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Abstract. This letter provides a novel approach for modeling observed behaviors by em-
ploying differential equations to describe heuristic anchoring and adjustment. To demon-
strate the value of such an approach, I use it to provide a unified framework for the various
heuristics employed in the valuation of binary lotteries. The theory is then validated on
the individual level using the Gonzalez and Wu (1999) dataset. My approach also allows
for subject heterogeneity in larger datasets to modeled. This is illustrated and validated
out of sample using a number of lottery valuation datasets. Stylized facts are also pre-
sented concerning the distribution of subjects’ choice of heuristic, their certainty in the
effectiveness of their heuristic and the noise in subjects’ answers. Despite being required
to pass comprehension checks a significant percentage of subjects’ responses are a result
of guessing and noise.

1. Introduction

Models of human behavior in Behavioral Economics and Psychology have generally been
built through either set-theoretical assumptions, the optimization of an objective function
or others concerning particular functional forms (e.g. Weber and Stevens’ laws). Even
Kahneman and Tversky’s notion of subjects anchoring and adjusting has been reduced
to mean convex combinations of functions from other established methods. This letter
proposes understanding anchoring and adjustment in a differential light, in which the
anchors are boundary conditions and the adjustment is governed in a non-linear manner
by a differential equation. To illustrate this approach, I consider the open problem in
Behavioral Economics and Psychology in discovering how subjects make choices between
risky options.

Since the St. Petersburg paradox was posed in the 18th century, Economics and Psy-
chology have been interested in formally modeling people’s choices between risky and safe
options. Such a theory would have broad impact with implications in industry (e.g. in-
surance pricing), criminal justice (e.g. plea bargaining) and international relations. As a
starting point, the simplest choice to model concerns one between a binary lottery with
one non-zero payoff and another fixed sum. Formally, we’re interested in the amount of a
money, x, such that a person would be indifferent between receiving x or the lottery, L.

I’d like to thank Drew Fudenberg, Drazen Prelec, Matthew Rabin, Andrei Shleifer and George Wu for
their helpful comments and suggestions.
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(1) L =

{
l, p

0 (1− p)
p ∈ (0, 1), l ≥ 0

We denote this amount, x, as the certainty equivalent of the lottery, L. In the case
of binary lotteries, it is generally more instructive to discuss the quantity x/l which we
denote as the normalized certainty equivalent. In this simple case nearly all proposed
models (e.g. Savage’s Subjective Expected Utility, Kahneman and Tversky’s Cumulative
Prospect Theory, etc.) coincide to predict that the amount x will satisfy:

(2) v(x) = π(p)v(l)

in which v ∈ C2 is a cardinal utility function and π ∈ {C1|π′ > 0, π(0) = 0, π(1) = 1}
measures subjective probability. Various functions have been proposed for v and π using
different frameworks. The most popular choices, though, appear to be a power utility
function, given in eq. (3), and the Goldstein-Einhorn weighting function1, given in eq. (4),
which were popularized and tested experimentally by Gonzalez and Wu on ten subjects, [4].

(3) v(x) = θxα

(4) π(p) =
δpγ

δpγ + (1− p)γ

While other probability weighting functions have been proposed, we take the form above
as representative since the various functional forms are nearly impossible to differentiate
given suitable choices of parameters. While this framework is an improvement over assum-
ing people calculate the expected value it still suffers from both theoretical and experimen-
tal flaws. Firstly, it assumes that the normalized certainty equivalent of a binary lottery
(1) is fixed for a given probability of winning. In other words, the normalized certainty
equivalent of L is given by:

(5) x/l = π1/α(p)

so that the normalized certainty equivalent isn’t a function of the amount at stake.
However, this claim is false for a significant portion of experimental subjects including at
least four2 of Gonzalez and Wu’s ten subjects.

A second issue concerns behavior at low probabilities in which subjects normalized cer-
tainty equivalents don’t appear to converge to zero as the probabilities decrease (Cf. App.
Fig. 1). Given the requirement that π(0) = 0 and that π be continuous the appearance
of a non-zero “intercept” leads to unrealistic assumptions of sensitivity near the boundary.

1This functional form for the subjective probability is derived through assuming that a person subjec-
tively understands probabilities as the logarithm of the corresponding betting odds and through assuming
that a person’s internal biases may be approximated by an affine transformation in this log-odds space, [4].

2Plots of their normalized certainty equivalents are shown in Appendix Fig. 1
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For instance, the Gonzalez-Wu estimates for one subject3 lead one to the conclusion that
the difference in value between two binary lotteries with p = 0.993 and p = 0.998 is greater
than that between lotteries with p = 0.55 and p = 0.45. Without the framing effect of
having another digit (e.g. 0.99→ 0.999) such behavior is implausible.

