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Preface

What is this Book About?

This book is about models of stochastic choice behavior, which are used in:

• decision theory,

• discrete choice econometrics,

• behavioral economics and cognitive science.

Such models have a variety of applications in game theory, industrial organi-

zation, experimental economics, and marketing.

The book offers a systematic introduction to these models, unifying insights

from various fields. It builds up from scratch, without any prior knowledge

requirements. It surveys recent developments and brings the reader all the way

to the frontier of research. It is addressed primarily to PhD and advanced

Masters students.

Math

I wanted to keep this book relatively short, so I had to make some compromises.

To focus on the conceptual description of the theory and the directions of its

development, I made math as simple as I could. If you get interested in this

topic, please be mindful that this monograph will not build much “muscle.” If

you find a decision theory class near you, take it!

You should have paper and pencil with you and try to work out the details

yourself. I sometimes ask you (why?) questions, but there are a lot of other

points where you might want to slow things down. This material, like most

of theory, has a fractal-like nature and you can zoom in at any little bit and

discover a whole universe.

To save on some technicalities, I state some results as Theorem†. The

dagger means that additional technical details or definitions are needed because
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not all terms are properly defined. Fully formal statements are contained in

the original source. You should not use any daggers in your job market paper!
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1.1. The Analyst and the Agent

The main character in this book is the analyst. She is a researcher: an econo-

metrician, an experimental economist, etc. The analyst has access to data

about the behavior of an agent (or a population of agents) summarized by a

stochastic choice function ρ. The analyst wants to understand ρ to predict the

agent’s behavior in a new situation, e.g., forecast demand for a new product.

A benevolent analyst wants to be able to measure the agent’s welfare.1

This book focuses on non-strategic situations, where the data are for ex-

ample the occupational choices in a population or response frequencies in a

laboratory or field experiment. Our agents don’t play games with each other

or with the analyst. Of course, strategic interactions are prevalent in economics,

but it’s worthwhile to first see how much we can understand about individual

behavior. We assume that the analyst is passively studying the agent. The

analyst’s decisions (which will be unmodeled here) may ultimately impact the

agent as new products get introduced or new contracts or mechanisms get

designed, but our agents are not strategic enough to take this into account.2

Many analysts model the agent as a utility-maximizing creature and make

various other more specific assumptions. Each model puts some restrictions

on the class of behaviors that are allowed. We will try to understand these

restrictions and the ways the various classes connect to each other.

Understanding the relationships between models is interesting in its own

right, but can also serve some practical purposes. The analyst often has to pick

a particular model and it’s good to know what the possible tradeoffs between

these models are.

1.2. Deterministic Choice

We start with deterministic choice because this will be the basis for much of

what is to come in this book. This will also establish notation used throughout.

Let X be the set of all possible alternatives that our agent might be facing.

Typical elements are denoted x, y ∈ X and may stand for things like: brand

choices, employment status, number of children, market entry decisions, or

choosing which perceptual stimulus is stronger in a lab experiment.

The analyst observes the agent’s choices in multiple choice situations. The

data of the analyst is a choice function that says what the agent does in each

situation. We will treat the choice function as observable to the analyst—we

will assume that she can collect this data by observing how people behave in

real life, or by designing a lab or field experiment.

1I will refer to the analyst as “she/her,”, or sometimes “us.” I use “they/them” for the agent(s).
2In fact, the situation of the mechanism designer is similar to the situation of our analyst: she
has some information about behavior in various situations and picks a situation (mechanism) to
induce the agent to behave in a desired way.
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In decision theory and consumer theory a choice situation is typically sum-

marized by the menu (a subset of X) the agent is choosing from (for example

the actual menu at the restaurant, or the set of insurance plans an employer

offers, or the budget set in consumer theory).

Let A be the collection of all nonempty and finite subsets of X, with typical

elements A,B,C, which we call menus.3 A single-valued choice function is a

mapping χ : A → X such that χ(A) ∈ A. That is, for each menu A ∈ A the

analyst observes what is chosen. The condition χ(A) ∈ A just means that the

agent cannot choose items outside of the menu.

The “revealed preference” exercise of Samuelson (1938), seeks to rationalize

such observations by preference maximization and to uncover the preference

relation from the observed data.

A binary relation ≿ on X is a preference if it is:

• complete (x ≿ y or y ≿ x for all x, y ∈ X)

• transitive (x ≿ y and y ≿ z implies x ≿ z for all x, y, z ∈ X).

Moreover, the relation is a strict preference if it is also satisfies the following

property:

• x ≿ y and y ≿ x implies x = y for all x, y ∈ X.

The last requirement (called antisymmetry) means that the agent is never

indifferent between two distinct options.

We say that a strict preference ≿ represents χ whenever, for each A ∈ A,

χ(A) is the highest ranked element of A according to ≿. The key here is that

the agent maximizes the same preference on X irrespectively of which menu

they are facing. If the preference is allowed to depend on the menu, we can

explain every possible choice function and our model is not falsifiable (so there

is no way of testing if it’s true).

There are χs that cannot be represented by any ≿; they are sometimes

called “irrational,” “behavioral,” or “boundedly rational.”

The key test for deterministic preference maximization is known under

many names, such as Sen’s α condition (Sen, 1971), Arrow’s IIA (Arrow, 1959),

or Chernoff’s condition Chernoff (1954). The axiom imposes consistency con-

ditions on choices from various menus.

Axiom 1.1 (Sen’s α). If x ∈ A ⊆ B, then x = χ(B) implies x = χ(A).

3In introductory microeconomics and consumer theory X is typically an infinite set of consumption
bundles (X = Rn

+, where n is the number of goods) and the agent is choosing how much of each

good to consume (the menu is an infinite set). The analysis then quickly assumes differentiability
and convexity and characterizes optimality by first order conditions. In discrete choice theory the
analysis is somewhat different: the menu is finite (discrete) and the optimality conditions are a set
of inequalities instead of equalities. We allow X to be infinite, but the menu will always be finite,
although there is some work on stochastic choice with infinite menus, see, e.g., Bandyopadhyay,
Dasgupta, and Pattanaik (1999).
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This axiom says that if alternative x beats all things in a menu, it must

also beat all things in a subset of the menu.

Proposition 1.2. A choice function χ satisfies Sen’s α if and only if there

exists a strict preference relation that represents it. Moreover, ≿ is unique.

A simple proof is for example in Osborne and Rubinstein (2020). The

assumption that A contains all menus can be relaxed as long as it contains all

pairs and triples.

Decision theorists are attracted to results like Proposition 1.2 because they

provide an exact translation between two languages:

• what is observable (the choice function χ)

• what is a mathematical representation (the preference ≿).

This exact translation helps us understand the connections between the two

ways of describing choice. It also offers a test of “rationality:” if our agent

violates Sen’s α, then they cannot be maximizing a complete and transitive

preference.

To deal with indifferences, economists often consider a multi-valued choice

correspondence χ : A → A such that χ(A) ⊆ A. The idea behind multi-valued

choice is that from any given menu the agent sometimes chooses one alternative

and sometimes another (the set of those choices must be a subset of the menu).

The analyst records both of these choices and interprets this as indifference. For

choice correspondences, an additional condition, known as Sen’s β, is needed

to characterize preference maximization. Conditions α and β combined are

called weak axiom of revealed preferences (WARP). For details see Chapter 2

of Kreps (1988) and Chapter 1 of Mas-Colell, Whinston, Green, et al. (1995).

We will not deal with choice correspondences because the theory of stochastic

choice provides a more precise way of modeling the situation where the agent

makes different choices from the same menu.

So far, we have two languages: the observables (choice function χ) and the

representation (preference relation ≿). To make the math easier, economists

often use yet another language to represent choices—the utility functions. This

allows them to use familiar tools from optimization theory, such as first- and

second-order conditions, Hamilton-Jacobi-Bellman equations, etc.

A preference ≿ is represented by a utility function U : X → R whenever

x ≿ y if and only if U(x) ≥ U(y).

