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Abstract

We present two axiomatizations of the Second-Order Expected Utility

model in the context of the standard models of choice under uncertainty.

1 Introduction

Second-Order Expected Utility (SOEU) is a very simple model of preferences that

is consistent with Ellsberg-type behavior and more generally allows for sensitivity

to the source of uncertainty. It was first axiomatized in the Anscombe-Aumann

setting by Neilson (1993, 2009) and was later studied by Nau (2001, 2006) and

Ergin and Gul (2009) in the context of a Savage model with a product state

space; see also Chew and Sagi (2008) for a general study of source sensitivity and

Abdellaoui, Baillon, Placido, and Wakker (2009) for an experimental investigation.

The SOEU preferences intersect with standard models. As was shown by Strza-

lecki (2009), the class of multiplier preferences of Hansen and Sargent (2001) is pre-

cisely the intersection of the SOEU preferences and the variational preferences of

Maccheroni, Marinacci, and Rustichini (2006). In addition, SOEU can be thought

of as a special case of the model of Klibanoff, Marinacci, and Mukerji (2005) (in

which the support of measure µ consists of Dirac measures on S).
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In this note we present two axiomatizations that show how to obtain SOEU

in standard models. The first extends and relies on a result of Werner (2005) and

says that any preferences that satisfy our basic technical axioms and are ambiguity-

averse in the sense of Ghirardato and Marinacci (2002) and also satisfy the Savage’s

Sure Thing Principle are SOEU. This is because GM-ambiguity aversion is related

to “translation invariance along the certainty line”, which together with the Sure

Thing Principle plays the role of state independence and implies SOEU. The second

result imposes a version of “translation invariance along the certainty line” directly.

We are using an axiom that is very weak by itself, but in the presence of Uncertainty

Aversion of Schmeidler (1989) and the Sure Thing Principle delivers SOEU.

2 Preliminaries

2.1 Setup

Let S be a finite state space. Let ∆ (Z) be the set of simple probability measures

on a set of prizes Z. Acts are mappings f : S → ∆(Z); let F denote the set of acts.

If f, g ∈ F and E ⊆ S, then fEg denotes an act with fEg(s) = f(s) if s ∈ E and

fEg(s) = g(s) if s /∈ E. Let ∆(S) be the set of probability measures on S. For any

p ∈ ∆(S) and any ξ ∈ RS let Epξ :=
∑

s∈S ξ(s)p(s). For any p ∈ ∆(S) and any

act f ∈ F let Epf denote the constant act with Epf(z) =
∑

s∈S f(s)(z)p(s), i.e.,

the probability mixture of the lotteries that obtain in different states with weights

given by p.

Every act f : S → ∆(Z) involves two sources of uncertainty: first, the payoff

of f is contingent on the state, for which there is no objective probability given;

second, given the state, f(s) is an objective lottery. The existence of two sources

of uncertainty enables a distinction between purely objective lotteries, i.e., acts

which pay the same lottery π ∈ ∆(Z) irrespectively of the state of the world

and purely subjective acts, i.e., acts that in each state of the world pay off a

degenerate lottery δz for some z ∈ Z, which possibly depends on s. With the usual

abuse of notation, let ∆(Z) denote the set of purely objective lotteries. Note that

given p ∈ ∆(S) each purely subjective act f induces the purely objective lottery

Epf ∈ ∆(Z).
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2.2 Anscombe–Aumann Expected Utility

The standard Anscombe–Aumann expected utility model ranks acts according to

f 7→
∑
s∈S

u(f(s))p(s)

where u : ∆(Z) → R is an affine function and p ∈ ∆(S). This model imposes

a uniform decision attitude towards objective risk and subjective uncertainty. To

see this, observe that for any two purely objective lotteries π′ % π if and only if∑
z∈Z

u(z)π′(z) ≥
∑
z∈Z

u(z)π(z)

and for any two purely subjective acts f ′ % f if and only if∑
z∈Z

u(z)Epf
′(z) ≥

∑
z∈Z

u(z)Epf(z).

In particular, any purely subjective act f is indifferent to the objective lottery Epf

that it induces.