One potential solution is to propose that subjects employ a logarithmic utility func-
tion. Recent work by Khaw, Li, and Woodford argues for a log-log relationship between
certainty equivalents and lottery amounts (with the probabilities determining the slope
and intercept) as an optimal strategy given logarithmic perception and cognitive noise [6].
Formally, in the event that cognitive precision is to be estimated from the data, they claim
that the normalized certainty equivalent satisfies:

(6) log |x/pl| = α(p) + β(p) log |l|, 0 ≤ β(p) ≤ 1

which nests the popular approach of Gonzalez and Wu in the case β(p) = 0 and that of
all prior approaches in the case of a power or logarithmic value function. However, I have
two principal concerns with their approach. Firstly, given their modeling assumptions, in
the event that subjects perceive the lottery amounts and probabilities nearly perfectly4

their predicted mean response is proportional to the expected value. This is certainly
inconsistent with the behavior found in lab experiments. Secondly, by not specifying the
functions α(p), β(p) in their general model the authors allow far too many degrees of
freedom for their model to have applicability in general tests of behavior under risk and
certainly miss many of the regularities found in the data. It is only with further assumptions
that the authors yield conditions for α, β and even then the results aren’t readily available
in closed form.

Thirdly, recent work by Oprea [7], provides evidence that behavior that appears simi-
lar to “probability weighting” can be elicited even in situations without stochasticity. In
Oprea’s experiment, subjects displayed probability weighting style behavior even in re-
sponse to multiple price lists eliciting the value of a percentage of a fixed sum e.g. 35%
of $20. Furthermore, the magnitude of these deviations were found to be correlated with
the degree of probability weighting elicited when those same subjects completed multiple
price lists for lotteries. Accordingly, our models for describing subject behavior in these
experiments need to account for the fact that heuristic behavior can also generate sim-
ilar behavior and may perhaps even be responsible for the behavior we observe in most
experiments.

To resolve these issues I propose a new approach that jointly derives pairs of value func-
tions and weighting functions on the basis of simple heuristics. The existence of subjects
both displaying choices consistent with logarithmic valuation and otherwise is justified on
the basis of heterogeneity among subjects in their choice of heuristic. Subjects are as-
sumed to employ one of four heuristics to value lotteries leading to a mixture distribution
of responses. Unlike existing models, the heuristic approach allows sufficient flexibility to

3Subject 8
4If subjects can type the correct lottery amount and probability after submitting their certainty equiv-

alent then this would likely be the case and when the correct values are no longer directly in front of
them.
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fit the following empirical regularities that can not be explained by current models: (a)
that there exists a minority of subjects whose implied probability weights are functions of
the lottery amount; (b) that probability weighting can be observed in situations without
stochasticity. This new model is calibrated using experimental datasets and validated out
of sample. The usage of different heuristics is validated using subjects’ self-reported un-
certainty. The distribution of error parameters across sub-populations is highly correlated
with their subjects’ degree of inconsistency in responding to repeated questions. And lastly,
a significant proportion of subjects appear to be guessing instead of employing a consistent
methodology despite having passed comprehension checks.

2. The Individual Model

I propose that four heuristics are employed by subjects to value binary lotteries: the
calculation of the expected value, two heuristics involving anchoring and adjustment and
that of arbitrarily guessing an answer (i.e. noise). In the following subsection I describe
the adjustment heuristics subjects employ and derive their functional forms.

2.1. Adjustment Heuristics. Assume that numbers are perceived as abstract scalars
or seen as amounts/distances, that is, values with units. When they’re perceived as dis-
tances I assume that subjects follow Weber’s law5 such that the perceived value of the
number is logarithmic. When they are perceived as scalars, I assume that they are per-
ceived arithmetically for one of two reasons. If a subject is employing higher order thinking
then they treat scalars according to standard arithmetic. Otherwise, a scalar is treated as
an unknown quantity and by an indifference principle one arrives at the notion that the
differences between ascending probabilities ought to be treated without relation to their
respective underlying probabilities.

2.1.1. The Log-Heuristic. Consider a person that has a poor6 understanding of probability
such that they only know that increases in the lottery probability are preferred ceteris
paribus. Due to their uncertainty as to the cardinal value of probabilities we assume
that they perceive probabilities as scalars. Consequently, we can represent the perceived
probability as a positive affine transformation of the true probability. The lottery amount
and certainty equivalent, though, are governed by Weber’s law since it’s an intuitively
understandable amount. We then arrive at:

sl = log |l|, sc = log |c|, sp = a1 + a2p

in which sl, sc, sp are the subjective values of l, c, p. We’re interested in how such a person
treats the marginal value of an increase in the lottery amount, l. The more unease the
person feels about their chances of winning the lottery, the less valuable they find such an

5While this assumption is particularly strong given the evidence suggesting that Steven’s law may be
more appropriate for large numbers, our assumption of logarithmic perception will suffice for the current
exercise [1].