We will interchangeably write U : X → R and U ∈ RX for the same object,

thanks to the useful notation in mathematics that says that if X and Y are

sets then Y X is the collection of all functions from X to Y .
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If ≿ is complete and transitive and X is finite or countable, then a utility

representation of≿ always exists. A classic counterexample whenX is uncount-

able are lexicographic preferences. Since we often have to deal with uncount-

able X, e.g., consumption bundles (as in price theory) or lotteries (Chapter 4),

typically continuity is assumed to get a representation.4

For any preference there is a multitude of utility representations: if U

represents ≿ then any monotone transform ϕ(U) also represents ≿.

Proposition 1.3. Functions U1, U2 represent the same preference ≿ on X if

and only if there exits a strictly increasing function ϕ : R1 → R such that

U2(x) = ϕ(U1(x)) for all x ∈ X, i.e., U2 = ϕ ◦ U1. Here R1 is the range of U1

defined by {U1(x) : x ∈ X}.

This is called ordinal uniqueness, i.e., utility is unique up to the ordering

of alternatives but its scale does not have any meaning. In particular, if u(x)−
u(y) > u(z)− u(w) then we are tempted to say that x is preferred to y “more

intensely” than z is to w, but this statement does not have any meaning in

terms of choices because we can always take a different utility function that

represents the same preferences where the inequality is reversed. Later in this

book we will see stricter “cardinal” uniqueness results.

1.3. Stochastic Choice

As mentioned above, if the agent is alternating choices from the same menu,

the classical approach is to ignore the frequency of such choices and treat them

as indifferent. This means that a person who chooses x from menu {x, y} 99%

of the time and another person who chooses y 99% of the time are classified as

the same type.

In this book we will take the choice frequencies seriously and try to extract

information from them. To do this, we need to enrich the set of observables:

for each menu A and item x ∈ A let ρ(x,A) be the frequency with which a

choice of x from A was observed.5 In reality we will have a finite sample of n

observations, but we will think of ρ(x,A) as the limiting frequency as n → ∞.6

A stochastic choice function (s.c.f.) collects these limiting frequencies as a

function of the menu.

For any finite set Z let ∆(Z) denote the set of probability distributions over

Z, i.e., functions p : Z → [0, 1] such that
∑

z∈Z p(z) = 1. For each menu A the

values of ρ(·, A) form a probability distribution over A, so we can think of the

s.c.f. as a map that takes a menu A and maps it into ∆(A).

4For the finite and countable cases, see Propositions 3.2 and 3.3 of Kreps (1988). For uncountable
X see Theorems 3.5 and 3.7 of Kreps (1988) or Chapter 9 of Ok (2014).
5The recent paper of Ok and Tserenjigmid (2022) compares the choice-correspondence approach
to the choice-frequency approach.
6Taking limiting frequencies as a primitive is routine in econometrics for the purpose of estimation
and identification of parameters. We will talk about this more in Chapter 2.
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Definition 1.4. A stochastic choice function is a mapping

ρ : A → ∆(X)

such that
∑

x∈A ρ(x,A) = 1 for all A ∈ A.

Sometimes not all menus are observed, in which case the domain of ρ is

smaller. For example, in experiments often there are just binary menus. To

simplify notation in this case we will write ρ(x, y) := ρ(x, {x, y}) when x ̸= y

and define ρ(x, x) := 0.5.

In discrete choice econometrics the menu is often fixed but what varies are

the attributes of these alternatives. The first three parts of the book focus on

menu-variation and the last part of the book focuses on attribute-variation.

However, the distinction between the two approaches is not clear cut, for ex-

ample for lotteries, each alternative is characterized by a vector of attributes

(probabilities of each payoff).

If our analyst is observing a single individual who faces the problem repeat-

edly (as it happens in some within-subject experiments); then ρ(x,A) is the

fraction of times the agent chose x from A. Stochastic choice functions can also

capture population-level data. For example, McFadden (1974) studied trans-

portation choices of the Bay area population. In this situation ρ(x,A) is the

fraction of the population choosing x from A. In such applications choice has

two sources of stochastic variation: individual randomness (how much choice

varies if a given person is sampled over and over again) and heterogeneity of

preferences (how much choice varies across people).

While it’s easy to imagine that preference heterogeneity leads to non-trivial

choice frequencies in the aggregate data, it’s less obvious why the choices of

a single individual should be stochastic. Yet, stochastic choice is routinely

observed. First and foremost, in the context of discrimination between percep-

tual stimuli (Fechner, 1860; Thurstone, 1927). The following example discusses

perception of weight, but similar experiments are used in the study of other

senses: hearing, touch, vision, etc.7

Example 1.5 (Perception Task). Let X = R+ be a collection of weights (the

weights all look the same, or the experimental subject’s view is obstructed).

The subject is facing a series of binary menus Ai := {xi, yi}, i = 1, . . . , n,

where xi, yi are drawn i.i.d. from some distribution π ∈ ∆(X). The subject is

tasked with picking the heavier of the two objects: there is a positive payoff for

a correct guess and zero for incorrect. The analyst records the subject’s choice

over many i.i.d. trials. In the limit, we get ρ(x, y).

7For example in some experiments in each trial the subject faces a screen where a fraction of
dots is moving in a coherent direction (left or right), while others are moving randomly, and the
agent is incentivized to guess the correct direction of motion, see, e.g., Newsome, Britten, and
Movshon (1989), Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) and Drugowitsch, Moreno-
Bote, Churchland, Shadlen, and Pouget (2012). A similar design was used by Dean and Neligh
(forthcoming).
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It is interesting to examine ρ(x, y) as a function of x for a fixed value of

the reference weight y. This is called a psychometric function; in fact we have

a family of psychometric functions indexed by y. △

Numerous experiments in psychology and psychophysics can be summa-

rized by the following stylized facts (see, Woodrow (1933) and Gescheider

(1997)). First, psychometric functions are typically S-shaped. This means

that if x is close to y it is hard for the subject to discriminate between them

and accuracy is low. If x is far from y, the accuracy improves. It is typical to

use the cdf of the Normal distribution Φ to model psychometric functions.

0.25

0.5

0.75

Figure 1.1. An S-shaped psychometric function.

Another stylized fact is diminishing sensitivity : a given weight difference

between x and y may be big enough for the subject to notice when both x

and y are small, but not big enough when x and y are both large. One way

to state this stylized fact is to say that the family of psychometric functions

ρ(·, y) gets flatter as y grows.8 Diminishing sensitivity has been incorporated

into many psychological theories, such as Prospect Theory (Kahneman and

Tversky, 1979) and Salience Theory (Bordalo, Gennaioli, and Shleifer, 2012).

Yet another stylized fact is payoff-monotonicity , which says that the error

rate diminishes if the payoff for guessing correctly increases. There is some

debate about this between economists (who think that incentives matter) and

psychologists (who think they don’t).

The final stylized fact is frequency-dependence, which says that ρ(x, y) de-

pends on the distribution π of weights across trials. Intuitively, this is because

the agent gets attuned to the range of weight variation, so that the same weight

difference can be perceptible if all weights in the experiment are in some small

range, but may go unnoticed if the weights vary a lot from trial to trial. Notice

that frequency-dependence implies that we should more accurately be talking

8This is often operationalized as the requirement that the interquartile range, depicted in Figure
1.1 is an increasing function of y. This is related to the Weber-Fechner law, which was originally
formulated in terms of just noticeable differences, a theoretical construct that is inconsistent with
our first stylized fact (S-shaped psychometric functions).
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about ρπ(x, y), where π is fixed in a given batch of trials and the analyst runs

several batches each with a different π.

While it may be unsurprising that perception of physical stimuli is random,

there is a body of experimental evidence showing that economic choices are

random as well. Mosteller and Nogee (1951) were first to show that choices

between lotteries show substantial switching. Whether trials are separated

by days (Tversky, 1969; Hey and Orme, 1994) or minutes (Camerer, 1989;

Ballinger and Wilcox, 1997; Agranov and Ortoleva, 2017; Agranov, Healy, and

Nielsen, 2023). This is true even in questions that offer dominated options.

We will now discuss various reasons why individual choices fluctuate. Each

of them corresponds to a particular representation of ρ.

