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We provide an axiomatic analysis of dynamic random utility, characterizing the
stochastic choice behavior of agents who solve dynamic decision problems by maxi-
mizing some stochastic process (Ut) of utilities. We show first that even when (Ut) is
arbitrary, dynamic random utility imposes new testable across-period restrictions on be-
havior, over and above period-by-period analogs of the static random utility axioms.
An important feature of dynamic random utility is that behavior may appear history-
dependent, because period-t choices reveal information about Ut , which may be serially
correlated; however, our key new axioms highlight that the model entails specific limits
on the form of history dependence that can arise. Second, we show that imposing natu-
ral Bayesian rationality axioms restricts the form of randomness that (Ut) can display.
By contrast, a specification of utility shocks that is widely used in empirical work vio-
lates these restrictions, leading to behavior that may display a negative option value and
can produce biased parameter estimates. Finally, dynamic stochastic choice data allow
us to characterize important special cases of random utility—in particular, learning and
taste persistence—that on static domains are indistinguishable from the general model.

KEYWORDS: Random utility, serially correlated utilities, dynamic discrete choice,
consumption persistence.

1. INTRODUCTION

1.1. Motivation

RANDOM UTILITY MODELS ARE WIDELY USED THROUGHOUT ECONOMICS. In the static
model, the agent chooses from her choice set by maximizing a random utility function U .
In the dynamic model, the agent solves a dynamic decision problem, subject to a stochastic
process (Ut) of utilities. The key feature of the model is an informational asymmetry
between the agent (who knows her realized utility) and the analyst (who does not). In
both the static and dynamic setting, this asymmetry gives rise to choice behavior that
appears stochastic to the analyst but is deterministic from the point of view of the agent.1
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1We interpret this stochastic choice data as the analyst’s observation of a large population of individuals
whose heterogeneous (resp. stochastically evolving) utilities are realized according to U (resp. Ut). By conven-
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A classic literature in decision theory axiomatically characterizes the stochastic choice
behavior that is implied by any static random utility model, regardless of the details of
the agent’s random utility function (see Section 7.1). Axiomatic analysis helps shed light
on which behavior (e.g., the “attraction effect”) this model rules out, as well as which be-
havior (e.g., the restrictive “independence of irrelevant alternatives” assumption) is im-
plied only by specific parametric versions of random utility but not by the general model.2
Moreover, some axioms have inspired empirical tests of the model (e.g., Hausman and
McFadden (1984), Kitamura and Stoye (2018)).

This paper provides the first axiomatic characterization of the fully general and non-
parametric model of dynamic random utility. Our analysis yields the following main in-
sights. First, we show that even when the agent’s utility process is arbitrary, dynamic ran-
dom utility imposes new testable restrictions on how behavior across periods is related,
over and above period-by-period analogs of the static random utility axioms. An impor-
tant feature of dynamic random utility is that behavior generally appears history-dependent
to the analyst, because past choices reveal some information about past utilities and (Ut)
may display serial correlation: For example, we expect an agent’s probability of voting
Republican in 2020 to be different conditional on voting Republican in 2016 than condi-
tional on voting Democrat in 2016, as her past voting behavior reflects her past political
preferences, which are typically at least somewhat persistent.3 However, our key new ax-
ioms highlight that any dynamic random utility model imposes specific limits on the form
of history dependence that can arise.

Second, in many dynamic decision problems, such as consumption-savings or optimal
stopping problems, the agent’s choices today also influence her menu tomorrow. Our
second main result shows that imposing natural Bayesian rationality axioms on behavior
in such settings restricts the random evolution of the agent’s utility process. Specifically,
randomness in Ut must arise from shocks to the agent’s evaluation of instantaneous con-
sumptions, and utilities across periods are related by a Bellman equation that correctly
anticipates future shocks. By contrast, we show that a second form of utility shocks, shocks
to actions, that are statistically convenient and widely used in the empirical literature on
dynamic discrete choice (DDC) can give rise to behavior that violates basic features of
Bayesian rationality.

Third, even when the agent only faces sequences of static choice problems and today’s
choices do not influence tomorrow’s menu, dynamic stochastic choice data make it pos-
sible to distinguish important models of utility shocks that are indistinguishable on static
domains. In particular, relative to the case of arbitrarily evolving utilities, we characterize
the additional behavioral content of an agent with a fixed but unknown utility about which
she learns over time and of an agent who displays taste persistence.

Our results are complementary to the DDC literature. The latter studies dynamic ran-
dom utility models, and associated phenomena such as history dependence and choice
persistence, with focus on identification and estimation. This paper provides decision-
theoretic foundations that focus on testable implications, comparative statics, and dis-
tinctions between key special cases of dynamic random utility. We hope that the modeling

tion, we use “the agent” to refer to any one of these individuals whose identity is unknown to the analyst; see
Section 2.2.3.

2See, for example, Huber, Payne, and Puto (1982) and Block and Marschak (1960).
3Throughout the paper, we restrict attention to the case where utilities Ut evolve exogenously. Thus, from

the point of view of the agent, past choices have no effect on current utility. As we discuss in Section 7.2, our
characterization can be extended to allow for the latter effect (e.g., due to habit formation or active learning).
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tradeoff between shocks to consumption and shocks to actions that we highlight will stim-
ulate a conversation about desirable properties of models and the ways to resolve this
tradeoff.

1.2. Overview

Section 2 sets up our model of dynamic random expected utility (DREU). This gener-
alizes the static random expected utility framework of Gul and Pesendorfer (2006) to
decision trees as defined by Kreps and Porteus (1978). Each period t, the agent chooses
from a menu At of lotteries pt that determine both her current consumption zt and to-
morrow’s menu At+1. Her choices maximize a random vNM utility Ut whose realizations
are governed by a probability distribution μ over a state space Ω that allows for arbi-
trary serial correlation of utilities. From the point of view of the analyst, this generates
a history-dependent stochastic choice rule: A history ht−1 = (A0�p0� � � � �At−1�pt−1) sum-
marizes that the agent chose lottery p0 from menu A0, then faced A1 and chose p1, and
so on. Following any history ht−1, the analyst observes the conditional choice probability
ρt(pt;At |ht−1) of pt from menu At . In particular, in period t = 0 there is no history to
condition on, so ignoring ties, ρ0(p0;A0) = μ(U0(p0) = maxq0∈A0 U0(q0)), just as under
static random utility. In period t = 1, we have

ρ1(p1;A1|A0�p0)= μ
(
U1(p1)= max

q1∈A1
U1(q1)

∣∣U0(p0) = max
q0∈A0

U0(q0)
)
�

and analogously for any t > 1.
Section 3 characterizes DREU. Our key new axioms capture the following idea: As

history dependence under DREU results purely from the information that past choices
reveal about the agent’s utility, this entails certain forms of history independence. Specif-
ically, we identify two simple cases in which histories ht−1 and gt−1 reveal the same in-
formation about the agent’s utilities, and we require that choice behavior ρt(·|ht−1) and
ρt(·|gt−1) following two such histories must coincide. Axiom 1, contraction history inde-
pendence, considers the case where ht−1 can be obtained from gt−1 by eliminating some
options that are “irrelevant” to choices along the history gt−1 (see Example 1 for an il-
lustration). This rules out certain dynamically “irrational” behavior such as the “mere
exposure effect,” where the mere presence of some option that the agent does not choose
today might affect her behavior tomorrow.

Axiom 2, linear history independence, considers ht−1 and gt−1 that are “linear combi-
nations” of each other. As Example 2 illustrates, this axiom provides a conceptual jus-
tification for a lottery-based extrapolation procedure we use to overcome the “limited
observability” problem, an important challenge specific to the dynamic setting: Whereas
in the static domain the analyst observes choices from all possible menus, in the dynamic
setting any history of past choices restricts the set of current and future choice problems,
which, over time, severely limits the history-dependent choice data observable to the an-
alyst. Theorem 1 shows that Axioms 1 and 2, along with a continuity condition and Gul
and Pesendorfer’s (2006) axioms that ensure static random utility maximization at each
history, fully characterize DREU.

In DREU, the utility process (Ut) is unrestricted and in principle allows the agent to
be myopic or suffer from temptation problems. Section 4 studies the important special
case of Bayesian evolving utility (BEU), where the agent is dynamically sophisticated and
forward-looking with a correct assessment of option value. BEU is obtained by imposing
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Bayesian rationality axioms on DREU; specifically, we adapt the preference for flexi-
bility and dynamic sophistication conditions from the menu preference literature to our
stochastic choice setting. Theorem 2 shows that these axioms yield a utility process (Ut)
where the agent’s evaluation of current consumption zt and continuation menu At+1 sat-
isfies the Bellman equation

Ut(zt�At+1)= ut(zt)+ δtE
[

max
pt+1∈At+1

Ut+1(pt+1)
∣∣Ft

]

for some process (ut) of random felicities, (δt) of stochastic discount factors, and a filtra-
tion (Ft) that represents the agent’s private information.

Section 5 contrasts BEU with dynamic discrete choice (DDC) models. BEU is a special
case of the most general DDC model. However, for estimation purposes, most DDC mod-
els subject the agent’s utility over continuation menus to additional randomness (shocks
to actions) that may be completely detached from their continuation value; Example 3
illustrates this in the context of a simple stopping problem. Relative to BEU, we highlight
the following modeling tradeoff. On the one hand, shocks to actions are statistically more
convenient, but unlike BEU, they can lead to violations of a key feature of Bayesian ra-
tionality, positive option value: For example, we show that more often than not, the agent
chooses to make decisions as early as possible, even when delay is costless and could pro-
vide her with better information about her payoffs; moreover, greater uncertainty about
her utilities may lead her to value delay less. In settings such as Example 3, we also show
that the conceptual differences between the two models translate into systematically dif-
ferent parameter estimates.

Finally, Section 6 restricts to the simpler subdomain of atemporal consumption prob-
lems, where each period agents choose only (lotteries over) today’s consumption and their
current choices do not affect tomorrow’s menu. Choice data on this domain are often fea-
tured in empirical work (e.g., the literature on brand choice dynamics) and an important
regularity is that choices tend to display some “persistence.” As Example 1 illustrates,
we show that two natural forms of choice persistence capture the additional behavioral
content of two important special cases of BEU: Bayesian evolving beliefs (BEB), where
current felicity ut represents the agent’s expectation of her fixed but unknown tastes ũ
about which she receives new information each period; and the case where ut displays
a nonparametric form of taste persistence. On our original domain, Theorem 3 provides
an alternative characterization of BEB in terms of a consumption stationarity axiom that
reflects the martingale property of beliefs. We also show that, unlike BEU, under BEB
the agent’s discount factor process is uniquely identified.

1.3. Illustrative Examples

EXAMPLE 1—Brand Choice Dynamics: A large marketing literature studies repeated
consumer choices between different brands.4 In these data, history-dependent choices are
widely observed; as an illustration, in Figure 1 (left), brand x is most popular at all nodes,
but period-1 behavior differs substantially across consumers who chose x in period 0 and
those who chose y .

As discussed in the Introduction, under dynamic random utility, history dependence
can result from the fact that agents’ tastes (ut) may be serially correlated. However, our

4See the references in Section 6.
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FIGURE 1.—Brand choice.

axioms in Section 3.1 show that even under arbitrary serial correlation of utilities, there
are limits on the forms of history dependence that can arise. For example, suppose an ex
ante identical population of consumers additionally face brand z in period 0 and choice
frequencies are as in Figure 1 (right). As we will see, our Axiom 1 (contraction history
independence) implies that the period-1 choice frequencies among consumers who chose
x in period 0 must be the same in both decision trees in Figure 1. This is because z is
an “irrelevant” alternative from the point of view of x, as it does not affect x’s demand
share. Intuitively, some of the consumers who chose y in period 0 substitute toward z in
the right-hand tree, but those who chose x remain the same.

In addition, we characterize precisely which nonparametric forms of serial correlation
in (ut) correspond to certain widely documented forms of history dependence. Specif-
ically, the data in Figure 1 (left) display consumption inertia, where a sizable share of
consumers who chose y in period 0 chooses it again over x in period 1, and consumption
persistence, where the share of consumers choosing y in period 1 is higher among those
who chose y in period 0 than among those who chose x in period 0. Section 6 shows
that on simple domains such as the one in Figure 1, consumption inertia characterizes
consumers with fixed but unknown utilities ũ about which they learn over time; that is,
ut represents their expectations of ũ given period-t information (as in our BEB model).
By contrast, consumption persistence characterizes consumers whose tastes ut display a
particular form of positive serial correlation that we call taste persistence. We also provide
comparative statics of behavior with respect to the amount of taste persistence.

EXAMPLE 2—School Choice: Unlike Example 1, in many economic settings agents’
choices today also affect their menus tomorrow. Figure 2 (left) provides a stylized example
in the context of school choice. In period 0, parents decide to enroll their child in one
of two elementary schools, which differ along many decision-relevant dimensions. Upon
enrolling, parents must then choose between a number of after-school care options: H
(stay at home/leave the child with relatives); P (a high quality but high cost private after-
school center); or S (a more basic and lower cost after-school program offered only by
school 1). Thus, choosing school 1 leads to period-1 menu {H�P�S}, whereas school 2
leads to menu {H�P}.

In such settings, history-dependent choice behavior can result from dynamic selection
effects: Different types of parents select into each school, so the observed choices from
{H�P�S} and from {H�P} do not reflect the unconditional choice frequencies that would
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FIGURE 2.—School choice.

arise if all parents made choices from either menu.5 Failure to account for this may lead to
spurious violations of random utility. For example, in Figure 2 (left), the share of parents
choosing P is larger at school 1 (30%) than school 2 (20%), despite the fact that more
options are available at school 1. Ignoring history dependence, this behavior appears to
violate the Regularity axiom, which is a well-known implication of static random utility
(Block and Marschak (1960)). However, it is entirely consistent with dynamic random
utility maximization, which allows the preferences of parents at each school to differ.6 In
Section 3.3, we show that under dynamic random utility, period-by-period versions of the
static random utility axioms are valid only if the analyst controls for past choices.

As discussed in the Introduction, another important challenge implied by history de-
pendence is limited observability. For example, in the left-hand decision tree in Figure 2,
we do not observe the counterfactual frequencies with which parents at school 1 would
choose between H and P if S was not available to them. Given dynamic selection, we can-
not simply infer these from the corresponding choice frequencies of parents at school 2.
However, in practice, many schools ration their seats via lotteries, a fact that is widely ex-
ploited in the empirical literature on school choice to generate quasi-experimental vari-
ation.7 This is illustrated in the right-hand tree in the figure, where each application to
school 1 is successful with probability λ and the parent must select school 2 otherwise.
In Section 3.2, we show how, in such settings, the analyst can extrapolate the choices
that school-1 parents in the left-hand tree would make from the set {H�P} by looking at
choices of parents in the right-hand tree who applied to school 1 but were rejected by
the lottery. This is because, under expected utility, the selection of parents to school 1 in
the left-hand tree is the same as the selection to the lottery on the right-hand side. Our
Axiom 2 (linear history independence) provides a conceptual justification for this extrap-

5This is a key difference between our setting and (i) Ahn and Sarver (2013) and (ii) Fudenberg and Strzalecki
(2015): (i) assume that period-0 choices between menus are deterministic; (ii) assume that the agent’s utility
process is i.i.d. In either case, there are no dynamic selection effects and period-1 choices from menus are
history-independent.

6For example, a preference for other features of school 2 may happen to be strongly correlated with a
preference for H; or parents for whom H is more costly might select disproportionately into school 1 because
it expands their outside-the-home options.

7For example, Abdulkadiroglu, Angrist, Narita, and Pathak (2017), Angrist, Hull, Pathak, and Walters
(forthcoming), Deming, Hastings, Kane, and Staiger (2014), Deming (2011).
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olation procedure, as it implies that the inference does not depend on the randomization
probability λ.

EXAMPLE 3—Optimal Stopping: Consider the following optimal stopping problem.
The agent can consume a in period 0 (and nothing in period 1) or defer consumption
and then choose between a or b in period 1, whichever she prefers at that point. For ex-
ample, suppose b is a more expensive substitute for a that the agent can only afford by
foregoing consumption in period 0 and accumulating enough savings by period 1; or b is
a new model with release date scheduled for period 1.

How the agent resolves the tradeoff between immediate consumption and the option
value of delay depends on the underlying structural parameters: the distribution of utility
shocks and the discount factor δ. Section 5 contrasts two models of utility shocks: Shocks
to consumption apply only to instantaneous consumptions and affect the agent’s evalu-
ation of tomorrow’s menu only through her anticipation of future shocks; by contrast,
shocks to actions subject today’s evaluation of tomorrow’s menu to an additional shock
that may be completely detached from its continuation value. We show that this is the
main difference between our BEU model (shocks to consumption) and many widely used
models in the DDC literature (shocks to actions).

In the present example, compare the following specifications of BEU and DDC, where
all shocks are assumed i.i.d. for simplicity. As Figure 3 illustrates, BEU (left) assigns
shocks εa

0 , εa
1 , and εb

1 to the instantaneous consumptions in periods 0 and 1, and the latter
two enter the continuation value to delaying and facing menu A1 := {a�b} in period 1:

UBEU
0 (a)= v(a)+ εa

0 and UBEU
0 (A1)= δE

[
max

{
v(a)+ εa

1� v(b)+ εb
1

}]
�

By contrast, i.i.d. DDC (right) assigns an additional shock ε
A1
0 to the period-0 action of

delaying and choosing menu A1, even though this entails no instantaneous consumption:

UDDC
0 (a)= v(a)+ εa

0 and UDDC
0 (A1) = δE

[
max

{
v(a)+ εa

1� v(b)+ εb
1

}] + ε
A1
0 �

Section 5 shows that shocks to actions can lead to counterintuitive behavior, such as
a negative option value. Additionally, they can result in biased parameter estimates: In
the present example, the maximum likelihood estimate of the discount factor under i.i.d.
DDC is exaggerated relative to BEU.8 These results hold not only for i.i.d. models, but

FIGURE 3.—Optimal stopping: Payoffs under BEU (left) versus DDC (right).

8An alternative to the payoff-shock interpretation of ε is that they capture “mistakes” or some small devia-
tions from perfect rationality. However, this interpretation appears at odds with the fact that the DDC agent
fully internalizes these shocks, in the sense that εa

1 , εb
1 enter into the expected continuation value in UDDC

0 (A1).
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also when there is permanent unobserved heterogeneity or when ε are correlated within
each period.

2. STATIC VERSUS DYNAMIC RANDOM UTILITY

For any set Y , denote by K(Y) the set of all nonempty finite subsets of Y and by
Δ(Y) the set of all simple (i.e., finite support) lotteries on Y ; henceforth, all refer-
ences to lotteries are to simple lotteries. Whenever Y is a separable metric space, we
endow Δ(Y) with the induced Prokhorov metric and K(Y) with the Hausdorff metric.
Let RY denote the set of vNM utility indices over Y , which is endowed with the prod-
uct topology and its induced Borel sigma-algebra. For any U�U ′ ∈ RY , write U ≈ U ′

if U and U ′ represent the same preference on Δ(Y). For any finite set of lotteries
A ∈ K(Δ(Y)), let M(A�U) := argmaxp∈AU(p) denote the set of lotteries in A that
maximize U , where U(p) := ∑

y∈supp(p) U(y)p(y) denotes the expected utility of any
p ∈ Δ(Y). For any A�B ∈ K(Δ(Y)) and α ∈ [0�1], define the α-mixture of A and B by
αA+ (1 − α)B := {αp+ (1 − α)q : p ∈ A�q ∈ B} ∈K(Δ(Y)).

2.1. Static Random Utility

We first briefly review the static model of random expected utility that will serve as
the building block of our dynamic representation at each history. The model is based
on Gul and Pesendorfer (2006), but allows for an infinite outcome space; this extension
is necessary for our purposes, because in the dynamic setting the period-t outcome space
Xt , consisting of all pairs of current consumptions and continuation menus, will be infinite
in all but the final period.

2.1.1. Agent’s Problem

Let X be an arbitrary separable metric space of outcomes. The agent makes choices
from menus, which are finite sets of lotteries over X; the set of all menus is A :=
K(Δ(X)). Denote a typical menu by A and a typical lottery by p. Let (Ω�F ∗�μ) be a
finitely-additive probability space. In each state of the world, the agent’s choices maxi-
mize her expected utility subject to her private information. Her payoff-relevant private
information is captured by a sigma-algebra F ⊆ F ∗ and an F -measurable random vNM
utility index U :Ω →RX . In case of indifference, ties are broken by a random vNM index
W :Ω→ RX , which is measurable with respect to F ∗. Thus, when faced with menu A, the
agent chooses lottery p in state ω if and only if p maximizes U(ω) in A and, in case of
ties, additionally maximizes W (ω) among the U(ω)-maximizers. The event in which the
agent chooses p from A is C(p�A) := {ω ∈Ω : p ∈ M(M(A�U(ω))�W (ω))}.

For tractability, we follow Ahn and Sarver (2013) in assuming that the agent’s payoff-
relevant private information (F�U) is simple, that is, (i) F is generated by a finite par-
tition such that μ(F(ω)) > 0 for every ω ∈ Ω, where F(ω) denotes the cell of the par-
tition that contains ω; and (ii) each U(ω) is nonconstant and U(ω) �≈ U(ω′) whenever
F(ω) �= F(ω′). Moreover, the tie-breaker W is proper,9 ensuring that, under W , ties oc-
cur with probability 0 in each menu; that is, μ({ω ∈ Ω : |M(A�W (ω))| = 1}) = 1 for all
A ∈A.

9This property is sometimes called “regular” in the literature; we use the term “proper” to avoid confusion
with the Regularity axiom (Axiom 0(i)) below.
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2.1.2. Analyst’s Problem

The analyst does not observe the agent’s private information and thus cannot condi-
tion on events in F . Because of this informational asymmetry, the agent’s choices appear
stochastic to the analyst.10 His observations are summarized by a stochastic choice rule
on A, that is, a map ρ : A → Δ(Δ(X)) such that

∑
p∈A ρ(p;A) = 1 for all A ∈ A. Here

ρ(p;A) denotes the probability with which the agent chooses lottery p when faced with
menu A. If the agent behaves as in the previous section, then the event that the agent
chooses p from A is C(p�A). Thus, the analyst’s observations are consistent with the
previous section if ρ(p;A) = μ(C(p�A)) for all p and A.

DEFINITION 1: A static random expected utility (REU) representation of the stochastic
choice rule ρ is a tuple (Ω�F ∗�μ�F�U�W ) such that (Ω�F ∗�μ) is a finitely-additive
probability space, the sigma-algebra F ⊆ F ∗ and the F -measurable utility U : Ω →
RX are simple, the F ∗-measurable tie-breaker W : Ω → RX is proper, and ρ(p;A) =
μ(C(p�A)) for all p and A.

2.1.3. Characterization

For finite outcome spaces X , static REU representations have been characterized by
Gul and Pesendorfer (2006) and Ahn and Sarver (2013). As a preliminary technical contri-
bution, we extend their characterization to simple lotteries over arbitrary separable metric
spaces X . The first four conditions of the following axiom are the same as in Gul and
Pesendorfer (2006). The fifth condition is a slight modification of the finiteness condition
in Ahn and Sarver (2013).

AXIOM 0—Random Expected Utility:
(i) Regularity: If A⊆ A′, then for all p ∈ A, ρ(p;A) ≥ ρ(p;A′).

(ii) Linearity: For any A, p ∈ A, λ ∈ (0�1), and q, ρ(p;A) = ρ(λp + (1 − λ)q;λA +
(1 − λ){q}).

(iii) Extremeness: For any A, ρ(extA;A) = 1.11

(iv) Mixture Continuity: ρ(·;αA+ (1 − α)A′) is continuous in α for all A, A′.
(v) Finiteness: There is K > 0 such that for all A, there is B ⊆ A with |B| ≤ K such that

for every p ∈ A� B, there are sequences pn →m p and Bn →m B with ρ(pn; {pn} ∪Bn) = 0
for all n.

For condition (iv), α �→ ρ(·;αA+(1−α)A′) is viewed as a map from [0�1] to Δ(Δ(X)),
where Δ(Δ(X)) is endowed with the topology of weak convergence induced by the
Prokhorov metric on Δ(X). For condition (v), convergence in mixture, denoted →m, on
Δ(X) and A is defined as follows: For any p ∈ Δ(X) and sequence {pn}n∈N ⊆ Δ(X), we
write pn →m p if there exists q ∈ Δ(X) and a sequence {αn}n∈N with αn → 0 such that
pn = αnq+ (1−αn)p for all n. Similarly, for any sequence {Bn}n∈N ⊆A, we write Bn →m p
if there exists B ∈A and a sequence {αn}n∈N with αn → 0 such that Bn = αnB+ (1−αn){p}
for all n. Finally, for any A ∈A and sequence (An)n∈N ⊆A, we write An →m A if, for each
p ∈A, there is a sequence {Bn

p}n∈N ⊆A such that Bn
p →m p and An = ⋃

p∈A Bn
p for all n.

10If the analyst observed the true state, choices would appear deterministic and could be summarized by a
vNM preference �ω (modulo ties).

11Here extA denotes the set of extreme points of A.
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THEOREM 0: The stochastic choice rule ρ on A satisfies Axiom 0 if and only if ρ admits
an REU representation.

PROOF: See Supplemental Material Appendix F (Frick, Iijima and Strzalecki (2019)).
Q.E.D.