6This includes people that are answering heuristically without employing their knowledge of probability
thereby exhibiting a temporary poor understanding of probability.
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increase. Since the relationship between lottery probabilities and the sensations of unease
they engender is monotonically decreasing we may express our claim as:

(7)
∂2sc
∂u∂sl

= f(u) < 0 −→ ∂2sc
∂sp∂sl

∝ du

dsp
f(u) > 0

in which sc is the perceived certainty equivalent and u denotes one’s sensation of unease
so that du/dsp is negative. A first order approximation of how ∂sc/∂sl behaves with respect
to sp is then

(8)
∂sc
∂sl

= b1 + b2sp = a+ bp, a, b > 0

The simplest7 solution to this equation provides that the certainty equivalent for the
interior probabilities is given by:

(9) c = la+bp

Imposing the condition that sc = sl when there isn’t any risk yields the constraint

(10) a+ b = 1

It is worth noting that this approach is consistent with Woodford’s model [6]; however,
whereas he derives his model on the basis of an optimization our approach allows this
behavior to be derived from simple intuitions.

2.1.2. The Beta Heuristic. The next heuristic concerns subject behavior that overweights
changes from certainty to uncertainty in which subjects essentially overreact to the in-
troduction of minor uncertainty into what was previously a certain outcome. While this
phenomena was formally described by many others, notably Tversky and Wakker, our goal
is to demonstrate how such an intuition and Weber’s law directly lead to the derivation of
a functional form [9].

Consider an individual with three variables on their mind, l, the lottery amount, p,
the probability of winning the lottery and, q, that of losing it. Even though p and q
are trivially related, they are treated independently by the heuristic because they reflect
separate notions. The value, q being the distance from certainty and the value, p, being the
distance from impossibility. We define the marginal value of the lottery given an increase
in the lottery probability by ξ := ∂c/∂p as a subject’s sensitivity to the lottery probability.
Since l, p, q, ξ are either in units of currency or perceived as distances, they are all perceived
logarithmically.

7The general solution, given an uncertainty function, u(p) is,

c = π(p)la+bp

for some function π(p). Enforcing the boundary conditions c(p, l)
∣∣
p=0

= 0, c(p, l)
∣∣
p=1

= l leads to the

conditions: π(0) = 0, π(1) = 1, b = 1 − a.
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Firstly, we note that subjects are more sensitive to the lottery probability when there is
more at stake. This notion doesn’t depend on the lottery amount or probability.

(11)
∂sξ
∂sl
∝ 1

Next, we note that a person intuitively understands the categorical difference between
a state in which it is possible to gain and one in which no gain is possible. Accordingly,
the closer the probability is to 0 the more sensitive they are to changes in the lottery
probability. This intuition, to first order, is captured by:

(12)
∂sξ
∂sp
∝ −1

Finally, we note that the same effect may be observed near certainty since such a person
intuitively understands the difference between a state of certain gain and state in which it
is possible not to. Similarly, the closer the probability of losing is to 0 the more sensitive
they are to changes in the lottery probability. This intuition is captured, to first order by:

(13)
∂sξ
∂sq
∝ −1

Solving eqs. 11, 12 and 13 yields:

sξ = k + γsl1 + αsp + βsq(14)

ξ = Kpαqβlγ1(15)

with α, β ≤ 0, γ > 0.
We now turn our attention to the constraints. Firstly, the probability constraint of:

(16) q = 1− p

which we temporarily relaxed to describe the heuristics. Secondly, the boundary condi-
tions:

c(l, 1) = l1 c(l, 0) = 0

imply that our solution must satisfy

(17)

∫ 1

0
ξdp = c(l, 1)− c(l, 0) = l

These two constraints are satisfied if

(18) K = 1/B(α+ 1, β + 1), γ = 1

where B(x, y) is the Beta function. If we substitute in the values from eq. 18 into eq.
15 and change variables under (α+ 1, β + 1) 7→ (α, β) then we may write the solution as:

(19) c = l

∫ p

0

pα−1(1− p)β−1

B(α, β)
dp = lIp(α, β), α, β ≤ 1
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in which Ix(a, b) is the regularized incomplete Beta function (the Beta CDF). In the
case that a subject is equally sensitive to changes in probability near 0 and 1 we satisfy
the restriction that

(20) α = β

which ensures that the Beta function is symmetric about p = 0.5.
It should be noted that both solutions we developed fit within the broad framework

proposed by Subjective Expected Utility Theory. However, we derive our functional forms
from first principles and may therefore justify these different functional forms on the basis
of known heuristics in lieu of the axioms of other theories. Importantly, our approach
implies that the value function and probability weighting function can, on a conceptual
level, be dependent on one another. If this is broadly the case, attempts to decouple the two
through experimentation are likely to fail out of sample. Furthermore, it explains and likely
requires that there be heterogeneity in the heuristic employed unlike other models [5], [6].