2.3 Second-Order Expected Utility

The SOEU model ranks acts according to

f 7→
∑
s∈S

φ
(
u(f(s))

)
p(s)

where u : ∆(Z)→ R is an affine function with range U , φ : U → R is a strictly in-

creasing function, and p ∈ ∆(S). By contrast to the Anscombe–Aumann expected

utility model, this model allows the decision maker to have different attitudes to-

wards objective risk and subjective uncertainty. To see that, observe that for any

two purely objective lotteries π′ % π if and only if∑
z∈Z

u(z)π′(z) ≥
∑
z∈Z

u(z)π(z).
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On the other hand, for any two purely subjective acts f ′ % f if and only if∑
z∈Z

φ(u(z))Epf
′(z) ≥

∑
z∈Z

φ(u(z))Epf(z).

These preferences are different to the extent to which the function φ is nonlinear.

In particular, if φ is concave, any purely subjective act f is ranked lower than the

objective lottery Epf that it induces.

2.4 Basic Axioms

Axiom A.1 (Weak Order) The relation % is complete, and transitive.

Axiom A.2 (Independence on constant acts) For all π, ρ, σ ∈ ∆(Z) and α ∈
(0, 1): π ∼ ρ implies απ + (1− α)σ ∼ αρ+ (1− α)σ.

Axiom A.3 (Continuity) If f, g, h,∈ F then sets {α ∈ [0, 1] | αf+(1−α)g % h}
and {α ∈ [0, 1] | h % αf + (1− α)g} are closed.

Axiom A.4 (Monotonicity) If f, g ∈ F and f(s) % g(s) for all s ∈ S, then

f % g.

Axiom P2 (Sure Thing Principle) For all events E ∈ Σ and acts f, g, h, h′ ∈
F : if fEh % gEh then fEh

′ % gEh
′.

Definition 1. A state s is non-null iff there exists f ∈ F and π, ρ ∈ ∆(Z) such

that πsf � ρsf .

2.5 Canonical Representation

In the present setting the canonical result of Debreu (1960) implies the following.

Theorem 1. Suppose there are at least three non-null states. The preference %

satisfies axioms A.1–A.4 and P2 iff there exists a non-constant affine function u :

∆(Z) → R with range U and continuous weakly increasing functions vs : U → R,

at least three of them nonconstant, such that % is represented by

f 7→
∑
s∈S

vs
(
u(f(s))

)
. (1)
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3 Results

3.1 GM-ambiguity aversion

Our first result relies on the assumption that preferences are ambiguity averse

according to Ghirardato and Marinacci (2002).

Axiom A.5 (GM-Ambiguity Aversion) There exists p ∈ ∆(S) such that for

all f ∈ F and π ∈ ∆(Z): f % π implies Epu(f) ≥ u(π).

Most standard models satisfy this axiom, for example the Maxmin Expected Utility

preferences of Gilboa and Schmeidler (1989) and more generally the variational

preferences of Maccheroni et al. (2006) and confidence preferences of Chateauneuf

and Faro (2009), as well as the smooth preferences of Klibanoff et al. (2005) (as

long as the function φ is concave).

The next theorem shows that this assumption is enough to force all of the func-

tions vs in representation (1) to be identical up to multiplication by nonnegative

coefficients p(s).

Theorem 2. Suppose there are at least three non-null states. The preference %

satisfy axioms A.1–A.5 and P2 iff it is represented by

f 7→
∑
s∈S

φ
(
u
(
f(s)

))
p(s)

for some non-constant affine function u : ∆(Z)→ R with range U and a continu-

ous, concave, and strictly increasing function φ : U → R and a probability measure

p ∈ ∆(S) such that p(s) > 0 iff s is non-null. Moreover, in this case p is the

measure with respect to which % is GM-ambiguity averse. Furthermore, if (u, φ, p)

and (u′, φ′, p′) represent %, then there exists α,A > 0, β,B ∈ R such that p′ = p,

u′ = αu+ β, and φ′(αr + β) = Aφ(r) +B for all r in range of u.

This theorem extends and relies on Werner’s (2005) axiomatization of risk

averse expected utility. The main idea behind it is that Axiom A.5 implies that

indifference curves in the utility space (i.e. the induced preferences on US) have

common supporting hyperplanes along the “certainty line” (i.e., the set of constant

vectors in US).