2.2. Dynamic Random Utility

Motivated by the examples in Section 1.3, in what follows, we set up and characterize a
general model of dynamic random utility.

2.2.1. Agent’s Problem

The agent faces a decision tree, as defined by Kreps and Porteus (1978). There are
finitely many periods t = 0�1� � � � � T . There is a finite set Z of instantaneous consump-
tions. Each period t, the agent chooses from a period-t menu, which is a finite set of
lotteries over the period-t outcome space Xt . The spaces Xt are defined recursively. The
final period outcome space XT := Z is just the space of instantaneous consumptions; the
set of all period-T menus is AT := K(Δ(XT)). In all earlier periods t ≤ T − 1, the out-
come space Xt := Z ×At+1 consists of all pairs of current period consumptions and next
period continuation menus; the set of period-t menus is At :=K(Δ(Xt)).12 Denote a typ-
ical period-t lottery by pt ∈ Δ(Xt) and a typical menu by At ∈ At . The agent’s choice
of pt ∈ At determines both her instantaneous consumption zt and the menu At+1 from
which she will choose next period; let pZ

t ∈ Δ(Z) and pA
t ∈ Δ(At+1) denote the respective

marginal distributions.
As in the static model, let (Ω�F ∗�μ) be a finitely-additive probability space. Under

dynamic random expected utility (DREU), in each state of the world and in each pe-
riod, the agent’s choices maximize her expected utility subject to her dynamically evolv-
ing private information. The agent’s payoff-relevant private information is captured by
a filtration (Ft)0≤t≤T ⊆ F ∗ and an Ft-adapted process of random vNM utility indices
Ut : Ω → RXt over Xt . This allows for arbitrary serial correlation of utilities, but does
not allow the utility process to depend on past consumption; Section 7.2 discusses how
to relax the latter restriction. In case of indifference, ties at each t are broken by a ran-
dom F ∗-measurable vNM utility index Wt : Ω → Xt , where we impose dynamic analogs
of simplicity and properness that we define at the end of this section. Thus, as be-
fore, when faced with menu At in period t, the agent chooses lottery pt in the event
C(pt�At) := {ω ∈Ω : pt ∈ M(M(At�Ut(ω))�Wt(ω))}.

DREU is a very general model because it imposes no particular structure on the family
(Ut). This is the most parsimonious setting in which to isolate the behavioral implications
of serially correlated utilities. DREU could also accommodate various behavioral effects,
such as temptation or certain forms of “mistakes” (e.g., Ke (2018)), which in the static
setting are indistinguishable from random utility maximization. However, the following
important special case rules out these possibilities.

Bayesian evolving utility (BEU) captures a dynamically sophisticated agent who correctly
takes into account the evolution of her future preferences. There is an Ft-adapted process

12A small technical difference from Kreps and Porteus (1978) is that they used Borel instead of simple
lotteries and compact instead of finite menus, but as in their setting, we can verify recursively that each Xt is a
separable metric space under the appropriate topologies (see Lemma E.1).
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of random felicity functions ut : Ω → RZ over instantaneous consumptions and an Ft-
adapted process of discount factors δt : Ω → R++ such that UT = uT and Ut for t ≤ T − 1
is given by the Bellman equation

Ut(zt�At+1)= ut(zt)+ δtE
[

max
pt+1∈At+1

Ut+1(pt+1)
∣∣Ft

]
� (1)

In (1), the process of discount factors is not identified. An important special case of
BEU where the process δt is identified is Bayesian evolving beliefs (BEB).13 This captures
the setting, discussed in Example 1, where the agent has a fixed but unknown felicity
about which she learns over time.14 Formally, there is an F ∗-measurable random felicity
ũ :Ω→ RZ such that, for all t,

ut = E[ũ|Ft]� (2)

For all three models, we impose the following dynamic analogs of simplicity and proper-
ness. The pair (Ft �Ut)0≤t≤T is simple, that is, (i) each Ft is generated by a finite partition
such that μ(Ft(ω)) > 0 for every ω ∈ Ω, where Ft(ω) again denotes the cell of the par-
tition that contains ω; and (ii) each Ut(ω) is nonconstant, and Ut(ω) �≈ Ut(ω

′) whenever
Ft(ω) �= Ft(ω

′) and Ft−1(ω) = Ft−1(ω
′).15 The tie-breakers (Wt)0≤t≤T are proper, that

is, (i) μ({ω ∈ Ω : |M(At�Wt(ω))| = 1}) = 1 for all At ∈ At ; (ii) conditional on FT (ω),
W0� � � � �WT are independent; and (iii) μ(Wt ∈ Bt|FT (ω)) = μ(Wt ∈ Bt |Ft(ω)) for all t and
measurable Bt .16

2.2.2. Analyst’s Problem

As in the static setting, the agent’s choices in each period t appear stochastic to the
analyst, because he does not have access to the agent’s private information. The novel
feature of the dynamic setting is that the analyst can observe the agent’s past choices.
With serially correlated utilities, these choices convey some information about the payoff-
relevant private information Ft , so that the agent’s behavior additionally appears history-
dependent to the analyst.

This is captured by a dynamic stochastic choice rule ρ, which, for any period t and history
of past choices, summarizes the observed choice frequencies from any menu At that can
arise after this history. We define choice frequencies and histories recursively. Choice
frequencies in period 0 are given by a (static) stochastic choice rule ρ0 : A0 → Δ(Δ(X0))
on A0; thus, ρ0(p0;A0) denotes the probability with which the agent chooses lottery p0

when faced with menu A0. The choices that occur with strictly positive probability under
ρ0 define the set of all period-0 histories H0 := {(A0�p0) : ρ0(p0�A0) > 0}. For any history
h0 = (A0�p0) ∈ H0, let A1(h

0) := supppA
0 denote the set of period-1 menus that follow

h0 with positive probability.

13We allow for the possibility that discount factors are stochastic and/or evolving, but it is straightforward to
characterize the case of a fixed discount factor δ ∈R++. See the discussion following Theorem 3.

14BEB is a model of passive learning, because the agent’s choices do not affect her filtration
Ft . A consumption-dependent extension of BEB (see Section 7.2) can accommodate active learning/
experimentation, where each period the agent obtains additional information from her consumption zt .

15For t = 0, we let Ft−1(ω) := Ω for all ω.
16Item (ii) rules out additional serial correlation of tie-breakers, over and above the serial correlation inher-

ent in the agent’s payoff-relevant private information FT (ω). Item (iii) ensures that to the extent that period-t
tie breaking relies on payoff-relevant private information, it can rely only on the information Ft (ω) available
at t.
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For t ≥ 1, the objects Ht and At+1(h
t) are defined recursively. For any history ht−1 ∈

Ht−1, choice frequencies following ht−1 are given by a stochastic choice rule ρt(·|ht−1) :
At(h

t−1) → Δ(Δ(Xt)) on the set At(h
t−1) of period-t menus that follow ht−1 with pos-

itive probability; thus, ρt(pt;At | ht−1) denotes the probability with which the agent
chooses pt when faced with menu At after history ht−1. The set of period-t histories
is Ht := {(ht−1�At�pt) : ht−1 ∈ Ht−1 and At ∈ At(h

t−1) and ρt(pt;At |ht−1) > 0}; this con-
tains all sequences (A0�p0� � � � �At�pt) of choices up to time t that arise with positive
probability. Finally, for each t ≤ T − 1, the set of period-t + 1 menus that follow history
ht = (ht−1�At�pt) with positive probability is At+1(h

t) := supppA
t and the set of period-

t histories that lead to At+1 with positive probability is Ht(At+1) := {ht ∈ Ht : At+1 ∈
At+1(h

t)}.
Two features of the primitive are worth noting: First, for each t ≥ 1 and history ht−1 ∈

Ht−1, the stochastic choice rule ρt(·|ht−1) is defined only on the subset At(h
t−1) ⊆ At of

period-t menus that arise with positive probability after ht−1—typically very few menus.
This reflects a key property of the decision-tree formulation that we term limited ob-
servability, whereby histories of choices also encode all possible future menus that the
agent will face, as illustrated in Example 2. Nevertheless, Section 3.2 will show that, un-
der DREU, the analyst can extrapolate from ρt(·|ht−1) to a well-defined stochastic choice
rule on the whole of At . Second, histories only summarize the agent’s past choices of pk

from Ak and do not keep track of realized consumptions zk ∈ supppZ
k . This is without loss

in the current model where utilities are not affected by past consumption, but Section 7.2
discusses a generalization of our model that relaxes this assumption.

Under DREU, the private information revealed to the analyst by history ht−1 =
(A0�p0� � � � �At−1�pt−1) is given by the event C(ht−1) := ⋂t−1

k=0 C(pk�Ak).17 Thus, the
analyst’s observations are consistent with DREU if the probability with which the
agent chooses pt from At following history ht−1 is equal to the conditional probability
μ[C(pt�At)|C(ht−1)] of the event C(pt�At) given C(ht−1).

The following definition summarizes the dynamic model:

DEFINITION 2: A dynamic random expected utility (DREU) representation of the dy-
namic stochastic choice rule ρ is a tuple (Ω�F ∗�μ� (Ft �Ut�Wt)0≤t≤T ) such that (Ω�F ∗�μ)
is a finitely-additive probability space, the filtration (Ft) ⊆ F ∗ and the Ft-adapted utility
process Ut :Ω→ RXt are simple, the F ∗-measurable tie-breaking process Wt :Ω→ RXt is
proper, and for all pt ∈ At and ht−1 ∈Ht−1(At),

ρt

(
pt;At |ht−1

) = μ
[
C(pt�At)|C

(
ht−1

)]
� (3)

where for t = 0, we abuse notation by letting C(ht−1) := Ω and ρ0(p0;A0|h−1) :=
ρ0(p0;A0).

A Bayesian evolving utility (BEU) representation is a DREU representation along with
Ft-adapted processes of felicities ut : Ω → RZ and discount factors δt : Ω → R++ such
that (1) holds. A Bayesian evolving beliefs (BEB) representation is a BEU representation
along with an F ∗-measurable felicity ũ :Ω→ RZ such that (2) holds.

17Note that C(ht−1) does not keep track of the random realizations of menus Ak ∈ supppA
k along the se-

quence ht−1, as this exogenous randomness does not reveal any information about the agent’s private informa-
tion.
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2.2.3. Discussion

Lotteries as choice objects. In addition to allowing us to model choice behavior under
risk, including lotteries in the domain of choice simplifies our analysis, as it allows us to
rely on the static framework of Gul and Pesendorfer (2006) instead of the more com-
plicated one of Falmagne (1978). Lotteries play a similar technical role in the original
work of Kreps and Porteus (1978).18 From a conceptual point of view, we will see in Sec-
tion 3.2 that lotteries are crucial in overcoming the aforementioned limited observability
problem and we illustrate the availability of lotteries for this purpose with examples from
experimental and empirical work.

Interpretation of data. We interpret the dynamic stochastic choice data ρ as the analyst’s
observation of a large population of agents that solve each decision tree once; agents
have heterogeneous and evolving utilities that are realized independently according to
the model in Section 2.2 and the analyst does not observe agents’ identities (only their
choice histories). This interpretation resembles available data in empirical analysis. How-
ever, (analogously to the static setting) the results do not rule out an alternative interpre-
tation, whereby the analyst observes a single agent solve each decision tree repeatedly.19

In either case, ρ captures the limiting choice frequencies as the population size/number of
observations tends to infinity. Abstracting from the sampling error in this manner is also
typical in the econometric analysis of identification. In any application, the data set will
of course be finite. However, studying behavior on the full domain is an important step in
uncovering all the assumptions that are behind the model; moreover, statistical tests are
often directly inspired by axioms.20

Dynamic stochastic choice versus ex ante preference. In our framework, the analyst ob-
serves the distribution of choices at each node of each decision tree; as we pointed out, the
randomness in choice comes from an informational asymmetry between agents and the
analyst in each period. By contrast, a widespread approach in the existing dynamic deci-
sion theory literature (e.g., Gul and Pesendorfer (2004), Krishna and Sadowski (2014)) is
to only study a deterministic preference over decision trees at a hypothetical ex ante stage
that features no informational asymmetry.21 Compared with this literature, our approach
does not require such a hypothetical stage, and thus the primitive is closer to actual data
economists can observe. Moreover, considering choice behavior in each period, not just
at the beginning of time, allows us to study phenomena such as history dependence and
choice persistence and to test whether the agent’s expectations are correct.

Role of axioms. In addition to their usual positive and normative role, we view our ax-
ioms as serving an equally important purpose as conceptual tools that elucidate key prop-
erties of any dynamic random utility model and facilitate comparisons between different
versions of the model. For example, our axioms in Section 3.1 clarify the nature of history

18Likewise, the ambiguity aversion literature extensively relies on the Anscombe and Aumann (1963) frame-
work rather than the more complicated one of Savage (1972); the notable exceptions include Gilboa (1987) and
Epstein (1999). Similarly, the menu-preference literature uses lotteries (e.g., Dekel, Lipman, and Rustichini
(2001)) to improve upon the uniqueness and comparative statics results of Kreps (1979).

19Here, the agent’s utilities are assumed to evolve according to the same process Ut at each observation.
20For example, Hausman and McFadden (1984) developed a test of the IIA axiom that characterizes the

logit model. Likewise, Kitamura and Stoye (2018) developed axiom-based tests of the static random utility
model.

21Ahn and Sarver (2013) studied a two-period model with a deterministic menu preference in the first period
and random choice from menus in the second period; here, too, there is no informational asymmetry in the
first period. Models of self-control often abstract away from temptation at the ex ante stage; one exception is
Noor (2011).
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dependence that can arise under any dynamic random expected utility model; our axioms
in Sections 4.2 and 6.2 identify the additional behavioral content of Bayesian evolving be-
liefs relative to Bayesian evolving utility; and our comparison of BEU and i.i.d. DDC in
Section 5 draws on the axioms to uncover that the two make opposite predictions about
option value.

3. CHARACTERIZATION OF DREU

DREU is characterized by four axioms, which we present in the following subsections.
First, we present two history independence axioms that capture the key new implications
of the dynamic model relative to the static one. Building on this, the next subsection
shows how the analyst can extrapolate from each ρt(·|ht−1) to an extended choice rule on
the whole of At , thus overcoming the limited observability problem. The final subsection
then imposes the static REU conditions as well as a technical history continuity axiom on
this extended choice rule.

For simplicity of exposition, we present our characterization in the two-period setting
(T = 1); the generalization to an arbitrary finite horizon is straightforward and is provided
in Appendix B.1.

3.1. History Independence Axioms

Our first two axioms identify two cases in which histories h0 and g0 reveal the same
information to the analyst. Capturing the fact that history dependence arises in DREU
only through the private information revealed by past choices, the axioms require that
period-1 choice behavior be the same after two such histories.

First, consider two histories h0 = (A0�p0) and g0 = (B0�p0) that differ solely in that
A0 ⊆ B0 is a contraction of B0, and suppose that both histories arise with the same proba-
bility ρ0(p0;A0) = ρ0(p0;B0). Axiom 1 requires period-1 choice behavior to be the same
after h0 and g0.

AXIOM 1—Contraction History Independence: If (A0�p0) ∈H0(A1) and B0 ⊇ A0 with
ρ0(p0;A0)= ρ0(p0;B0), then ρ1(·;A1|A0�p0)= ρ1(·;A1|B0�p0).

To see the idea, note that since A0 ⊆ B0, the event C(p0�B0) is in general a subset of
the event C(p0�A0). Thus, observing g0 = (B0�p0) may in principle reveal more infor-
mation about the agent’s possible period-0 preferences than h0 = (A0�p0). However, we
additionally know that ρ0(p0;A0) = ρ0(p0;B0), which means that these two events have
the same probability. Given this, h0 and g0 reveal the same information, and hence call
for the same predictions for period-1 choices. The following example illustrates Axiom 1
in a simple setting where agents only choose instantaneous consumption in each period
and today’s choice does not affect tomorrow’s menu.

EXAMPLE 4: Consider again the brand choice data from Example 1. Suppose the left
and right panel of Figure 1 respectively represent purchasing data at two stores, A and B.
Both stores typically carry two brands of milk, non-organic (x) and organic (y), but in
week 0, store B exceptionally offers an additional organic brand z. The week-0 purchasing
shares at each store are as in Figure 1. In particular, the share of customers purchasing
the non-organic brand x in week 0 is the same (80%) at both stores. Assume each store
has a stable set of weekly customers whose stochastic process of preferences (assumed
strict for simplicity) is identical at both stores.
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If in week 1 both stores carry only x and y , then Contraction History Independence
implies that the week-1 choice frequencies among customers who bought x in week 0
must be the same at both stores. Indeed, consider any customers Alice of store A and
Barbara of store B who both buy brand x in week 0. Then we have the same information
about Alice and Barbara. Since at store A only x and y were available in week 0, the
possible week-0 preferences of Alice are x � y � z or x� z � y or z � x � y . By contrast,
since store B stocked all three brands, Barbara’s possible preferences are x � y � z or
x � z � y . However, since we additionally know that the week-0 demand share of brand
x was the same at both stores, ρ0(x; {x� y� z}) = ρ0(x; {x� y}) = 0�8, we can conclude that
no customers had the ranking z � x � y in week 0. Therefore, the analyst’s prediction is
the same, since the stochastic process that governs the transition from week-0 to week-1
preferences is the same for Barbara and Alice and in both cases the analyst conditions on
exactly the same week-0 event {x � y � z�x� z � y}.

Under static random utility, Regularity (Axiom 0(i)) rules out certain “irrational” be-
havior such as the attraction effect (e.g., Huber, Payne, and Puto (1982)), where the mere
addition of some unchosen decoy option affects the agent’s choice probabilities over ex-
isting options. Similarly, Contraction History Independence rules out certain dynamically
irrational choice patterns such as the “mere exposure effect” (e.g., Zajonc (2001)), where
an agent’s choices today are influenced by the mere availability of irrelevant options in
the past.22 For instance, in Example 4, the axiom rules out the possibility that Barbara’s
choices in week 1 are affected by merely seeing (but not buying) brand z in week 0.

It is worth noting that the assumption that ρ0(p0;A0) = ρ0(p0;B0) in Axiom 1 can be
relaxed to allow for less rigid substitution patterns. Supplemental Material Appendix I.3
shows that a strengthening of Axiom 1 remains necessary, whereby if ρ0(p0;A0) and
ρ0(p0;B0) are close to each other (but not necessarily exactly equal), then the choice
probabilities after these histories must be close as well.

Contraction History Independence only concerns histories h0 and g0 that share the
same past choice p0. Our second history independence axiom imposes discipline across
certain histories that feature different choices. This axiom takes into account the fact
that the agent is an expected utility maximizer. Under expected utility maximization,
choosing p0 from A0 reveals the same information about the agent’s utility as choosing
λp0 + (1 −λ)q0 from λA0 + (1 −λ){q0}. Thus, period-1 choice behavior following history
h0 = (A0�p0) or history g0 = (λA0 + (1 − λ){q0}�λp0 + (1 − λ)q0) should be the same.
For instance, in the school choice example (Example 2), parents who in Figure 2 (left)
chose school 1 should make the same choices from the resulting period-1 menu {H�P�S}
as parents who in Figure 2 (right) chose the lottery λ(school 1) + (1 − λ)(school 2) and
were allocated to school 1.

More generally, for any menu B0, if we know that the agent chose some option of the
form λp0 + (1 − λ)q0 from λA0 + (1 − λ)B0 but we do not know what q0 was, this again
reveals the same information as choosing p0 from A0. Thus, conditioning on history h0 or
on the set of histories G0 = {λh0 + (1 − λ)(B0� q0) : q0 ∈ B0} should again yield the same
predictions for period-1 choice behavior, where λh0 + (1 − λ)(B0� q0) is shorthand for
(λA0 + (1 − λ)B0�λp0 + (1 − λ)q0).23

22Cerigioni (2017) incorporated the exposure effect into a Luce-style model in a dynamic setting.
23The proof sketch of Theorem 1 in Section 3.4 illustrates the role played by allowing for sets of histories

G0, rather than only singleton histories g0 = λh0 + (1 − λ)({q0}� q0) in Axiom 2.
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This is the content of Axiom 2. To state this formally, define the choice distribution
from A1 following any set of histories G0 ⊆H0(A1),

ρ1

(·;A1|G0
) :=

∑
g0∈G0

ρ1

(·;A1|g0
) ρ0

(
g0

)
∑
f 0∈G0

ρ0

(
f 0

) �

to be the weighted average of all choice distributions ρ1(·;A1|g0) following individual
histories in G0, where each history g0 = (Â0� p̂0) is weighted by the probability that it
arises, ρ0(g

0) := ρ0(p̂0; Â0).

AXIOM 2—Linear History Independence: If h0 ∈ H0(A1) and G0 = {λh0 + (1 −
λ)(B0� q0) : q0 ∈ B0} ⊆H0 for some λ ∈ (0�1], then ρ1(·;A1|h0)= ρ1(·;A1|G0).

A number of recent experimental studies feature the following type of setting that al-
lows for a simple test of Axiom 2: In period 0, subjects are presented with the choice
between (i) some period-1 menu B1 and (ii) a lottery that yields some other period-1
menu A1 with probability λ and menu B1 with probability 1 − λ; in period 1, subjects
make choices from their realized menus.24 Here, Linear History Independence implies
that period-1 choices (from A1 or B1) among subjects who choose (ii) in period 0 should
be independent of the particular value of λ ∈ (0�1]; this can be tested by exogenously
varying this randomization probability.

3.2. Limited Observability

Recall that unlike the static setting, where the analyst observes choices from all possible
menus, the dynamic setting presents a limited observability problem: At each history h0,
ρ1(·|h0) is only defined on the set A1(h

0) of menus that occur with positive probability
after h0—typically very few menus. For the rest of the paper, it is key to overcome this
problem; otherwise we do not have enough data to verify whether observed choices are
consistent with DREU and its special cases.

The inclusion of lotteries among the agent’s choice objects allows us to do so. In particu-
lar, Linear History Independence provides a formal justification for the “linear extrapola-
tion” procedure illustrated in the school choice example (Example 2). Consider any menu
A1 (e.g., the two-option menu {H�P} in the example) and some history h0 = (A0�p0)
that does not lead to A1 (e.g., choosing school 1 from menu {school 1� school 2} in the
left-hand tree in Figure 2). To define the agent’s counterfactual choice distribution from
A1 following h0, we extrapolate from a situation where the agent knows that no matter
which option in A0 she chooses, with some fixed probability another option q0 that does
lead to menu A1 will be implemented instead.

More precisely, we pick a lottery q0 such that A1 ∈ suppqA
0 and replace menu A0 with

λA0 + (1 − λ){q0}. This corresponds to the right-hand tree in Figure 2, where the choice
between school 1 and school 2 is replaced with the choice between the lottery λ(school 1)+

24For example, Toussaert’s (2018) recent experiment on temptation and self-control used a similar design to
differentiate between so-called random Strotz agents and Gul and Pesendorfer (2001) agents. Related uses of
randomization over menus in lab experiments include Augenblick, Niederle, and Sprenger (2015), Dean and
McNeill (2016). To avoid certainty effects, these experiments typically do not feature any degenerate lotteries
as in (i), but we abstract away from this for expositional simplicity.
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(1 − λ)(school 2) and school 2.25 As discussed preceding Linear History Independence,
under expected utility maximization, choosing p0 from A0 reveals the same information
about the agent as choosing λp0 + (1 − λ)q0 from λA0 + (1 − λ){q0}. This motivates
defining choice behavior from A1 following history h0 = (A0�p0) by extrapolating from
choices following history g0 = λh0 + (1 − λ)({q0}� q0):

DEFINITION 3: For any A1 ∈A1, and h0 ∈H0, define

ρh0

1 (·;A1) := ρ1

(·;A1|λh0 + (1 − λ)
({q0}� q0

))
(4)

for some λ ∈ (0�1] and q0 with A1 ∈ suppqA
0 .

Linear History Independence justifies Definition 3, as it ensures that the extended
choice rule ρh0

1 (·;A1) is well-defined: Lemma E.4 shows that the RHS of (4) does not de-
pend on the specific choice of λ and q0; moreover, ρh0

1 (·;A1) coincides with ρ1(·;A1|h0)
whenever h0 ∈H0(A1). In the following, we do not distinguish between the extended and
nonextended version of ρ1 and use ρ1(·;A1|h0) to denote both.

As Example 2 illustrates in the context of school choice, random assignment is preva-
lent in many real-world economic environments and is an important tool to obtain quasi-
experimental variation in the empirical literature. While this literature typically leverages
such random variation to identify the causal effect of current choices on next-period out-
comes (e.g., test scores in the case of school choice), Definition 3 suggests exploiting it
to make counterfactual inferences about next-period choices. Even more readily, lotter-
ies over next-period choice problems can be generated in the laboratory; as discussed
following Axiom 2, a growing literature in experimental economics features this type of
randomization, and one purpose is precisely to perform extrapolation procedures akin to
Definition 3.

3.3. History-Dependent REU and History Continuity Axioms

For each h0, the extended choice distribution ρ1(·|h0) from Definition 3 is a stochastic
choice rule on the whole of A1. The next axiom imposes the standard static REU con-
ditions from Axiom 0 on ρ0 as well as on each ρ1(·|h0).26 Note that conditioning ρ1 on
period-0 histories is essential; without controlling for past choices, period-1 choice be-
havior will in general violate the REU axioms, as illustrated in Example 2.

