...
...

...
...

...

−e2
1 e2

2 −e2
3 e2

4 . . . ( N
2 − 1)e2

N−1 ( N
2 + 1)e2

N


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and X(X′X)−1 =

1
N



2 N
2 − 1 −1 −1 −1 . . . −1

−2 N
2 + 1 1 1 1 . . . 1

2 −1 N
2 − 1 −1 −1 . . . −1

−2 1 N
2 + 1 1 1 . . . 1

2 −1 −1 N
2 − 1 −1 . . . −1

−2 1 1 N
2 + 1 1 . . . 1

...
...

...
...

... . . .
...

2 −1 −1 −1 −1 . . . N
2 − 1

−2 1 1 1 1 . . . N
2 + 1



.

So the (1,1) element of (X′X)−1X′Ω̂X(X′X)−1 is 4
N2

∑N
i=1 e2

i . Thus Σ̂W1,1 = N
N−k

4
N2

∑N
i=1 e2

i . �

Claim 2: Σ̂H1,1 = 1
n

1
n−1

∑n
i=1(di − b)2

proof:

Consider the residuals from the regression:

e1 = y1 −
1
2

(y1 − b + y2) − b

e2 = y2 −
1
2

(y1 − b + y2)

e3 = y3 −
1
2

(y3 − b + y4) − b

e4 = y4 −
1
2

(y3 − b + y4)

...
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and in general note that we can change indexes as follows

N∑
i=1

e2
i =

n∑
k=1

(e2
2i−1 + e2

2i)(17)

=

n∑
k=1

(y2k−1 −
1
2

(y2k−1 − b + y2k) − b)2 + (y2k −
1
2

(y2k−1 − b + y2k))2

=
1
4

n∑
k=1

(dk − b)2 + (b − dk)2 =
1
2

∑
(dk − b)2.

So

Σ̂H1,1 =
2

N(N − k)

n∑
k=1

(dk − b)2

=
1

n(N − ( N
2 + 1))

n∑
k=1

(dk − b)2

=
1

n(n − 1)

n∑
k=1

(dk − b)2

�

9.3. generalization of claim 1. The result that regressions of the pooled experimental

units with pair dummies both accounting for and not accounting for heteroskedasticity in

standard ways are equivalent can be generalized to randomizations with equal sized strata

and equal numbers of treated and control units within each stratum. Suppose that we have

equal sized strata, let S denote their size, S even, S divides N, and denote the number of

strata ns ≡
N
S . Now X has the form

X =

[
1 N

2 ,1
⊗

(
1
0

)
; Ins ⊗ 1S ,1

]
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and

X′X =

 N
2

S
2 11,ns

S
2 1ns,1 S Ins


so

(X′X)−1 =

 4
N − 2

N 11,ns

− 2
N 1ns,1 ·


where we omit the lower right block of the inverse and note that it is not necessary for the

remainder of the proof. Note that Ω̂ is diagonal with (k, k) element e2
k , [(X′X)−1]k,1 = 4/N

if k = 1 and −2/N if k > 1 , (3) X j,1 = 1 if j odd and 0 else, and each sub-vector X j,2:K has

one 1 and K-1 zeros for all j, so that the conditions of lemma 1 hold. By lemma 1

[(X′X)−1X′Ω̂X(X′X)−1]1,1 =
4

N2

N∑
i=i

e2
i

10. lemma 1

If

• (A1) Ω̂ is diagonal with (k, k) element e2
k , k = 1, ...,N

• (A2)

[(X′X)−1]k,1 =


4/N, if k = 1

−2/N, if k > 1,

• (A3.1)

X j,1 =


1, if j odd

0, else,

• and (A3.2) X j,2:K has one 1 and K-1 zeros,
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then [(X′X)−1X′Ω̂X(X′X)−1]1,1 = 4
N2

∑N
i=1 e2

i

proof:

[(X′X)−1X′Ω̂X(X′X)−1]1,1 =

N∑
k=1

[(X′X)−1X′]1,kΩk,k[X(X′X)−1]k,1

=
∑N

k=1 Ωk,k[X(X′X)−1]2
k,1. By lemma 2 |[X(X′X)−1]k,1| =

2
N for all k. So

[(X′X)−1X′Ω̂X(X′X)−1]1,1 =

N∑
k=1

e2
k

4
N2 .

�

10.1. lemma 2. If conditions (A2) and (A3) of lemma 1 hold, then

(18) [X(X′X)−1]k,1 =


2
N , if k is odd

− 2
N , if k is even.

proof: By definition [X(X′X)−1] j,1 =
∑N

k=1 X j,k[(X′X)−1]k,1 . First consider

K∑
k=2

X j,k[(X′X)−1]k,1.