1.4. Representations

The easiest case is population heterogeneity. For example, in the Hotelling

(1929) model, consumers’ or voters’ blisspoints are distributed along a line.

More generally, we are given a probability distribution over utility functions

that specifies the frequency of each utility in the population. This is called a

random utility representation and our formal analysis of stochastic choice will

begin with it. Each individual’s utility function is deterministic, but choices

appear random to the analyst as she only observes aggregate data. This model

is at the heart of discrete choice econometrics. The heterogeneity of tastes is

important for firms (e.g. to choose the product mix, which is something they

can’t do based on knowing just the average demand) and to policymakers (who

care about distributional effects).

What about stochastic choices of a single agent? Here there are more

possible mechanisms, all of which will be discussed in detail later on:

1. Random Utility. Instead of a distribution of utilities in the population,

we now have a distribution of utility realizations for a fixed agent.9 In percep-

tion tasks, perceptions are random. For example Thurstone (1927) assumed

that the perceived stimulus equals true stimulus plus a normally distributed

error; which leads to what is now known as the probit model. In choice tasks,

the tastes of the agent fluctuate from trial to trial.

2. Learning. Here the agent’s tastes are fixed but their information evolves

as they learn new things. The agent gets a noisy signal of the true state of the

world and updates their beliefs using the Bayes rule. The agent’s information

is private and unobservable to the analyst, so observed choices are stochastic.

The main two variants of the model are when information is exogenous (passive

learning) or chosen by the agent (active learning), also known as “rational

inattention.”

9This is similar to Harsanyi’s purification in game theory (Harsanyi, 1973a).
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3. Random Consideration. The agent’s tastes and information might be

fixed, but they may not always be paying attention to the same objects in the

menu. If the attention process is random, it will lead the agent to consider

different subsets of the menu (called consideration sets) from trial to trial,

thereby generating random choices.

Notice that 2. and 3. offer two different models of attention (endogenously

choosing the information vs being exogenously restricted to a subset of the

menu). We will treat them in separate chapters.

In all of these stories above, choices are actually deterministic from the

point of view of the agent. They know what their craving is today, or what

they learned so far, or which options they are considering. Observed choices

appear stochastic to the analyst as a result of the informational asymmetry

between the two characters. In the following two stories, choices are random

even in the agent’s eyes, so both our characters are on the same footing.

4. Trembling Hands: The agent cannot perfectly control their choice: there

is a random implementation error or decision error. In some models this error is

exogenous, while in others the agent may control mistakes at a cost. Observed

randomness is then the result of a balance between the importance of choosing

correctly and the cost of doing so.

5. Deliberate Randomization. The agent likes to randomize. They view

each menu A as the set of probability distributions ∆(A) and pick a favorite dis-

tribution according to some preference that may capture nonlinear probability

weighting, a wish to hedge their bets, or aversion to regret.

This book starts with random utility. This is by far the most popular model

to study population-level data: almost all of discrete choice econometrics and

demand system theory stems from this model. Moreover, much of the classical

decision theory work on stochastic choice is about random utility. A good

understanding of this model is also a prerequisite for the other models.

1.5. Random Utility

There are three equivalent ways to formulate the model mathematically: (1)

a probability distribution over preferences, (2) a probability distribution over

utility functions, (3) a random utility function. It may seem like excessive

formalism to define all three here but going forward it will be convenient to

seamlessly switch between them, depending on the application or context, so I

want you to get comfortable with all three.

Let P be the set of all strict preferences over a finite set X. Let µ ∈
∆(P) be a probability distribution over strict preferences. Depending on our

interpretation of ρ, µ is either the distribution of preferences in the population

or the probability that governs the evolution of the preferences of the individual.
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For any A ∈ A and x ∈ A let

N(x,A) := {≿∈ P : x ≿ y for all y ∈ A}

be the set of preferences that rationalize the choice of x from A.

Definition 1.6. ρ : A → ∆(X) is represented by a distribution over preferences

if there exists µ ∈ ∆(P) such that ρ(x,A) = µ(N(x,A)) for all A ∈ A and

x ∈ A.

Notice that if we observe choices from only one menu, then any ρ has such

a representation. For all x ∈ A we can just define the probability that x is

ranked highest in A to be equal ρ(x,A); the relative ranking of non-top items

does not matter. It is the nontrivial menu variation that gives content to the

representation.

1.5.1. Invariance of µ. The key assumption is that the distribution µ does

not depend on the menu A—it is a structural invariant of the model. If µ is

allowed to depend on the choice set in an arbitrary way, then any s.c.f. ρ can

be trivially explained (why?).

A possible complication occurs if the invariance assumption is actually

satisfied by the data generating process, but violated in the observed sample

because of the way the sample is collected. For example, the distribution of pref-

erences between two brands of orange juice can be different depending whether

the menu of choices is Whole Foods or Walmart because of self-selection: dif-

ferent people choose to go to these stores.

For now, we will assume that the data generating process and our sample

are free of such effects. This assumption will let the analyst estimate µ based

on choices from some incomplete set of menus A∗ and predict choice from a

new menu A /∈ A∗, for example when a new product is introduced.

1.5.2. Equivalent Definitions. A slightly different object than a distribu-

tion over preferences is a distribution over utilities. Our set N becomes

N(x,A) := {U ∈ RX : U(x) ≥ U(y) for all y ∈ A}

=
{
U ∈ RX : U(x) = max

y∈A
U(y)

}
.

Now N stands for the set of utility functions that rationalize the choice of x

from A.

When X is finite it is without loss of generality to consider discrete mea-

sures over RX , but sometimes it is convenient to use continuous distributions

that admit a density. In general, let ∆(RX) be the set of Borel probability

measures over RX . (For the purpose of understanding this book, you can just

think of this as containing all discrete and continuous distributions.)
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Definition 1.7. ρ : A → ∆(X) is represented by a distribution over utilities

if there exists µ ∈ ∆(RX) such that ρ(x,A) = µ(N(x,A)) for all A ∈ A and

x ∈ A.

Yet another way to model this is to let utility be a random variable. Let

(Ω,F ,P) be a probability space, i.e., F is a σ-algebra and P is a probability

measure. (If you are not familiar with measure-theoretic probability, you can

rely on your intuitive understanding of random variables.) Utility is a random

function, i.e., Ũ : Ω → RX is F-measurable. I will try to put a tilde on every

random variable (function, element, etc.). We can think of Ω as things that

are observable to the agent but unobservable to the analyst. The event N is

now written as

N(x,A) := {ω ∈ Ω : Ũω(x) ≥ Ũω(y) for all y ∈ A}

=
{
ω ∈ Ω : Ũω(x) = max

y∈A
Ũω(y)

}
.

Definition 1.8. ρ : A → ∆(X) has a random utility representation if there

exists a random variable Ũ : Ω → RX such that ρ(x,A) = P(N(x,A)) for all

A ∈ A and x ∈ A.

I have not made a distinction between the three different definitions of the

set N(x,A) and I will not do so in the future. I do make a notational distinction

between P, which is the probability measure on the probability space Ω that

caries the random utility Ũ , and µ—which is the probability distribution (a.k.a.

the law) of the random variable Ũ .

The following is an easy adaptation of Theorem 3.1 in Block and Marschak

(1960), see also Regenwetter and Marley (2001).

Proposition 1.9. The following are equivalent for a finite X:

(i) ρ is represented by a distribution over preferences,

(ii) ρ is represented by a distribution over utilities,

(iii) ρ has a random utility representation.

Given this result, we will write ρ ∼ RU whenever any of the conditions

above holds.