AXIOM 3—History-Dependent REU: Both ρ0 and ρ1(·|h0) for each h0 satisfy
Axiom 0.27

25Note that by definition, menu {λ(school 1) + (1 − λ)(school 2)� school 2} is the same as menu
λ{school 1� school 2} + (1 − λ){school 2}.

26For expositional simplicity, Axiom 3 imposes all static REU conditions on the extended stochastic choice
rule. However, it is worth noting that this is stronger than necessary: For each static REU condition except
Mixture Continuity and Finiteness, imposing the condition only on the nonextended choice rule is enough to
ensure (by Definition 3) that it is also satisfied by the extended choice rule.

27Lemma E.1 verifies that each Xt (t = 0�1) is a separable metric space. Then Mixture Continuity and
Finiteness make use of the same convergence notions as defined following Axiom 0.
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Our final axiom reflects the way in which tie-breaking can affect the observed choice
distribution. We first define menus and histories without ties directly from choice behav-
ior. The idea is that menus without ties are characterized by the fact that slightly perturb-
ing their elements has no effect on choice probabilities.28 We capture such perturbations
using convergence in mixture, as defined following Axiom 0.

DEFINITION 4: The set of period-0 menus without ties, denoted A∗
0, consists of all A0 ∈

A0 such that for any p0 ∈ A0 and any sequences pn
0 →m p0 and Bn

0 →m A0 � {p0}, we have

lim
n→∞

ρ0

(
pn

0;Bn
0 ∪ {

pn
0

}) = ρ0(p0;A0)�

The set of period-0 histories without ties is H∗
0 := {h0 = (A0�p0) ∈H0 :A0 ∈A∗

0}.
The following axiom relates choice distributions after nearby histories. To state this for-

mally, we extend convergence in mixture to histories: We say h0�n →m h0 if h0�n = (An
0�p

n
0)

and h0 = (A0�p0) satisfy An
0 →m A0 and pn

0 →m p0.

AXIOM 4—History Continuity: For all A1, p1, and h0,

ρ1

(
p1;A1|h0

) ∈ co
{

lim
n
ρ1

(
p1;A1|h0�n

) : h0�n →m h0 and h0�n ∈H∗
0

}
�

In general, if period-0 histories are slightly altered, we expect subsequent period-1
choice behavior to be adjusted continuously, except when there was tie-breaking in the
past. If the agent chose p0 from A0 as a result of tie-breaking, then slightly altering the
choice problem can change the set of states at which p0 would be chosen and hence lead
to a discontinuous change in the private information revealed by the choice of p0. The
history continuity condition restricts the types of discontinuities ρ1 can admit, ruling out
situations in which choices after some history are completely unrelated to choices after
any nearby history. Specifically, the fact that choice behavior after h0 can be expressed as
a mixture of behavior after some nearby histories without ties reflects the way in which the
agent’s tie-breaking procedures may vary with her payoff-relevant private information.

3.4. Representation Theorem

THEOREM 1: Suppose that T = 1. Then the dynamic stochastic choice rule ρ satisfies
Axioms 1–4 if and only if ρ admits a DREU representation.

The proof of Theorem 1 appears in Appendix B. We now sketch the argument for
sufficiency. Readers wishing to proceed directly to the analysis of Bayesian evolving utility
and evolving beliefs may skip ahead to Section 4.

First, Axiom 3 together with Theorem 0 yields a static REU representation R0 =
(Ω0�F ∗

0 �μ0�F0�U0�W0) of ρ0. For each h0 ∈ H0, Axiom 3 and Theorem 0 also imply
that ρ1(·|h0) admits a static REU representation, but without ensuring any relation-
ship between the period-0 and period-1 representations. By contrast, DREU requires

28Lu (2016) and Lu and Saito (2018a) used an alternative approach, directly incorporating into the primi-
tive a collection of measurable sets that capture the absence of ties and defining choice probabilities only on
measurable subsets of each menu. Their approach requires that ties occur with probability either zero or 1, so
is not applicable to our setting. Our perturbation-based approach is similar in spirit to Ahn and Sarver (2013).
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FIGURE 4.—Suppose the possible period-0 utilities are U1
0 , U2

0 , U3
0 . Menu D0 is a separating menu from

which qi
0 is chosen precisely if U0 = Ui

0. In menu A0 = {p0� r0}, p0 is chosen with probability 1 if U0 = U1
0 ;

tied with r0 if U0 = U2
0 ; and never chosen if U0 = U3

0 . In Â0 = 1
2A0 + 1

2D0, p0 is replaced with three copies
pi

0 = 1
2p0 + 1

2q
i
0 with the property that C0(p

i
0� Â0) = C0(p0�A0)∩ {U0 =Ui

0}.

that R0 be extended to a representation on a single probability space Ω, μ such that
ρ1(p1;A1|A0�p0) is the conditional probability of the event C(p1�A1) given the event
C(p0�A0).

To obtain such a representation, we only construct static REU representations of ρ1

following specific histories that uniquely reveal the agent’s period-0 utility. Concretely,
by simplicity of (U0�F0), there are finitely many possible realizations U1

0 � � � � �U
n
0 of the

agent’s period-0 utility, where all Ui
0 are nonconstant and ordinally distinct. Thus, stan-

dard arguments (Lemma E.2) yield a menu D0 = {qi
0 : i = 1� � � � � n} that strictly separates

period-0 utilities, in the sense that each qi
0 is chosen from D0 precisely when the agent’s

utility is Ui
0; that is, the event C0(q

i
0�D0) in Ω0 equals the event {U0 = Ui

0}. Figure 4 illus-
trates. Let Ri

1 = (Ωi
1�F ∗i

1 �μi
1�F i

1�U
i
1�W

i
1 ) be a static REU representation of ρ1(·|D0� q

i
0).

The key step is to combine R0 and Ri
1 into a representation of ρ1 following arbitrary

histories (A0�p0). Specifically, we show that for any p1 and A1,

ρ1(p1;A1|A0�p0)=
n∑

i=1

μi
1

(
Ci

1(p1�A1)
)
μ0

({
U0 =Ui

0

}|C0(p0�A0)
)
� (5)

where Ci
1(p1�A1) is the event in Ωi

1 that p1 is chosen from A1 and C0(p0�A0) is the event
in Ω0 that p0 is chosen from A0. Given (5), it is then straightforward to combine R0 and
Ri

1 into a DREU representation of ρ.29

The argument for (5) proceeds in two steps. First, Lemma B.3 establishes (5) for his-
tories (A0�p0) that are only consistent with a single period-0 utility Ui

0; that is, μ0({U0 =
Ui

0}|C0(p0�A0)) = 1 for some i. To see the idea, note that when (A0�p0) is a history with-
out ties, (A0�p0) and (D0� q

i
0) reveal exactly the same information about period-0 private

information. Given this, Lemma B.3 applies the two history independence conditions, Ax-
ioms 1 and 2, to show that ρ1(·|D0� q

i
0) = ρ1(·|A0�p0) coincide. Moreover, using History

Continuity, the argument extends even when (A0�p0) features ties.
Second, Lemma B.4 establishes (5) for arbitrary histories (A0�p0). The key idea is to

consider the mixture Â0 := 1
2A0 + 1

2D0 of A0 with the separating menu D0. In Â0, p0 is
replaced with n “copies,” pi

0 := 1
2p0 + 1

2q
i
0 for i = 1� � � � � n; see Figure 4. By Linear History

29Specifically, let Ω := ⋃n
i=1{ω0 ∈ Ω0 : U0(ω0) = Ui

0} × Ωi
1 and define μ on Ω by μ(E0 × E1) = μ0(E0) ×

μi
1(E1) for any events E0 ⊆ {U0 = Ui

0} and E1 ⊆ Ω1
i . If filtrations, utilities, and tie-breakers on Ω are induced

from R0 and Ri
1 in the natural way, then (5) implies (3), as required.
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Independence and the definition of ρ1 following a set of histories, we have

ρ1(p1;A1|A0�p0)= ρ1

(
p1;A1|Â0�

1
2
{p0} + 1

2
D0

)

=
n∑

i=1

ρ1

(
p1;A1|Â0�p

i
0

) ρ0

(
pi

0; Â0

)
n∑

j=1

ρ0

(
p

j
0; Â0

) � (6)

But note that, as illustrated in Figure 4, pi
0 = 1

2p0 + 1
2q

i
0 is chosen from Â0 = 1

2A0 + 1
2D0

in precisely those states of the world where p0 is chosen from A0 and qi
0 is chosen from

D0; that is, C0(p
i
0� Â0) = C0(p0�A0) ∩ C0(q

i
0�D0). Since, by construction of the separat-

ing menu D0, we have C0(q
i
0�D0)= {U0 = Ui

0}, this implies ρ0(p
i
0; Â0) = μ0(C0(p0�A0)∩

{U0 = Ui
0}). Moreover, when ρ0(p

i
0; Â0) > 0, then the previous paragraph (Lemma B.3)

yields ρ1(p1;A1|Â0�p
i
0)= μi

1(C
i
1(p1�A1). Combining these observations with (6) and ap-

plying Bayes’s rule yields (5), as required.

4. CHARACTERIZATION OF BEU AND BEB

DREU imposes no discipline on how the agent evaluates continuation problems. We
now build on the characterization of DREU by introducing axioms that capture the
dynamic sophistication of Bayesian rational agents: Section 4.1 characterizes Bayesian
evolving utility (BEU), and Section 4.2 captures the additional behavioral content of its
special case, Bayesian evolving beliefs (BEB). These characterizations serve as a basis for
Section 5, where we contrast BEU with dynamic discrete choice models. For simplicity of
exposition, we again present our axioms in the two-period setting (T = 1); generalizations
to an arbitrary finite horizon are provided in Appendices C–D.

4.1. Bayesian Evolving Utility

BEU is characterized by the following three axioms. First, Separability ensures that
period-0 utility in every state has an additively separable form U0(z0�A1) = u0(z0) +
V0(A1):

AXIOM 5—Separability: For any A0 and p0� q0 /∈ A0 with pZ
0 = qZ

0 , pA
0 = qA

0 , and A0 ∪
{p0}�A0 ∪ {q0} ∈A∗

0, we have ρ0(p0;A0 ∪ {p0})= ρ0(q0;A0 ∪ {q0}).
Axiom 5 is a stochastic-choice analog of the standard separability axiom for determinis-

tic preferences (e.g., Fishburn (1970)), which requires that the agent does not care about
how today’s consumption and tomorrow’s menu are correlated. That is, they do not dis-
tinguish between lotteries p0 and q0 that share the same marginals over both today’s
consumption and tomorrow’s menu.30

The next axiom adapts conditions from Dekel, Lipman, and Rustichini (2001) to a
stochastic-choice setting, to ensure that V0(A1) captures the option value contained in

30Lu and Saito (2018b) studied a random utility model where separability is violated, as in Epstein and Zin
(1989). They showed that even on simple domains where the continuation menu is fixed, the analyst’s estimates
of the function u are biased because they are contaminated by the nonlinear continuation utility.
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menu A1, that is, that V0(A1)= E[maxp1∈A1 Û1(p1) |F0] for some random utility function
Û1. For part (ii), we let m1�m

′
1 ∈ Δ(A1) denote typical distributions over period-1 menus,

and for each such m1, we let Ā(m1) denote the average menu induced by m1; that is,
Ā(m1) := ∑

A1∈A1
m1(A1)A1.

AXIOM 6—Stochastic DLR:
(i) Preference for Flexibility: For any A1, B1 such that A1 ⊆ B1 and {(z�A1)� (z�B1)} ∈

A∗
0,

ρ0

(
(z�B1);

{
(z�A1)� (z�B1)

}) = 1�

(ii) Reduction of Mixed Menus: For any A0 and (z�m1)� (z�m
′
1) /∈ A0 such that

Ā(m1)= Ā(m′
1) and A0 ∪ {(z�m1)}�A0 ∪ {(z�m′

1)} ∈A∗
0, we have

ρ0

(
(z�m1);A0 ∪ {

(z�m1)
}) = ρ0

((
z�m′

1

);A0 ∪ {(
z�m′

1

)})
�

(iii) Continuity: ρ0 :A∗
0 → Δ(Δ(X0)) is continuous.

(iv) Menu Nondegeneracy: {(z�A1)� (z�B1)} ∈A∗
0 for some z, A1, B1.

Part (i) corresponds to Kreps’s (1979) “preference for flexibility” axiom, which says that
the agent always (weakly) prefers bigger menus. This captures a key property of Bayesian-
rational agents in a dynamic setting, viz., a positive option value. The axiom is violated in
Ke’s (2018) model, where the agent has a deterministic utility but anticipates making
random execution mistakes. This agent’s choices over menus exhibit a form of preference
for commitment, because eliminating inferior options from a menu benefits the agent by
reducing the scope for mistakes. Preference for flexibility is also violated by dynamic logit
(Fudenberg and Strzalecki (2015)) and more general dynamic discrete choice models,
as we will discuss in more detail in Section 5. Part (ii) requires that the agent reduces
mixtures over menus; this is analogous to Menu Independence in Dekel, Lipman, and
Rustichini (2001) and implies that the agent cannot affect tomorrow’s utility distribution.
Parts (iii) and (iv) ensure that the agent has continuous and nontrivial preferences over
continuation menus.

The final axiom adapts the sophistication axiom due to Ahn and Sarver (2013). Fix any
history h0 = (A0�p0) and menus B1 ⊃A1. We require that if the agent sometimes chooses
an option in B1 �A1 following history h0, then in some states of the world in which she
chooses p0 from A0, she must value menu B1 strictly more than A1 (and vice versa). This
axiom ensures that the agent correctly anticipates her future utility distribution; that is,
Û1 =U1.

To formalize this, we must express in terms of stochastic choices the fact that in some
states of the world in which the agent chooses p0 from A0, she values menu B1 strictly
more than A1. This goes beyond Ahn and Sarver (2013), whose setting in period 0 features
no consumption and no randomness in the agent’s preference over period-1 menus.31 To
see the idea, suppose that for some lotteries q0 and r0, we have

ρ0

(
1
2
p0 + 1

2
q0; 1

2
A0 + 1

2
{q0� r0}

)
> 0� (7)

31Likewise, no such challenge arises in Fudenberg and Strzalecki’s (2015) dynamic logit model because of
their i.i.d. shocks assumption.
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Then we can conclude that in some states of the world in which the agent chooses p0 from
A0, she weakly prefers q0 to r0: Indeed, for an expected utility maximizer, it is optimal to
choose 1

2p0 + 1
2q0 from menu 1

2A0 + 1
2 {q0� r0} if and only if it is optimal to choose p0 from

A0 and to choose q0 from {q0� r0}.32 To be able to infer that in some states where the agent
chooses p0 from A0 she strictly prefers q0 to r0, we must additionally ensure that in some
such states the menu {q0� r0} does not feature a tie. Similarly to Ahn and Sarver (2013),
this is achieved by requiring (7) to hold for all small enough perturbations qn

0 →m q0 and
rn0 →m r0.33

Point (ii) of the following axiom applies this idea with q0 = (z�B1) and r0 = (z�A1) for
an arbitrary consumption z.

AXIOM 7—Sophistication:For any h0 = (A0�p0) ∈ H∗
0, z, and A1 ⊆ B1 ∈ A∗

1(h
0), the fol-

lowing are equivalent:
(i) ρ1(p1;B1|h0) > 0 for some p1 ∈ B1 �A1,

(ii) lim infn ρ0(
1
2p0 + 1

2(z�B
n
1); 1

2A0 + 1
2 {(z�Bn

1)� (z�A
n
1)}) > 0 for all An

1 →m A1,
Bn

1 →m B1.

Axiom 7 applies only to menus B1 that do not feature ties conditional on history h0.
Analogously to Definition 4, for any h0 ∈ H0, the set of period-1 menus without ties con-
ditional on history h0 is denoted A∗

1(h
0)34 and consists of all A1 ∈ A1 such that for any

p1 ∈ A1 and any sequences pn
1 →m p1 and Bn

1 →m A1 � {p1}, we have limn→∞ ρ1(p
n
1;Bn

1 ∪
{pn

1}|h0)= ρ1(p1;A1|h0).

THEOREM 2: Suppose T = 1 and ρ admits a DREU representation. Then ρ satisfies Ax-
ioms 5–7 if and only if ρ admits a BEU representation.

PROOF: See Appendix C. Q.E.D.

4.2. Bayesian Evolving Beliefs

Bayesian evolving beliefs is a specialization of BEU where the agent has a time-
invariant but unknown felicity about which she learns over time. In this section, we char-
acterize the additional behavioral content of this assumption by a simple axiom on the
agent’s choices over streams of consumption lotteries. Section 6.2 provides an alternative
characterization on the subdomain where, in each period, the agent chooses only today’s
consumption.

Given consumption lotteries �0� �1 ∈ Δ(Z), let the stream (�0� �1) ∈ Δ(X0) be the period-
0 lottery that in period 1 yields consumption lottery �1 for sure and in period 0 yields
consumption according to �0; formally, (�0� �1)= p0 where pZ

0 = �0 and pA
0 = δ{�1}.

32This observation is related to the random incentive mechanism used in experimental work. To elicit a sub-
ject’s ranking over a number of options in an incentive compatible manner, the subject is asked to indicate
choices from multiple menus; a lottery then determines which menu (and corresponding choice) is imple-
mented. See, for example, Becker, DeGroot, and Marschak (1964) and Chambers and Lambert (2017).

33In an earlier working paper version, we applied this idea more generally to define an incomplete and
history-dependent revealed preference relation �ht that captures that one lottery is preferred to another in
any state of the world ω that gives rise to history ht ; see Section 4.1 of Frick, Iijima, and Strzalecki (2017). This
preference relation can be used to provide alternative versions of Axioms 5–8.

34Note that A∗
1(h

0) � A1(h
0) because the first set contains all menus without ties (we use history h0 here

only to determine where ties could occur) while the second set contains only menus that occur with positive
probability after history h0—typically very few menus.
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AXIOM 8—Stationary Consumption Preference: If (�� �)� (�′� �′) ∈ A0 ∈ A∗
0, then

ρ0((�� �
′);A0)= 0.

Axiom 8 requires that the agent never chooses to commit to a time-varying consump-
tion stream (�� �′) if her choice set also contains the corresponding stationary consump-
tion streams (�� �) and (�′� �′). This reflects Bayesian learning about fixed but unknown
tastes: Indeed, if the agent currently believes � to be better than �′, then, by the martin-
gale property of beliefs, she should expect her information next period to still favor � on
average and will hence prefer (�� �) to (�� �′) (and analogously in the opposite case).

To characterize BEB, we postulate the existence of a pair �, � of consumption lotteries
such that the agent always strictly prefers � to � at all times and histories. This condition
is innocuous if, for example, the outcome space includes a monetary dimension.

CONDITION 1—Uniformly Ranked Pair: There exist �� � ∈ Δ(Z) such that for all � ∈
Δ(Z) and h0, we have A0 := {(�� �)� (�� �)} ∈ A∗

0, A1 := {�� �} ∈ A∗
1(h

0), and ρ0((�� �);
A0)= ρ1(�;A1|h0)= 1.

THEOREM 3: Suppose that T = 1 and ρ admits a BEU representation and satisfies Con-
dition 1. Then ρ satisfies Axiom 8 if and only if ρ admits a BEB representation.

The proof is in Appendix D. The key idea is to show that Axiom 8 is equivalent to the
requirement that u0(ω) and E[u1|F0(ω)] represent the same preference over consump-
tion lotteries in all states, which after appropriate normalization yields (2).

We note that while BEB allows for a stochastic process δt :Ω→ R++ of discount factors,
an earlier working paper version of this article includes an additional axiom that ensures a
deterministic discount factor δ > 0; moreover, a standard impatience axiom corresponds
to δ < 1.35

REMARK 1—Identification: Proposition I.1 in Appendix I.1 establishes identification
results for DREU, BEU, and BEB. To summarize, the identification result for DREU
is a period-by-period analog of the known result for static REU (Proposition 4 in Ahn
and Sarver (2013)); that is, ρ uniquely determines the underlying stochastic process of
ordinal payoff-relevant private information and the (ordinal) distribution of tie-breakers
for choices featuring ties. The result for BEU generalizes Theorem 2 of Ahn and Sarver
(2013), implying strictly sharper identification than DREU of the agent’s cardinal pri-
vate information. In particular, BEU allows for meaningful intertemporal comparisons of
utility in each state and for limited cross-state comparisons of utility within states that cor-
respond to the same period-0 private information. Finally, BEB, unlike BEU, allows for
unique identification of the discount factor process and entails even sharper identification
of cardinal private information.36

5. COMPARISON WITH DYNAMIC DISCRETE CHOICE

In this section, we compare Bayesian evolving utility to dynamic discrete choice (DDC)
models that are widely used in empirical work. The key distinction we highlight concerns

35See Frick, Iijima, and Strzalecki (2017, Axiom 9) for the former and page 26 for the latter.
36The discount factor process is unique in other special cases of BEU as well; for example if each alternative

z consists of wealth and a consumption bundle and the utility of wealth is separable and state-independent.
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the way in which random utility shocks are modeled: BEU is a special case of the most
general DDC model, but while BEU features only shocks to consumption, most DDC
models introduce shocks to actions. We show that under certain widely used assump-
tions, the latter form of shocks leads to violations of a key feature of Bayesian rationality,
namely, positive option value. We also illustrate how this can lead to biased parameter
estimates.

5.1. DDC Models

For simplicity, we restrict the domain to deterministic decision trees, where each period-
t outcome space Yt consists of pairs yt = (zt�At+1) of instantaneous consumptions zt and
continuation menus At+1. We refer to each yt as an action.

The following special case of DREU encompasses many models in the dynamic discrete
choice literature (for surveys, see Rust (1994), Aguirregabiria and Mira (2010)).37

DEFINITION 5: The DDC model is a restriction of DREU to deterministic decision trees
that additionally satisfies the Bellman equation

Ut(zt�At+1)= vt(zt)+ δE
[

max
yt+1∈At+1

Ut+1(yt+1)
∣∣Ft

]
+ ε

(zt �At+1)
t � (8)

with deterministic felicities vt : Z → R, Ft-adapted zero-mean shocks to actions εt : Ω →
RYt , and a discount factor δ ∈ (0�1).38

Observe that BEU corresponds precisely to the special case of DDC where the ε shocks
do not apply to general actions yt = (zt�At+1), but only to instantaneous consumptions
zt ; formally, in all periods t, any actions (zt�At+1) and (zt�Bt+1) that feature the same
consumption zt receive the same shock

ε
(zt �At+1)
t = ε

(zt �Bt+1)
t =: εzt

t � (9)

Indeed, given (9), setting ut(zt) := vt(zt) + εzt
t yields an Ft-adapted process of felicities

that satisfies (1); and conversely, given any Ft-adapted felicity process ut satisfying (1),
we can let vt(zt) := E[ut(zt)] and εzt

t := ut(zt)− vt(zt).
Thus, Theorem 2 provides an axiomatic foundation for this shocks to consumption ver-

sion of DDC, while Proposition I.1 is an identification result.39 Shocks to consumption

37For ease of comparison with BEU, we impose the following three restrictions, which are extraneous to
the distinction between shocks to consumption and shocks to actions that we highlight in this section. First,
we impose Rust’s (1994) assumption AS, viz. that ε shocks enter into (8) in an additively separable manner;
this is widely, but not universally, imposed in the DDC literature. Violations of AS can be accommodated
by DREU, but are incompatible with BEU in ways that are orthogonal to the focus of this section. Second,
whereas filtration Ft is exogenous, DDC models often allow the agent’s choices to affect transitions from
the current state to tomorrow’s state; this can be accommodated by a consumption-dependent extension of
DREU (see Section 7.2). Finally, ε can capture any state variables that are privately observed by the agent, but
in contrast with many DDC models (e.g., Hotz and Miller (1993)), all representations in this paper abstract
away from state variables that are jointly observed by the analyst and agent (save for menus); Duraj (2018)
extended DREU to incorporate the latter.

38We assume a deterministic δ ∈ (0�1) for simplicity. As under BEU, δ is not identified under general DDC,
but this poses no problems in the specific examples we consider. See also footnote 50.

39Our identification result is complementary to those in econometrics (Magnac and Thesmar (2002), Norets
and Tang (2013), Kasahara and Shimotsu (2009), Hu and Shum (2012)), because we allow for menu variation
but abstract from jointly observable state variables.
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alone are sufficient to capture phenomena such as permanent unobserved heterogeneity
and serially correlated unobserved state variables that are studied in the DDC literature;
indeed, Pakes (1986) can be viewed as an early special case of BEU. Under shocks to
consumption, all randomness in the agent’s evaluation of continuation menus At+1 is cap-
tured by the Ft-adapted continuation value E[maxyt+1∈At+1 Ut+1(yt+1)|Ft] that reflects the
agent’s private information about future shocks to consumption.