Since k > 1, [(X′X)−1]k,1 = −2/N by condition (A2), and X j,2:K has one 1 and K-1 zeros by

condition (A3.2). So
∑N

k=2 X j,k[(X′X)−1]k,1 = 2
N . Now if j is odd then X1,1 = 1 by condition

(A3) and [(X′X)−1]1,1 = 4/N by condition (A2), so [X(X′X)−1]k,1 = 4−2
N . If j is even then

X1,1 = 0 by condition (A3) and
∑N

k=1 X j,k[(X′X)−1]k,1 =
∑N

k=2 X j,k[(X′X)−1]k,1 = 2
N . �
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11. Appendix B

We are given E(θi|X, ε) = θ.

and that Ti is independent of {Yi(0),Yi(1), Xi}.

Yi(0) = θi + r(Xi) + εi

Yi = Tiθi + r(Xi) + εi

Dk = T2k−1[Y2k−1(1) − Y2k(0)] + (1 − T2k−1)[Y2k(1) − Y2k−1(0)]

= T2k−1[θ2k−1 + r(X2k−1) − r(X2k) + ε2k−1 − ε2k]

+ (1 − T2k−1)[θ2k + r(X2k) − r(X2k−1) + ε2k − ε2k−1]

Since E(εi|T ) = 0, then

E(Dk|T, X, θ) = T2k−1[θ2k−1 + r(X2k−1) − r(X2k)]

+ (1 − T2k−1)[θ2k + r(X2k) − r(X2k−1)]

= θ2k + T2k−1[θ2k−1 − θ2k] + (2T2k−1 − 1)[r(X2k−1) − r(X2k)](19)

By iterated expectations

E(Dk|X, θ) = E(E(Dk|T, X, θ)|X, θ)

= θ2k +
1
2

(θ2k−1 − θ2k)

=
1
2

(θ2k−1 + θ2k)

By iterated expectations again, E(θi|X, ε) = θ =⇒ E(θi|X) = θ, and

E(Dk|X) = E(E(Dk|X, θ)|X)

=
1
2

E(θ2k−1 + θ2k|X)

= θ(20)
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Note that

cov(θi, εi|X) = E(θiεi|X) − E(θi|X)E(εi|X)

= E(θiεi|X) since E(εi|X) = 0

= E(E(θiεi|X, ε)|X)

= E(εiE(θi|X, ε)|X)

= E(εiE(θi)|X) by A1

= E(θi)E(εi|X)

= 0 since E(εi|X) = 0

Now consider

var(Dk|T.X) = T2k−1[var(θ2k−1|T, X) + var(ε2k−1|T, X) + var(ε2k|T, X)]

+ (1 − T2k−1)[var(θ2k|T, X) + var(ε2k−1|T, X) + var(ε2k|T, X)]

Since T is independent of X and θ we need not condition on it.

= T2k−1var(θ2k−1|X) + (1 − T2k−1)var(θ2k|X) + var(ε2k−1|X) + var(ε2k|X)(21)

Now we obtain the variance conditional just on X from

var(Dk|X) = E(var(Dk|T, X)|X) + var(E(Dk|T, X)|X)(22)

The first term in 21 comes from taking the expectation of 20 over the distribution of T2k−1.

This gives

E(var(Dk|T, X)|X) =
1
2

[var(θ2k−1|X) + var(θ2k|X)] + var(ε2k−1|X) + var(ε2k|X)(23)
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The second term in 21 comes from taking the conditional expectation of 18 holding T, X

fixed and then taking the variance of the result.