Proof. (i) ⇒ (ii): Suppose that ρ is represented by a distribution over pref-

erences µ ∈ ∆(P). For each preference ≿ pick a utility function U≿ that

represents ≿. Define the distribution over utilities µ̂ ∈ ∆(RX) by setting

µ̂(U≿) := µ(≿) for all ≿∈ P and µ̂(U) := 0 otherwise. We have

ρ(x,A) = µ({≿∈ P : x ≿ y for all y ∈ A})

= µ̂({U≿ ∈ RX : ≿∈ P and U≿(x) = max
y∈A

U≿(y)})

= µ̂({U ∈ RX : U(x) = max
y∈A

U(y)}).
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(ii) ⇒ (iii): Suppose that ρ is represented by a distribution over utilities

µ ∈ ∆(RX). Define Ω := RX , F := B (the Borel σ-algebra), P := µ, and Ũ be

the identity function, i.e., Ũω(x) := ω(x) for all ω ∈ RX . Thus,

ρ(x,A) = µ({U ∈ Rn : U(x) = max
y∈A

U(y)})

= P({ω ∈ Ω : Ũω(x) = max
y∈A

Ũω(y)}).

(iii) ⇒ (i): Suppose that ρ is represented by a random utility (Ω,F ,P, Ũ).

Suppose that with positive probability there is a tie between x and y; then

ρ(x, {x, y}) + ρ(y, {x, y}) = P({Ũω(x) ≥ Ũω(y)}) + P({Ũω(y) ≥ Ũω(x)})

= P({Ũω(x) > Ũω(y)}) + 2P({Ũω(x) = Ũω(y)}) + P({Ũω(y) > Ũω(x)}) > 1,

which violates the definition of s.c.f. So it’s without loss of generality to assume

that there are no ties. For each strict preference ≿∈ P define the event E≿ :=

{ω ∈ Ω : Uω is represented by ≿}. Notice that E≿ ∈ F because the set of

utility functions U≿ that represents ≿ is an open set—an intersection of open

sets of the form {U ∈ RX : U(x) > U(y)}—and E≿ is the inverse image of U≿

under a measurable function Ũ .

For any ≿∈ P define µ(≿) := P(E≿). Since there are no ties, µ ∈ ∆(P).

Therefore, we have

ρ(x,A) = P({ω ∈ Ω : Ũω(x) = max
y∈A

Ũω(y)})

= µ({≿∈ P : x ≿ y for all y ∈ A}). □

Proposition 1.9 holds for countable X under appropriate definitions, see

Cohen (1980). The equivalence between (ii) and (iii) holds for uncountable

X under appropriate technical conditions. For uncountable X condition (i) is

typically modified because preferences are usually assumed to be continuous,

which implies that they have nontrivial indifference curves. We will talk more

about the infinite case later.

1.6. Tie Breaking*

Material with an asterisk may be omitted at first reading. If ρ is represented by

a distribution over preferences, then ties are ruled out by construction because

only strict preferences are realized with positive probability. On the other hand,

distribution over utilities and RU in principle allow for ties. But in fact, for

choice probabilities to be well-defined, ties must occur with zero probability.

To see that, let T xy := {ω ∈ Ω : Ũω(x) = Ũω(y)} be the event in which there

is a tie between x and y. As we saw in the proof of Proposition 1.9 if ρ has a

RU representation, then it must be that P(T xy) = 0 for all x ̸= y; otherwise,

ρ(x, y)+ρ(y, x) > 1 because we are double-counting the event T xy. This means

that RU with ties does not lead to a legitimate stochastic choice function. I
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will refer to those RU without ties as as proper RU. Formally, Ũ is proper if

for any menu A ∈ A, with probability one Ũ has a unique maximizer on A.10

For various reasons it is sometimes convenient to allow for ties. Let’s take

a Ũ that is not proper. One possible way to define ρ based on Ũ is to use a

tiebreaker. For instance, we could assume that the agent uniformly randomizes

over the maximal elements of each menu (uniform tiebreaking). This two-stage

procedure (maximize Ũ , then break ties uniformly) gives us a well-defined s.c.f.

A more general notion of tiebreaking was introduced by Gul and Pesendor-

fer (2006) in the supplement to their paper. A GP-tiebreaker is a random utility

function W̃ : ΩW → RX that itself is proper. In a random utility represen-

tation with a GP tiebreaker, the agent first maximizes Ũ and then uses W̃ to

break the ties. The state space is now Ω × ΩW because the tie breaker needs

its own state space, as the original one may not be rich enough to allow for a

proper W .

Proposition 1.10. The following are equivalent when X is finite:

(i) ρ has a proper RU representation

(ii) ρ has an improper RU representation with uniform tiebreaking

(iii) ρ has an improper RU representation with a GP-tiebreaker.

Proof. (i) ⇒ (ii): If ρ has a RU representation, then ties occur with proba-

bility zero, so it doesn’t matter how we break them.

(ii) ⇒ (iii): Uniform tie breaking is equivalent to GP tiebreaking where W̃

represents a uniform distribution over all strict orders over X.

(iii) ⇒ (i): First, rescale Ũ so that the utility gaps between any two distinct

items are larger than one. That is,

Ũω(x) ̸= Ũω(y) ⇒ |Ũω(x)− Ũω(y)| ≥ 1.

Then break any ties according to a rescaled version of W̃ so that we don’t

exceed these gaps, i.e., for any ω, the maximum difference between two values

of Ũω is strictly less than 1. Finally, note that

ρ(x,A) = P
({

ω ∈ Ω : Ũω(x) + W̃ω(x) ≥ Ũω(y) + W̃ω(y) ∀y ∈ A
})

. □

This result makes it sound like it is impossible to know whether randomness

in choice reflects the true preference variation or just tiebreaking. In Chapter 8

we will see that it is possible to draw a meaningful distinction between the two

in a dynamic model because the two sources of randomness enter differently

into the agent’s option value calculation (taste variation provides flexibility

whereas tiebreaking does not).

Instead of using tiebreakers, other papers allow for indifferences by chang-

ing the primitive and studying stochastic choice correspondences or capacities:

10This property is sometimes called noncoincidence (Falmagne, 1983) or regularity (Gul and
Pesendorfer, 2006).
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Barberá and Pattanaik (1986); Gul and Pesendorfer (2013); Lu (2016); Lin

(2018); Piermont and Teper (2018). To a large extent this approach is “morally

equivalent” to assuming tie breakers and I view the choice between them as a

matter of convenience.

The issue of ties gets even more subtle when X is “large.” Notice that there

is another way to define ties: Let T := {ω ∈ Ω : Ũω(x) = Ũω(y) for some x ̸=
y}. This is the event that there is a tie between some elements of x. Note that

T =
⋃

x ̸=y T
xy so if X is finite then P(T ) = 0 iff P(T xy) = 0 for all x ̸= y.

But with uncountable X, this new definition is too strong. For example, when

X is multidimensional and all utilities considered are continuous, then we are

forced to have P(T ) > 0 because all continuous preferences have well-behaved

indifference curves, so for any fixed utility function there will be many points

that are indifferent to each other. However, for any two specific points, the

probability that they will be indifferent could well still be zero.

1.7. Additive Random Utility

There is an equivalent way of writing random utility, called additive random

utility (ARU). This involves writing Ũ(x) = v(x) + ϵ̃(x), where v : X → R
is a deterministic utility function, called the “representative utility” or “sys-

tematic utility” and ϵ̃ : Ω → RX is a “random utility shock,” which is private

information of the agent.

ARU is the workhorse model in discrete choice econometrics, where the

focus is on estimating the function v based on observations of ρ. In game

theory, ARU is used as a model of smoothed best responses (Fudenberg and

Levine, 1998; Hofbauer and Sandholm, 2002).

If X is finite, then I will say that the distribution of ϵ̃ is smooth if it has

a density. For infinite X, it is smooth if for any menu A = {x1, . . . , xn} the

joint distribution of (ϵ̃(x1), . . . , ϵ̃(xn)) has a density. The following definition

is based on McFadden (1973).

Definition 1.11. ρ : A → ∆(X) has an additive random utility (ARU) rep-

resentation if it has a RU representation with Ũ(x) = v(x) + ϵ̃(x), where

v : X → R is deterministic and the distribution of ϵ̃ is smooth.

Note well that the distribution of ϵ̃ is independent of the menu: for each

A we just select the corresponding coordinates.