2.2. The Distribution of the Noise. It is important to take a moment and consider
what we expect the distribution of the noise. In the case of the Log-heuristic and Beta
heuristic, we expect the noise term to have a standard deviation roughly proportional the
amount at play, l, which reflects the logarithmic perception inherent to those heuristics.
Subjects calculating the expected value likely also have errors that are proportional to
the amount at stake due to the multiplicative nature of the expected value. Accordingly,
I estimate the distribution of the normalized certainty equivalent, which ought to have
approximately constant variance for each sub-population, in lieu the certainty equivalent
itself.

3. A Population Model

To account for heterogeneity in the general population I model the general population
using a mixture model that incorporates the various heuristics. Based on the work of
Bruhin, Fehr-Duda and Epper (2010) I assume that there are four sub-populations present
in general lottery experiments: expected value maximizers, a Log-heuristic population, a
Beta-heuristic population and a noise population that arbitrarily chooses responses, [2]. I
assume that each sub-population has default parameters. Individual subjects’ parameters
are then sampled from a distribution centered on the default parameters. For instance,
each person employing the Beta-heuristic has Beta parameters satisfying

α = α0 + ε, β = β0 + ε

in which α0, β0 are the sub-population’s default parameters and ε is approximately nor-
mal mean zero noise. Monte Carlo simulations illustrate that this noise, when propagated
through the various functional forms, leads to a unimodal distribution of errors about the
normalized certainty equivalent implied by the default parameters. In addition to the error
generated by heterogeneity in the parameters, each sub-population also has an error from
generic errors in thinking and myriad other small idiosyncratic behaviors. I approximate
the combination of these two sources of error using Gaussians due to both the CLT and
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its tractability. Accordingly, if the ith sub-population’s default normalized certainty equiv-
alent is given by µi(p, l1), then I approximate the distribution of its normalized certainty
equivalents by

(21) nce ∼ N (µi(p, l1), σ
2
i )

The presence of the noise-population is meant to capture those subjects who mostly
guess in their responses. I assume that they employ the least amount of thinking and also
model their choices using the Log-heuristic. Since their answers are mostly noise, I expect
them to have a larger error parameter

(22) σ2Noise > σ2log

If the chance of a randomly selected individual being in the ith sub-population is denoted
by πi then we may describe the CDF of normalized certainty equivalents for a given simple
lottery by

(23) Fnce(nce) =
4∑
i=1

πiΦ

(
nce− µi(p, l1)

σi

)
with a natural generalization when lottery questions are asked.
Bruhin, Fehr-Duda, and Epper convincingly demonstrate that female responses differed

significantly from male responses [2]. Accordingly, we estimate eq. (23) separately for both
men and women.

4. Estimating the Individual Model

As a first test of our ideas, it is necessary to demonstrate that the inclusion of het-
erogeneity provides a better explanation of the data than that of other models such as
Cumulative Prospect Theory or that of Khaw, Li and Woodforf [6]. My model for indi-
viduals effectively has 7 parameters8 in contrast to Gonzalez and Wu’s CPT model which
has 4. Accordingly, we can decide between the models on the basis of their information
criteria. As is standard, I use the AIC criterion.

To test the individual model we require a large number of responses for each subject. As
such, I chose to employ Gonzalez and Wu’s dataset [4] which includes ten subjects’ certainty
equivalents for 92 simple lotteries. We find a ∆AIC > 50 in favor of my model providing
strong evidence for heterogeneity in subjects’ choice of heuristic. As to the breakdown of
subject behavior, 4 subjects are best described by the Beta heuristic and 6 subjects are
best described by the Log heuristic.

8Since the EV maximizer is nested in the Beta model and Noise is nested in the Log model, we only have
to estimate parameters, α, β, a, b, σbeta, σlog, π. The last parameter, π, is the probability that the person is
better described by the Log model than the Beta model.
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5. Estimating and Validating the Population Model

To test the population mixture model, I employed the EM algorithm to classify subjects
by heuristic used and fit the heuristic model parameters. Since this algorithm is sensitive
to the starting parameters (i.e. initial probabilities of a subject belonging to a given sub-
population), I assigned them on the basis using an a priori analysis9 of the data that
introduced a preliminary classification of subjects.

