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Abstract—There is a clear, outstanding need for new security
mechanisms that allow data to be managed and controlled within
the cloud-enabled Internet of Things. Towards this, we propose an
approach based on Information Flow Control (IFC) that allows:
(1) the continuous, end-to-end enforcement of data flow policy,
and (2) the generation of provenance-like audit logs to demon-
strate policy adherence and contractual/regulatory compliance.
Further, we discuss the role of Trusted Platform Modules (TPMs)
in supporting such a system, by providing hardware roots of
trust. TPMs can be leveraged to validate software configurations,
including the IFC enforcement mechanism, both in the cloud and
externally via remote attestation.
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I. INTRODUCTION

Internet of Things (IoT) solutions tend to rely heavily on
cloud computing. In a recent survey [1], 33 out of 38 of
the IoT infrastructures surveyed involved the use of cloud
services. Traditionally, IoT applications were built in silos
where sensors and actuators, cloud services and end-user
applications were tightly coupled and inseparable. Current
research and standardisation efforts aim towards breaking those
silos, by allowing fully customisable service chains [2].

However, the challenges introduced by connected devices,
potentially monitoring every aspect of the environment and
daily life, require security beyond the current standard authen-
tication, access control and secure channels [3]. There is a clear
need for an end-to-end security mechanism that underlies every
data exchange, and ensures that data is used for the purposes
specified by those who own and/or are responsible for it [4].

We propose using Decentralised Information Flow Control
(DIFC) [5], that extends traditional IFC [6], to address the
security and privacy concerns inherent in IoT. This is by allow-
ing the continuous management of data as it flows throughout
IoT systems, including within and between cloud services. IFC
technology has has been used for embedded software in BMW
cars [7], has been proposed to control data usage of third party
applications in a social network environment [8], and has been
demonstrated to be applicable to more general use cases [9].
Our own implementation, CamFlow [10], extends IFC with
provenance-like features [11], by providing a directed graph
audit mechanism, to allow demonstration of compliance with
policy (regulations and contracts).

In this paper we propose hardware-backed DIFC to com-
plement the more established security mechanisms. In short,
DIFC makes it possible:

• to tightly bind the data’s purpose and other properties to
the data itself;

• to specify and enforce policy throughout the data’s life-
time, be it the original data or derived data obtained
through its processing, even in distributed systems;

• to enable auditing through standard graph analysis tech-
niques;

• to provide extremely simple yet powerful lightweight
policy that can be placed low in the software stack (in
our approach [10] at the OS kernel level), reducing the
amount of software stack that has to be trusted.

§III presents our assumptions on the IoT operating environ-
ment. In §II, we discuss how existing security technologies can
be leveraged for IoT, and highlight the remaining problems.
§IV outlines DIFC dataflow constraints and how they provide
simple security primitives. §V describes our implementation
in a cloud context. In §VI, we discuss how trusted hardware
can be leveraged to extend IFC for IoT. Finally, in §VII, we
summarise our progress to date and present major research
directions that remain.

II. BACKGROUND

We now briefly consider the extent to which the established
security mechanisms, assumed to be available for deployment
when and where appropriate, can be used to meet the chal-
lenges brought by the emerging IoT. We then highlight major
remaining issues.

PKI: Public Key Infrastructure (PKI) is important in enabling
a wide-scale security regime. PKI allows ‘things’ to have
private keys and public key certificates, perhaps signed by
a certificate authority linking them to their owners, who are
also associated with certificates. X.509 certificates [12] can be
used for authentication/identification and authorisation [13],
are widely available and well-understood. PKI technology is
seen as important in enabling a wide-scale IoT infrastructure
[14] and lightweight PKI schemes have been proposed (e.g.
[15]) to support low-powered IoT devices.
Access control (AC): comprises authentication (you are
who you claim) and authorisation (regulating whether an
authenticated party may perform an action, e.g. reading data).
Authentication builds on system-wide identification, where
a certificate-based (PKI) model can be used. Authorisation
policy is often role-based or embodied in access control lists.
Encryption: We assume the possibility for encrypted commu-
nication channels e.g. via TLS, or more lightweight versions
for resource-challenged ‘things’. TLS relies on PKI and certifi-
cate authorities. Application-level encryption can secure data
beyond the application’s scope, but this raises issues relating



to key management and distribution [3]. At present, processing
generally cannot be carried out on encrypted data, which can,
for instance, preclude some cloud-based services [4].