The smoothness assumption guarantees that we have a proper RU repre-

sentation, as it implies that ties occur with probability zero. It is worthwhile

to notice though that there are proper RU representations which are of the

form Ũ(x) = v(x) + ϵ̃(x) where ϵ has a discrete distribution (take for example

the one constructed in the proof of (i) ⇒ (ii) in Proposition 1.9). McFadden’s

(1973) general definition does not require the existence of a density, but as

the following result shows, this assumption is without loss of generality. That
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is, even if we have a discrete distribution over utilities, we can “smoothify” it

without affecting the choice probabilities.

Proposition 1.12. If X is finite then ρ ∼ RU if and only if ρ ∼ ARU .

The construction used in the following proof shows that it is also without

loss of generality to assume that ϵ̃ has finite moments.

Proof. Let ρ ∼ ARU , then by definition ρ ∼ RU . Conversely, assume now

that ρ ∼ RU . By Proposition 1.9, there exists a probability distribution µ over

strict preferences P such that ρ(x,A) = µ(N(x,A)). Let n be the cardinality of

X and for any ≿∈ P and i = 1, . . . , n let x≿(i) denote the i-th ranked element

of X.

Define v(x) = 0 for all x ∈ X. We need to find a probability measure P
over RX such that P(A≿) = µ(≿) for each event of the type

A≿ = {ϵ ∈ RX : ϵ(x≿(1)) > ϵ(x≿(2)) > · · · > ϵ(x≿(n))}.

To do so, for each ≿ take a probability measure with finite moments and density

γ≿ and support equal to the closure of A≿, for example a truncated Normal

probability distribution. Define our probability measure P by its density

γ(·) =
∑
≿∈P

µ(≿)γ≿(·).

This measure has finite moments and a density. □

ARU representations derive their strength from several powerful parametric

special cases where the distribution of ϵ is i.i.d. The most predominant is the

extreme value distribution, which leads to logit.

Definition 1.13. ρ : A → ∆(X) has a logit representation if it has a ARU

representation where ϵ̃(x) are i.i.d. across x with the Type I Extreme Value

(TIEV) distribution, with cdf G(ϵ) = exp(− exp(−ϵ)).11

Another well-known model is probit, where the distribution of ϵ̃ is Normal.

We will look more at i.i.d. parameterizations in Chapter 3.

Often times it is assumed that the density in an ARU representation not

only exists, but is everywhere positive. This ensures that all items are chosen

with a positive probability (because arbitrarily large shocks can elevate even

dominated alternatives).

Axiom 1.14 (Positivity). ρ(x,A) > 0 for any x ∈ A.

This property is important since keeping all probabilities positive leads to a

non-degenerate likelihood function, which facilitates estimation of v. Moreover,

11TIEV, which is also known as the Gumbel distribution, is actually a whole class of distributions
with mean and variance parameters. However, in economics TIEV typically means this particular
member of the family.
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as argued by McFadden (1973), positivity cannot be refuted based on any finite

data set.12

There are two interpretations of ϵ: (1) preference heterogeneity that is

unobserved by the analyst (after conditioning on observable characteristics of

the agent), or (2) mistakes/errors on the part of the agent. The difference

between the interpretations is that in the first case the preference shocks are

embraced by the agent (her tastes do actually change from time to time), while

in the second case these shocks lead to choices that the agent disagrees with.

While in predictive applications of the static model the two interpretations are

largely equivalent, they differ when it comes to normative evaluations and have

different predictions for dynamic behavior.

A case that is somewhat in between the two is one of imperfect perception.

In the following example the agent sometimes makes mistakes, but they are

doing the best they can given their imperfect information. As we will see in

Chapter 5 this behavior is Bayes-optimal, so the shocks are embraced by the

agent (ex ante) despite sometimes leading to errors.

Example 1.15 (Law of Comparative Judgment). Recall Example 1.5 with

weight perception. Thurstone (1927) introduced the probit model to capture

such behavior. Suppose that for each weight x the agent forms a subjective,

imperfect, and random perception γ(x) + ϵ̃(x), where γ is a strictly increasing

function (typically assumed to be logarithmic) and ϵ̃(x) ∼ N (0, σ2
ϵ ) are i.i.d.

across x. Faced with items x and y, the agent chooses item x if γ(x) + ϵx ≥
γ(y) + ϵy and chooses y otherwise. A simple calculation reveals that

ρ(x, y) = Φ

(
γ(x)− γ(y)

σϵ

√
2

)
.

Thus, Thurstone’s model leads to S-shaped psychometric functions. It is easy

to see that by setting γ(x) = log x the model explains diminishing sensitivity.

However, it does not explain frequency-dependence because the distribution of

ϵ is independent of the distribution of menus {x, y}.
Finally, the model cannot explain payoff-monotonicity either. This is be-

cause γ(x) is not the payoff from choosing x, but instead a subjective perception

of x. The magnitude of the payoff for guessing correctly does not enter Thur-

stone’s formula. One can view his model as “probit in perceptions” as opposed

to “probit in payoffs.”13 △

While in the most general case RU and ARU coincide, they can lead to very

different predictions if the utility is restricted to some specific family. Suppose

12Positivity does not imply that ϵ has positive density (see Example A.0 in the Appendix). Li
(2021) shows how to strengthen Positivity to ensure that there exists a ARU representation with
positive density.
13One could imagine a “probit in payoffs”, where it’s the payoffs that get distorted. Let v > 0

be the payoff of guessing correctly. Then for x > y we have Ũ(x) = v + ϵx and Ũ(x) = 0 + ϵy .
This leads to payoff-monotonicity, but induces a psychometric function that is a step function (as
opposed to S-shaped), so we cannot capture the first two stylized facts. We will need a more fancy
model to capture all the stylized facts simultaneously.



1.8. Social Surplus 24

that our analyst has a theory that the utility function belongs to some class U .
RU and ARU suggest different approaches to building a stochastic model. We

can either randomize over utilities u ∈ U or fix a deterministic utility v ∈ U
and add stochastic ϵ̃, where which belongs to some class of distributions E . As

we saw before, with U and E unrestricted, these two approaches lead to the

same class of ρ. But when U and E have more structure, often the two induced

classes of ρ are disjoint because v+ ϵ does not belong to U . We will see several

instances of this: in Chapter 4 we will show that ARU with i.i.d. ϵ leads to

“unreasonable” comparative statics in the risk aversion parameter. In Chapter

8, we will show it leads to “unreasonable” option value. In Chapter 10, we will

see that it leads to “unreasonable” patterns of substitution.

1.8. Social Surplus

Our analyst often wants to evaluate the agent’s welfare. Under RU the natural

way to do this is to set

V (A) := E
[
max
x∈A

Ũ(x)

]
.

This function captures the expected utility from the best item in the menu.

McFadden (1973) called it the social surplus.14

This function is key for dynamic optimization, where the agent evaluates

how their current actions impact their own future welfare (Chapters 8 and 12).

It also enters into nested logit, where decisions are similarly made in stages

(Section 3.4).

Under ARU, we have

V (A) := E
[
max
x∈A

v(x) + ϵ̃(x)

]
.

This formula makes sense only if we interpret ϵ as unobservable preference

shocks. If we think of them as decision errors of the agent, then there is no

reason for them to enter welfare. In this case, it may be more appropriate to

treat them as just driving behavior, but evaluate welfare using the undistorted

preferences. For example a formula a la Strotz (1955) would look like:

V (A) =
∑
x∈A

v(x)ρ(x,A).

A theory of stochastic choice along these lines has been developed by Ke (2018).

14This should be called “consumer surplus” because the social surplus also includes the firms.
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2.1. Statistical Models

As Proposition 1.12 says, the RU and ARU representations are equivalent in

terms of behavior. But these are different statistical models because they are

parametrized differently. Even distribution over preferences and distribution

over utilities are different statistical models because in the first one the parame-

ter is a distribution over strict preferences and in the second one the parameter

is the distribution over utility functions. In ARU the parameter is a pair: the

deterministic utility function and a distribution over shocks.15 As we introduce

more models, each will be differently parametrized. In general, let Θ be the

space of parameters and let (ρθ)θ∈Θ be the family of s.c.f’s indexed by param-

eter θ. We hope that the agent’s true s.c.f. is a member of this family for some

value of θ, otherwise we say that the model is misspecified.