While developing the model, I analyzed the 2003 and 2006 Swiss datasets collected
by Bruhin, Fehr-Duda and Epper as well as the 2022 Prolific dataset collected by Enke
and Graeber consisting of elicited certainty equivalents for binary lotteries [2], [3]. They
essentially served as the training set for the model. It is worth noting that the experiments
that generated these datasets differ considerably in the manner in which they were collected.
Whereas Enke and Graeber collected data online from US residents through the direct
elicitation of subjects’ certainty equivalents, Fehr-Duda et al asked Swiss students in person
to fill out multiple price lists. This provides a further check on the robustness of my findings.
After training my model I froze the analysis code.

To validate my conclusions out of sample, I employed the certainty equivalent data
collected by Enke and Graeber in 2019 as a validation set and ran the existing code on it.
Unfortunately, the 2019 dataset suffers from two major weakness. Firstly, the dataset only
has a maximum of 3 points per subject. While this is still easily sufficient to separate out
those following an EV or Noise heuristic from the others it is more difficult to classify the
Log and Beta populations due to the fact that the difference in their behavior need only
occur near the boundaries. Secondly, the subjects in Enke & Graeber’s 2019 Prolific dataset
were also asked subjects questions that are irrelevant to our inquiries (e.g. compound
lotteries, ambiguous lotteries, etc.) that potentially could have biased their responses to
the questions we are concerned with.

The results of this analysis are found in the tables below. The categorization of subjects
is found in Table 1; the heuristic parameters are found in Table 2 and the values of σ for
each sub-population are found in Table 5.

9Initial probabilities of belonging in the various sub-populations are generated using behaviors predicted
by the model. Subjects whose normalized certainty equivalents are close to linearly related (slopes within
7.5% of 1) with the lottery probability are assigned a high initial probability of being an EV maximizer.
Those with normalized certainty equivalents on average more than 0.35 from the lottery probability are
given a high initial probability of being noise. The remaining population is split into Log and Beta based
on their behavior near p = 0 in which the Log population is expected to have a non-zero intercept.
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Table 1. Categorization of Subjects

Dataset Expected Value Log Beta Noise
Swiss 2003 (M) 0.06 0.19 0.55 0.20
Swiss 2006 (M) 0.19 0.24 0.48 0.09
US 2022 (M) 0.08 0.43 0.26 0.23
Swiss 2003 (F) 0.06 0.22 0.54 0.17
Swiss 2006 (F) 0.00 0.26 0.53 0.20
US 2022 (F) 0.21 0.31 0.38 0.1
Validation (M) 0.17 0.46 0.16 0.22
Validation (F) 0.10 0.18 0.67 0.06

5.1. The Categorization of Subjects. As shown above, the proportion of subjects cat-
egorized into each sub-population is generally consistent across datasets. Crucially, my
analysis suggests that a fifth of subjects consistently act as if they are noisily answering
questions despite passing comprehension checks. If these subjects are not accounted for
separately then probability weighting estimates will be biased towards an inverse-S shape.
Likewise, if the expected value maximizers are not removed then probability weighting esti-
mates are biased in the direction of risk neutrality. Accordingly, all estimates of behavioral
theories can be severely biased if they do not account for this persistent form of noise.
Secondly, it is worth noting that in the Validation (M) set the relative proportions be-
tween the Log and Beta sub-population proportions seem to be opposite those in the other
datasets. This potentially reflects a misclassification of the Log and Beta sub-populations
by the algorithm which, as mentioned before, is possible in the Validation set due to the
paucity of data.

Table 2. Heuristic Parameters for Sub-populations

Log Beta Noise
Dataset a b α β a b

Swiss 2003 (M) 0.64 0.30 0.51 0.43 0.58 0.28
Swiss 2006 (M) 0.65 0.26 0.60 0.45 0.45 0.34
US 2022 (M) 0.52 0.46 0.82 0.81 0.81 0.04
Swiss 2003 (F) 0.59 0.37 0.37 0.21 0.74 0.14
Swiss 2006 (F) 0.52 0.28 0.53 0.39 0.58 0.32
US 2022 (F) 0.77 0.20 0.29 0.22 0.95 −0.18
Validation (M) 0.43 0.55 0.13 0.02 0.76 0.07
Validation (F) 0.18 0.31 0.34 0.29 0.86 −0.04

5.2. The Estimated Parameters and the Relations Between Them. As may be
seen in Table 2 the parameter estimates are generally stable across datasets with one
another with the exception of the female Validation set.
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I test the restriction imposed by eq. 9, that b = 1 − a on the training data using a
t-test and find that we can not reject their equality (t = 1.35). As a second method of
investigating their relationship I regress b on a with the result displayed in Table 3. Though
the result resembles the postulated relationship the slope is not statistically significant.
While this may be a result of having too little data there are other reasons to be skeptical.
In the validation set, this relationship is present in the male dataset but not in the female
dataset.