However, for estimation purposes, many central models in the DDC literature intro-
duce shocks to actions that violate (9) by applying additional shocks to continuation
menus that may be completely detached from their continuation value. The main pur-
pose of introducing such general shocks to actions is that, under suitable assumptions,
they can ensure nondegenerate likelihoods: This denotes the property that in any menu
At , all actions yt ∈At are chosen with positive probability at all histories, which is central
for statistical estimation. One of the most widely used models with this property is the
following i.i.d. version of DDC.40

DEFINITION 6: The i.i.d. DDC model is a restriction of DDC such that

Ut(zt�At+1)= vt(zt)+ δE
[

max
yt+1∈At+1

Ut+1(yt+1)
]
+ ε

(zt �At+1)
t �

where for all periods t and τ and all actions (zt�At+1) and (xτ�Bτ+1), ε
(zt �At+1)
t and ε

(xτ�Bτ+1)
τ

are independently and identically distributed random variables with a full support den-
sity.41

Under i.i.d. DDC, both felicities vt and continuation values E[maxyt+1∈At+1 Ut+1(yt+1)]
are deterministic, and all randomness in the agent’s evaluation of zt and At+1 is fully
captured by ε

(zt �At+1)
t . Since these shocks are i.i.d. across any pairs of actions, including

actions (zt�At+1) and (zt�Bt+1) that differ only in their continuation menus, they violate
(9). We do not provide axioms for i.i.d. DDC (or the more general model in Definition 5);
see Fudenberg and Strzalecki (2015) for a characterization of the special case in which
ε
(zt �At+1)
t are i.i.d. logit. However, the following section shows that i.i.d. DDC necessarily

leads to behavior that is incompatible with any BEU model, including the i.i.d. version of
BEU where ε shocks satisfy (9) and εzt

t and εxτ
τ are i.i.d. across all pairs of consumptions.

5.2. Option Value in BEU versus I.I.D. DDC

We now show that, in contrast with BEU, shocks to actions that violate (9) can lead to
behavior that displays a negative option value. To make this point most clearly, we focus
predominantly on i.i.d. DDC, before briefly turning to more general models. Given that
i.i.d. DDC is a workhorse model for structural estimation, understanding its properties is
also important in its own right.

The first manifestation of a negative option value is that the i.i.d. DDC agent sometimes
chooses to commit to strictly smaller menus. Suppose there are two periods, t = 0�1.
Let A0 := {(z0�A

small
1 )� (z0�A

big
1 )} where Asmall

1 = {z1} and A
big
1 = {z1� z

′
1}. From Axiom 6

40See, for example, Miller (1984), Rust (1989), Hendel and Nevo (2006), Kennan and Walker (2011), Sweet-
ing (2013), and Gowrisankaran and Rysman (2012).

41While DREU assumes finitely generated distributions, a full support density distribution is observationally
equivalent to one with a sufficiently large finite support given the finiteness of the deterministic decision tree
domain.
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it follows that under BEU, ρ0((z0�A
small
1 )�A0) = 0 absent ties. By contrast, under i.i.d.

DDC, this probability is strictly positive.

PROPOSITION 1: Under i.i.d. DDC, we have 0 < ρ0((z0�A
small
1 );A0) < 0�5. Moreover, if

the ε shocks are scaled by λ > 0, then ρ0((z0�A
small
1 );A0) is strictly increasing in λ whenever

v1(z
′
1) > v1(z1).

All proofs for this section appear in Supplemental Material Appendix G. The first
part follows from the fact that by design, i.i.d. DDC features nondegenerate likelihoods.

Specifically, the agent chooses (z0�A
small
1 ) from A0 whenever the realization of ε

(z0�A
small
1 )

0

exceeds ε
(z0�A

big
1 )

0 by more than the expected utility difference of the two menus, and since
the two shocks are i.i.d. with full support, this happens with strictly positive probabil-
ity. Nevertheless, since E[U0(z0�A

big
1 )] > E[U0(z0�A

small
1 )], this probability is less than 0�5.

The second part of Proposition 1 further highlights the negative effect of i.i.d. shocks to
actions on option value by showing that greater variance in ε can increase the probabil-
ity of choosing the small menu, even though this increases the continuation value of the
larger menu.42

More strikingly, there are decision problems for which behavior under i.i.d. DDC dis-
plays a negative option value with probability greater than 0.5. Specifically, consider
the following decision timing problem, illustrated in Figure 5. There are three periods
t = 0�1�2. The consumption in period 2 is either y or z, depending on the agent’s choice.
The agent can make her decision early, committing in period 1 to receiving y or z the fol-
lowing period; or she can make the decision late, maintaining full flexibility about choos-
ing y or z until the final period. The decision when to choose is made in period 0, and
the consumption in periods 0 and 1 is x irrespective of the agent’s decision; for simplicity,
assume that the utility of x is always zero. To fix ideas, assume that a student was admitted
to two PhD programs (y and z) and is considering whether to make her decision before
the visit days (t = 1) or after (t = 2); assume that she plans to attend the visit days re-
gardless. Formally, in period 0 the agent faces the menu A0 = {(x�Aearly

1 )� (x�Alate
1 )}, and

in period 1 she faces either menu A
early
1 = {(x� {y})� (x� {z})} or menu Alate

1 = {(x� {y� z})},
depending on her period-0 choice.

FIGURE 5.—Decision timing.

42We thank Jay Lu for suggesting that we investigate this comparative static.
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PROPOSITION 2: Under BEU, ρ0((x�A
early
1 );A0) = 0 absent ties. Under i.i.d. DDC,

ρ0((x�A
early
1 );A0) > 0�5; moreover, if ε is scaled by λ > 0, then ρ0((x�A

early
1 );A0) is strictly

increasing in λ whenever v2(y) �= v2(z).

In this decision problem, there is no penalty to deciding late, as the timing of the de-
cision does not affect the timing of the consumptions y or z. Thus, reflecting a positive
option value, the BEU agent chooses to make decisions late because waiting until the
final period enables her to better tailor her choice to her realized felicity. This prediction
does not rely on serially correlated private information; indeed, it remains true under i.i.d.
BEU.

By contrast, Proposition 2 shows that the i.i.d. DDC agent chooses to decide early
with probability greater than 0.5. To see why, consider the simplest case when v2(y) =
v2(z). In this case, the choice boils down to comparing δE[max{ε(x�{y})

1 � ε(x�{z})
1 }] and

δ2E[max{εy
2� ε

z
2}]. Since the ε shocks are i.i.d. and mean zero and δ ∈ (0�1), the former

dominates the latter, so that the agent chooses to decide early with probability greater
than 0�5. Intuitively, choosing early is attractive because it allows the agent to obtain a
positive payoff (the maximum of two i.i.d. mean-zero shocks) early, while deferring the
choice delays those payoffs. Again, the negative effect of the ε shocks on option value is
further reflected by the fact that the agent’s preference for deciding early is increasing in
their variance, even though this increases uncertainty about future payoffs.

A special case of the preference for early decisions under i.i.d. logit ε shocks was proved
by Fudenberg and Strzalecki (2015), by examining the closed-form expressions for contin-
uation values in this setting.43 Proposition 2 shows that this result does not rely on those
specific expressions. Rather, it is a consequence of the mechanical nature of shocks to
actions in any i.i.d. DDC model: As we discussed above, unlike shocks to consumption,
these shocks apply directly to continuation menus in a way that is completely detached
from their expected continuation value.44

Finally, we note that the findings in this section are not limited to i.i.d. DDC. Indeed,
the following two widely studied DDC models depart, respectively, from the assumption
that shocks are i.i.d. over time or i.i.d. across actions, but continue to display a prefer-
ence for early decisions.45 First, under DDC with permanent unobserved heterogeneity, ε
displays the following form of serial correlation: Each shock ε

(zt �At+1)
t = πzt

t + θ
(zt �At+1)
t is

decomposed into a “permanent” shock πzt
t that is measurable with respect to F0 and a

“transitory” shock θ
(zt �At+1)
t that, conditional on F0, is i.i.d. across all periods and actions.

Thus, utility in each period depends on the agent’s “type” (which she learns in period
0), but each type of agent is also subject to i.i.d. shocks to actions. In this model, behav-
ior ρ is a mixture of i.i.d. DDC choice rules. Thus, since Proposition 2 applies to each

43Fudenberg and Strzalecki (2015) also introduced a choice-aversion parameter that scales the desire for
flexibility and for early decisions. However, in this model, the parameter values that imply choice of late de-
cisions with probability greater than 0.5 also imply choice of smaller menus with probability greater than 0.5,
thus making violations of positive option value particularly stark in the latter dimension.

44Our critique of the mechanical nature of shocks to actions is complementary to Apesteguia and Ballester’s
(2018) critique of i.i.d. ε in static settings, but the logic of our results is quite different, both formally and
conceptually. In particular, in Propositions 1 and 2, these shocks lead to counterintuitive predictions at an
absolute level, rather than only at a comparative level as in their results. Moreover, our comparative results are
also quite different, as we vary the variance of ε, whereas they varied the curvature of the utility function.

45Both are central ingredients of what Aguirregabiria and Mira (2010) (pp. 42 ff.) termed Eckstein–Keane–
Wolpin models.
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of these choice rules, their mixture ρ continues to satisfy ρ0((x�A
early
1 );A0) > 0�5. Sec-

ond, some models feature transitory but correlated shocks to actions: Here ε
(zt �At+1)
t and

ε
(xτ�Bτ+1)
τ are i.i.d. whenever t �= τ, but might be correlated within any fixed period t = τ,

for example, to capture the substitution patterns between products or due to transitory
health shocks that affect the agent’s evaluation of all actions in a given period. As long as
within-period shocks are not perfectly correlated, we again have ρ0((x�A

early
1 )�A0) > 0�5;

intuitively, E[max{ε(x�{y})
1 � ε(x�{z})

1 }] = E[max{εy
2� ε

z
2}] remains strictly positive, so the agent

again prefers to receive this shock early.46

5.3. Parameter Estimates in a Stopping Problem

Unlike the previous decision timing problem, many economic decisions, such as stop-
ping problems, feature a tradeoff between an immediate payoff today and the option
value of delay. We now illustrate how, in such settings, DDC models with additional me-
chanical shocks to continuation menus lead to systematically different parameter esti-
mates relative to the pure shocks to consumption model of BEU. In particular, we high-
light the qualitative biases that arise if the analyst uses the former type of DDC model but
the true model is BEU.47

Consider again Example 3 from Section 1.3. In period 0, the agent chooses between
two actions, consuming a today (and nothing tomorrow) or delaying consumption until
period 1 where she will face menu A1 := {a�b}. Slightly abusing notation, we denote these
two period-0 actions by a and A1 and let A0 := {a�A1}.48 Let D be the set of all possible
choice sequences (consume a in period 0; delay and consume a in period 1; delay and
consume b in period 1). In the following, we think of the agent’s stochastic choice rule ρ as
generating strings of data d = (d1� � � � dn) ∈ Dn, where each di results from an independent
draw according to ρ.

For concreteness, we compare parameter estimates under the following versions of
i.i.d. DDC and BEU. Under i.i.d. DDC, let v0(a) = v1(a) = wa and v1(b) = wb with
discount factor δ. Thus, UDDC

1 (x) = wx + εx
1 for x = a�b, UDDC

0 (a) = wa + εa
0 , and

UDDC
0 (A1)= δE0[max{U1(a)�U1(b)}]+ε

A1
0 , where all ε shocks are i.i.d. according to some

full support distribution F with mean zero. For BEU, we consider a minimal departure
from i.i.d. DDC that features the same i.i.d. shocks to instantaneous consumptions a and
b: UBEU

1 (x) = UDDC
1 (x) for x = a�b and UBEU

0 (a) = UDDC
0 (a). The only difference is that

UBEU
0 (A1)= δE0[max{UBEU

1 (a)�UBEU
1 (b)}]; that is, there is no ε shock to the period-0 ac-

tion “delay,” reflecting that this involves no instantaneous consumption.49 Let ρDDC and
ρBEU denote the induced stochastic choice rules in this stopping problem.

46 Predictions under even more general models are ambiguous. For example, suppose ε
(zt �At+1)
t = (1 −

κ)πzt
t + κθ

(zt �At+1)
t is a κ-weighted sum of Ft -adapted shocks to consumption πzt

t and i.i.d. shocks to actions
θ
(zt �At+1)
t , where πzt

t need not be F0-measurable. This yields a hybrid of BEU and i.i.d. DDC, which may display
a preference for early or late decisions depending on the weight κ and the amount of serial correlation in πt .

47The quantitative importance of such biases is an empirical question, which is beyond the scope of this
paper.

48To be more precise, period-0 actions a and A1 should be written as (a� {z∅}) and (z∅�A1), respectively,
where z∅ denotes a dummy variable that corresponds to “no consumption.”

49There is another BEU specification that is observationally equivalent to i.i.d. DDC in this particular stop-
ping problem; specifically, this version applies a shock ε

z∅
0 to the period-0 dummy consumption z∅ (see footnote

48) despite the fact that z∅ is only a notational stand-in for the decision to delay consumption. However, since
any specification of BEU is incompatible with i.i.d. DDC in some decision trees (see Section 5.2), this model
again yields different parameter estimates from i.i.d. DDC in settings other than the present stopping problem.
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The analyst seeks to estimate the discount factor δ and average utility difference
w := wa −wb between the two consumptions given any distribution F of i.i.d. ε shocks.50

To simplify notation, we normalize wb = 0. Let Θ ⊆ R2 denote the compact space of pa-
rameters (w�δ) that is considered by the analyst. We assume that Θ is large enough so
that the data ρ are compatible with both models, that is, for each M ∈ {DDC�BEU}, there
exists (wM� δM) ∈ Θ such that ρM = ρ holds under parameters (wM� δM). Let (ŵM

n � δ̂
M
n ) ∈ Θ

denote the corresponding maximum likelihood estimates under observation size n.
The following proposition shows that i.i.d. DDC tends to “exaggerate” the estimate of

the discount factor relative to BEU. The result assumes that distribution F is symmetric
with a unimodal density (e.g., probit); Appendix G.3 shows how it generalizes to a broader
class of distributions.

PROPOSITION 3:Suppose that ρ is compatible with both models. If F has a symmetric and
unimodal density, then almost surely

(i) limn ŵ
DDC
n = limn ŵ

BEU
n ,

(ii) limn δ̂
DDC
n < limn δ̂

BEU
n if ρ0(a;A0) > 0�5 and limn δ̂

DDC
n > limn δ̂

BEU
n if ρ0(a;A0) <

0�5.

Both models yield the same estimate of w because they predict the same period-1
choice probabilities. To understand the result for δ, suppose first that ρ0(a�A0) > 0�5,
that is, the agent is more likely to choose immediate consumption than delay. Intuitively,
this occurs when the agent is impatient, and in this case DDC underestimates δ relative
to BEU. Conversely, when the agent is patient (i.e., ρ0(a�A0) < 0�5), DDC overestimates
δ relative to BEU. Thus, DDC always exaggerates the estimate of δ. The reason is pre-
cisely that DDC includes an additional mechanical shock ε

A1
0 to the action of delaying.

This creates more choice variance around modal choices in period 0; to compensate, the
model must exaggerate the value difference between choices in period 0, thereby produc-
ing more extreme estimates of the discount factor.

An immediate corollary of Proposition 3 is that if the true data are in fact generated
by BEU with parameters (w�δ) but the analyst uses i.i.d. DDC, then the resulting esti-
mates almost surely satisfy (i) limn ŵ

DDC
n =w and (ii) limn δ̂

DDC
n > δ if ρ0(a;A0) > 0�5 and

limn δ̂
DDC
n < δ if ρ0(a;A0) < 0�5. Finally, we note that the same logic as above can be ap-

plied to characterize the difference in estimates in other classic stopping problems, such
as task completion or patent renewal.

5.4. Discussion

Our findings highlight the following modeling tradeoff. On the one hand, general
shocks to actions are statistically convenient, ensuring nondegenerate likelihoods under
formulations such as i.i.d. DDC, whereas BEU agents necessarily choose some options
with probability 0. On the other hand, Section 5.2 shows that this convenience comes
at a cost, namely, significant violations of positive option value, both at an absolute and
comparative level. Such violations cast doubt on the typical interpretation of ε as “unob-

50Unlike in general, here δ is identified for both DDC and BEU, as the average felicity of a is assumed con-
stant across periods; this approach is also used in other stopping problems, cf. Martinez, Meier, and Sprenger
(2017).
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served utility shocks” and seem particularly problematic in applications where the mod-
eled agents are profit-maximizing firms.51

While this may seem to imply having to choose between statistical nondegeneracy and
Bayesian rationality, we note that in many specific decision problems, for example, the
stopping problem in Section 5.3, versions of BEU feature nondegenerate likelihoods and
can be used for parameter inference. This is also true in more concrete applications, such
as in Pakes’s (1986) study of patent renewal where a BEU model is estimated. Thus, in
such settings, the analyst can refrain from imposing shocks to actions and can estimate a
BEU model that respects Bayesian rationality.52

In settings where BEU is statistically degenerate, any statistically nondegenerate choice
rule will sometimes violate Bayesian rationality. In this case, one possible way forward is
to estimate a suitable hybrid of BEU and i.i.d. DDC that allows for both shocks to actions
and to consumption; see footnote 46. Estimating the weight κ on shocks to actions in
such a model would help pick up the extent of violations of Bayesian rationality without
imposing a priori that they arise with probability greater than 0.5.

6. ATEMPORAL CHOICE DOMAIN AND CHOICE PERSISTENCE

In this section, we restrict to the simple subdomain of atemporal consumption problems,
where the agent chooses only (lotteries over) today’s consumption in each period and her
current choices do not affect tomorrow’s menu. As illustrated in Example 1, stochastic
choice data on this domain are often studied in empirical work, notably the large liter-
ature on brand choice dynamics in marketing and economics.53 An important empirical
regularity is that choice data tend to display some “persistence.” Sections 6.1 and 6.2 ax-
iomatically characterize two notions of choice persistence, showing that they correspond
precisely to two important special cases of BEU: taste persistence and learning.54

Focusing on two periods for simplicity, our atemporal domain is formalized as fol-
lows. Given any consumption lottery �0 ∈ Δ(Z) and menu of consumption lotteries
L1 ∈ A1 = K(Δ(Z)),55 let (�0�L1) denote the lottery p0 that in period 0 yields con-
sumption according to �0 and in period 1 yields menu L1 for sure; that is, pZ

0 = �0 and
pA

0 = δL1 . Likewise, for any menu L0 ∈ K(Δ(Z)) of consumption lotteries and L1 ∈ A1,

51As mentioned before, an alternative interpretation of ε in the DDC literature is that they capture “mis-
takes.” However, Proposition 2 shows that these mistakes occur with probability greater than 0.5. Moreover, as
mentioned in Example 3, this interpretation is at odds with the fact that (as in Kreps (1979), and under BEU),
the DDC agent fully internalizes tomorrow’s utility, in the sense that the ε shocks enter into the expected
continuation value in (8). Ke (2018) provided a model of an agent who treats shocks as mistakes and does not
internalize ε in her continuation value.

52The i.i.d. BEU model with extreme value type-1 distributed shocks is particularly tractable because the
usual log-sum formula carries through. This extends to zero probabilities, where we sum only over options
xt = (zt�At+1) that are undominated by options yt = (zt�A

′
t+1) according to the stochastic preference relation:

xt �∗
t yt ⇐⇒ ρt(xt; {xt� yt}) ≥ ρt(yt; {xt� yt}). See Echenique and Saito (2015) and Ahumada and Ülkü (2018)

for characterizations of static Luce/logit models with such elimination procedures.
53For example, Jeuland (1979), Keane (1997), Dubé, Hitsch, and Rossi (2010), Seetharaman (2004) and

references therein.
54Our characterization of the implications of choice persistence for the general BEU model is complemen-

tary to the empirical brand choice literature, which tests to what extent particular parametric or semiparamet-
ric forms of serially correlated felicities can capture choice persistence in specific data sets. One goal of this
literature is to disentangle (what we term) history dependence (e.g., persistent taste heterogeneity) and con-
sumption dependence (e.g., habit formation) as sources of choice persistence. While the model in this section
rules out consumption dependence, Section 7.2 briefly discusses how to incorporate it.

55Throughout this section, we denote menus by Lt to emphasize that they consist of consumption lotteries.
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define (L0�L1) := {(�0�L1) : �0 ∈ L0} ∈ A0 to be the menu consisting of all lotteries that
yield period-0 consumption according to some �0 ∈ L0 and in period 1 yield menu L1 for
sure. Let L∗

0 ⊆K(Δ(Z)) denote the set of consumption menus without ties, which consists
of all L0 such that (L0�L1) ∈A∗

0 for all L1 ∈A1.
We assume throughout that ρ admits a BEU representation. On our atemporal domain,

this has especially simple testable implications: ρ must satisfy the restrictions to this do-
main of the DREU axioms (Axioms 1–4) and of Separability (Axiom 5).56 Given this, we
define the following restriction of ρ:

DEFINITION 7: Suppose T = 1 and ρ admits a BEU representation. The restric-
tion ρZ of ρ to atemporal consumption problems without ties is defined as follows: For
any L0 ∈ L∗

0 and �0 ∈ L0, ρZ
0 (�0;L0) := ρ0((�0�L1); (L0�L1)) for an arbitrary choice of

L1. For any �0 ∈ L0 ∈ L∗
0 and �1 ∈ L1 ∈ A∗

1 with ρ0(�0;L0) > 0, ρZ
1 (�1;L1|L0� �0) :=

ρ1(�1;L1|(L0�L1)� (�0�L1)).

Note that ρZ is well-defined given the assumption that ρ admits a BEU representation.

6.1. Consumption Persistence and Taste Persistence

One natural notion of choice persistence (e.g., Keane (1997)) is that the agent is more
likely to choose a particular consumption option today if she chose this option yesterday
compared with the scenario in which she chose some other option yesterday. To formalize
this notion in our framework, we additionally impose the restriction that today’s menu
does not contain any new consumption options relative to yesterday’s menu.

AXIOM 9—Consumption Persistence: For any L0 ∈L∗
0 and L1 ∈A∗

1 with L1 ⊆ L0,

ρZ
0 (�;L0)�ρ

Z
0

(
�′;L0

)
> 0 =⇒ ρZ

1 (�;L1|L0� �)≥ ρZ
1

(
�;L1|L0� �

′)�
Proposition 4 shows that consumption persistence is equivalent to the following notion

of taste persistence: If yesterday’s felicity was (ordinally equivalent to) u, today’s felicity
is more likely to remain in any convex neighborhood D of u compared with the scenario
where yesterday’s felicity was some other u′. To state this formally, given any set D ⊆ RZ

of felicities, let [D] := {w ∈ RZ :w ≈ v for some v ∈ D}.
PROPOSITION 4: Suppose ρ admits a BEU representation (Ω�F ∗�μ� (Ft �Ut�Wt�ut))

and Condition 1 holds. Then ρZ satisfies Axiom 9 if and only if for any u�u′ ∈ RZ with
μ(u0 ≈ u), μ(u0 ≈ u′) > 0, and any convex D ⊆ RZ with u ∈ D, we have μ(u1 ∈ [D] | u0 ≈
u)≥ μ(u1 ∈ [D] | u0 ≈ u′).

All proofs for Section 6 appear in Supplemental Material Appendix H. In addition to
absolute consumption persistence, we can also compare two choice rules ρ and ρ̂ in terms
of their consumption persistence:

DEFINITION 8: ρZ features more consumption persistence than ρ̂Z if ρZ
0 = ρ̂Z

0 and for
any L0 ∈L∗

0 and L1 ∈A∗
1 with L1 ⊆L0,

ρZ
0 (�;L0) > 0 =⇒ ρZ

1 (�;L1|L0� �) ≥ ρ̂Z
1 (�;L1|L0� �)�

56Note that Axioms 6 and 7 have no bite on the atemporal domain.
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Proposition 5 shows that more consumption persistence corresponds to more taste per-
sistence, in the sense that today’s felicity is always more likely to remain in a convex neigh-
borhood of yesterday’s felicity. For this to be the case, we require that there exists a joint
uniformly ranked pair of consumption lotteries �� � ∈ Δ(Z) that satisfy Condition 1 for
both ρ and ρ̂.

PROPOSITION 5: Suppose that ρ and ρ̂ admit BEU representations (Ω�F ∗�μ� (Ft �Ut�

Wt�ut)), (Ω̂� F̂ ∗� μ̂� (F̂t � Ût� Ŵt� ût)) and there exists a joint uniformly ranked pair. Then ρZ

features more consumption persistence than ρ̂Z if and only if for any u ∈ RZ and convex
D ⊆ RZ with u ∈ D and μ(u0 ≈ u) > 0, we have μ(u0 ≈ u) = μ̂(û0 ≈ u) and μ(u1 ∈ [D] |
u0 ≈ u)≥ μ̂(û1 ∈ [D] | û0 ≈ u).

6.1.1. Markov Evolving Utility

We now apply Propositions 4 and 5 to the special case of BEU in which felicities ut

follow a finite stationary Markov chain. We show that, in this setting, our general notion of
consumption persistence entails sharp restrictions on the agent’s felicity process: Axiom 9
holds if and only if the Markov chain is a sticky i.i.d. process, where a single parameter
α captures the extent of the agent’s taste persistence. As a result, behavior in this case
exhibits a form of consumption stickiness that corresponds to Jeuland’s (1979) classical
notion of “brand loyalty.”

Let U = {u1� � � � � um} denote a finite set of possible felicities, where ui �≈ uj for any i �= j
and there exist �� � ∈ Δ(Z) such that ui(�) > ui(�) for all i. Let M be an irreducible tran-
sition matrix, where Mij denotes the probability that period t + 1 felicity is uj conditional
on period t felicity being ui. Assume that the initial distribution ν ∈ Δ(U) has full sup-
port and equals the stationary distribution. Any such Markov chain (U�M�ν) generates a
(stationary) Markov evolving utility representation.57 We call (U�M�ν) a sticky i.i.d. process
if there exists α ∈ [0�1) such that Mii = α + (1 − α)ν(ui) and Mij = (1 − α)ν(uj) for all
i �= j.58

The following notion of consumption persistence was introduced by Jeuland (1979):

AXIOM 10—Consumption Stickiness: For any L = {�1� � � � � �n} ∈ L∗
0, there exists β ∈

[0�1) such that ρZ
1 (�

i;L | L��i) = β + (1 − β)ρZ
0 (�

i;L) and ρZ
1 (�

j;L | L��i) = (1 −
β)ρZ

0 (�
j;L) for any i �= j.