To make this concrete, for distribution over preferences Θ = ∆(P), for

distribution over utilities Θ = ∆(RX), and for ARU Θ = RX × ∆(RX), the

Cartesian product of the collection of all deterministic utility functions and the

collection of all distributions over shocks.

There are three basic questions about (ρθ):

(1) Characterization. Here we are interested in the image of the mapping

θ 7→ ρθ, i.e., the set {ρ ∈ s.c.f. : ρ = ρθ for some θ ∈ Θ}. What

kinds of distributions over data does the model allow? What things

are ruled out? This is where axiomatic decision theory shines: We

already saw how Sen’s α axiom characterizes deterministic choice and

we will see axiomatic characterizations of stochastic choice throughout

this book.

(2) Identification. Are the parameters pinned down uniquely? If unique-

ness fails, then there are some θ, θ′ ∈ Θ such that ρθ = ρθ′ ; in that

case we can’t back out the parameter even if we had infinitely many

observations. In econometrics the one-to-one property of the map-

ping θ 7→ ρθ is called point-identification. If this fails, we have partial

identification and the exercise is to understand the sets of θ that lead

to the same ρ (Manski, 2003).

(3) Comparative statics. How does ρθ change as θ changes? Answer-

ing this question helps us understand what the parameter intuitively

means. For example, we will see in Chapter 4 that under expected

utility, the curvature of the Bernoulli utility function controls the de-

gree of risk aversion.

There are a number of things the analyst can do with her model given a

data set.

15These are infinitely dimensional parameters. In most applications finite-dimensional parameter-
izations are used.
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(4) Testing the Axioms. Given an axiomatic characterization and a finite

amount of data, how much confidence do we have in the fact that our

axioms are satisfied? There is some classic literature on this topic

and recently there has been is a renewed interest in this question.

(5) Statistical Inference. Suppose that we have a finite data set. How do

we estimate and quantify uncertainty about the parameter θ?

(6) Counterfactual Prediction. Suppose that you observe choices from

menus A1, . . . Ak and you want to predict choices from a new menu

B. Without amodel that ties your hands in some way, any probability

distribution over B is a legitimate prediction. It is only by assuming

a particular model that we can make a connection between behav-

ior across menus. We can trust our prediction only as much as we

trust our model (and the data). A frequentist econometrician would

estimate the parameter θ̂ on A1, . . . , Al and plug it in to compute

ρθ̂(x,B). A Bayesian econometrician would look at
∫
ρθ(x,B)µ̂(dθ),

where µ̂ is her posterior belief given the data. If the model is not

identified, there will be many parameters that match the data, so our

predictions will be set-valued (Manski, 2007). On the other hand, if

our model is misspecified (i.e., the true ρ does not correspond to ρθ
for any value of θ), then our prediction may be systematically wrong.

We will see this in the blue-bus red bus example (Example 3.11).

We won’t talk much about (4), (5), and (6) in this book. These are not trivial

topics, but I don’t know much about them.

2.2. Main Axiom: Regularity

In decision theory we like to characterize a given class of ρ by a list of axioms,

which are conditions expressed directly in terms of ρ, i.e., in the language of

observables (agent’s choices) and avoid referring to any mathematical repre-

sentation (e.g., there exists a utility function). This formulation makes axioms

directly testable. Because axioms boil down the content of any model to the

same language of observables, they can also help us see connections between

different models. For example, sometimes models may share an axiom even

though their functional forms look very differently.

In Section 1.2 we saw that a deterministic choice function is rationalized by

a strict preference if and only if it satisfies Sen’s α axiom: for any x ∈ A ⊆ B

if x = χ(B), then x = χ(A). The following is a stochastic analogue of Sen’s α.

Axiom 2.1 (Regularity). If x ∈ A ⊆ B, then ρ(x,B) ≤ ρ(x,A).

This condition is sometimes also called “monotonicity”. In the case where

ρ is deterministic, it becomes exactly Sen’s α (why?). Otherwise, it means that
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when we add new items to a menu, the choice probability of existing items has

to go down to “make room” for new items.16

Proposition 2.2. (Block and Marschak, 1960) If ρ has a random utility rep-

resentation, then it satisfies Regularity.

Proof. First note that if x maximizes U on B, then x maximizes U on A

(because A is smaller). Thus, for any x ∈ A ⊆ B we have N(x,B) ⊆ N(x,A).

Now, since all probability measures are set-monotone (they attach a bigger

probability to bigger sets), we must have µ(N(x,B)) ≤ µ(N(x,A)). □

By analogy to the deterministic case, one would hope that this axiom would

be enough to rationalize ρ by random utility. This is true if X has at most

three elements, but not more generally.

Proposition 2.3 (Block and Marschak, 1960). Suppose that |X| = 3. If s.c.f.

ρ satisfies regularity, then ρ ∼ RU .

Proof. Let X = {x, y, z}. I will write xyz to denote the order x ≻ y ≻ z.

With this notation, we have P = {xyz, xzy, yxz, yzx, zxy, zyx}.
The situation is simple enough that we can define µ “by hand.” For exam-

ple, to define µ(xyz) note that N(y, {y, z}) = {xyz, yxz, yzx} and N(y,X) =

{yxz, yzx}. Those two sets differ exactly by what we want, so we can define

µ(xyz) := ρ(y, {y, z})− ρ(y,X).

If ρ ∼ RU , then this is in fact the only way to define µ because ρ(y, {y, z}) =
µ({xyz, yxz, yzx}) = µ({xyz}) + µ({yxz, yzx}) = µ({xyz}) + ρ(y,X).

We can define µ on the remaining elements of P in the same way.

µ(xzy) := ρ(z, {y, z})− ρ(z,X)

µ(yxz) := ρ(x, {x, z})− ρ(x,X)

µ(yzx) := ρ(z, {x, z})− ρ(z,X)

µ(zxy) := ρ(x, {x, y})− ρ(x,X)

µ(zyx) := ρ(y, {x, y})− ρ(y,X).

Regularity ensures that all six numbers are non-negative. Moreover, it is easy

to see that µ adds up to one.

Finally, to see that µ is a random utility representation of ρ we need to show

that ρ(a,A) = µ(N(a,A)) for any a ∈ A. This is also easy to see; for example

µ({xyz, xzy}) = µ(xyz) + µ(xzy) = [ρ(y, {y, z}) − ρ(y,X)] + [ρ(z, {y, z}) −
ρ(z,X)] = 1 − ρ(y,X) − ρ(z,X) = ρ(x,X). Likewise µ({xyz, xzy, zxy}) =

µ(xyz) + µ(xzy) + µ(zxy) = [ρ(y, {y, z})− ρ(y,X)] + [ρ(z, {y, z})− ρ(z,X)] +

[ρ(x, {x, y})− ρ(x,X)] = 1 + ρ(x, {x, y})− 1 = ρ(x, {x, y}). □

16We need a pair of nested sets in our domain for regularity to have bite. For example, we cannot
check it when we only observe binary menus. Axioms often lose bite when applied to smaller
domains, see De Clippel and Rozen (2021).
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There are several well-known violations of Regularity. Each of them is a

“paradox” from the point of view of RU: a compelling behavior that cannot

be accounted for. Many models have been written to rationalize such para-

doxes and we will talk about some of them in future chapters. Regardless of

how compelling you find those paradoxes, they are good illustrations of just

exactly what the regularity axiom means. This also shows the power of the

axiomatic method: to “reject” a model it suffices to show that a very simple

condition is violated instead of trying each possible distribution over utilities

and establishing that none of them rationalizes the data.

Example 2.4 (Choice overload). Iyengar and Lepper (2000) set up tasting

booths in two supermarkets. Customers could taste any number of jams in the

tasting booth and were able to eventually buy any variety of jam they wanted.

In the first supermarket there were 6 varieties of jam and 30% of the customers

purchased some variety. In the second supermarket there were 24 varieties of

jam (a superset of those 6) and only 3% of the customers made a purchase.