Table 3. The relationship between a and b in the training datasets

Dependent variable:

b

a −0.741.

(0.34)

Constant 0.85∗∗

(0.11)

Observations 6
Adjusted R2 0.55
Residual Std. Error 0.07
F Statistic 4.92∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In light of these results I conclude that while there may be suggestive evidence in favor of
this relationship it is not conclusive. Interestingly, the lack of evidence in favor of this result
indicates that our conjecture requiring subjects’ certainty equivalents to be continuous with
respect to probability while satisfying the boundary conditions for certain events may be
false. It may be that subjects treat the interior probabilities as categorically different
quantities than those on the boundary.

I also test my conjecture from eq. (20) that α = β using a t-test and find that we
can not reject their equality (t = 0.87). However, to better investigate the relationship
between these two parameters I regress the values of α on β from the training set in Table
4 and find a significant positive relationship between. Furthermore, this relationship is
consistent with the Validation sets since its predicted values of α lie within 2σ of their
estimated values.
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Table 4. The relationship between α and β in the training datasets

Dependent variable:

α

β 0.831∗∗∗

(0.107)

Constant 0.171∗∗

(0.049)

Observations 6
R2 0.938
Adjusted R2 0.922
Residual Std. Error 0.051
F Statistic 60.259∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The existence of a positive constant term is interesting since it indicates a bias in favor
of the α term over the β term. Using the logic of the heuristic, this suggests that subjects
find the distinction between possibility and impossibility to be greater than possibility and
certainty. As expected, though, the coefficient is also significant indicating that overall
sensitivity near the boundary probabilities is what drives the heuristic. Lastly, the strength
of the relationship shown by the high Adjusted R2 indicates that the Beta heuristic likely
only requires one parameter.

Table 5. Error Parameters (σ) for Sub-populations l2 = 0

Dataset Expected Value Log Beta Noise
Swiss 2003 (M) 0.04 0.12 0.12 0.27
Swiss 2006 (M) 0.05 0.12 0.08 0.30
US 2022 (M) 0.00 0.14 0.05 0.38
Swiss 2003 (F) 0.12 0.12 0.14 0.28
Swiss 2006 (F) N/A 0.08 0.09 0.25
US 2022 (F) 0.07 0.15 0.18 0.43
Validation (M) 0.03 0.11 0.11 0.34
Validation (F) 0.05 0.11 0.18 0.58

5.3. The Estimated Error Parameters. As expected, it is clear that the EV population
has the smallest value of σ in each dataset. Similarly, our supposition in eq. (22) is
confirmed since the Noise population consistently has the largest value of sigma. Moreover,
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given that the range of possible values for the normalized certainty equivalent is bounded
between 0 and 1, the fact that values of σ for the Noise sub-population are generally greater
than 0.25 indicates that nearly the entire range of possible values is contained within 2σ
of the mean response. This supports our identification of the Noise sub-population.

5.4. An Analysis of the Variance. Recall that in the population model there are two
major sources of noise: subject level error that manifests itself in the form of inconsistency
when faced with the same trial at a later time and heterogeneity in parameters within a
given sub-population. Since subjects faced two repeated lotteries valuation questions in
the US 2022 dataset we can directly estimate the variance due to inconsistency.

If members of a given sub-population answer questions with an error of variance σ2Incon
then the sum of the differences between the two sets of responses will have variance 4σ2Incon.
Accordingly, we can directly estimate σIncon for each sub-population. We then employ NLS
to estimate σ for each sub-population. To avoid trivial correlations between these two
measures, the dataset the NLS routine is run on excludes the data employed in estimating
σIncon through inconsistencies. The positive relationship between the two is tested using a
linear regression and the results are in the table below.

Table 6. The relationship between various estimates of the variance

Dependent variable:

σ̂2NLS

σ̂2Incon 2.621∗∗∗

(0.456)

Constant −0.002
(0.010)

Observations 8
R2 0.846
Adjusted R2 0.821
Residual Std. Error 0.019
F Statistic 33.031∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As expected, there exists a significant positive relationship between the two estimates
of the variance. Using the estimates in Table 6 we see that that inconsistency accounts
for approximately 40% of the variance in a given sub-population’s answers. Lastly, it
would appear that the variance due to heterogeneity is correlated with the variance due
to inconsistency since the constant term is negligible. This is unsurprising given that it
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would make sense for individuals within the noise sub-population to have greater variance
both within and between subjects’ responses and the reverse for the EV sub-population.