The following equivalence result imposes a regularity condition, non-collinearity, on
felicities in U , whereby for any i, j, k, l with i /∈ {j�k� l}, we have ui /∈ [co{uj�uk�ul}];
this is generically satisfied if the outcome space is rich enough relative to the number of
felicities.59

57Of course, in the two-period setting, any BEU representation is Markov (though not necessarily stationary
and full support). In Supplemental Material Appendix I.2, we characterize stationary Markov evolving utility
for arbitrary horizon T . Moreover, as evident from the proof, Corollary 1 remains valid for arbitrary T .

58In probability theory, the Markov chain defined by Q := αI + (1 − α)P , where I is the identity matrix and
P a fixed Markov chain, is sometimes called the lazy version of P (e.g., Levin and Peres (2017)). In our setting,
P is i.i.d. with distribution ν.

59For an example that violates non-collinearity, consider a Markov evolving utility representation with fe-
licity process ut = w + α(xt)v, where w �≈ v ∈ RZ are fixed felicities, α : Z → R is strictly increasing, and xt

follows a random walk over Z: it remains at its current value with probability p, increases by 1 with probability
1−p

2 , and decreases by 1 with probability 1−p

2 . The induced ρZ satisfies Axiom 9 iff p ≥ 1
3 , despite the fact that

felicities do not follow a sticky i.i.d. process.
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COROLLARY 1:Suppose that ρ has a Markov evolving utility representation (U�M�ν) satisfy-
ing non-collinearity. Then the following are equivalent:

(i) ρZ satisfies Axiom 9;
(ii) (U�M�ν) is a sticky i.i.d. process;
(iii) ρZ satisfies Axiom 10.

In addition, if ρ and ρ̂ admit sticky i.i.d. representations as in Corollary 1, more con-
sumption persistence corresponds to a higher taste persistence parameter α and the same
stationary felicity distribution ν:

COROLLARY 2: Suppose that ρ and ρ̂ have sticky i.i.d. process representations induced by
(U� ν�α) and (Û� ν̂� α̂), respectively. Then ρZ features more consumption persistence than
ρ̂Z if and only if α ≥ α̂ and there exists a bijection φ : U → Û such that u ≈ φ(u) and
ν(u) = ν̂(φ(u)) for each u ∈ U .

It is worth noting that sticky i.i.d. processes capture a rather strong form of taste persis-
tence.60 Thus, one interpretation of Corollary 1 is as showing that Axiom 9 (or, equiv-
alently, Jeuland’s (1979) notion of brand loyalty, as captured by Axiom 10) reflects a
demanding notion of consumption persistence. This suggests that characterizing weaker
forms of consumption persistence may be a valuable direction for future research.

6.2. Consumption Inertia and Learning

Another setting where one should expect to observe some form of choice persistence
is Bayesian evolving beliefs. Indeed, in this case, the agent’s choices in both periods 0
and 1 reflect her expectation of the same fixed but unknown tastes. However, consump-
tion persistence in the sense of Axiom 9 is neither implied by nor implies BEB. Instead,
Proposition 6 shows that BEB entails the following form of consumption inertia: If the
agent chose � yesterday from a menu that also contained �′ and today faces the binary
choice between � and �′, then she continues to choose � with positive probability. More-
over, on the domain of atemporal consumption problems, this testable implication fully
captures the additional behavioral content of BEB relative to BEU, thus providing an
alternative characterization to Theorem 3 on this domain.

AXIOM 11—Consumption Inertia: For any L0 ∈L∗
0 and �� �′ ∈ L0 with {�� �′} ∈A∗

1,

ρZ
0 (�;L0) > 0 =⇒ ρZ

1

(
�;{�� �′}|L0� �

)
> 0�

PROPOSITION 6: Suppose that ρ admits a BEU representation and Condition 1 holds.
Then ρZ satisfies Axiom 11 if and only if ρZ admits a BEB representation.61

60For instance, suppose |Z| = 3 and consider a Markov evolving utility representation where U = {u1�u2�u3}
for three evenly spaced felicities in Δ(Z), ν = ( 1

3 �
1
3 �

1
3 ), and M is given by M1 = ( 1

2 �
1
4 �

1
4 ), M2 = ( 1

3 �
1
3 �

1
3 ),

M3 = ( 1
4 �

1
4 �

1
2 ). This is not a sticky i.i.d. process, despite satisfying a form of taste persistence where μ(u1 ≈

ui] | u0 ≈ ui) ≥ μ(u1 ≈ ui] | u0 ≈ uj) for all i, j. While natural, this notion of taste persistence is weaker than
required by Proposition 4; for example, μ(u1 ∈ [D] | u0 ≈ u2) < μ(u1 ∈ [D] | u0 ≈ u3) for the convex set D
given by the line through u2 and u3. We thank an anonymous referee for this example.

61That is, there exist (Ω�μ�F∗� (Ft )) and an F∗-measurable felicity ũ such that ρZ
0 (�0;L0) = μ(�0 =

argmaxL0
u0) and ρZ

1 (�1;L1 | L0� �0) = μ(�1 = argmaxL1
u1 | �0 = argmaxL0

u0), where ut = E[ũ | Ft ] for
t = 0�1.
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Similarly to Axiom 8, the intuition is based on the martingale property of beliefs. This
implies that an agent who expects � to be better than �′ in period 0 must with positive
probability continue to expect this in period 1. The restriction to binary period-1 menus
in Axiom 11 is crucial: For instance, an agent who in period 0 is unsure whether her
ranking is �′ � � � �′′ or �′′ � � � �′ might choose � over both of the other two options,
but, upon learning her preferences in period 1, would never choose � from {�� �′� �′′}.62

7. DISCUSSION

7.1. Related Literature

An extensive literature studies axiomatic characterizations of random utility models
in the static setting (Luce (1959), Block and Marschak (1960), Falmagne (1978), Bar-
berá and Pattanaik (1986), McFadden and Richter (1990)). Our approach incorporates
as its static building block the elegant axiomatization of Gul and Pesendorfer (2006)
and Ahn and Sarver (2013). As a preliminary step, we extend their result to an infinite
outcome space (our Theorem 0), which is needed since the space of continuation prob-
lems in the dynamic model is infinite. This contribution is complementary to Ma (2018)
who also provided an infinite outcome generalization of Gul and Pesendorfer (2006).63

 

Lu (2016) studied a model with an objective state space where choice is between
Anscombe–Aumann acts; by focusing on state-independent utilities, he traced all ran-
domness of choice to random arrival of signals.64 While this is similar in spirit to our BEB
representation, our state space is subjective and utility can be state-dependent. A recent
paper by Lu and Saito (2018a) studied period-0 random choice between consumption
lottery streams and attributed the randomness in choices to a stochastic discount factor.65

The axiomatic literature on dynamic random utility, and more generally, dynamic
stochastic choice, is relatively sparse. Our choice domain is as in Kreps and Porteus
(1978); however, while they studied deterministic choice in each period, we focus on ran-
dom choice in each period. To the best of our knowledge, Fudenberg and Strzalecki (2015)
is the first axiomatic study of stochastic choice in general decision trees, but they studied
only the special case of i.i.d. DDC with logit shocks to actions and did not allow for lot-
teries.66 As we discuss in Section 5, the latter model is a special case of DREU, but is
incompatible with BEU because it features very different attitudes toward option value.
In addition, because of the i.i.d. assumption, their representation does not give rise to

62In an earlier working paper version, we analyzed a stronger form of consumption inertia, whereby
ρZ

0 (�;L0) > 0 implies ρZ
1 (�;L1|L0� �) > 0 for all L1 ⊆ L0. We showed that this is equivalent to the require-

ment that μ(u1 ≈ u | u0 ≈ u) > 0 for all u with μ(u0 ≈ u) > 0. See Section 5.2 of Frick, Iijima, and Strzalecki
(2017).

63In contrast to our result, he relied on a stronger regularity condition that rules out the possibility of ties
(whereas ties necessarily arise when evaluating continuation problems under BEU) and focused on the case
with continuous vNM utilities.

64Lu (forthcoming) studied an analogous model with state-dependent utilities in an objective state-space
setting.

65Other recent contributions by Apesteguia, Ballester, and Lu (2017) and Manzini and Mariotti (2018)
respectively studied random utility models with linearly ordered choice options and binary support.

66On more limited domains, Gul, Natenzon, and Pesendorfer (2014) studied an agent who receives an out-
come only once at the end of a decision tree and characterized a generalization of the Luce model. Pennesi
(2017), Cerigioni (2017), and Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2017) characterized
versions of the Luce model where the analyst observes a sequence of stochastic choices over consumptions.
There is also non-axiomatic work studying special cases of our representation where the agent makes a one-
time consumption choice at a stopping time, for example, Fudenberg, Strack, and Strzalecki (2018).
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history-dependent choice behavior, which is at the heart of our paper. A recent paper
by Ke (2018) characterized a dynamic version of the Luce model, where randomness of
choices is caused by execution mistakes and there is no serially correlated private informa-
tion. In contrast to BEU, his model again does not feature positive option value, as larger
menus might induce more mistakes. Duraj (2018) built on our paper and characterized
general dynamic random (expected) utility in an objective state-space setting.

The literature on menu choice (Kreps (1979), Dekel, Lipman, and Rustichini (2001),
Dekel, Lipman, Rustichini, and Sarver (2007), Dillenberger, Lleras, Sadowski, and
Takeoka (2014)) considers an agent’s deterministic preference over menus (or decision
trees) at a hypothetical ex ante stage where the agent does not receive any information
but anticipates receiving information later. An important difference of our approach is
that we study the agent’s behavior in actual decision trees, allowing information to arrive
in each period and therefore focusing on stochastic choice. We discuss the comparison in
more detail in Section 2.2.3. Related papers are Krishna and Sadowski (2014, 2016) who
studied ex ante preferences over infinite-horizon decision trees and characterized station-
ary versions of our BEU representation. Another related paper by Ahn and Sarver (2013)
studied both ex ante deterministic preference over menus and ex post stochastic choice
from menus; they showed how to connect the analysis of Gul and Pesendorfer (2006) and
of Dekel, Lipman, and Rustichini (2001) to obtain better identification properties. An
adaptation of their sophistication axiom plays a key role in our characterization of BEU.

Finally, an extensive empirical literature uses specifications of discrete choice models
in dynamic contexts.67 As we discuss in Section 5, our DREU representation nests the
most general DDC model, which in turn nests our Bayesian rational BEU model. How-
ever, while BEU features only shocks to consumption, most DDC models introduce more
general shocks to actions (in particular, i.i.d. DDC, as well as models with permanent
unobservable heterogeneity or with transitory but correlated shocks). We show that the
latter form of shocks can lead to violations of Bayesian rationality due to the fact that
they mechanically apply to continuation menus in a way that is detached from their con-
tinuation value. As we discuss, this observation is complementary to Wilcox (2011) and
Apesteguia and Ballester (2018), who highlighted modeling issues in static discrete choice
models. In particular, they showed that when i.i.d. utility shocks are added to expected
utilities, then the probability of choosing a risky option over a safe option can decrease
with respect to a risk aversion parameter in the vNM utility.

7.2. Conclusion

This paper provides the first axiomatic analysis of the general model of dynamic random
utility and several of its key special cases. Our central axioms restrict how choices across
periods are related, capturing the key new testable implications of the dynamic relative
to the static model and facilitating comparisons between different versions of dynamic
random utility.

In a “backward-looking” direction, we show that while observed choices under dynamic
random utility are typically history-dependent, even the most general version of the model
entails two history independence conditions: Contraction history independence rules out
certain dynamically “irrational” behavior such as the “mere exposure effect,” while linear
history independence provides a conceptual justification for a lottery-based procedure
to extrapolate behavior across different decision trees. In addition, special cases such as

67For surveys, see Rust (1994) and Aguirregabiria and Mira (2010).
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learning or persistent taste shocks impose further testable restrictions on the nature of
history dependence that correspond to well-documented forms of choice persistence. In
a “forward-looking” direction, we show that Bayesian rationality restricts utility shocks to
apply to instantaneous consumptions (as under BEU), creating a tension with desirable
statistical properties such as non-degenerate likelihoods that require additional mechan-
ical shocks to continuation menus (as under general DDC).

Our analysis addresses some technical challenges that may be relevant to other work on
stochastic choice: In particular, we propose a solution to the limited observability problem
that arises from the fact that, in dynamic settings, past choices typically restrict future op-
portunity sets; and we extend Gul and Pesendorfer’s (2006) and Ahn and Sarver’s (2013)
characterization of static random expected utility to infinite outcome spaces.

Finally, throughout the paper, we have restricted attention to stochastic processes (Ut)
of utilities that evolve exogenously. Here choice behavior appears history-dependent to
the analyst due to the fact that past choices partly reveal the agent’s private information.
But from the point of view of the agent, past choices have no effect on today’s behavior.
However, in many settings, it is natural to allow (Ut) to evolve endogenously, as a func-
tion of the agent’s past consumption: Two prominent examples are habit formation (e.g.,
Becker and Murphy (1988)), where consuming a certain good in the past may make the
agent like it more in the present; and active learning/experimentation, where the agent’s
consumption provides information to her about some payoff-relevant state of the world,
as modeled for instance by the multi-armed bandit literature (e.g., Robbins (1952), Gittins
and Jones (1972)).

This endogeneity gives rise to a different form of history dependence, which we term
consumption dependence, where past consumption directly shapes the agent’s choices to-
day. The distinction between history dependence and consumption dependence goes back
to at least Heckman (1981), who highlighted the importance of distinguishing these two
phenomena, so as to avoid spuriously attributing a causal role to past consumption when
observed behavior could instead be explained through serially correlated exogenous util-
ities (e.g., persistent taste heterogeneity).68

Our main insights extend to settings with consumption dependence (see Section 7 of
our previous working paper, Frick, Iijima, and Strzalecki (2017)). The key idea is to study
an enriched primitive, where a history ht−1 = (A0�p0� z0� � � � �At−1�pt−1� zt−1) now sum-
marizes not only that in each period k≤ t − 1 the agent faced menu Ak and chose pk, but
also that the agent’s realized consumption was zk ∈ supppZ

k . Natural adaptations of our
axioms to this setting then characterize generalizations of DREU, BEU, and BEB that
allow the evolution of the agent’s utility process Ut to be influenced by her past consump-
tion.

APPENDIX: MAIN PROOFS

The appendix is structured as follows. Section A defines equivalent versions of DREU,
BEU, and BEB. Sections B–D prove (T -period generalizations of) Theorems 1–3. Sec-
tion E collects together several lemmas that are used throughout Sections B–D.

The Supplemental Material contains the following additional material. Section F
proves Theorem 0. Sections G and H collect together proofs for Sections 5 and 6. Sec-
tion I provides additional results on identification and axioms for Markov evolving utility.
Section J provides all omitted proofs for Sections A, E, and I.

68This distinction is also at the heart of the recent argument about the interpretation of the classic cognitive
dissonance experiments in psychology (Chen (2008), Chen and Risen (2010)).
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APPENDIX A: EQUIVALENT REPRESENTATIONS

Instead of working with probabilities over the grand state space Ω, our proofs of The-
orems B.1–D.1 will employ equivalent versions of our representations, called S-based
representations, that look at one-step-ahead conditionals.69 Section A.1 defines S-based
representations. Section A.2 establishes the equivalence between DREU, BEU, and BEB
representations and their respective S-based analogs.

A.1. S-Based Representations

For any X ∈ {X0� � � � �XT }, A ∈ K(Δ(X)), p ∈ Δ(X), let N(A�p) := {U ∈ RX : p ∈
M(A�U)} and N+(A�p) := {U ∈ RX : {p} = M(A�U)}.

DEFINITION 9:A random expected utility (REU) form on X ∈ {X0� � � � �XT } is a tuple
(S�μ� {Us�τs}s∈S) where

(i) S is a finite state space and μ is a probability measure on S,
(ii) for each s ∈ S, Us ∈RX is a nonconstant utility over X ,

(iii) for each s ∈ S, the tie-breaking rule τs is a finitely-additive probability measure on
the Borel sigma-algebra on RX and is proper, that is, τs(N+(A�p))= τs(N(A�p)) for all
A, p.

Given any REU form (S�μ� {Us�τs}s∈S) on Xi and any s ∈ S, Ai ∈ Ai, and pi ∈ Δ(Xi),
define

τs(pi�Ai) := τs
({
w ∈RXi : pi ∈M

(
M(Ai�Us)�w

)})
�

DEFINITION 10:An S-based DREU representation of ρ consists of tuples (S0�μ0� {Us0� τs0}s0∈S0),
(St� {μst−1

t }st−1∈St−1� {Ust � τst }st∈St )1≤t≤T such that for all t = 0� � � � �T , we have:
DREU1: For all st−1 ∈ St−1, (St�μ

st−1
t � {Ust � τst }st∈St ) is an REU form on Xt such that70

(a) Ust �≈Us′t for any distinct pair st� s′
t ∈ supp(μst−1

t );

(b) supp(μst−1
t )∩ supp(μ

s′t−1
t )= ∅ for any distinct pair st−1, s′

t−1 at t ≥ 1;
(c)

⋃
st−1∈St−1

suppμst−1
t = St .

DREU2: For all pt , At , and ht−1 = (A0�p0�A1�p1� � � � �At−1�pt−1) ∈Ht−1(At),71

ρt

(
pt�At |ht−1

) =

∑
(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

∑
(s0�����st−1)∈S0×···×St−1

t−1∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

�

An S-based BEU representation of ρ is an S-based DREU representation such that for
all t = 0� � � � � T , we additionally have:

69These are dynamic analogs of the static GP representations in Ahn and Sarver (2013).
70For t = 0, we abuse notation by letting μ

st−1
t denote μ0 for all st−1.

71For t = 0, we again abuse notation by letting ρt(·|ht−1) denote ρ0(·) for all ht−1.
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BEU: For all st ∈ St , there exists ust ∈ RZ such that for all zt ∈Z, At+1 ∈At+1, we have

Ust (zt�At+1)= ust (zt)+ Vst (At+1)�

where Vst (At+1) := ∑
st+1

μst
t+1(st+1)maxpt+1∈At+1 Ust+1(pt+1) for t ≤ T − 1 and VsT ≡ 0.

An S-based BEB representation is an S-based BEU representation such that addition-
ally:

BEB: For all t = 0� � � � �T − 1 and st ∈ St , there exists δst > 0 such that

ust = 1
δst

∑
st+1

μst
t+1(st+1)ust+1 �

A.2. Equivalence Result

PROPOSITION A.1:Let ρ be a dynamic stochastic choice rule.
(i) ρ admits a DREU representation if and only if ρ admits an S-based DREU represen-

tation.
(ii) ρ admits a BEU representation if and only if ρ admits an S-based BEU representation.
(iii) ρ admits a BEB representation if and only if ρ admits an S-based BEB representation.

PROOF: See Supplemental Material Appendix J.1. Q.E.D.

APPENDIX B: PROOF OF THEOREM 1

Instead of establishing the two-period characterization in Theorem 1, this section estab-
lishes the characterization of DREU under an arbitrary horizon T . Section B.1 presents
T -period generalizations of the axioms from Section 3. Section B.2 introduces important
terminology regarding the relationship between states and histories that is used through-
out the proofs of Theorems 1–3. Sections B.3 and B.4 then establish sufficiency and ne-
cessity directions of the DREU characterization.

B.1. Characterization of DREU for Arbitrary T

For general T , DREU is characterized by straightforward generalizations of Axioms
1–4 from Section 3. We first present the T -period generalizations of Contraction History
Independence and Linear History Independence.

Given ht−1 = (A0�p0� � � � �At−1�pt−1) ∈ Ht−1, let (ht−1
−k � (A

′
k�p

′
k)) denote the sequence

of the form (A0�p0� � � � �A
′
k�p

′
k� � � � �At−1�pt−1).72 We say that gt−1 ∈ Ht−1 is contraction

equivalent to ht−1 if, for some k, we have gt−1 = (ht−1
−k � (Bk�pk)), where Ak ⊆ Bk and

ρk(pk�Ak|hk−1)= ρk(pk�Bk|hk−1).73 That is, gt−1 and ht−1 differ only in period k, where,
under gt−1, the agent chooses lottery pk from menu Bk, while under ht−1, she chooses the
same lottery pk from the contraction Ak ⊆ Bk; moreover, conditional on hk−1, the choice
of pk from Ak and the choice of pk from Bk occur with the same probability. Generalizing
Axiom 1, Axiom B.1 requires that choice behavior be the same after ht−1 and gt−1:

AXIOM B.1—Contraction History Independence: For all t ≤ T , if gt−1 ∈ Ht−1(At) is
contraction equivalent to ht−1 ∈Ht−1(At), then ρt(·�At|ht−1)= ρt(·�At|gt−1).

72In general, this is not a history, but it is if A′
k ∈ supppA

k−1 and Ak+1 ∈ suppp′A
k and ρk(p

′
k�A

′
k|hk−1) > 0.

73This induces an equivalence relation on Ht−1 by taking the symmetric and transitive closure.
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We say that a finite set of histories Gt−1 ⊆ Ht−1 is linearly equivalent to ht−1 =
(A0�p0� � � � �At−1�pt−1) ∈Ht−1 if

Gt−1 = {(
ht−1

−k �
(
λAk + (1 − λ)Bk�λpk + (1 − λ)qk

)) : qk ∈ Bk

}
for some k, Bk, and λ ∈ (0�1]. That is, Gt−1 is the collection of histories that differ from
ht−1 only at period k: Under ht−1, the agent chooses pk from menu Ak, while Gt−1 sum-
marizes all possible choices of the form λpk + (1 −λ)qk from the menu λAk + (1 −λ)Bk.
Generalizing Axiom 2, Axiom B.2 requires period-t choice behavior following the set of
histories Gt−1 to be the same as conditional on ht−1. To state this formally, define the
choice distribution from At following Gt−1 ⊆Ht−1(At),

ρt

(·�At|Gt−1
) :=

∑
gt−1∈Gt−1

ρt

(·�At|gt−1
) ρ

(
gt−1

)
∑

f t−1∈Gt−1

ρ
(
f t−1

) �

to be the weighted average of all choice distributions ρt(·�At|gt−1) following his-
tories in Gt−1, where, for each gt−1 = (Â0� p̂0� � � � � Ât−1� p̂t−1), its weight ρ(gt−1) :=∏t−1

k=0 ρk(p̂k� Âk|gk−1) corresponds to the probability of the sequence of choices summa-
rized by gt−1.74

AXIOM B.2—Linear History Independence: For all t ≤ T , if Gt−1 ⊆Ht−1(At) is linearly
equivalent to ht−1 ∈Ht−1(At), then ρt(·�At|ht−1)= ρt(·�At|Gt−1).

Next, we generalize the procedure for overcoming the limited observability problem
following arbitrary histories ht−1. To do so, given any menu At and history ht−1, consider
a degenerate choice sequence dt−1 = ({q0}� q0� � � � � {qt−1}� qt−1) such that At ∈ suppqA

t−1
and replace ht−1 = (A0�p0� � � � �At−1�pt−1) with gt−1 := λht−1 + (1 − λ)dt−1, where75 at
every period k ≤ t−1, the agent faces menu λAk + (1−λ){qk} and chooses lottery λpk +
(1 − λ)qk. Under expected utility maximization, gt−1 reveals the same information about
the agent as ht−1. Thus, we define choices from At following ht−1 by extrapolating from
choices following gt−1.

Define the set of degenerate period-(t − 1) histories by Dt−1 := {dt−1 ∈ Ht−1 : dt−1 =
({qk}� qk)

t−1
k=0 where qk ∈ Δ(Xk) ∀k≤ t − 1}.

DEFINITION 11: For any t ≥ 1, At ∈At , and ht−1 ∈Ht−1, define

ρht−1

t (·;At) := ρt

(·;At|λht−1 + (1 − λ)dt−1
)

(10)

for some λ ∈ (0�1] and dt−1 ∈Dt−1 such that λht−1 + (1 − λ)dt−1 ∈Ht−1(At).

It follows from Axiom B.2 (Linear History Independence) that ρht−1

t (·;At) is well-
defined: Lemma E.4 shows that the RHS of (10) does not depend on the specific choice of

74Note that ρ(gt−1) does not keep track of the probabilities p̂A
k (Âk+1), since these pertain to exogenous

randomization and do not reveal any private information.
75In order for λht−1 + (1 − λ)dt−1 := (λAk + (1 − λ){qk}�λpk + (1 − λ)qk)

t−1
k=0 to be a well-defined history,

it suffices that λAk + (1 − λ){qk} ∈ suppqA
k−1 for all k = 1� � � � � t − 1. This can be ensured by appropriately

choosing each qk, working backwards from period t − 1.
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λ and dt−1. Moreover, ρht−1

t (·;At) coincides with ρt(·;At |ht−1) whenever ht−1 ∈Ht−1(At).
In the following, we do not distinguish between the extended and nonextended version of
ρt and use ρt(·;At |ht−1) to denote both.