E(Dk|T, X) = θ + (2T2k−1 − 1)[r(X2k−1) − r(X2k)]

var(E(Dk|T, X)|X) = [r(X2k−1) − r(X2k)]2

since var(2T2k−1 − 1) = 1. So combining 22 and 21 gives

var(Dk|X) =
1
2

[var(θ2k−1|X) + var(θ2k|X)]

+ var(ε2k−1|X) + var(ε2k|X)

+ [r(X2k−1) − r(X2k)]2

Furthermore,

cov(Dk,Dh|X) = 0

since given X, Dk is a function of ((θ2k−1, θ2k, ε2k−1, ε2k,T2k−1), and Dh is a function of

((θ2h−1, θ2h, ε2h−1, ε2h,T2h−1), and these stochastic terms are independent.

12. Appendix C

12.1. Starting from the benchmark simulations and reducing the size of the training

set to 100.
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Table 7. Mean Squared Error for Multiple Randomization Methods

Ntrainingsample = 100,Nexperiment = 100 Randomization Method

CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 1.000 1.026 0.767 0.764 0.748 0.753 0.752

Microenterprise profits (Sri Lanka) 1.000 0.960 0.864 0.861 0.870 0.892 0.869

Math test score (Pakistan) 1.000 1.006 0.614 0.585 0.588 0.588 0.601

Height z-score (Pakistan) 1.000 0.987 0.650 0.681 0.677 0.666 0.679

Household expenditures (Indonesia) 1.000 0.953 0.738 0.738 0.772 0.772 0.737

Child schooling (Indonesia) 1.000 1.010 0.848 0.891 0.899 0.877 0.871

Notes: This table gives mean squared error estimates relative to complete randomization. CR is complete randomization, that is, under no

stratification. MPY0 is matching on the lagged value of the outcome in each dataset. The next four columns MPŶx match pairs according to

the predicted outcome, where the prediction is formed from a training dataset using method x. Ridge uses ridge regression (Tibshirani 1996)

where the penalty term is chosen to minimize the mean squared error under ten-fold cross validation. LAS S O uses the least absolute shrinkage

and selection operator (Tibshirani,1996) where the penalty term is chosen to minimize the mean squared error under ten-fold cross validation.

AIC uses the model among the 27 sub-models that has the lowest value of the Akaike information criterion (Akaike, 1974). BIC uses the model

among the 27 sub-models that has the lowest value of the Bayes information criterion (Schwarz, 1978). In each of the four methods the full

model is linear in a constant and the seven “balancing variables” and corresponds to the data generating process. The size of the the training

sample used to estimate these predictors is Ntrainingsample = 100 and the total number of unit in each simulated experiment is Nexperiment = 100.
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Table 8. Size control for Multiple Randomization Methods

Ntrainingsample = 100,Nexperiment = 100 Randomization Method

CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 0.050 0.051 0.050 0.051 0.048 0.051 0.047

Microenterprise profits (Sri Lanka) 0.054 0.051 0.051 0.049 0.049 0.049 0.047

Math test score (Pakistan) 0.051 0.051 0.050 0.048 0.051 0.051 0.047

Height z-score (Pakistan) 0.052 0.049 0.048 0.052 0.052 0.052 0.054

Household expenditures (Indonesia) 0.051 0.046 0.049 0.048 0.050 0.052 0.048

Child schooling (Indonesia) 0.049 0.051 0.049 0.053 0.050 0.046 0.052

Notes: This table gives the rejection rates for .95 significance tests using multiple randomization methods. The randomizations

methods and sample sizes are described in Table 4.