6. On the Nature of Cognitive Uncertainty

The complexity of heuristics follows from their corresponding intuitions and is given by:

(24) Noise < Log ∼ Beta < EV

Assuming that a subject’s use of less complex heuristics is correlated with their degree
of uncertainty, we can provide evidence for our hierarchy of heuristic complexity using
Enke and Graeber’s (2019, 2022) measure of cognitive uncertainty. In their experiment,
they asked subjects to rate their uncertainty on a scale of one to twenty. Since the EM
algorithm provides us with posterior probabilities of each subject belonging to a given sub-
population we can regress subjects’ cognitive uncertainty on these posterior probabilities to
verify that our proposed hierarchy holds. It is also necessary to add linear and quadratic
terms of the lottery probability as regressors to control for the fact that it is easier to
provide certainty equivalents near the boundaries than in the interior. The results are seen
in the Table 7.

Not only do these group membership probabilities explain the variation in cognitive
uncertainty, a fact attested to by the large Adjusted R2 value, but, the coefficients are all
significant and decrease in the order of the associated heuristics’ complexity in line with
our expectations.

Furthermore, the coefficients of the lottery probability and its square are consistent with
the claim that cognitive uncertainty decreases as one approaches a boundary in line with
our intuition for the Beta heuristic. To see this, note that the maximum of a quadratic:
ax2 + bx + x is at x = −b/2a if a < 0. As may be seen in Tab. 7 a < 0 for each dataset
and the maxima for the datasets are found at the interior probabilities of: 0.53, 0.47, 0.31,
0.23 respectively. The case α = β therefore corresponds to having an interior maximum at
p = 0.5 whereas α > β corresponds to an interior max with p < 0.5.

7. Concluding Remarks

In this paper, I demonstrated how an understanding of the heuristics experimental sub-
jects employ in tandem with Weber’s Law allows one to derive functional forms for subject
behavior in experimental settings. Heterogeneity in the choice of heuristic is explicitly
modeled in such a setting and is necessary to avoid biasing the estimates for parameters of
interest. I model the variance of subject responses and show that obey predictable patterns
between sub-populations. My theory is tested and validated both on the individual and
population level using a variety of datasets. Furthermore, I validate my understanding of
the intuition of the heuristics using data on subjects’ reported uncertainty when providing
certainty equivalents.

However, in developing this approach I employed simple binary lotteries with payoffs
(l, 0) for simplicity and small stakes in which there isn’t a serious presence of diminishing
sensitivity. Further efforts are necessary to extend the model these settings. Diminishing
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Table 7. Cognitive Uncertainty by Sub-Population

Dependent variable:

Cognitive Uncertainty

2019 (M) 2019 (F) 2022 (M) 2022 (F)

PEV 0.083∗∗∗ 0.116∗∗ 0.116∗∗∗ 0.303∗∗∗

(0.028) (0.046) (0.023) (0.018)

PBeta 0.196∗∗∗ 0.130∗∗∗ 0.199∗∗∗ 0.361∗∗∗

(0.031) (0.028) (0.016) (0.016)

PLog 0.118∗∗∗ 0.203∗∗∗ 0.253∗∗∗ 0.351∗∗∗

(0.025) (0.036) (0.015) (0.016)

PNoise 0.210∗∗∗ 0.308∗∗∗ 0.343∗∗∗ 0.448∗∗∗

(0.030) (0.056) (0.016) (0.023)

Lottery Probability 0.276∗∗ 0.484∗∗∗ 0.232∗∗∗ 0.161∗

(0.119) (0.144) (0.065) (0.068)

(Lottery Probability)2 −0.294∗∗ −0.515∗∗∗ −0.379∗∗∗ −0.353∗∗∗

(0.115) (0.142) (0.062) (0.067)

Observations 822 726 1,494 1,494
Adjusted R2 0.365 0.368 0.567 0.661
Residual Std. Error 0.240 0.280 0.209 0.224

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

sensitivity in the lottery amount is potentially accounted for through the notion of log-log
perception as advocated for Prelec, [8]; but, lotteries with multiple outcomes likely require
a holistic approach to understand how subjects summarize visual data as an intermediate
step before constructing their certainty equivalents.
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Figure 1. Plots of normalized certainty equivalents and LOESS fits as a
function of lottery probability for binary lotteries for which l2 = 0. Data
taken from Gonzalez & Wu (1999)
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Appendix A. Robustness

To test how robust the original estimates were for the 2022 (USA) dataset I reran the
analysis code on each of the three main sessions that generated the 2022 US dataset sep-
arately and used these categorizations to fit parameter estimates. These three sessions
account for 75% of the data in the 2022 dataset. I denote these estimates by “Bootstrap.”
The reason I avoided regular bootstrapping is because Prolific uses hidden demographic
variables to balance the subject pool in each session. The differences between the “Boot-
strap” estimates and the original categorization stem from the fact that in the original
categorization, the EV group only consisted of those who were risk neutral and answered
with decimal level precision whereas in the “Bootstrap” categorization, these individuals
are binned with those who answer the EV but round their answer.