These security mechanisms can be used, or adapted to
support IoT [3]. However, they tend to operate at specific
policy enforcement points, concerning a particular principal
taking a particular action. While this protects the specific
interaction, it does not provide continuous control over the
data. The approaches do not allow a data producer to control,
or trace, their data after it has been transferred to a third-party.

This results in a great deal of trust being placed throughout
the entire IoT supply chain—which includes cloud service
providers and other collaborative entities—that data will (only)
be used and transferred in accordance with the purposes for
which it was originally produced and/or shared [4].

For example, ‘sticky’ policy approaches such as in EnCoRe
[16] propose enforcement of high-level policy in the cloud, and
their approach could be adopted for the IoT. However, they
aim at providing expressiveness at a higher level of abstrac-
tion and are implemented at that level. Furthermore, ‘sticky’
policy approaches generally assume the collaboration of the
applications or that no communication channel exists outside
of the enforcement points. This results in (i) an unnecessarily
large trusted computing base (TCB); (ii) policy complex to
enforce and potentially impractical on low-end devices and
(iii) making it difficult to establish trust (applications need to
be trusted to some extent).

We argue that there is a clear need to complement the exist-
ing security approaches with mechanisms that operate beyond
the point-based interaction, applying continuously throughout
the IoT infrastructure. Simple low-level, data-centric security
primitives must be provided to ensure the enforcement of the
data owner’s requirements regarding how and where its data is
used. Furthermore, this security mechanism should be agnostic
to and separate from applications.

Such policies must account for secrecy concerns, such
as privacy and confidentiality aspects, as well as integrity
concerns, including data quality and authority. The policy must
be consistently enforced, throughout the IoT supply chain,
backed with strong evidence of policy adherence.

III. TRUST ASSUMPTIONS

Our work considers end-to-end DIFC enforcement and
audit throughout the IoT service chain. Several assumptions
underpin our work, which represent general operational con-
cerns:
Trusted Platform Module (TPM): We assume that TPM
[17] or vTPM [18] technology are available across the cloud
components and their integrity can be remotely monitored [19].
Such technology is also becoming available on commodity
hardware and mobile devices [20].
Hardware Integrity: We assume that the cloud provider has
taken sufficient technical and non-technical measures to ensure
that the hardware has not been tampered with (e.g. see CISCO
vs NSA). The hardware integrity of edge devices (e.g. mobile
phones, home automation devices etc.) is harder to guarantee.
Protecting the hardware is likely to fall under the responsibility
of the device/data owner. This may present challenges in

situations where these are different parties.
Low-level software stack: We assume that the integrity of the
low-level software stack is recorded and monitored. The low-
level software stack here includes: BIOS, boot loader code and
configuration, Options ROM, host platform configuration, etc.
We assume that this integrity measurement is kept safe and
cannot be tampered with. Tamper-proof hardware storage may
help with keeping integrity measurements safe.
Cryptographic Security: We assume cryptographic func-
tions to be secure and data exchange across machines to be
encrypted. We assume that message integrity on exchanges
between machines can be verified. Furthermore, data may be
encrypted on disc to provide a further guarantee.
Physical Security: We assume that best practice is in place
to restrict physical access to the hardware managed by cloud
providers, or third parties managing the underlying infrastruc-
ture on their behalf. Physical access to edge devices (e.g.
things, mobile devices, etc.) is harder to monitor and protect.