Generalizing Axiom 3, we now impose the static REU conditions on each extended
choice distribution ρt(·|ht−1):

AXIOM B.3—History-Dependent REU: For all t ≤ T and ht−1, ρt(·|ht−1) satisfies Ax-
iom 0.76

Finally, we state the T -period generalization of Axiom 4 (History Continuity). For this,
we first define T -period analogs of menus and histories without ties:

DEFINITION 12: For any 0 ≤ t ≤ T and ht−1 ∈ Ht−1, the set of period-t menus without
ties conditional on history ht−1 is denoted A∗

t (h
t−1)77 and consists of all At ∈At such that,

for any pt ∈ At and any sequences pn
t →m pt and Bn

t →m At � {pt}, we have

lim
n→∞

ρt

(
pn

t �B
n
t ∪ {

pn
t

}|ht−1
) = ρt

(
pt�At |ht−1

)
�

For t = 0, we write A∗
0 :=A∗

0(h
t−1). The set of period-t histories without ties is H∗

t := {ht =
(A0�p0� � � � �At−1�pt−1) ∈Ht :Ak ∈A∗

k(h
k−1) for all k ≤ t}.

We say that ht�n →m ht if ht�n = (An
0�p

n
0� � � � �A

n
t �p

n
t ) and ht = (A0�p0� � � � �At�pt) sat-

isfy An
k →m Ak and pn

k →m pk for each k.

AXIOM B.4—History Continuity: For all t ≤ T − 1, At+1, pt+1, and ht ,

ρt+1

(
pt+1;At+1|ht

) ∈ co
{

lim
n
ρt+1

(
pt+1;At+1|ht�n

) : ht�n →m ht�ht�n ∈H∗
t

}
�

Generalizing Theorem 1, we have the following representation theorem:

THEOREM B.1: The dynamic stochastic choice rule ρ satisfies Axioms B.1–B.4 if and only
if ρ admits a DREU representation.

B.2. Relationship Between Histories and States

Throughout the proofs of Theorems B.1–D.1, we will make use of the following ter-
minology concerning the relationship between histories and states. Fix any t ∈ {0� � � � � T }.
Suppose that (St′� {μst′−1

t′ }st′−1∈St′−1
� {Ust′ � τst′ }st′ ∈St′ ) satisfy DREU1 and DREU2 from Defi-

nition 10 for each t ′ ≤ t.
Fix any state s∗

t ∈ St . We let pred(s∗
t ) denote the unique predecessor sequence (s∗

0� � � � �
s∗
t−1) ∈ S0 × · · · × St−1, given by assumptions DREU1(b) and (c), such that s∗

k+1 ∈
supp(μ

s∗
k
k+1) for each k = 0� � � � � t − 1. Given any history ht = (A0�p0� � � � �At�pt), we say

that s∗
t is consistent with ht if

∏t

k=0 τs∗k(pk�Ak) > 0.

76Lemma E.1 verifies that Xt is a separable metric space. Then Mixture Continuity and Finiteness make use
of the same convergence notions as defined following Axiom 0.

77Note that A∗
t (h

t−1) � At (h
t−1) because the first set contains all menus without ties (we use history ht−1

here only to determine where ties could occur) while the second set contains only menus that occur with
positive probability after history ht−1—typically very few menus.
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For any k= 0� � � � � t, sk ∈ Sk, p0 ∈ A0 ∈A0, and pk+1 ∈ Ak+1 ∈Ak+1, let

Usk(Ak+1�pk+1) := {
Usk+1 : sk+1 ∈ suppμsk

k+1 and pk+1 ∈ M(Ak+1�Usk+1)
};

U0(A0�p0) := {
Us0 : s0 ∈ S0 and p0 ∈ M(A0�Us0)

}
�

A separating history for s∗
t is a history ht = (B0� q0� � � � �Bt� qt) such that Us∗

k−1
(Bk�qk) =

{Us∗
k
} for all k = 0� � � � � t and ht ∈ H∗

t , where we abuse notation by letting Us∗−1
(B0� q0)

denote U0(B0� q0). Note that separating histories are required to be histories without ties.
We record the following properties:

LEMMA B.1: Fix any s∗
t ∈ St with pred(s∗

t ) = (s∗
0� � � � � s

∗
t−1). Suppose ht = (B0� q0� � � � �

Bt� qt) satisfies Us∗
k−1

(Bk�qk) = {Us∗
k
} for all k = 0� � � � � t. Then for all k = 0� � � � � t, s∗

k is the
only state in Sk that is consistent with hk.

PROOF: Fix any �= 0� � � � � t. First, consider s′
� ∈ S�� {s∗

�}, with pred(s′
�)= (s′

0� � � � � s
′
�−1).

Let k ≤ � be smallest such that s′
k �= s∗

k. Then s′
k ∈ suppμ

s∗
k−1
k , so Us∗

k−1
(Bk�qk) = {Us∗

k
}

implies that qk /∈ M(Bk�Us′
k
). Thus, τs′

k
(qk�Bk)= 0, whence s′

� is not consistent with h�.
Next, to show that s∗

� is consistent with h�, note that ρ�(q��B�|h�−1) > 0, so DREU2
implies

∑
(s0�����s�)∈S0×···×S�

�∏
k=0

μ
sk−1
k (sk)τsk(qk�Bk) > 0� (11)

Now, if (s0� � � � � s�−1) �= pred(s�), then
∏�

k=0 μ
sk−1
k (sk) = 0. And if (s0� � � � � s�−1) = pred(s�)

but s� �= s∗
� , then the first paragraph shows

∏�

k=0 τsk(qk�Bk) = 0. Hence, (11) reduces to∏�

k=0 μ
s∗
k−1
k (s∗

k)τs∗k(qk�Bk) > 0, whence s∗
� is consistent with h�. Q.E.D.

LEMMA B.2: Every s∗
t ∈ St admits a separating history.

PROOF: Fix any s∗
t ∈ St with pred(s∗

t ) = (s∗
0� � � � � s

∗
t−1). By Lemma E.2 and DREU1(a),

there exist menus B0 = {q0(s0) : s0 ∈ S0} ∈ A0 and Bk(sk−1) = {pk(sk) : sk ∈ suppμsk−1
k } ∈

Ak for each k = 1� � � � � t and sk ∈ Sk such that U0(B0� q0(s0)) = {Us0} for all s0 ∈
S0 and Usk−1(Bk(sk−1)�qk(sk)) = {Usk} for all sk ∈ suppμsk−1

k . Moreover, we can as-
sume that Bk+1(sk) ∈ suppqk(sk)

A for all k = 0� � � � � t − 1 and sk ∈ Sk, by letting
each qk(sk) put small enough weight on (z�Bk+1(sk)) for some z ∈ Z. Then ht :=
(B0� q0(s

∗
0)� � � � �Bt(s

∗
t )� qt(s

∗(t))) ∈ Ht . Moreover, since Us∗
k−1

(Bk�qk(s
∗
k)) = {Us∗

k
},

Lemma B.1 implies that for all k = 0� � � � � t, s∗
k is the only state consistent with hk. Addi-

tionally, for all k = 0� � � � � t and sk ∈ suppμ
s∗
k−1
k , we have M(Bk(s

∗
k−1)�Usk) = {qk(sk)} by

construction. Hence, by Lemma E.3, we have Bk(s
∗
k−1) ∈A∗

k(h
k−1). Thus ht ∈H∗

t , so ht is
a separating history for s∗

t . Q.E.D.

B.3. Proof of Theorem B.1: Sufficiency

Suppose ρ satisfies Axioms B.1–B.4. To show that ρ admits a DREU representation, it
suffices, by Proposition A.1, to construct an S-based DREU representation for ρ.

We proceed by induction on t ≤ T . First consider t = 0. Since ρ0 satisfies Axiom B.3
and X0 is a separable metric space by Lemma E.1, the existence of (S0�μ0� {Us0� τs0}s0∈S0)
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satisfying DREU1 and DREU2 from Definition 10 is immediate from Theorem F.1, which
extends Gul and Pesendorfer’s (2006) and Ahn and Sarver’s (2013) characterization result
for static S-based REU representations to separable metric spaces and which we prove in
Supplemental Material Appendix F.

Suppose next that 0 ≤ t < T and that we have constructed (St′� {μst′−1
t′ }st′−1∈St′−1

�
{Ust′ � τst′ }st′ ∈St′ ) satisfying DREU1 and DREU2 for each t ′ ≤ t. We now construct
(St+1� {μst

t+1}st∈St � {Ust+1� τst+1}st+1∈St+1) satisfying DREU1 and DREU2.

B.3.1. Defining ρst
t+1 and (St+1� {μst

t+1}st∈St � {Ust+1� τst+1}st+1∈St+1)

To this end, we first pick an arbitrary separating history ht(st) for each st ∈ St (this exists
by Lemma B.2) and define

ρst
t+1(·�At+1) := ρt+1

(·�At+1|ht(st)
)

for all At+1 ∈ At+1. Note that here ρt+1(·� |ht(st)) is the extended version of ρt+1(·|ht(st))
given in Definition 11; by Axiom B.2 and Lemma E.4, the specific choice of λ ∈ (0�1] and
dt−1 ∈Dt−1 used in the extension procedure does not matter.

By Axiom B.3 and the fact that Xt+1 is separable metric (Lemma E.1), Theorem F.1
applied to ρst

t+1 yields an REU form (Sst
t+1�μ

st
t+1� {Ust+1� τst+1}st+1∈Sstt+1

) on Xt+1 such that
Ust+1 �≈Us′t+1

for any distinct pair st+1� s
′
t+1 ∈ Sst

t+1 and such that

ρst
t+1(pt+1�At+1)=

∑
st+1∈Sstt+1

μst
t+1(st+1)τst+1(pt+1�At+1)

for all pt+1 and At+1. Without loss, we can assume that Sst
t+1 and S

s′t
t+1 are disjoint whenever

st �= s′
t . Set St+1 := ⋃

st∈St S
st
t+1 and extend μst

t+1 to a probability measure on St+1 by setting
μst

t+1(st+1)= 0 for all st+1 ∈ St+1 � Sst
t+1.

By construction, it is immediate that (St+1� {μst
t+1}st∈St � {Ust+1� τst+1}st+1∈St+1) thus defined

satisfies DREU1 and that

ρst
t+1(pt+1�At+1)=

∑
st+1∈St+1

μst
t+1(st+1)τst+1(pt+1�At+1) (12)

for all pt+1 and At+1. It remains to show that DREU2 is also satisfied.

B.3.2. ρst
t+1 Is Well-Behaved

To this end, Lemma B.3 below first shows that the definition of ρst
t+1 is well-behaved, in

the sense that for any history ht that can only arise in state st , ρ
st
t+1 = ρt+1(·|ht).

LEMMA B.3: Fix any s∗
t ∈ St with pred(s∗

t ) = (s∗
0� � � � � s

∗
t−1). Suppose ht = (A0�p0� � � � �

At�pt) ∈Ht satisfies Us∗
k−1

(Ak�pk)= {Us∗
k
} for all k = 0�1� � � � � t. Then for any At+1 ∈At+1,

ρt+1(·�At+1|ht)= ρ
s∗t
t+1(·�At+1).

PROOF: Step 1: Let h̃t = (Ã0� p̃0� � � � � Ãt� p̃t) denote the separating history for s∗
t used

to define ρ
s∗t
t+1. We first prove the lemma under the assumption that ht ∈ H∗

t , that is, that
ht is itself a separating history for s∗

t .78

78Note that Us∗k−1
(Ak�pk) = {Us∗k } for all k = 0�1� � � � � t does not by itself imply that ht is a history without

ties.
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Pick (r0� � � � � rt) ∈ Δ(X0) × · · · × Δ(Xt) such that At+1 ∈ supp rAt and for all k =
0� � � � � t − 1,

supp
(
rAk

) ⊇ {Bk+1� B̃k+1�Bk+1 ∪ B̃k+1}�
where B� := 1

3A� + 1
3 {p̃�} + 1

3 {r�} and B̃� := 1
3Ã� + 1

3 {p�} + 1
3 {r�} for � = 0� � � � � t. Define

q� := 1
3p� + 1

3 p̃� + 1
3 r�.

Note that since ht� h̃t ∈ H∗
t and Us∗

k−1
(Ak�pk) = Us∗

k−1
(Ãk� p̃k) = {Us∗

k
}, Lemma E.3 im-

plies that M(Ak�Us∗
k
) = {pk} and M(Ãk�Us∗

k
) = {p̃k} for all k = 0�1� � � � � t. By linearity

of the Us, we then also have

Us∗
k−1

(Bk�qk)= Us∗
k−1

(B̃k� qk)= Us∗
k−1

(Bk ∪ B̃k� qk)= {Us∗
k
} and

M(Bk�Us∗
k
)=M(B̃k�Us∗

k
)=M(Bk ∪ B̃k�Us∗

k
)= {qk}�

This implies that for all k = 0� � � � � t and sk ∈ suppμ
s∗
k−1
k−1 ,

τsk(qk�Bk)= τsk(qk� B̃k)= τsk(qk�Bk ∪ B̃k)=
{

1 if sk = s∗
k�

0 otherwise.

By DREU2 of the inductive hypothesis, it follows that for all k = 0� � � � � t − 1,

μ
s∗t−1
t

(
s∗
t

) = ρt(qt�Bt |B0� q0� � � � �Bt−1� qt−1)= ρt(qt� B̃t |B̃0� q0� � � � � B̃t−1� qt−1)

= ρt(qt�Bt ∪ B̃t |B0� q0� � � � �Bk−1� qk−1�Bk ∪ B̃k� qk� � � � �Bt−1 ∪ B̃t−1� qt−1)

= ρt(qt�Bt ∪ B̃t |B̃0� q0� � � � � B̃k−1� qk−1�Bk ∪ B̃k� qk� � � � �Bt−1 ∪ B̃t−1� qt−1)�

whence repeated application of Axiom B.1 (Contraction History Independence) yields

ρt+1(·�At+1|B0� q0� � � � �Bt� qt)= ρt+1(·�At+1|B0 ∪ B̃0� q0� � � � �Bt ∪ B̃t� qt)

= ρt+1(·�At+1|B̃0� q0� � � � � B̃t� qt)� (13)

Moreover, by Axiom B.2 (Linear History Independence) and Lemma E.4, we have

ρt+1

(·�At+1|ht
) = ρt+1(·�At+1|B0� q0� � � � �Bt� qt) and

ρt+1

(·�At+1|h̃t
) = ρt+1(·�At+1|B̃0� q0� � � � � B̃t� qt)�

(14)

Combining (13) and (14), we obtain that ρt+1(·�At+1|ht) = ρt+1(·�At+1|h̃t) :=
ρ
s∗t
t+1(·�At+1). This proves the lemma for histories ht ∈H∗

t .
Step 2: Now suppose that ht /∈H∗

t . Take any sequence of histories ht�n →m ht with ht�n =
(An

0�p
n
0� � � � �A

n
t �p

n
t ) ∈ H∗

t for each n. Note that such a sequence exists by Axiom B.4
(History Continuity).

We claim that for all large enough n, Us∗
k−1

(An
k�p

n
k)= {Us∗

k
} for all k= 0� � � � � t. Suppose

for a contradiction that we can find a subsequence (ht�n�)∞
�=1 for which this claim is vio-

lated. Note that for all �, ρk(p
n�
k �A

n�
k |hk−1�n�) > 0 for all k= 0� � � � � t (by the fact that ht�n�
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is a well-defined history). Hence, DREU2 for k ≤ t implies that we can find s′
t�n�

∈ St

with pred(s′
t�n�

) = (s′
0�n�

� � � � � s′
t−1�n�

) and (s′
0�n�

� � � � � s′
t�n�

) �= (s∗
0� � � � � s

∗
t ) such that Us′

k�n�
∈

Us′
k−1�n�

(An�
k �p

n�
k ) for all k = 0� � � � � t. Moreover, since S0 × · · · × St is finite, by choosing

the subsequence (ht�n�) appropriately, we can assume that (s′
0�n�

� � � � � s′
t�n�

)= (s′
0� � � � � s

′
t) �=

(s∗
0� � � � � s

∗
t ) for all �. Pick the smallest k such that s′

k �= s∗
k and pick any qk ∈ Ak. Since

An�
k →m Ak, we can find qn�

k ∈ An�
k with qn�

k →m qk. For all �, we have Us′
k
∈ Us′

k−1
(An�

k �p
n�
k ),

so Us′
k
(pn�

k )≥Us′
k
(qn�

k ), whence Us′
k
(pk)≥Us′

k
(qk) by linearity of Us′

k
. Moreover, by choice

of k, s′
k ∈ suppμ

s′
k−1
k−1 = suppμ

s∗
k−1
k−1 . Thus, Us′

k
∈ Us∗

k−1
(Ak�pk) = {Us∗

k
}. But s′

k �= s∗
k, so by

DREU1(a) of the inductive hypothesis, Us′
k
�≈Us∗

k
, a contradiction.

By the previous paragraph, for large enough n, ht�n satisfies the assumption of the
lemma. Since ht�n ∈ H∗

t , Step 1 then shows that ρt+1(pt+1�At+1|ht�n) = ρ
s∗t
t+1(pt+1�At+1)

for all large enough n and all pt+1. By Axiom B.4 (History Continuity), this implies that
for all pt+1,

ρt+1

(
pt+1�At+1|ht

) ∈ co
{

lim
n
ρt+1

(
pt+1�At+1|ht�n

) : ht�n →m ht�ht�n ∈H∗
t

}
= {

ρ
s∗t
t+1(pt+1�At+1)

}
�

which completes the proof. Q.E.D.

B.3.3. ρt+1(·|ht) Is a Weighted Average of ρst
t+1

The next lemma shows that ρt+1(·|ht) can be expressed as a weighted average of the
state-dependent choice distributions ρst

t+1, where the weight on each ρst
t+1 corresponds to

the probability of st conditional on history ht .

LEMMA B.4: For any pt+1 ∈At+1 and ht = (A0�p0� � � � �At�pt) ∈Ht(At+1), we have

ρt+1

(
pt+1�At+1|ht

) =

∑
(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(Ak�pk)ρ

st
t+1(pt+1�At+1)

∑
(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(Ak�pk)

�

PROOF: Let {s1
t � � � � � s

m
t } denote the set of states in St that are consistent with history

ht (as defined in Section B.2). For each j, let ĥt(j) = (B
j
0� q

j
0� � � � �B

j
t � q

j
t ) be a separating

history for state s
j
t . We can assume that for each k = 1� � � � � t, qj

k−1 puts small weight on
(z� 1

2Ak + 1
2B

j
k) for some z, so that ht(j) := 1

2h
t + 1

2 ĥ
t(j) ∈Ht(At+1) for all j.

Note first that, for all j = 1� � � � �m, we have

ρ
(
ht(j)

) =
t∏

k=0

μ
s
j
k−1
k

(
s
j
k

)
τ
s
j
k
(pk�Ak)� (15)
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Indeed, observe that

ρ
(
ht(j)

) =
t∏

k=0

ρk

(
1
2
pk + 1

2
q
j
k�

1
2
Ak + 1

2
B

j
k

∣∣∣1
2
hk−1 + 1

2
ĥk−1(j)

)

=
∑

(s0�����st )

t∏
k=0

μ
sk−1
k (sk)τsk

(
1
2
pk + 1

2
qk�

1
2
Ak + 1

2
B

j
k

)

=
t∏

k=0

μ
s
j
k−1
k

(
s
j
k

)
τ
s
j
k

(
1
2
pk + 1

2
q
j
k�

1
2
Ak + 1

2
B

j
k

)
=

t∏
k=0

μ
s
j
k−1
k

(
s
j
k

)
τ
s
j
k
(pk�Ak)�

The first equality holds by definition. The second equality follows from DREU2 of the in-
ductive hypothesis. For the final two equalities, note that since ĥt(j) is a separating history
for s

j
t , we have for all k = 0� � � � � t that U

s
j
k−1

(B
j
k� q

j
k) = {U

s
j
k
} with {qj

k} = M(B
j
k�Us

j
k
) (by

Lemma E.3). Also, since s
j
t is consistent with ht , τ

s
j
k
(pk�Ak) > 0 for all k = 0� � � � � t. This

implies that for every sk ∈ suppμ
s
j
k−1
k , τsk(

1
2pk + 1

2q
j
k�

1
2Ak + 1

2Bk) > 0 if and only if sk = s
j
k,

yielding the third equality. It also implies that M( 1
2Ak+ 1

2B
j
k�Us

j
k
)=M( 1

2Ak+ 1
2 {qj

k}�Us
j
k
),

so that τ
s
j
k
( 1

2pk + 1
2q

j
k�

1
2Ak + 1

2B
j
k)= τ

s
j
k
( 1

2pk + 1
2q

j
k�

1
2Ak + 1

2 {qj
k})= τ

s
j
k
(pk�Ak), yielding

the fourth equality.
Now let Ht := {ht(j) : j = 1� � � � �m} ⊆ Ht(At+1). Note that by repeated application of

Axiom B.2, we have that

ρt+1

(
pt+1� �At+1|ht

) = ρt+1

(
pt+1�At+1|Ht

)
� (16)

Moreover, we have that

ρt+1

(
pt+1�At+1|Ht

) =

m∑
j=1

ρ
(
ht(j)

)
ρt+1

(
pt+1�At+1|ht(j)

)
m∑
j=1

ρ
(
ht(j)

)

=

m∑
j=1

t∏
k=0

μ
s
j
k−1
k

(
s
j
k

)
τ
s
j
k
(pk�Ak)ρt+1

(
pt+1�At+1|ht(j)

)
m∑
j=1

t∏
k=0

μ
s
j
k−1
k

(
s
j
k

)
τ
s
j
k
(pk�Ak)

=

∑
j

t∏
k=0

μ
s
j
k−1
k

(
s
j
k

)
τ
s
j
k
(pk�Ak)ρ

s
j
t
t+1(pt+1|At+1)

∑
j

t∏
k=0

μ
s
j
k−1
k

(
s
j
k

)
τ
s
j
k
(pk�Ak)
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=

∑
(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(Ak�pk)ρ

st
t+1(pt+1|At+1)

∑
(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(Ak�pk)

� (17)

Indeed, the first equality holds by definition of choice conditional on a set of histories. The
second equality follows from equation (15). Note next that since ĥt(j) is a separating his-
tory for sjt and s

j
t is consistent with ht , we have that U

s
j
k
( 1

2pk + 1
2q

j
k�

1
2Ak + 1

2B
j
k)= {U

s
j
k
} for

each k. Hence, Lemma B.3 implies that ρt+1(pt+1�At+1|ht(j)) = ρ
s
j
t
t+1(pt+1�At+1), yield-

ing the third equality. Finally, note that if (s0� � � � � st) ∈ S0 × · · · × St with (s0� � � � � st) �=
(s

j
0� � � � � s

j
t ) for all j, then either st /∈ {s1

t � � � � � s
m
t }, or st = stj for some j but (s0� � � � � st−1) �=

pred(sjt ). In either case,
∏t

k=0 μ
sk−1
k (sk)τsk(Ak�pk) = 0, yielding the final equality. Com-

bining (16) and (17), we obtain the desired conclusion. Q.E.D.

B.3.4. Completing the Proof

Finally, combining Lemma B.4 with the representation of ρst
t+1 in (12) yields that, for

any ht = (A0�p0� � � � �At�pt) ∈Ht(At+1),

ρt+1

(
pt+1�At+1|ht

)

=

∑
(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(Ak�pk)

∑
st+1∈St+1

μst
t+1(st+1)τst+1(pt+1�At+1)

∑
(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(Ak�pk)

=

∑
(s0�����st �st+1)∈S0×···×St×St+1

t+1∏
k=0

μ
sk−1
k (sk)τsk(Ak�pk)

∑
(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(Ak�pk)

�

Thus, (St+1� {μst
t+1}st∈St � {Ust+1� τst+1}st+1∈St+1) also satisfies requirement DREU2, completing

the proof.

B.4. Proof of Theorem B.1: Necessity

Suppose ρ admits a DREU representation. By Proposition A.1, ρ admits an S-based
DREU representation. By Lemma E.5, for each t and ht ∈ Ht , the (static) stochastic
choice rule ρt(·|ht) : At → Δ(Δ(Xt)) given by the extended version of ρ from Defini-
tion 11 also satisfies DREU2. In other words, ρt(·|ht) admits an S-based REU represen-
tation (see Definition 13). Thus, Theorem F.1 implies that Axiom B.3 holds. It remains to
verify that Axioms B.1, B.2, and B.4 are satisfied.
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CLAIM 1: ρ satisfies Axiom B.1 (Contraction History Independence).

PROOF: Take any ht−1 = (ht−1
−k � (Ak�pk)), ĥt−1 = (ht−1

−k � (Bk�pk)) ∈ Ht−1(At) such that
Bk ⊇Ak and ρk(pk;Ak|hk−1)= ρk(pk;Bk|hk−1). From DREU2 for ρk, ρk(pk;Ak|hk−1)=
ρk(pk;Bk|hk−1) implies that

∑
(s0�����sk)

k−1∏
l=0

μ
sl−1
l (sl)τsl (pl�Al)μ

sk−1
k (sk)τsk(pk�Ak)

=
∑

(s0�����sk)

k−1∏
l=0

μ
sl−1
l (sl)τsl (pl�Al)μ

sk−1
k (sk)τsk(pk�Bk)� (18)

Since Bk ⊇Ak implies τsk(pk�Ak)≥ τsk(pk�Bk) for all sk, the only way for (18) to hold is
if τsk(pk�Ak)= τsk(pk�Bk) for all sk consistent with hk. Thus,

ρt

(
pt;At |ht−1

) =

∑
(s0�����st )∈S0×···×St

t∏
l=0

μ
sl−1
l (sl)τsl (pl�Al)

∑
(s0�����st−1)∈S0×···×St−1

t−1∏
l=0

μ
sl−1
l (sl)τsl (pl�Al)

= ρt

(
pt;At |ĥt−1

)
�

as required. Q.E.D.