Thus, the probability of choosing the outside option of not buying anything

went up as the menu expanded. △

Example 2.5 (Classical Menu Effects). Huber, Payne, and Puto (1982) showed

that adding a “decoy” option raises demand for the targeted option. See panel

(a) of Figure 2.1, where adding to the menu {x, y} any point that is dominated

by y but not by x will increase the choice probability of y. Intuitively, adding a
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Figure 2.1. Menu Effects

decoy makes y shine more by comparison so the agent is more likely to choose it

over x. This is known as the decoy effect or asymmetric dominance effect and

is extensively studied in the marketing literature, including situations in which

it fails and regularity holds (Huber, Payne, and Puto, 2014). The compromise

effect is similar to the decoy effect, except like in panel (b) of Figure 2.1 we are

now adding an option z that makes y a compromise between x and z so that

ρ(y, {x, y, z}) > ρ(y, {x, y}) (Simonson, 1989). △
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When there are four or more elements, Regularity is not enough to pin

down RU and we need to add other axioms. We will talk about them in the

next section, which is optional given that those axioms are more technical. I

advise you to skip it on the first reading.

2.3. More Axioms*

The axioms that follow are admittedly complicated. Because of this, much of

the early work on stochastic choice work was confined the special case of RU

called the Luce/logit model, which is characterized by a simple yet restrictive

axiom. We will discuss this in Chapter 3. In Chapter 4 we will see that axioms

for RU get much simpler in the case where X are lotteries and we assume

expected utility.

Recall that P is the set of strict preferences over X. Note that for each

menu A the sets N(x,A) form a partition of P as x ranges over A (why?).

The s.c.f. ρ defines a probability distribution over the cells of this partition.

We have as many partitions as there are menus in A. Our axioms on ρ need

to ensure that all these probability distributions are consistent with a single

µ ∈ ∆(P). This is a lot to ask. Regularity does the job when |X| = 3, but is

too weak otherwise.

Let’s get our hands dirty only a little bit at first. When |X| = 4, the

additional axiom that we need is still relatively simple.

Axiom 2.6 (Supermodularity). If x ∈ A ∩B, then

ρ(x,A) + ρ(x,B) ≤ ρ(x,A ∪B) + ρ(x,A ∩B).

Supermodularity means that the additional impact on the choice probabil-

ity of x of adding items to the menu is decreasing in the size of the menu. To

see that, let E := A \ B, F := A ∩ B, and G := B \ A and notice that the

condition is equivalent to ρ(x,E∪F )−ρ(x,E∪F ∪G) ≤ ρ(x, F )−ρ(x, F ∪G).

Proposition 2.7 (Block and Marschak). Suppose that |X| = 4. A s.c.f. ρ

satisfies regularity and supermodularity if and only if ρ ∼ RU .

The proof is similar to the proof with |X| = 3, see Theorem 5.3 of Block

and Marschak (1960): we want to ensure that the probabilities defined by ρ on

the partitions generated by the N -sets extend to a well-defined µ. With more

than 3 elements we never get to isolate the probability of a single element in

P. This is why we need the additional axiom.

The combinatorial structure of the N -sets gets complicated as the cardi-

nality of X grows. Each time we add an element to X, we need to add another

axiom. If we fix x and vary A, then ρ(x, ·) defines a function on the collection of

all events that contain x. This collection is partially ordered. Regularity says

that this function is “decreasing.” Supermodularity says that it is “convex.”

Block and Marschak (1960) proposed an axiom that signs all the “derivatives.”



2.3. More Axioms* 31

Axiom 2.8 (Block and Marschak). For all x ∈ A

q(x,A) :=
∑
B⊇A

(−1)|B\A|ρ(x,B) ≥ 0.

The q(x,A) are called the BM polynomials. Some sources give an equiva-

lent recursive definition: starting from the grand set q(x,X) := ρ(x,X) and

q(x,A) := ρ(x,A)−
∑
B⊋A

q(x,B).

Theorem 2.9 (Block and Marschak). If ρ ∼ RU , then it satisfies Axiom 2.8.

As the following proof shows, under RU q(x,A) turns out to be the prob-

ability of the event that x is best in A but everything outside of A is better

than x. As such, it’s probability must be nonnegative.

Proof. This proof is due to Fiorini (2004). We start with a bit of combina-

torics. Let (T,≤) be a finite partially ordered set and suppose a real function

f : T → R is given. Define the function F (t) :=
∑

s≥t f(s), so F is a dis-

crete “integral” of f . Then f is a “derivative” of F and we can recover it by

using what is called the Möbius inversion: f(t) =
∑

s≥t m(t, s)F (s), where

m : T × T → R is the Möbius function.

In the case where (T,≤) is the latice of subsets with ≤=⊆, the Möbius

function equals m(t, s) = (−1)|s|−|t|, see, e.g., Theorem 25.1 and equation

(25.5) of Van Lint and Wilson (2001).

Now for the actual proof. First, define the sets

N∗(x,A) := {≿∈ P : z ≻ x ≻ y for all z ∈ Ac and y ∈ A, y ̸= x}.

Observe that N∗(x,A) ⊆ N(x,A) and that N(x,A) =
⋃

B⊇A N∗(x,B). More-

over, this union is disjoint. Defining F (A) := ρ(x,A) and f(B) := µ(N∗(x,B))

we get F (A) =
∑

B⊇A f(B), so by the Möbius inversion we have f(A) =∑
B⊇A(−1)|B\A|F (B), i.e.,

µ(N∗(x,A)) =
∑
B⊇A

(−1)|B\A|ρ(x,B) = q(x,A). (2.1)

Given that µ is a probability measure, these sums must be nonnegative. □

In fact, it can be shown (Proposition 7.3 in Chambers and Echenique

(2016)) that RU holds if and only if there exists a µ such that (2.1) holds

There are two other axiomatizations of RU. I like them even less, as they

explicitly refer to the representation and involve infinite, as opposed to finite,

lists of inequalities. In both of them, as the first step you need to compute

all the rationalizable deterministic choice functions. The upside is that this

approach works on incomplete domains, while the BM approach relies on ob-

serving all menus.
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The first axiom was developed by McFadden and Richter (1971, 1990).

Take the collection of item-menu pairs {(x,A) : x ∈ X and A ∈ A}; let n be

its size. For each preference ≿∈ P let’s form a vector of dimension n equal one

if ≿ chooses x from A and zero otherwise; let’s denote this vector by p≿. Now,

RU is equivalent to ρ being in the convex hull of those vectors.

Consider any set of points Q in Rn and another point r ∈ Rn. It is easy to

verify that r is in the convex hull of Q if and only if

⟨r, λ⟩ ≤ max
p∈Q

⟨p, λ⟩

for all λ ∈ Rn. Now we just need to apply this to Q = (p≻)≻∈P and r = ρ.

Actually, it turns out that it suffices to only check λ ∈ Nn, which directly

translates to the following axiom.

Axiom 2.10 (Axiom of Revealed Stochastic Preference (ARSP)). For any k

and for any sequence (x1, A1), . . . , (xk, Ak) such that xi ∈ Ai

k∑
i=1

ρ(xi, Ai) ≤ max
≿∈P

k∑
i=1

p≻(xi, Ai).

The second axiom was developed by Clark (1996). This is kind of the flip

of the previous exercise. For each x ∈ A let’s now form a long vector with

dimension equal to the set of preferences P . Define p(x,A) to be the indicator

function of the event N(xi, Ai).

Axiom 2.11 (Coherency). For any k and any sequence (x1, A1), . . . , (xk, Ak)

such that xi ∈ Ai, and for any sequence of real numbers λ1, . . . , λk

k∑
i=1

λip(xi,Ai) ≥ 0 =⇒
k∑

i=1

λiρ(xi, Ai) ≥ 0.

It’s easy to see that Coherency implies the BM axiom, by taking λi ∈
{−1, 0, 1}. The intuition behind Coherency is a no-arbitrage argument. Imag-

ine that ρ(xi, Ai) is the cost of placing a bet on the event N(xi, Ai). Suppose

that we now have a complex bet on a combination of events that pays off a

positive amount in every state of the world. This complex bet must cost a pos-

itive amount of money. This axiom is a restatement of de Finetti’s coherency

condition, which ensures that a set function (here defined over all N -sets) can

be extended to a probability measure (over all events), see, e.g. Pollard (2002).