The corresponding tables are found below.

Table 8. Categorization of Subjects for l2 = 0

Dataset Expected Value Log Beta Noise
Swiss 2003 (M) 0.06 0.19 0.55 0.20
Swiss 2006 (M) 0.19 0.24 0.48 0.09
“Bootstrap” (M) 0.1 0.22 0.42 0.26
Swiss 2003 (F) 0.06 0.22 0.54 0.17
Swiss 2006 (F) 0.00 0.26 0.53 0.20
“Bootstrap” (F) 0.13 0.38 0.34 0.15
Validation (M) 0.17 0.46 0.16 0.22
Validation (F) 0.10 0.18 0.67 0.06

Table 9. Heuristic Parameters for Sub-populations l2 = 0

Log Beta Noise
Dataset a b α β a b

Swiss 2003 (M) 0.64 0.30 0.51 0.43 0.58 0.28
Swiss 2006 (M) 0.65 0.26 0.60 0.45 0.45 0.34
“Bootstrap” (M) 0.47 0.52 0.55 0.61 0.80 0.04
Swiss 2003 (F) 0.59 0.37 0.37 0.21 0.74 0.14
Swiss 2006 (F) 0.52 0.28 0.53 0.39 0.58 0.32
“Bootstrap” (F) 0.72 0.21 0.29 0.33 0.87 −0.08
Validation (M) 0.43 0.55 0.13 0.02 0.76 0.07
Validation (F) 0.18 0.31 0.34 0.29 0.86 −0.04
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Table 10. Error Parameters (σ) for Sub-populations l2 = 0

Dataset Expected Value Log Beta Noise
Swiss 2003 (M) 0.04 0.12 0.12 0.27
Swiss 2006 (M) 0.05 0.12 0.08 0.30
“Bootstrap” (M) 0.03 0.12 0.12 0.29
Swiss 2003 (F) 0.12 0.12 0.14 0.28
Swiss 2006 (F) N/A 0.08 0.09 0.25
“Bootstrap” (F) 0.03 0.20 0.19 0.36
Mean (Training Set) 0.05 0.13 0.12 0.28
Std. Dev. (Training Set) 0.04 0.04 0.04 0.02
Validation (M) 0.03 0.11 0.11 0.34
Validation (F) 0.05 0.11 0.18 0.58

Table 11. The relationship between various estimates of the variance

Dependent variable:

σ̂2NLS

σ̂2Incon 2.509∗∗∗

(0.584)

Constant 0.008
(0.012)

Observations 8
Adjusted R2 0.714
Residual Std. Error 0.026
F Statistic 18.439∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Littauer Center 314, Harvard Department of Economics
Email address: thalyo@fas.harvard.edu
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Table 12. Cognitive Uncertainty by Sub-Population

Dependent variable:

Cognitive Uncertainty

2019 (M) 2019 (F) “Bootstrap” (M) “Bootstrap” (F)

PEV 0.083∗∗∗ 0.116∗∗ 0.134∗∗∗ 0.329∗∗∗

(0.028) (0.046) (0.024) (0.024)

PBeta 0.196∗∗∗ 0.130∗∗∗ 0.233∗∗∗ 0.335∗∗∗

(0.031) (0.028) (0.018) (0.019)

PLog 0.118∗∗∗ 0.203∗∗∗ 0.255∗∗∗ 0.392∗∗∗

(0.025) (0.036) (0.020) (0.019)

PNoise 0.210∗∗∗ 0.308∗∗∗ 0.351∗∗∗ 0.446∗∗∗

(0.030) (0.056) (0.019) (0.023)

Lottery Probability 0.276∗∗ 0.484∗∗∗ 0.252∗∗∗ 0.139∗

(0.119) (0.144) (0.079) (0.081)

(Lottery Probability)2 −0.294∗∗ −0.515∗∗∗ −0.405∗∗∗ −0.355∗∗∗

(0.115) (0.142) (0.076) (0.078)

Observations 822 726 1,062 1,056
Adjusted R2 0.365 0.368 0.580 0.674
Residual Std. Error 0.240 0.280 0.213 0.223

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01