5



3.2 Uncertainty Aversion

In this section we study preferences that satisfy Axioms A1–A4, P2, and addition-

ally the Uncertainty Aversion axiom of Schmeidler (1989).

Axiom A.6 (Uncertainty Aversion) If f, g ∈ F and α ∈ (0, 1), f ∼ g implies

αf + (1− α)g % f .

As is well known, Axioms A.5 and A.6 are not nested in the presence of Axioms

A.1–A.4. Moreover, in the presence of Axioms A.1–A.4 and P2, Axiom A.5 implies

A.6 (as a consequence of our Theorem 2). However, Axiom A.6 does not imply

Axiom A.5, as the following example shows.

Example 1. Let U = (0,∞) and let v1(k) = log(k) and v2(k) = v3(k) =
√
k. It

is immediate that the preference represented by f 7→ v1(u(f(1))) + v2(u(f((2)) +

v3(u(f(3)) has three non-null states and satisfies Axioms A.1–A.4, A6 and P2.

However, it does not satisfy Axiom A.5. (If it did, then by Theorem 2 the preference

would be state-independent; and in particular the slopes of the indifference curves

in the utility space would coincide along the “certainty line”, i.e. for all constant

utility acts. However, the slopes are clearly varying along certainty line.)

In order to obtain the SOEU preferences we need to add another axiom that

ensures precisely the needed independence that in Section 3.1 was guaranteed by

Axiom A.5. There are strong known axioms which guarantee that: The Weak

Certainty Independence axiom of Maccheroni et al. (2006) ensures that the indif-

ference curves in the utility space are parallel and hence the slope at the certainty

line is constant. Similarly, the Worst Independence axiom of Chateauneuf and

Faro (2009) ensures that the indifference curves in the utility space are radial ex-

pansions of each other, which also guarantees that the slope at the certainty line is

constant. However, such conditions are too strong for our purposes, as they restrict

the functional form of φ. It follows from Strzalecki (2009) that Weak Certainty

Independence forces φ to be in the class of exponential functions. Similarly, it can

be shown that the Worst Independence axiom forces φ to be in the class of power

functions.

An axiom weaker than both of the ones above that still guarantees SOEU is

the Translation Invariance at Certainty axiom of Rigotti, Shannon, and Strzalecki
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(2008). This axiom imposes that the sets of supporting hyperplanes of the indif-

ference curves the are the same everywhere along the certainty line. However, this

condition is still stronger than the one needed (as it in particular implies axiom

A.5.). The weaker condition that we describe below ensures that the supporting

hyperplanes are equal along the certainty line whenever they are unique.

We are interested in a subset of constant acts at which preferences are locally

approximated by Anscombe–Aumann Expected Utility preferences. For an agent

with such preferences, there exists a measure p ∈ ∆ (S) such that for all constant

acts π ∈ ∆(Z) and acts f ∈ F : Epf � π implies f � π, and π � Epf implies

π � f . By analogy,

Definition 2 (Locally EU). We say that % is locally EU at the constant act π

with respect to pπ ∈ ∆ (S) if, for all acts f : Epπf � π implies there exists an

ᾱ ∈ (0, 1] such that for all α ∈ (0, ᾱ], αf + (1− α) π � π and π � Epπf implies

there exists an ᾱ ∈ (0, 1] such that for all α ∈ (0, ᾱ], π � αf + (1− α)π.

Axiom A.7 (Weak Translation Invariance at Certainty) If % is locally EU

at π with respect to pπ and locally EU at π′ with respect to pπ
′
then pπ = pπ

′
.

Axiom A.7 is very weak in the sense that it is trivially satisfied in the standard

models, such as maxmin expected utility, variational preferences, confidence pref-

erences, or the smooth model. Furthermore, it can be shown that axiom A.7 does

not imply axiom A.5.

The main result of this section is the following theorem.

Theorem 3. Suppose there are at least three non-null states. The preference %

satisfies axioms A.1–A.4, A.6, A.7, and P2 if and only if it is represented by

f 7→
∑
s∈S

φ
(
u
(
f(s)

))
p(s)

where u : ∆(Z)→ R is a non-constant affine function, p ∈ ∆(S) such that p(s) > 0

iff s is non-null, and φ : U → R is a continuous, increasing, and concave function.