Table 9. Power for Multiple Randomization Methods

Ntrainingsample = 100,Nexperiment = 100 Randomization Method

TE CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 0.19 0.147 0.143 0.190 0.182 0.177 0.181 0.177

Microenterprise profits (Sri Lanka) 0.12 0.097 0.087 0.093 0.094 0.090 0.097 0.097

Math test score (Pakistan) 0.23 0.203 0.195 0.288 0.292 0.304 0.299 0.290

Height z-score (Pakistan) 0.26 0.242 0.248 0.332 0.342 0.334 0.333 0.326

Household expenditures (Indonesia) 0.52 0.726 0.726 0.831 0.827 0.818 0.815 0.832

Child schooling (Indonesia) 0.24 0.218 0.212 0.240 0.237 0.231 0.229 0.239

Notes: This table gives the rejection rates for .95 significance tests, under the treatment effect given under column T E, using multi-

ple randomization methods. The treatment effects are presented as standard deviations of the outcome variable. The randomizations

methods and sample sizes are described in Table 4.
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12.2. Starting from the benchmark simulations and reducing the size of the experi-

ment to 30.

Table 10. Mean Squared Error for Multiple Randomization Methods

Ntrainingsample = 2000,Nexperiment = 30 Randomization Method

CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 1.000 1.001 0.796 0.768 0.776 0.806 0.773

Microenterprise profits (Sri Lanka) 1.000 0.966 0.885 0.877 0.884 0.865 0.853

Math test score (Pakistan) 1.000 0.997 0.594 0.583 0.577 0.595 0.577

Height z-score (Pakistan) 1.000 0.971 0.640 0.648 0.659 0.679 0.643

Household expenditures (Indonesia) 1.000 1.056 0.752 0.742 0.826 0.802 0.749

Child schooling (Indonesia) 1.000 0.961 0.826 0.834 0.846 0.839 0.842

Notes: This table gives mean squared error estimates relative to complete randomization. CR is complete randomization, that is, under no

stratification. MPY0 is matching on the lagged value of the outcome in each dataset. The next four columns MPŶx match pairs according

to the predicted outcome, where the prediction is formed from a training dataset using method x. Ridge uses ridge regression (Tibshirani

1996) where the penalty term is chosen to minimize the mean squared error under ten-fold cross validation. LAS S O uses the least absolute

shrinkage and selection operator (Tibshirani,1996) where the penalty term is chosen to minimize the mean squared error under ten-fold

cross validation. AIC uses the model among the 27 sub-models that has the lowest value of the Akaike information criterion (Akaike 1974).

BIC uses the model among the 27 sub-models that has the lowest value of the Bayes information criterion (Schwarz 1978). In each of

the four methods the full model is linear in a constant and the seven “balancing variables” and corresponds to the data generating process.

The size of the the training sample used to estimate these predictors is Ntrainingsample = 2000 and the total number of unit in each simulated

experiment is Nexperiment = 100.
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Table 11. Size control for Multiple Randomization Methods

Ntrainingsample = 2000,Nexperiment = 30 Randomization Method

CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 0.048 0.049 0.054 0.051 0.050 0.049 0.050

Microenterprise profits (Sri Lanka) 0.050 0.050 0.053 0.052 0.051 0.047 0.048

Math test score (Pakistan) 0.052 0.053 0.049 0.049 0.047 0.052 0.051

Height z-score (Pakistan) 0.052 0.050 0.047 0.051 0.051 0.050 0.050

Household expenditures (Indonesia) 0.047 0.055 0.048 0.045 0.052 0.051 0.049

Child schooling (Indonesia) 0.052 0.050 0.048 0.050 0.050 0.050 0.051

Notes: This table gives the rejection rates for .95 significance tests using multiple randomization methods. The randomizations

methods and sample sizes are described in Table 4.

Table 12. Power for Multiple Randomization Methods

Ntrainingsample = 2000,Nexperiment = 30 Randomization Method

TE CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 0.18 0.077 0.074 0.085 0.088 0.082 0.084 0.085

Microenterprise profits (Sri Lanka) 0.12 0.066 0.060 0.063 0.060 0.063 0.059 0.060

Math test score (Pakistan) 0.23 0.096 0.094 0.110 0.118 0.113 0.121 0.121

Height z-score (Pakistan) 0.26 0.110 0.102 0.124 0.127 0.127 0.130 0.122

Household expenditures (Indonesia) 0.51 0.269 0.263 0.340 0.334 0.317 0.318 0.328

Child schooling (Indonesia) 0.24 0.101 0.091 0.102 0.104 0.104 0.105 0.101

Notes: This table gives the rejection rates for .95 significance tests, under the treatment effect given under column T E, using multi-

ple randomization methods. The treatment effects are presented as standard deviations of the outcome variable. The randomizations

methods and sample sizes are described in Table 4.
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12.3. Starting from the benchmark simulations and increasing the size of the exper-

iment to 300.