CLAIM 2: ρ satisfies Axiom B.2 (Linear History Independence).

PROOF: Take any At , ht−1 = (A0�p0� � � � �At−1�pt−1) ∈Ht−1(At), and Ht−1 ⊆Ht−1(At)
of the form Ht−1 = {(ht−1

−k � (λAk + (1 −λ)Bk�λpk + (1 −λ)qk)) : qk ∈ Bk} for some k< t,
λ ∈ (0�1), and Bk = {qj

k : j = 1� � � � �m} ∈ Ak. Let Ãk := λAk + (1 − λ)Bk, and for each
j = 1� � � � �m, let p̃j

k := λpk + (1 − λ)q
j
k and h̃t−1(j) := (ht−1

−k � (Ãk� p̃
j
k)).

By DREU2, for all pt , we have

ρt

(
pt;At |ht−1

) =

∑
(s0�����st )

t∏
�=0

μ
s�−1
� (s�)τs�(p��A�)

∑
(s0�����st−1)

t−1∏
�=0

μ
s�−1
� (s�)τs�(p��A�)

� (19)

Moreover, by definition,

ρt

(
pt;At |Ht−1

) =

m∑
j=1

ρ
(
h̃t−1(j)

)
ρt

(
pt;At |h̃t−1(j)

)
m∑
j=1

ρ
(
h̃t−1(j)

) �



1988 M. FRICK, R. IIJIMA, AND T. STRZALECKI

where for each j = 1� � � � �m, DREU2 yields

ρt

(
pt;At |h̃t−1(j)

) =

∑
(s0�����st )

( ∏
�=0�����t;��=k

μ
s�−1
� (s�)τs�(p��A�)

)
μ

sk−1
k (sk)τsk

(
p̃

j
k� Ãk

)
∑

(s0�����st−1)

( ∏
�=0�����t−1;��=k

μ
s�−1
� (s�)τs�(p��A�)

)
μ

sk−1
k (sk)τsk

(
p̃

j
k� Ãk

)

and

ρ
(
h̃t−1(j)

) :=
∏

�=0�����t−1;��=k

ρ�

(
p�;A�|h̃�−1

)
ρk

(
p̃

j
k; Ãk|h̃k−1

)

=
∑

(s0�����st−1)

( ∏
�=0�����t−1;��=k

μ
s�−1
� (s�)τs�(p��A�)

)
μ

sk−1
k (sk)τsk

((
p̃

j
k� Ãk

))
�

Combining and rearranging, we obtain

ρt

(
pt;At |Ht−1

)

=

∑
(s0�����st )

( ∏
�=0�����t;��=k

μ
s�−1
� (s�)τs�(A��p�)

)
μ

sk−1
k (sk)

m∑
j=1

τsk
(
p̃

j
k� Ãk

)
∑

(s0�����st−1)

( ∏
�=0�����t−1;��=k

μ
s�−1
� (s�)τs�(A��p�)

)
μ

sk−1
k (sk)

m∑
j=1

τsk
(
p̃

j
k� Ãk

) � (20)

But observe that for all sk,

m∑
j=1

τsk
(
p̃

j
k� Ãk

)

=
m∑
j=1

τsk
({
w ∈ RXk : p̃j

k ∈M
(
M(Ãk�Usk)�w

)})

=
∑
qk∈Bk

τsk
({
w ∈RXk : pk ∈ M

(
M(Ak�Usk)�w

)
and qk ∈M

(
M(Bk�Usk)�w

)})

= τsk
({
w ∈ RXk : pk ∈M

(
M(Ak�Usk)�w

)})
= τsk(pk�Ak)� (21)

where the second equality follows from linearity of the representation, the third equal-
ity from the fact that τsk is a proper finitely-additive probability measure on RXk , and
the remaining equalities hold by definition. Combining (19), (20), and (21), we obtain
ρt(pt;At |ht−1)= ρt(pt;At |Ht−1), as required. Q.E.D.

CLAIM 3: ρ satisfies Axiom B.4 (History Continuity).

PROOF: Fix any At , pt ∈ At , and ht−1 = (A0�p0� � � � �At−1�pt−1) ∈ Ht−1. Let
St−1(h

t−1) ⊆ St−1 denote the set of period-(t − 1) states that are consistent with ht−1.
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Define ρ
st−1
t (pt;At) := ∑

st
μ

st−1
t (st)τst (pt�At) for each st−1. By Lemma E.5,

ρt

(
pt;At |ht−1

) =

∑
(s0�����st )∈S0×···×St

t∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

∑
(s0�����st−1)∈S0×···×St−1

t−1∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

=

∑
(s0�����st−1)∈S0×···×St−1

t−1∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

∑
st∈St

μ
st−1
t (st)τst (pt�At)

∑
(s0�����st−1)∈S0×···×St−1

t−1∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

�

Hence, ρt(pt;At |ht−1) ∈ co{ρst−1
t (pt;At) : st−1 ∈ St−1(h

t−1)}. Fix any s∗
t−1 ∈ St−1(h

t−1). To
prove the claim, it is sufficient to show that

ρ
s∗t−1
t (pt;At) ∈

{
lim
n
ρt

(
pt;At |ht−1

n

) : ht−1
n →m ht−1�ht−1

n ∈H∗
t−1

}
�

To this end, let pred(s∗
t−1) = (s∗

0� � � � � s
∗
t−2) and let h̄t−1 = (B0� q0� � � � �Bt−1� qt−1) ∈ H∗

t−1
be a separating history for s∗

t−1. By Lemma E.6, for each k = 0� � � � � t − 1, we can
find sequences An

k ∈ A∗
k(h̄

k−1) and pn
k ∈ An

k such that An
k →m Ak, pn

k →m pk, and
Us∗

k−1
(An

k�p
n
k)= {Us∗

k
} for all n and all k = 0� � � � � t−1. Working backwards from k= t−2,

we can inductively replace An
k and pn

k with a mixture putting small weight on (z�An
k+1) for

some z to ensure that An
k+1 ∈ supppn�A

k for all k≤ t−2 while maintaining the properties in
the previous sentence. Then, by construction, ht−1

n := (An
0�p

n
0� � � � �A

n
t−1�p

n
t−1) ∈H∗

t−1(At)
and ht−1

n is a separating history for s∗
t−1, which by Lemma E.5 implies

ρt

(
pt;At |ht−1

n

) =

∑
st∈St

(
t−1∏
k=0

μ
s∗
k−1
k

(
s∗
k

)
τs∗

k
(pk�Ak)

)
μ

s∗t−1
t (st)τst (pt�At)

t−1∏
k=0

μ
s∗
k−1
k

(
s∗
k

)
τs∗

k
(pk�Ak)

=
∑
st

μ
s∗t−1
t (st)τst (pt�At) =: ρs∗t−1

t (pt;At)

for each n. Since ht−1
n →m ht−1, this verifies the desired claim. Q.E.D.

APPENDIX C: PROOF OF THEOREM 2

Instead of proving the two-period characterization of BEU in Theorem 2, this section
establishes a generalization of Theorem 2 for arbitrary horizon T . Section C.1 presents
the T -period axioms for BEU. Sections C.2 and C.3 establish sufficiency and necessity of
these axioms.
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C.1. Characterization of BEU for Arbitrary T

The following three axioms are straightforward T -period generalizations of Axioms 5–7
from Section 4.1:

AXIOM C.1—Separability: For any history ht−1, At , and pt�qt /∈ At such that pZ
t = qZ

t ,
pA

t = qA
t , and At ∪ {pt}�At ∪ {qt} ∈A∗

t (h
t−1), we have

ρt

(
pt;At ∪ {pt}|ht−1

) = ρt

(
qt;At ∪ {qt}|ht−1

)
�

For each t, let mt , m′
t denote typical elements of Δ(At), and for each mt , we let Ā(mt)

denote the average menu induced by mt , that is, Ā(mt)= ∑
At∈At

mt(At)At .

AXIOM C.2—Stochastic DLR:The following hold for all t ≤ T and ht−1:
(i) Preference for Flexibility: For any At+1, Bt+1 such that At+1 ⊆ Bt+1 and {(z�At+1)�

(z�Bt+1)} ∈A∗
t (h

t−1),

ρt

(
(z�Bt+1);

{
(z�At+1)� (z�Bt+1)

}|ht−1
) = 1�

(ii) Reduction of Mixed Menus: For any At and (z�mt+1)� (z�m
′
t+1) /∈ At such that

Ā(mt+1)= Ā(m′
t+1) and At ∪ {(z�mt+1)}�At ∪ {(z�m′

t+1)} ∈A∗
t (h

t−1), we have

ρt

(
(z�mt+1);At ∪

{
(z�mt+1)

}|ht−1
) = ρt

((
z�m′

t+1

);At ∪
{(
z�m′

t+1

)}|ht−1
)
�

(iii) Continuity: ρt(·|ht−1) :A∗
t (h

t−1)→ Δ(Δ(Xt)) is continuous.
(iv) Menu Nondegeneracy: {(z�At+1)� (z�Bt+1)} ∈A∗

t (h
t−1) for some z, At+1, Bt+1.

AXIOM C.3—Sophistication:For any t ≤ T − 1, ht = (ht−1�At�pt) ∈ H∗
t , z, and At+1 ⊆

Bt+1 ∈A∗
t+1(h

t), the following are equivalent:
(i) ρt+1(pt+1;Bt+1|ht) > 0 for some pt+1 ∈ Bt+1 �At+1.

(ii) lim infn ρt(
1
2pt + 1

2(z�B
n
t+1); 1

2At + 1
2 {(z�An

t+1)� (z�B
n
t+1)}|ht−1) > 0 for all

An
t+1 →m At+1, Bn

t+1 →m Bt+1.

We have the following T -period generalization of Theorem 2:

THEOREM C.1: Suppose that ρ admits a DREU representation. Then ρ satisfies Axioms
C.1–C.3 if and only if ρ admits a BEU representation.

C.2. Proof of Theorem C.1: Sufficiency

Throughout this section, we assume that ρ admits a DREU representation and satisfies
Axioms C.1–C.3. We will show that ρ admits a BEU representation. By Proposition A.1, it
is sufficient to construct an S-based BEU representation. Sections C.2.1–C.2.5 accomplish
this.

C.2.1. Recursive Construction up to t

The construction proceeds recursively. Suppose that t ≤ T −1. Assume that we have ob-
tained (St′� {μst′−1

t′ }st′−1∈St′−1
� {Ust′ � τst′ }st′ ∈St′ ) for each t ′ ≤ t such that DREU1 and DREU2

hold for all t ′ ≤ t and BEU holds for all t ′ ≤ t − 1 (see Definition 10 for the state-
ments of these conditions). Note that the base case t = 0 is true because of the fact
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that ρ admits a DREU representation and by Proposition A.1 (the requirement that
BEU holds for t ′ ≤ t − 1 is vacuous here). To complete the proof, we will construct
(St+1� {μst

t+1}st∈St � {Ust+1� τst+1}st+1∈St+1) such that DREU1 and DREU2 hold for t ′ ≤ t + 1
and BEU holds for t ′ ≤ t.

C.2.2. Properties of Ust

The following lemma translates Axioms C.1 (Separability) and C.2 (Stochastic DLR)
into properties of Ust .

LEMMA C.1:For any st ∈ St , there exist functions ust : Z → R and Vst : At+1 → R with Vst

nonconstant such that
(i) Ust (zt�At+1)= ust (zt)+ Vst (At+1) for all (zt�At+1),

(ii) Vst is continuous,
(iii) Vst is linear, that is, Vst (αAt+1 + (1 − α)Bt+1) = αVst (At+1)+ (1 − α)Vs(Bt+1) for all

At+1, Bt+1 and α ∈ (0�1),
(iv) Vst is monotone, that is, Vst (At+1)≤ Vst (Bt+1) for all At+1 ⊆ Bt+1.

PROOF: Fix any st ∈ St and its predecessor st−1 ∈ St−1 (which is uniquely given by
μ

st−1
t (st) > 0). Take a separating history ht−1 for st−1, the existence of which is guaranteed

by Lemma B.2. Let S denote the support of μst−1
t .

For (i), it suffices, by standard arguments, to show that Ust (
1
2(x�At+1) + 1

2(y�Bt+1)) =
Ust (

1
2(x�Bt+1)+ 1

2(y�At+1)) for all x, y , At+1, Bt+1. To see this, suppose for a contradiction
that Ust (

1
2(x�At+1)+ 1

2(y�Bt+1)) �= Ust (
1
2(x�Bt+1)+ 1

2(y�At+1)). We only consider the case
Ust (

1
2(x�At+1)+ 1

2(y�Bt+1)) > Ust (
1
2(x�Bt+1)+ 1

2(y�At+1)), as the other case is analogous.
By applying Lemma E.2 to {Us : s ∈ S}, there exists a menu At = {rst : s ∈ S} such that
for each s ∈ S, rst is the unique maximizer of Us in At . By Lemma E.3, At ∈ A∗

t (h
t−1).

Moreover, we can assume that each rst assigns positive probability to (x�At+1), (y�Bt+1),
and (x�Bt+1), (y�At+1), as otherwise we can mix these three options with all lotteries
in At (using the same weights for each rts) without affecting the construction. Let rt :=
rstt denote the maximizer in state st . By choosing ε small enough, we can ensure that
pt := rt + ε(x�At+1) + ε(y�Bt+1) − ε(x�Bt+1) − ε(y�At+1) and qt := rt − ε(x�At+1) −
ε(y�Bt+1)+ε(x�Bt+1)+ε(y�At+1) are well-defined lotteries. Note that pA

t = qA
t and pZ

t =
qZ
t . Moreover, for small enough ε, we can also ensure that

Ust (pt) > Ust (rt) > Ust (qt) > max
r′t∈At�{rt }

Us

(
r ′
t

)
and

Us′
(
rs

′
t

)
>Us′(pt)�Us′(rt)�Us′(qt)

for all s′ ∈ S with st �= s′. Hence, ρt(pt;At ∪ {pt}|ht−1) = μ
st−1
t (st) > 0 = ρt(qt�At ∪

{qt}|ht−1) and, by Lemma E.3, At ∪ {pt}�At ∪ {qt} ∈ A∗
t (h

t−1). But this contradicts Ax-
iom C.1 (Separability).

Thus, there exist functions ust : Z → R and Vst : At+1 → R such that Ust (zt�At+1) =
ust (zt) + Vst (At+1) for all zt and At+1. Moreover, by Axiom C.2(iv) (Menu Nondegener-
acy) and Lemma E.3, there exist At+1, Bt+1, and zt such that Ust (zt�At+1) �= Ust (zt�Bt+1).
Hence, Vst (At+1) �= Vst (Bt+1), so that Vst is nonconstant.
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For (ii), Axiom C.2(iii) (Continuity) together with Proposition F.2 ensure that Ust is
continuous. By part (i), this implies that Vst is continuous.

For (iii), suppose to the contrary that Vst (αAt+1 + (1 − α)Bt+1) �= αVst (At+1) + (1 −
α)Vst (Bt+1) for some α, At+1, Bt+1. We only consider the case Vst (αAt+1 + (1 − α)Bt+1) >
αVst (At+1) + (1 − α)Vst (Bt+1), as the other case is analogous. Note that the collection
{Vs : s ∈ S} induces a finite collection of ordinally distinct vNM utilities V 1� � � � � V k (with
k ≤ |S|) over At+1, all of which are nonconstant by part (i). Hence, by Lemma E.2, there
exists a finite set Mt+1 = {mi

t+1 : i = 1� � � � �k} ⊂ Δ(At+1) of lotteries over At+1 such that
each mi

t+1 is the unique maximizer of V i in Mt+1. We can assume that each mi
t+1 assigns

positive probability to menus αAt+1 + (1−α)Bt+1, At+1, and Bt+1, as otherwise we can mix
these three options to all lotteries in Mt+1 (using the same weights for all mi

t+1) without
affecting the construction. Let m∗

t+1 ∈ Mt+1 denote the maximizer of Vst in Mt+1.
By choosing ε small enough, we can ensure that mt+1 :=m∗

t+1 +ε(αAt+1 +(1−α)Bt+1)−
εαAt+1 −ε(1−α)Bt+1 and m′

t+1 := m∗
t+1 −ε(αAt+1 +(1−α)Bt+1)+εαAt+1 +ε(1−α)Bt+1

are well-defined lotteries in Δ(At+1). Note that Ā(mt+1) = Ā(m′
t+1). Moreover, for small

enough ε > 0, we can also ensure that

Vst (mt+1) > Vst

(
m∗

t+1

)
> Vst

(
m′

t+1

)
> max

m̃t+1∈Mt+1�{m∗
t+1}

Vst (m̃t+1)

and

max
m̃t+1∈Mt+1

Vs′t (m̃t+1) > Vs′t (mt+1)�Vs′t
(
m∗

t+1

)
� Vs′t

(
m′

t+1

)
for all s′

t �= st in S with Vs′t �≈ Vst . Fix any z ∈ Z and let At := {(z� m̃t+1) : m̃t+1 ∈
Mt+1}. Then Lemma E.3 along with the separability of Us established in part (i) im-
ply that ρt((z�mt+1);At ∪ {(z�mt+1)}|ht−1) = μ

st−1
t ({s : Vs ≈ Vst }) > 0 = ρt((z�m

′
t+1);At ∪

{(z�m′
t+1)}|ht−1). Also At ∪ {(z�mt+1)}�At ∪ {(z�m′

t+1)} ∈ A∗
t (h

t−1). But this contradicts
Axiom C.2(ii) (Reduction of Mixed Menus).

For (iv), suppose to the contrary that Vst (Bt+1) < Vst (At+1) for some At+1 ⊆ Bt+1. Let
S+ := {s ∈ S : Vs(Bt+1) > Vs(At+1)} and S− := {s ∈ S : Vs(Bt+1) < Vs(At+1)}. Note that S−
is nonempty as st ∈ S−. For each s ∈ S � (S+ ∪ S−), we take a pair of menus As

t+1, Bs
t+1

such that As
t+1 ⊆ Bs

t+1 and Vs(A
s
t+1) �= Vs(B

s
t+1).

79 Define A∗
t+1 := ∑

s∈S�(S+∪S−) εsA
s
t+1 +

(1−∑
s∈S�(S+∪S−) εs)At+1 and B∗

t+1 := ∑
s∈S�(S+∪S−) εsB

s
t+1 +(1−∑

s∈S�(S+∪S−) εs)Bt+1, where
(εs) ∈ (0�1)S�(S+∪S−) is a vector such that

∑
s∈S�(S+∪S−) εs < 1. Note that A∗

t+1 ⊆ B∗
t+1 by

construction. Moreover, since each Vs is linear by part (iii), we can choose (εs) suffi-
ciently small so that Vs(A

∗
t+1) > Vs(B

∗
t+1) for every s ∈ S− and Vs(A

∗
t+1) < Vs(B

∗
t+1) for

every s ∈ S+. In addition, we can pick (εs) to ensure that Vs(A
∗
t+1) �= Vs(B

∗
t+1) for all

s ∈ S � (S+ ∪ S−). Then {(z�A∗
t+1)� (z�B

∗
t+1)} ∈ A∗

t (h
t−1), by Lemma E.3. Moreover,

ρt((z�A
∗
t+1); {(z�A∗

t+1)� (z�B
∗
t+1)}|ht−1) ≥ μ

st−1
t (S−) > 0. This contradicts Axiom C.2(i)

(Preference for Flexibility). Q.E.D.

C.2.3. Construction of Random Utility in Period t + 1

Since ρ admits a DREU representation, it admits an S-based DREU representation
by Proposition A.1, so in particular we can obtain (St+1� {μst

t+1}st∈St � {Ũst+1� τst+1}st+1∈St+1)
satisfying DREU1 and DREU2 at t + 1. For any st ∈ St , define ρst

t+1 by ρst
t+1(pt+1�At+1) :=∑

st+1
μst

t+1(st+1)τst+1(pt+1�At+1) for all pt+1, At+1.

79Such a pair exists since each Vs is nonconstant. Indeed, if such a pair does not exist for some s, then for
any pair of menus Ãt+1 �= B̃t+1, we have Vs(Ãt+1) = Vs(Ãt+1 ∪ B̃t+1)= Vs(B̃t+1), a contradiction.
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C.2.4. Sophistication and Finiteness of Menu Preference

Before completing the representation, we establish two more lemmas. Using Axiom C.3
(Sophistication), the first lemma ensures that for each st , ρ

st
t+1 and the preference over

At+1 induced by Vst satisfy Axioms 1 and 2 in Ahn and Sarver (2013).

LEMMA C.2:For any st ∈ St , separating history ht for st , and At+1 ⊆ Bt+1 ∈ A∗
t+1(h

t), the
following are equivalent:

(i) ρst
t+1(Bt+1 �At+1;Bt+1) > 0.

(ii) Vst (Bt+1) > Vst (At+1).

PROOF: Pick any separating history ht = (A0�p0� � � � �At�pt) for st . Note that ht ∈ H∗
t

by definition. By DREU2 at t + 1 and Lemma E.5, we have ρt+1(Bt+1 �At+1;Bt+1|ht) =
ρst
t+1(Bt+1 � At+1;Bt+1). Thus, by Axiom C.3 (Sophistication), it suffices to show that

Vst (Bt+1) > Vst (At+1) if and only if point (ii) in Axiom C.3 holds.
To show the “only if” direction, suppose Vst (Bt+1) > Vst (At+1) and take any sequences

An
t+1 →m At+1 and Bn

t+1 →m Bt+1. Since convergence in mixture implies convergence un-
der the Hausdorff metric, we have limn Vst (A

n
t+1)= Vst (At+1) and limn Vst (B

n
t+1)= Vst (Bt+1)

by continuity of Vst (Lemma C.1(ii)). Hence, there is N such that Vst (B
n
t+1) > Vst (A

n
t+1)

for all n ≥ N . Then, for all n ≥ N , the fact that ht is a separating history for st
and M(At�Ust ) = {pt} (as ht ∈ H∗

t ) imply that M( 1
2At + 1

2 {(z�Bn
t+1)� (z�A

n
t+1)}�Ust ) =

{ 1
2pt + 1

2(z�B
n
t+1)} for all z. Thus, by DREU2 at t and Lemma E.5, we have ρt(

1
2pt +

1
2(z�B

n
t+1); 1

2At + 1
2 {(z�Bn

t+1)� (z�A
n
t+1)}|ht−1) = ρt(pt;At |ht−1) > 0 for all n ≥ N . That is,

point (ii) in Axiom C.3 holds.
For the “if” direction, we prove the contrapositive. Suppose that Vst (Bt+1) ≤ Vst (At+1).

Note that since Vst is monotone and nonconstant by Lemma C.1, we have Vst (Bt+1) =
Vst (At+1) �= Vst (Ct+1) for some Ct+1. If Vst (At+1) > Vst (Ct+1), take An

t+1 = At+1 and Bn
t+1 =

n−1
n
Bt+1 + 1

n
Ct+1 for each n, and if Vst (At+1) < Vst (Ct+1), take Bn

t+1 = Bt+1 and An
t+1 =

n−1
n
At+1 + 1

n
At+1 for each n. In either case, we have An

t+1 →m At+1, Bn
t+1 →m Bt+1, and

Vst (B
n
t+1) < Vst (A

n
t+1) for every n by the linearity of Vst (Lemma C.1). Combining this

with the fact that M(At�Ust ) = {pt} (since ht is a separating history for st), we have
M( 1

2At + 1
2 {(z�Bn

t+1)� (z�A
n
t+1)}�Ust )= { 1

2pt + 1
2(z�A

n
t+1)} for each n. Given this, DREU2

at t and Lemma E.5 yield ρt(
1
2pt + 1

2(z�B
n
t+1); 1

2At + 1
2 {(z�Bn

t+1)� (z�A
n
t+1)}|ht−1) = 0 for

all n. That is, point (ii) in Axiom C.3 does not hold. Q.E.D.

The next lemma shows that because of Lemma C.2, the finiteness of each suppμst
t+1 is

enough to ensure that the preference over At+1 induced by each Vst satisfies Axiom DLR
6 (Finiteness) introduced by Ahn and Sarver (2013):

LEMMA C.3: For each st ∈ St , there is Kst > 0 such that for any At+1, there is Bt+1 ⊆ At+1

such that |Bt+1| ≤Kst and Vst (At+1)= Vst (Bt+1).