Moreover, in this case p is the measure with respect to which % is Locally EU.

Furthermore, if (u, φ, p) and (u′, φ′, p′) represent %, then there exists α,A > 0,

β,B ∈ R such that p′ = p, u′ = αu + β, and φ′(αr + β) = Aφ(r) + B for all r in

range of u.
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Remark 1. In the presence of axiom A.6 we only need to use a “one-sided”

version of axiom A.7. Preferences are one-sided locally EU at the constant act π

with respect to pπ ∈ ∆ (S) if, for all acts f : Epπf � π implies there exists an

ᾱ ∈ (0, 1] such that for all α ∈ (0, ᾱ], αf + (1− α) π � π. The proof of Theorem 3

relies only on this property.

4 Future work

It would be desirable to obtain an axiomatization of SOEU without any concavity

restrictions. The technical reason why we need axiom A.6 is that it guarantees

the absolute continuity of functions vs, which is needed to integrate the condition

obtained from A.7, which is expressed in terms of derivatives of vs.

In future versions of this paper we will explore conditions that guarantee ab-

solute continuity, but do not impose concavity. Some known strengthenings of

A.7, for example the Weak Certainty Independence axiom of Maccheroni et al.

(2006) have this property, as they even imply Lipschitzianity. However, they are

too strong for our purposes, as they restrict the functional form of φ.

A Proof of Theorem 1

Lemma 1. Let % be preference satisfying axioms A.1–A.4. Then % is represented

by f 7→ I(u(f)) where u : ∆(Z) → R is affine with range U and I : US → R is

normalized, continuous, and monotone on US.

Proof. The proof of Lemma 67 of Cerreia-Vioglio, Maccheroni, Marinacci, and

Montrucchio (2008) also applies to preferences that do not satisfy their Uncertainty

Aversion axiom (witout delivering the quasiconcavity of I).

Proof of Theorem 1

The necessity of the axioms is routine. For sufficiency, note that the functional I

from Lemma 1 induces preferences %u on US that are continuous, monotone, and

satisfy P2 on utility acts. By Theorem 3 of Debreu (1960), there exist continuous
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functions vs : U → R such that %u is represented by

V (u) =
∑
s∈S

vs
(
u(s)

)
.

The function u and at least three of the functions vs have to be non-constant in

order to produce at least three non-null states.

B Proof of Theorem 2

Proof of Theorem 2

The necessity of the axioms and uniqueness of the representation are routine.

For sufficiency, first, observe that by Lemma 1, % is represented by f 7→ I(u(f))

where u : ∆(Z) → R is affine with range U and I : US → R is normalized,

continuous, and monotone on US.

Second, show that I satisfies Werner’s (2005) “risk aversion” condition. GM-

ambiguity aversion of % means that for all ξ ∈ US and x ∈ U : I(ξ) ≥ x implies

Epξ ≥ x. Fix ξ ∈ US. Suppose that Epξ = supU . Then for all s: ξ(s) ≤ Epξ, so

by monotonicity and normalization

Epξ ≥ I(ξ). (2)

Suppose that Epξ < supU . For any sufficiently small ε > 0 define xε := Epξ + ε.

Then xε ∈ U , so xε > Epξ, so xε > I(ξ), i.e., for all ε > 0: Epξ + ε > I(ξ). Thus

for all ξ ∈ US inequality (2) holds.

Third, show that p(s) > 0 iff s is non-null. To see that suppose p(s) = 0 and

let x, y ∈ U be such that I(xsξ) > I(ysξ). Let ξ be a constant act equal to y. Then

I(xsy) > I(ysy) = I(y) = y = Ep(xsy), where the first inequality follows from P2

and the last equality from p(s) = 0. This contradicts (2). The other direction is

trivial.

Finally, by Werner’s (2005) Theorem 1,1 the preference on US induced by I has

a representation ξ 7→
∑

s∈S φ(ξ(s))p(s) where φ : U → R is a strictly increasing

1It can be verified that his theorem applies to preferences on US instead of just RS and that
his requirement that I be strictly increasing can be dispensed with as long as there are at least
three non-null states.
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and concave function. Moreover, φ is continuous as a consequence of the continuity

of I.