Table 13. Mean Squared Error for Multiple Randomization Methods

Ntrainingsample = 2000,Nexperiment = 300 Randomization Method

CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 1.000 0.963 0.717 0.705 0.713 0.714 0.702

Microenterprise profits (Sri Lanka) 1.000 0.989 0.902 0.879 0.865 0.913 0.873

Math test score (Pakistan) 1.000 1.019 0.604 0.574 0.591 0.583 0.574

Height z-score (Pakistan) 1.000 1.008 0.674 0.655 0.667 0.666 0.661

Household expenditures (Indonesia) 1.000 0.984 0.718 0.737 0.753 0.779 0.733

Child schooling (Indonesia) 1.000 0.983 0.835 0.856 0.867 0.848 0.846

Notes: This table gives mean squared error estimates relative to complete randomization. CR is complete randomization, that is, under no

stratification. MPY0 is matching on the lagged value of the outcome in each dataset. The next four columns MPŶx match pairs according

to the predicted outcome, where the prediction is formed from a training dataset using method x. Ridge uses ridge regression (Tibshirani

1996) where the penalty term is chosen to minimize the mean squared error under ten-fold cross validation. LAS S O uses the least absolute

shrinkage and selection operator (Tibshirani,1996) where the penalty term is chosen to minimize the mean squared error under ten-fold

cross validation. AIC uses the model among the 27 sub-models that has the lowest value of the Akaike information criterion (Akaike 1974).

BIC uses the model among the 27 sub-models that has the lowest value of the Bayes information criterion (Schwarz 1978). In each of the

four methods the full model is linear in a constant and the seven “balancing variables” and corresponds to the data generating process. The

size of the the training sample used to estimate these predictors is Ntrainingsample and the total number of unit in each simulated experiment is

Nexperiment.
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Table 14. Size control for Multiple Randomization Methods

Ntrainingsample = 2000,Nexperiment = 300 Randomization Method

CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 0.054 0.048 0.050 0.052 0.052 0.049 0.049

Microenterprise profits (Sri Lanka) 0.052 0.050 0.055 0.050 0.045 0.053 0.049

Math test score (Pakistan) 0.049 0.052 0.050 0.049 0.050 0.048 0.048

Height z-score (Pakistan) 0.049 0.049 0.053 0.049 0.051 0.049 0.051

Household expenditures (Indonesia) 0.052 0.049 0.051 0.054 0.047 0.052 0.049

Child schooling (Indonesia) 0.049 0.046 0.051 0.052 0.053 0.051 0.052

Notes: This table gives the rejection rates for .95 significance tests using multiple randomization methods. The randomizations

methods and sample sizes are described in Table 4.

Table 15. Power for Multiple Randomization Methods

Ntrainingsample = 2000,Nexperiment = 300 Randomization Method

TE CR MPY0 MPŶRidge MPŶLAS S O MPŶAIC MPŶBIC MPŶorcl

Labor income (Mexico) 0.18 0.359 0.361 0.464 0.473 0.465 0.464 0.464

Microenterprise profits (Sri Lanka) 0.12 0.180 0.173 0.191 0.196 0.198 0.199 0.193

Math test score (Pakistan) 0.24 0.492 0.503 0.706 0.736 0.722 0.718 0.730

Height z-score (Pakistan) 0.27 0.611 0.600 0.787 0.784 0.776 0.771 0.790

Household expenditures (Indonesia) 0.51 0.993 0.994 0.999 0.999 0.999 0.998 0.999

Child schooling (Indonesia) 0.24 0.531 0.541 0.608 0.614 0.602 0.608 0.610

Notes: This table gives the rejection rates for .95 significance tests, under the treatment effect given under column T E, using multi-

ple randomization methods. The treatment effects are presented as standard deviations of the outcome variable. The randomizations

methods and sample sizes are described in Table 4.
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