IV. DIFC AS SIMPLE SECURITY PRIMITIVES

DIFC considers two types of security guarantees. Secrecy
policy broadly covers the usage/confidentiality of the data,
restricting its propagation to components trusted to handle such
types of data. For example, medical data may be restricted
to approved devices and services, or data may be restricted
to a certain geographical area [21]. Integrity broadly covers
the assessment of some properties (e.g. quality, state, origin)
associated with the data. For example, a certain accuracy may
be required or a storage service may refuse the responsibility
of handling confidential data ‘in-clear’ and may first require
its encryption [4].

In DIFC, entities—including processes and data-holding
objects e.g. files, key-value store entries, messages—are asso-
ciated with secrecy (S) and integrity (I) labels, encapsulating
the security policy. A label is a set of a tags, each tag
representing a particular security concern. The current state
of these labels is the entity’s security context.

A flow of information A→ B is safe if and only if:

A→ B, iff {S(A) ⊆ S(B) ∧ I(B) ⊆ I(A)}
This rule is enforced continuously, against every flow in the

system, unlike traditional access control where there is no
subsequent control of disclosure after a principal has been
authorised to access data.

For example, a patient Alice may be discharged from
hospital to home monitoring. Home monitoring data tagged as
medical in its secrecy label S can only flow to a processing
entity that contains a secrecy tag medical in its S. This ensures
that data produced by Alice’s home monitoring equipment
is only processed by a dedicated cloud application. Further,
selected medical data may be released for research. Such
data should be secrecy tagged with the research purpose, e.g.
diabetes-research, to ensure proper data usage. Further, en-
tities running in the research environment may want to specify
an integrity tag consent-to-research as their requirement for
receiving and taking responsibility for the data [4].

The flow constraints have implications for the end-to-end
properties of data throughout a chain of services. Secrecy
and integrity tags are not only associated with some original
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Fig. 1. CamFlow Information Flow Control enforcement within and between containers and machines.

data, but with all data derived from it whether by computation
or combination. In an IoT scenario, not only is the integrity
of an actuation command ensured within the last hop to the
device, but the flow rule for integrity ensures that any prior
components in a chain leading to this command have at least
the same integrity tags.

DIFC policies are simple to express and enforce. This is
particularly important in an IoT context as low powered edge
devices need to be able to enforce the policy. Further, trusted
components are able to change the security context of entities;
e.g. declassifying data after anonymisation or endorsing data
after sanitisation. We have demonstrated [4] that, through the
simple flow constraints, and trusted components declassifying
and endorsing data, it is possible to build complex policies.

V. ENFORCING DIFC

In our implementation [10], we enforce DIFC within de-
vices or cloud VM through use of a Linux Security Mod-
ule framework [22]. Our module (CamFlow-LSM) can be
deployed on Linux systems (desktop, cloud servers, Android
devices or be embedded). We enforce DIFC between machines
through a specific messaging middleware (CamFlow-MW1)
operates on *nix based systems (iOS, Linux, Android etc.), and
thus can operate to manage the interactions between ‘things’
and cloud services. Fig. 1 gives a general overview of our
system architecture.

In this context an IFC-labelled active entity may be a
cloud application instance, a mobile application, a process
on a desktop OS etc. An entity’s local flow of data (through
files, pipes, shared memory) is locally constrained. The LSM
provides security hooks on interactions between kernel objects,
which is where DIFC policies are enforced. External flows
to and from components running under DIFC constraints are
strictly restricted to the messaging MW which ensures security
across machines: including secure channels and component
authentication/authorisation. Software integrity verification is
also possible through hardware features (see §VI).