C Proof of Theorem 3

For any ξ ∈ RS let ‖ξ‖ :=
∑

s∈S |ξ(s)|. Let V : (intU)S → R be defined by

V (u) :=
∑

s vs(u(s)) where vs : intU → R are weakly increasing and continuous

functions. Let Ds := {k ∈ intU | v′s(k) exists} and let D := ∩sDs.

Lemma 2. If u ∈ (intU)S is such that us ∈ Ds then ∇V exists at u and is equal

to the vector χ :=
(
v′s(us)

)
s
.

Proof.

|V (u+ v)− V (u)− ξ · v|
‖v‖

=
|
∑
vs(us + vs)−

∑
vs(us)−

∑
χsvs|

‖v‖

=
∣∣∑ {

vs(us + vs)− vs(us)− χsvs
}

‖v‖
∣∣

≤
∑ |vs(us + vs)− vs(us)− χsvs|

‖v‖

≤
∑ |vs(us + vs)− vs(us)− χsvs|

|vs|

and the limit of the RHS is zero as a consequence of differentiability of all functions

vs at us.

Lemma 3. For all π ∈ ∆(Z) such that u(π) =: k ∈ D and ∇V (k) 6= 0 the

preference represented by V (u(f)) is locally EU at π with respect to p := ∇V (k)
‖∇V (k)‖ .

Proof. Suppose that f ∈ F is such that p · f � π. Then u(p · f) > k, so p · u(f) >

p · ke, so p · [u(f) − ke] > 0, so ∇V (ke) · [u(f) − ke] > 0. Suppose toward

contradiction that (0, 1) 3 αn → 0 such that V (ke+αn(u(f)−ke))−V (ke) ≤ 0. By

differentiability of V , 1
αn

[V (ke+αn(u(f)−ke))−V (ke)−αn∇V (ke)·(u(f)−ke))]→
0, i.e., 1

αn
[V (ke+ αn(u(f)− ke))− V (ke)]→ ∇V (ke) · (u(f)− ke)). But the LHS

≤ 0 and RHS > 0, so contradiction.
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Proof of Theorem 3. The necessity of the axioms and uniqueness of the repre-

sentation are routine. For sufficiency, observe that like in the proof of Theorem 1

%u is represented by

V (u) =
∑
s∈S

vs
(
u(s)

)
where vs : U → R are continuous, weakly increasing functions, at least three of

them nonconstant. Consider the restriction of %u to intUS. Further, let T ⊂ S

indicate the nonconstant functions vs; consider the restriction of %u to intUT .

By Theorem 3 of Debreu and Koopmans (1982) there exists t ∈ T such that all

functions vs for s 6= t are concave; hence each of the sets intU − Ds is at most

countable. Moreover, their Theorem 3 also guarantees that intU−Dt is countable,

and the derivative of vt is positive at those points. Thus, D := ∩sDs ⊆ intU is

such that intU −D is at most countable and all functions vs are differentiable on

D. Observe that by Lemma 2 for any k ∈ D the derivative ∇V (ke) exists and is

equal to the vector χ := (v′s(k))s∈S. Note that χ 6= 0 because the derivative of vt

is positive, as noted above.

By Lemma 3, % is locally EU at any π ∈ ∆(Z) such that u(π) =: k ∈ D with

respect to pk = (v′s(k))s∈S
‖(v′s(k))s∈S‖

. By our Axiom A.7. pk is independent of k for all k ∈ D.

But this means that for any s ∈ T

v′s(k)

v′1(k)
=
v′s(k

′)

v′1(k
′)

for all k, k′ ∈ D where we have wlog assumed that 1 ∈ T . Thus, there exists a

number αs > 0 such that for all k ∈ D

v′s(k) = αsv
′
1(k). (3)

Define Φs : U → R by Φ(k) := vs(k)−αsv1(k). Observe that by (3) the function Φs

is differentiable at all points of D with derivative equal zero. This implies (see, e.g.,

Kuczma, 1985, p.74) that Φs(b) is constant on U , i.e., there exists Zs ∈ R such that

vs(k) = αsv1(k)+Zs. Let α1 := 1 and αs := 0 for all s /∈ T . Defining φ(k) := v1(k)

for all k ∈ U and p(s) := αsP
s∈S αs

for all s ∈ S concludes the proof.
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