PROOF: Fix any st ∈ St and a separating history ht for st . Let St+1(st) := suppμst
t+1. We

will show that Kst := |St+1(st)| is as required.
Step 1: First consider any Bt+1 ∈ A∗

t+1(h
t). Then, by Lemma E.3, for each st+1 ∈ St+1(st)

we have |M(Bt+1� Ũst+1)| = 1. Letting At+1 := ⋃
st+1∈St+1(st )

M(Bt+1� Ũst+1), we then have
that |At+1| ≤ Kst and ρst

t+1(Bt+1 � At+1�Bt+1) = 0. By Lemma C.2, this implies that
Vst (At+1)= Vst (Bt+1), as required.
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Step 2: Next take any Bt+1 /∈ A∗
t+1(h

t). By Lemma E.6, we can find a sequence
Bn

t+1 →m Bt+1 with Bn
t+1 ∈ A∗

t+1(h
t) for all n. Then, by Step 1, we can find An

t+1 ⊆ Bn
t+1

for all n such that |An
t+1| ≤ Kst and Vst (A

n
t+1) = Vst (B

n
t+1). By definition of →m, for

each qt+1 ∈ Bt+1, there exist Dt+1(qt+1) ∈ At+1 and a sequence αn(qt+1) → 0 such that
An

t+1 ⊆ ⋃
qt+1∈Bt+1

αn(qt+1)Dt+1(qt+1)+ (1 −αn(qt+1)){qt+1} for all n. Hence, since |An
t+1| ≤

Kst for all n, restricting to a subsequence if necessary, there is At+1 ⊆ Bt+1 such that
An

t+1 →m At+1 and such that |At+1| ≤ Kst . Finally, by continuity of Vst (Lemma C.1(ii)),
we have Vst (Bt+1)= Vst (At+1), as required. Q.E.D.

C.2.5. Completing the Representation

Recall that in Section C.2.3, we have obtained (St+1� {μst
t+1}st∈St � {Ũst+1� τst+1}st+1∈St+1) sat-

isfying DREU1 and DREU2 at t + 1. We now show that for each st+1 ∈ St+1, there exist
αst+1 > 0 and βst+1 ∈ R such that after replacing Ũst+1 with Ust+1 := αst+1Ũst+1 + βst+1 , we
additionally have that BEU holds at time t.

Fix any st and let St+1(st) := suppμst
t+1. Note that by DREU1 at t + 1 and since we have

defined ρst
t+1 by ρst

t+1(pt+1�At+1) := ∑
st+1∈St+1(st )

μst
t+1(st+1)τst+1(pt+1�At+1) for all pt+1 and

At+1, it follows that (St+1(st)�μ
st
t+1� {Ũst+1� τst+1}st+1∈St+1(st )) is an S-based REU representa-

tion of ρst
t+1 (see Definition 13).

Since all the Ust+1 are nonconstant and induce different preferences over Δ(Xt+1)
for distinct st+1� s

′
t+1 ∈ St+1(st) and since Vst is nonconstant by Lemma C.1, we can find

a finite set Y ⊆ Xt+1 such that (i) Vst is nonconstant on At+1(Y) := {Bt+1 ∈ At+1 :⋃
pt+1∈Bt+1

supp(pt+1) ⊆ Y }; (ii) for each st+1 ∈ St+1(st), Ũst+1 is nonconstant on Y ; and

(iii) for each distinct pair st+1� s
′
t+1 ∈ St+1(st), Ũst+1 �≈ Ũs′t+1

on Y .
Observe that by Lemmas C.1 and C.3, the preference �st on At+1(Y) induced by Vst

satisfies Axioms DLR 1–6 (Weak Order, Continuity, Independence, Monotonicity, Non-
triviality, Finiteness) in Ahn and Sarver (2013) (henceforth AS), so by Corollary S1 in AS,
�st admits a DLR representation (see Definition S1 in AS). Moreover, since ρst

t+1 admits
an S-based REU representation (what AS call a GP representation), so does its restriction
to At+1(Y). Finally, by Lemma C.2, the pair (�st � ρ

st
t+1) satisfies AS’s Axioms 1 and 2 on

At+1(Y). Thus, by Theorem 1 in AS, we can find a DLR-GP representation of (�st � ρ
st
t+1)

on At+1(Y), that is, an S-based REU representation (Ŝt+1(st)� μ̂
st
t+1� {Ûst+1� τ̂st+1}st+1∈Ŝt+1(st )

)

of ρst
t+1 on At+1(Y) such that �st restricted to At+1(Y) is represented by V̂st , where

V̂st (At+1) := ∑
st+1∈Ŝt+1(st )

μ̂st
t+1(st+1)maxpt+1∈At+1 Ûst+1(pt+1). Since Vst also represents �st

restricted to At+1(Y), standard arguments yield α̂st > 0 and β̂st ∈ R such that for all
At+1 ∈At+1(Y), we have Vst (At+1)= α̂st V̂st (At+1)+ β̂st , whence

Vst (At+1)=
∑

st+1∈Ŝt+1(st )

μ̂st
t+1(st+1) max

pt+1∈At+1
Ust+1(pt+1)� (22)

where Ust+1 = α̂st Ûst+1 + β̂st . By the uniqueness properties of S-based REU representa-
tions (Proposition 4 in AS), (Ŝt+1(st)� μ̂

st
t+1� {Ust+1� τ̂st+1}st+1∈Ŝt+1(st )

) still constitutes an S-
based REU representation of ρst

t+1 on At+1(Y). Applying Proposition 4 in AS again, since
(St+1(st)�μ

st
t+1� {Ũst+1� τst+1}st+1∈St+1(st )) also represents ρst

t+1 on At+1(Y), we can assume af-
ter relabeling that St+1(st) = Ŝt+1(st), μ̂

st
t+1 = μst

t+1 and that for each st+1 ∈ St+1(st), there
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exist constants αst+1 > 0 and βst+1 ∈ R such that

Ust+1(xt+1)= αst+1Ũst+1(xt+1)+βst+1 (23)

for each xt+1 ∈ Y ⊆ Xt+1. Since Ũst+1 is defined on Xt+1, we can extend Ust+1 to the
whole space Xt+1 by (23). Then Ust+1 and Ũst+1 represent the same preference over
Δ(Xt+1), so since (St+1(st)�μ

st
t+1� {Ũst+1� τst+1}st+1∈St+1(st )) satisfies DREU1 and DREU2, so

does (St+1(st)�μ
st
t+1� {Ust+1� τst+1}st+1∈St+1(st )).

It remains to show that (22) holds for all At+1 ∈ At+1, so that BEU is satisfied at
st . To see this, consider any At+1 ∈ At+1 and choose a finite set Y ′ ⊆ Xt+1 such that
Y ∪ ⋃

pt+1∈At+1
supp(pt+1) ⊆ Y ′. As above, we can again apply Theorem 1 in AS to obtain

a DLR-GP representation (S̄t+1(st)� μ̄
s′t
t+1� {Ūst+1� τ̄st+1}st+1∈S̄t+1(st )

) of the pair (�st � ρ
st
t+1) re-

stricted to At+1(Y
′). But since this also yields a DLR-GP representation of (�st � ρ

st
t+1) re-

stricted to At+1(Y), by the uniqueness property of DLR-GP representations (Theorem 2
in AS), we can assume that S̄t+1(st) = St+1(st), μ̄

st
t+1 = μst

t+1 and that there exist ᾱst > 0
and β̄st+1 ∈ R such that Ūst+1 = ᾱstUst+1 + β̄st+1 for each st+1 ∈ St+1(st). Since �st is repre-
sented on At+1(Y

′) by V̄st (Bt+1) := ∑
st+1∈St+1(st )

μst
t+1(st+1)maxpt+1∈Bt+1 Ūst+1(pt+1) and since

ᾱst depends only on st (and not on st+1), it follows that �st is also represented on At+1(Y
′)

by V ′
st
(Bt+1) := ∑

st+1∈St+1(st )
μst

t+1(st+1)maxpt+1∈Bt+1 Ust+1(pt+1). Thus, the linear functions Vst

and V ′
st

represent the same preference on At+1(Y
′) and coincide on At+1(Y), so they must

also coincide on At+1(Y
′). Thus, (22) holds at At+1.

This shows that BEU holds at t. Combining this with the inductive hypothesis, it follows
that (St′� {μst′−1

t′ }st′−1∈St′−1
� {Ust′ � τst′ }st′ ∈St′ ) satisfies DREU1 and DREU2 for all t ′ ≤ t+1 and

BEU for all t ′ ≤ t, as required.

C.3. Proof of Theorem C.1: Necessity

Suppose that ρ admits a BEU representation. Then, by Proposition A.1, ρ admits an
S-based BEU representation (St� {μst−1

t }st−1∈St−1� {Ust �ust � τst }st∈St ).
To show Axiom C.1 (Separability), take any history ht−1, At , and pt�qt /∈ At such that

pA
t = qA

t , pZ
t = qZ

t , and At ∪ {pt}�At ∪ {qt} ∈ A∗
t (h

t−1). Note that by the representation,
Ust (pt) = Ust (qt) for any st . Thus M(A ∪ {pt}�Ust ) = M(A ∪ {qt}�Ust ) for each st . Since
At ∪ {pt}�At ∪ {qt} ∈A∗

t (h
t−1), this implies ρt(pt;At ∪ {pt}|ht−1)= ρt(qt;At ∪ {qt}|ht−1).

Axiom C.2(ii) (Reduction of Mixed Menus) is verified in the same manner, because
when Ā(mt+1) = Ā(m′

t+1), then by the representation, Ust (z�mt+1) = Ust (z�m
′
t+1) for all

z and st .
To verify Axiom C.2(i) (Preference for Flexibility), note that when At+1 ⊆ Bt+1, then

by the representation, we have Ust (z�At+1) ≤ Ust (z�Bt+1) for all z and st . Moreover,
{(z�At+1)� (z�Bt+1)} ∈ A∗

t (h
t−1) guarantees that the inequality is strict for all st with the

property that μst−1
t (st) > 0 for some st−1 that is consistent with history ht−1. This implies

ρt((z�At+1); {(z�At+1)� (z�Bt+1)}|ht−1)= 1.
Axiom C.2(iii) (Continuity) holds by Proposition F.2, because for each st , the function

Ust :Xt → R is continuous by the representation.
To verify Axiom C.2(iv) (Menu Nondegeneracy), note that by the representation,

UsT is nonconstant for every sT . Then an inductive argument implies that for any z,
t ≤ T − 1, and st , Ust (z� ·) : At+1 → R is also nonconstant. Thus, for each st , there is
a pair of menus such that Ust (z�A

st
t+1) �= Ust (z�B

st
t+1). Define At+1 := ∑

st∈St αstA
st
t+1 and
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Bt+1 := ∑
st∈St αstB

st
t+1 for some vector (αst ) ∈ (0�1)St with

∑
st∈St αst = 1. Since Ust is linear

in continuation menus by the representation, we can choose (αst ) such that Ust (z�At+1) �=
Ust (z�Bt+1) for all st . By Lemma E.3, this implies {(z�At+1)� (z�Bt+1)} ∈A∗

t (h
t−1).

Finally, to show Axiom C.3 (Sophistication), take any history ht = (A0�p0� � � � �
At�pt) ∈ H∗

t , z, and At+1 ⊆ Bt+1 ∈ A∗
t+1(h

t). Let S∗
t ⊆ St denote the set of states that

are consistent with ht . First note that based on Lemmas E.3 and E.5 and the fact that
Bt+1 ∈A∗

t+1(h
t), condition (i) in Axiom C.3 is equivalent to the following condition:

(i′) ∃s∗
t ∈ S∗

t �∃s∗
t+1 ∈ suppμs∗t

t+1 such that max
Bt+1

Us∗t+1
> max

At+1
Us∗t+1

�

Thus, it suffices to show that condition (i′) is equivalent to condition (ii) in Axiom C.3.
Suppose first that condition (i′) holds. Then, by the representation, we have Us∗t (z�

Bt+1) > Us∗t (z�At+1). Take any sequences An
t+1 →m At+1 and Bn

t+1 →m Bt+1. Since con-
vergence in mixture implies convergence under the Hausdorff metric and Us∗t is con-
tinuous by the representation, this yields some N such that Us∗t (z�B

n
t+1) > Us∗t (z�A

n
t+1)

for all n ≥ N . Hence, the fact that pt is the unique maximizer of Us∗t in At (which
follows from ht ∈ H∗

t ) implies that for all n ≥ N , 1
2pt + 1

2(z�B
n
t+1) is the unique maxi-

mizer of Us∗t in 1
2At + 1

2 {(z�Bn
t+1)� (z�A

n
t+1)}. This ensures that for all n ≥ N , ρt(

1
2pt +

1
2(z�B

n
t+1); 1

2At + 1
2 {(z�Bn

t+1)� (z�A
n
t+1)}|ht−1) is strictly positive, as it is greater than∑

(s0�����s
∗
t )∈S0×···×St

∏t
k=0 μ

sk−1
k

(sk)τsk (pk�Ak)∑
(s0�����st−1)∈S0×···×St−1

∏t−1
k=0 μ

sk−1
k

(sk)τsk (pk�Ak)
> 0, that is, the conditional probability that s∗

t real-

izes after history ht−1 (see Lemma E.5). Thus, condition (ii) in Axiom C.3 is satisfied.
For the converse, we prove the contrapositive. If (i′) does not hold, then by the rep-

resentation, we have Ust (z�At+1) = Ust (z�Bt+1) for all st ∈ S∗
t . Take menus C ′

t+1, Ct+1

such that Ust (z�C
′
t+1) > Ust (z�Ct+1) for all st .80 Then define An

t+1 := 1
n
C ′

t+1 + n−1
n
At+1 and

Bn
t+1 := 1

n
C ′

t+1 + n−1
n
Bt+1 for each n. By construction, An

t+1 →m At+1 and Bn
t+1 →m Bt+1.

For each st , by linearity of Ust (z� ·), it follows that Ust (z�A
n
t+1) > Ust (z�B

n
t+1) for every n.

Thus, for any st ∈ S∗
t , 1

2pt + 1
2(z�B

n
t+1) /∈ M( 1

2At + 1
2 {(z�An

t+1)� (z�B
n
t+1)}�Ust ). But then

ρt(
1
2pt + 1

2(z�B
n
t+1); 1

2At + 1
2 {(z�Bn

t+1)� (z�A
n
t+1)}|ht−1) = 0 for every n, so that condition

(ii) is violated. This completes the proof of necessity.

APPENDIX D: PROOF OF THEOREM 3

Instead of proving the two-period characterization of BEB in Theorem 3, this section
establishes a generalization of Theorem 3 for arbitrary horizon T . Section D.1 presents
the T -period axiom for BEB. Sections D.2 and D.3 establish sufficiency and necessity of
this axiom.

D.1. Characterization of BEB for Arbitrary T

For any consumption lottery � ∈ Δ(Z) and menu At+1 ∈ At+1, define (��At+1) ∈ Δ(Xt)
to be the period-t lottery that yields current consumption according to � and yields con-
tinuation menu At+1 for sure; that is, (��At+1) := ∑

zt∈Z �(zt)δ(zt �At+1). Then, for each

80Such menus exist by the following argument. Note first that for any st+1 ∈ St+1, since Ust+1 is noncon-
stant, we can find gt+1(st+1)�bt+1(st+1) ∈ Δ(Xt+1) such that Ust+1(gt+1(st+1)) > Ust+1(bt+1(st+1)). Let C ′

t+1 :=
{gt+1(st+1)�bt+1(st+1) : st+1 ∈ St+1}, and for every st , let At+1(st) := {bt+1(st+1)} for some st+1 ∈ suppμst

t+1.
Then, Ust (z�C

′
t+1) ≥ Ust (z�At+1(s

′
t )) for all st , s′

t , with strict inequality for st = s′
t . Hence, letting Ct+1 :=∑

st∈St
1

|St |At+1(st), linearity implies Ust (z�C
′
t+1) > Ust (z�Ct+1) for all st , as required.
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t ≤ T − 1, �t� �t+1 ∈ Δ(Z), and At+2 ∈ At+2, we define (�t� �t+1�At+2) := (�t� {pt+1}) such
that pt+1 = (�t+1�At+2).81

We generalize Axiom 8 and Condition 1 as follows:

AXIOM D.1—Stationary Consumption Preference: For each history ht−1, if (�� ��At+2)�
(�′� �′�At+2) ∈ At ∈A∗

t (h
t−1), then

ρt

((
�� �′�At+2

);At |ht−1
) = 0�

CONDITION D.1—Uniformly Ranked Pair: There exist �� � ∈ Δ(Z) such that At :=
{(��At+1)� (��At+1)} ∈A∗

t (h
t−1) and ρt((��At+1);At |ht−1) = 1 for all t, At+1, and ht−1.

We have the following T -period generalization of Theorem 3:

THEOREM D.1: Suppose that ρ admits a BEU representation and Condition D.1 is satis-
fied. Then ρ satisfies Axiom D.1 if and only if ρ admits a BEB representation.

D.2. Proof of Theorem D.1: Sufficiency

Suppose that ρ admits a BEU representation and that Condition D.1 and Axiom D.1
hold. By Proposition A.1, ρ admits an S-based BEU representation (St� {μst−1

t }st−1∈St−1�{Ust �ust � τst }st∈St )t=0�����T . Up to adding appropriate constants to each utility ust and Ust ,
we can ensure that

∑
z∈Z ust (z) = 0 for all t = 0� � � � �T and st ∈ St without affecting that

(St� {μst−1
t }st−1∈St−1� {Ust �ust � τst }st∈St )t=0�����T is an S-based BEU representation of ρ. We will

show that this representation is in fact an S-based BEB representation, that is, for each
t ≤ T − 1 and st , there exists δst > 0 such that we have ust = 1

δst

∑
st+1

μst
t+1(st+1)ust+1 . By

Proposition A.1, this implies that ρ admits a BEB representation.
Condition D.1 ensures that all felicities ust agree on the ranking between � and �:

LEMMA D.1: ust (�) > ust (�) holds for all t and st .

PROOF: Consider any t and st ∈ St and the state st−1 such that μ
st−1
t (st) > 0. Take a

separating history ht−1 for st−1 and any At+1. Let At := {(��At+1)� (��At+1)}. Then Con-
dition D.1 ensures At ∈ A∗

t (h
t−1) and ρt((��At+1);At |ht−1) = 1, which by Lemma E.3

implies Ust (��At+1) > Ust (��At+1). By the separability of the representation, it follows
that ust (�) > ust (�). Q.E.D.

For any t = 0� � � � � T − 1 and st ∈ St , let u+
st

:= ∑
st+1

μst
t+1(st+1)ust+1 denote the expected

period t + 1 felicity at state st . Note that Lemma D.1 ensures that each u+
st

is nonconstant.
We show that Axiom D.1 (Stationary Consumption Preference) implies that ust and u+

st

induce the same preference over Δ(Z):

LEMMA D.2: ust ≈ u+
st

holds for all t ≤ T − 1 and st ∈ St .

81In the case of t = T − 1, by abusing notation we are using (�t� �t+1�At+2) to denote the lottery that yields
�t in period T − 1 and �t+1 in period T .
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PROOF: Suppose to the contrary that us∗t �≈ u+
s∗t for some s∗

t ∈ St . Since us∗t and u+
s∗t are

nonconstant, there exist �� �′ ∈ Δ(Z) such that us∗t (�) > us∗t (�
′) and u+

s∗t (�) < u+
s∗t (�

′). By
slightly perturbing � and �′ if needed, we can assume that ust (�) �= ust (�

′) and u+
st
(�) �=

u+
st
(�′) for all st ∈ St , since all ust and u+

st
are nonconstant.

Fix any At+2 and let At := {(�� ��At+2)� (�
′� �′�At+2)� (�� �

′�At+2)}. Then, by the sep-
arability of the representation, we have that |M(At�Ust )| = 1 for all st ∈ St , with
unique element given by (argmax(�t ��t+1)∈{���′}2 ust (�t) + u+

st
(�t+1)�At+2). In particular,

M(At�Us∗t ) = {(�� �′�At+2)}. Let st−1 be the unique state such that μ
st−1
t (s∗

t ) > 0 and
take a separating history ht−1 for st−1. Then Lemma E.3 implies that At ∈ A∗

t (h
t−1) and

ρt((�� �
′�At+2)�At|ht−1)≥ μ

st−1
t (s∗

t ) > 0, contradicting Axiom D.1. Q.E.D.

Since each ust is nonconstant by Lemma D.1, Lemma D.2 implies that, for each t ≤
T −1 and st , there exist constants δst > 0, γst ∈ R such that u+

st
= δstust +γst . Since we have

normalized felicities such that
∑

z∈Z ust′ (z) = 0 for any t ′ and st′ , we must have γst = 0. This
completes the proof that ρ admits an S-based BEB representation.

D.3. Proof of Theorem D.1: Necessity

Suppose that ρ admits a BEB representation. By Proposition A.1, ρ admits an S-based
BEB representation (St� {μst−1

t }st−1∈St−1� {Ust �ust � δst � τst }st∈St )t=0�����T .
To verify Axiom D.1, take any history ht−1 and consider (�� ��At+2)� (�

′� �′�At+2) ∈ At ∈
A∗

t (h
t−1). If ρt((�� �

′�At+2)�At|ht−1) > 0, then by Lemma E.3, we have Ust ((�� �
′�At+2)) >

Ust ((�� ��At+2))�Ust ((�
′� �′�At+2)) for some st . By the representation, this implies that

ust (�) > ust (�
′) and

∑
st+1

μst
t (st+1)ust+1(�) <

∑
st+1

μst
t (st+1)ust+1(�

′). But this contradicts
the fact that ust = 1

δst

∑
st+1

μst
t (st+1)ust+1 and δst > 0.

APPENDIX E: ADDITIONAL LEMMAS

This section collects together several lemmas that are used throughout Sections B–D.
The proofs are provided in Supplemental Material Appendix J.2.

LEMMA E.1: For all t = 0� � � � � T , Xt is a separable metric space, where XT := Z is en-
dowed with the discrete metric and for all t ≤ T − 1, we recursively endow Δ(Xt+1) with
the induced topology of weak convergence, At+1 := K(Δ(Xt+1)) with the induced Hausdorff
topology, and Xt := Z ×At+1 with the induced product topology.

LEMMA E.2: Let Y be any set (possibly infinite) and let {Us : s ∈ S} ⊆RY be a collection of
nonconstant vNM utility functions indexed by a finite set S such that Us �≈Us′ for any distinct
s� s′ ∈ S. Then there is a collection of lotteries {ps : s ∈ S} ⊆ Δ(Y) such that Us(p

s) > Us(p
s′)

for any distinct s� s′ ∈ S.

LEMMA E.3:Fix t = 0� � � � � T . Suppose (St′� {μst′−1
t′ }st′−1∈St′−1

� {Ust′ � τst′ }st′ ∈St′ ) satisfy
DREU1 and DREU2 for all t ′ ≤ t. Take any ht−1 ∈Ht−1 and let S(ht−1)⊆ St−1 denote the set
of states consistent with ht−1. Then for any At ∈At , the following are equivalent:

(i) At ∈A∗
t (h

t−1).
(ii) For each st−1 ∈ S(ht−1) and st ∈ suppμst−1

t , |M(At�Ust )| = 1.
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LEMMA E.4: Suppose that ρ satisfies Axiom B.2. Fix t ≥ 1, At ∈ At , ht−1 = (A0�p0� � � � �

At−1�pt−1) ∈ Ht−1, and λ = (λn)
t−1
n=0, λ̂ = (λ̂n)

t−1
n=0 ∈ (0�1]t . Suppose dt−1 = ({qn}� qn)

t−1
n=0,

d̂t−1 = ({q̂n}� q̂n)
t−1
n=0 ∈Dt−1 satisfy λht−1 +(1−λ)dt−1� λ̂ht−1 +(1− λ̂)d̂t−1 ∈Ht−1(At), where

λht−1 + (1−λ)dt−1 := (λnAn + (1−λn){qn}�λnpn + (1−λn)qn)
t−1
n=0 and λ̂ht−1 + (1− λ̂)d̂t−1

is defined analogously. Then

ρt

(·;At |λht−1 + (1 − λ)dt−1
) = ρt

(·;At |λ̂ht−1 + (1 − λ̂)d̂t−1
)
�

and hence, ρht−1

t (·;At)= ρt(·;At |λht−1 + (1 − λ)dt−1).

LEMMA E.5: Fix t = 0� � � � � T . Suppose (St′� {μst′−1
t′ }st′−1∈St′−1

� {Ust′ � τst′ }st′ ∈St′ ) satisfy
DREU1 and DREU2 for all t ′ ≤ t. Then the extended version of ρ from Definition 11 also
satisfies DREU2 for all t ′ ≤ t, that is, for all pt′ , At′ , and ht′−1 = (A0�p0� � � � �At′−1�pt′−1) ∈
Ht′−1,82 we have

ρt′
(
pt′�At′ |ht′−1

) =

∑
(s0�����st′ )∈S0×···×St′

t′∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

∑
(s0�����st′−1)∈S0×···×St′−1

t−1∏
k=0

μ
sk−1
k (sk)τsk(pk�Ak)

�

LEMMA E.6: Fix t = 0� � � � � T . Suppose (St′� {μst′−1
t′ }st′−1∈St′−1

� {Ust′ � τst′ }st′ ∈St′ ) satisfy
DREU1 and DREU2 for all t ′ ≤ t. Fix any st−1 ∈ St−1, separating history ht−1 for st−1, and
At ∈At . Then there exists a sequence An

t →m At such that An
t ∈A∗

t+1(h
t) for all n. Moreover,

given any s∗
t ∈ suppμst−1

t and p∗
t ∈ M(At�Us∗t ), we can ensure in this construction that there

is pn
t (s

∗
t ) ∈An

t with pn
t (s

∗
t )→m p∗

t such that Ust (A
n
t �p

n
t (s

∗
t ))= {Us∗t } for all n.
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