Furthermore, every data flow in the system is logged. Meta-
data about the different interacting components and objects is
logged and can be interpreted and analysed as a directed graph
providing provenance-like features [11]. These audit logs allow

1Our MW provides: message queues, service discovery, dynamic reconfig-
uration.

compliance to be demonstrated, system behaviour to be un-
derstood and verification that policy is properly expressed and
enforced. We give an example of compliance demonstration in
a legal medical context in [4].

We assume that the rest of the kernel can be trusted
and does not interfere with the enforcement mechanism. A
further guarantee of this particular point could be leveraged
from hardware inverse sandbox [23]. LSM system hooks have
been statically and dynamically verified [24]–[26], and our
implementation inherits from LSM the formal assurance of
IFC’s correct placement on the path to any controlled kernel
object. This is sufficient to guarantee that we control flow and
record audit on any operation on a controlled kernel object.

Further, it has been demonstrated [27] that applications
running on top of an IFC-enforcing OS need not be trusted.
This indicates a security mechanism with an extremely thin
TCB compared to those discussed in §II.

VI. LEVERAGING TRUST FROM HARDWARE

DIFC protection is only guaranteed above the technical
layer in which the DIFC mechanism operates. Safe exchange
of data in a DIFC-context relies on trust placed in this
mechanism. In a cloud context, the enforcement mechanism
is provided and guaranteed by the cloud provider. If trust can
be established with the cloud provider, no other party need to
be trusted to guarantee secrecy and integrity of data [10]. This
trust relationship can be established as the cloud provider is
bound by contract, regulation and economic interest. This trust
is demonstrated every day by companies adopting the cloud.
However, when moving towards a potentially self-managed
‘things’ infrastructure, this trust relationship becomes more
complex to establish. There is a need to demonstrate, reliably,
that a particular machine has the appropriate untampered DIFC
enforcement mechanisms in place.

One such approach is to leverage Trusted Platform Modules
(TPM) [17], as used for remote attestation [28]. TPM is
used to generate an unforgeable hash representing the state
of the hardware and software of a given platform, that can
be remotely verified. Therefore, a company could audit the
implementation of a DIFC enforcement mechanism and ensure
that the kernel security module, messaging middleware and the
configuration they provide are indeed running on the platform.
Any difference between the expected state of the software



stack and the platform would be detected and might represent
a breach of trust.

TPM, with remote attestation, is reaching maturity for
cloud computing [18], with IBM rolling out an open source,
scalable trusted platform based on virtual TPM [29]. Berger
et al. [29] describe a mechanism allowing TPM and remote
attestation to be provided for virtual machine and container-
based solutions, covering the whole range of contemporary
cloud offerings. Furthermore, the approach not only allows the
state of the software stack to be verified at boot time, but also
during execution, and can thus prevent run-time modification
of the system configuration. Similar mechanisms exist for
mobile phones [20] and embedded systems [30].

In addition to verifying a platform, the same techniques can
also be used to verify the integrity of a remote system at run-
time, to ensure that an entity has in place the appropriate IFC
enforcement mechanisms before data is exchanged. This can
be achieved through standard remote attestation techniques.
Furthermore, integrity tags can be derived from a hardware-
backed source, such as GPS-based location, using the mecha-
nism described in [31].

VII. CONCLUSION

Data management remains a challenge for cloud comput-
ing, and these issues will be exacerbated by the emerging
Internet of Things. In this paper, we presented our ongoing
work on DIFC, as a mechanism for managing data within and
throughout cloud-supported IoT infrastructure.

We described how our approach operates to complement
existing security techniques, by enabling data management
policy to be enforced continuously, system-wide. DIFC offers
compelling advantages, but only if the DIFC implementation is
itself trustworthy. Our key contribution here, is in considering
the role of trusted hardware and remote attestation, which when
combined with a DIFC implementation, can raise the levels of
trust and assurance in the supporting infrastructure.

By using trusted hardware, remote attestation and a
provenance-like audit log generated during DIFC enforcement,
we are able to produce audit data that can be used to demon-
strate compliance with regulatory or contractual obligations.
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