Theorem 2.12 (Characterization of RU). The following conditions are equiv-

alent for a s.c.f. ρ on a finite set X:

(i) ρ ∼ RU

(ii) ρ satisfies the BM axiom

(iii) ρ satisfies coherency

(iv) ρ satisfies ARSP.
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Moreover, (iii) and (iv) are equivalent to (i) even if the domain of ρ is arbitrary.

Block and Marschak (1960) showed that their axiom is necessary. Suffi-

ciency was proved by Falmagne (1978) and independently by Barberá and Pat-

tanaik (1986). Other proofs of this theorem can be found in Fiorini (2004) using

network flows, Monderer (1992) using cooperative game theory, and Chambers

and Echenique (2016) using the Farkas lemma. A version of (i)–(ii) for infinite

X was discussed by (Cohen, 1980). The equivalence (i)–(iii) was proved Clark

(1996), directly for infinite X. The equivalence (i)–(iv) was proved by McFad-

den and Richter (1990, 1971). A nice and simple proof of this equivalence is

in Stoye (2019) and the infinite case was worked out by McFadden (2005) and

Gonczarowski, Kominers, and Shorrer (2020).

2.4. Uniqueness/Identification

Even though RU and ARU coincide as classes of stochastic choice functions,

they differ as statistical models because they are different mappings with dif-

ferent domains. As a result of this, they have different identification properties.

2.4.1. Identification under RU. As we discussed in Chapter 1, since utility

is unique only ordinally, we cannot hope to identify its distribution; at best, we

can hope to pin down the distribution of ordinal preferences. This is possible

when X has only three alternatives.

Proposition 2.13. (Block and Marschak, 1960) If |X| ≤ 3, then if µ is a

distribution over preferences that represents ρ, then µ is unique.

Proof. This follows from the proof of Theorem 2.3 because the value of µ

on each point of Ω is pinned down uniquely by the choice probabilities, for

example, µ(xyz) := ρ(y, {y, z})− ρ(y,X). □

Unfortunately, with more elements RU is not point-identified. The follow-

ing example shows two distributions that induce the same s.c.f.

Example 2.14. (Fishburn, 1998) Suppose that X = {x, y, z, w} and µ1 and

µ2 are given as in Figure 2.2. Those two probability distributions lead to the

same s.c.f. ρ (why?). △

(x ≻ y ≻ z ≻ w)

1
2

(y ≻ x ≻ w ≻ z)
1
2

(a) µ1

(x ≻ y ≻ w ≻ z)

1
2

(y ≻ x ≻ z ≻ w)
1
2

(b) µ2

Figure 2.2. Choice-equivalent, but distinct preference distributions.
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Not only are µ1 and µ2 different, but their supports are disjoint. The

difficulty here is that although we can determine the probability that x is

better than y and the probability that w is better than z, we can’t determine

the probability of those two events occurring at the same time.17

Although the amount of correlation between different rankings is not pinned

down, the marginal distributions over the rankings is. In other words, in RU

the distribution of preferences is unique up to correlations.

Proposition 2.15 (Falmagne 1978). If µ1 and µ2 are two distributions over

preferences that represent the same ρ, then for any x ∈ X

µ1(x is k-th best in X) = µ2(x is k-th best in X)

for all k = 1, . . . , |X|.

Proof. If µ1 and µ2 are RU representations of the same ρ, then they agree on

the collection of sets N(x,A). Moreover, as in the proof of Theorem 2.9 we

can use the Möbius inversion to show that they agree on the collection of sets

N∗(x,A). This yields our desired conclusion because for any k = 1, . . . , |X|

{≿∈ P : x is k-th best in X} =
⋃

A∈A:x∈A,|A|=|X|−k+1

N∗(x,A). □

Notice that in fact there is a stronger sense of uniqueness: the probabilities

of all N∗ sets are identified.

2.4.2. Identification under ARU. The parametrization of ARU involves

a deterministic utility function v and a distribution over ϵ̃. It turns out that

without additional assumptions, the utility is not identified at all (even ordi-

nally). This is perhaps not very surprising because we can just absorb any v

into ϵ̃ by defining

ϵ̃2(x) := v1(x)− v2(x) + ϵ̃1(x).

Remarkably, v is completely nonindentified even if we restrict the mean of ϵ to

be a zero vector. This was shown in a binary model by Manski (1988) and in

general by Koning and Ridder (2003).18

Proposition 2.16. Suppose that X is finite. If ρ ∼ ARU(v1, ϵ̃1), then for any

v2 ∈ RX there exists ϵ̃2 with Eϵ̃2 = 0 such that ρ ∼ ARU(v2, ϵ̃2).

Moreover, for a fixed v the correlation structure of ϵ̃ is not pinned down.

For example we can take i.i.d. ϵ̃ and shift it by a common (same for all x)

random variable η̃ to make it as correlated as we want.

Proposition 2.17. If ρ ∼ ARU(v, ϵ̃), then for any random variable η̃ : Ω → R
we have ρ ∼ ARU(v, ϵ̃′) where ϵ̃′ω(x) = ϵ̃ω(x) + η̃ω.

17McClellon (2015) shows that non-uniqueness occurs in all RU that have a full support distri-
bution. Turansick (2021) characterizes exactly when uniqueness occurs. Moreover, he shows that
uniqueness of the distribution occurs if and only if its support is unique.
18Their Theorem 1 does not state the restriction Eϵ̃2 = 0 but their proof actually delivers it.
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Proof. The result follows because

v(x) + ϵ̃ω(x) ≥ v(y) + ϵ̃ω(y) for all y ∈ A,ω ∈ Ω

iff

v(x) + ϵ̃ω(x) + η̃ω ≥ v(y) + ϵ̃ω(y) + η̃ω for all y ∈ A,ω ∈ Ω.□

The identification result is much improved within the i.i.d. class. I discuss

this in the next chapter (Proposition 3.10). Another way to vastly improve

identification is to add product attributes (Section 10.3).
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3.1. Logit or Luce Model

3.1.1. Logit. Logit is a special case of ARU where ϵ̃(x) have a i.i.d. TIEV

distribution (Definition 1.13). Logit leads to a very simple specification of

choice probabilities.

Theorem 3.1 (Holman and Marley). If ρ is logit, then

ρ(x,A) =
ev(x)∑

y∈A ev(y)
.

This makes logit very tractable and is why logit has been a workhorse

model for estimation.

3.1.2. Luce. An equivalent model was introduced by Luce (1959). Here R++

is the set of positive real numbers.

Definition 3.2. ρ has a Luce representation if there exists a function w : X →
R++ such that for all A ∈ A

ρ(x,A) =
w(x)∑
z∈A w(z)

.

Here, w(x) is interpreted as the perceived strength of the stimulus x and

choice probabilities are proportional to those perceptions.

Notice that the function w is unique up to multiplication by positive num-

bers. Likewise, the function v in logit is unique up to adding a constant.

Many decision theory models build on the Luce-logit model.19 One cost of

its tractability is that it makes very strong assumptions about the substitution

patterns between products. One example is the famous red bus blue bus prob-

lem, which is actually a problem for all i.i.d. ARU models; we will discuss this

in Section 3.2.3.

3.1.3. Axioms. Mathematically, the probability distribution on A is the con-

ditional of the probability distribution on the grand set X. This makes it

possible to characterize the model by very a simple axiom.

Axiom 3.3 (Luce’s IIA). For all x, y ∈ A ∩ B whenever the probabilities are

positive
ρ(x,A)

ρ(y,A)
=

ρ(x,B)

ρ(y,B)
.

This axiom says that the ratio of the choice probabilities of x and y does

not depend on what other elements are in the menu. Hausman and McFadden

(1984) propose a statistical test of the axiom: if we estimate the model twice,

19To mention a few, the random consideration model of Manzini and Mariotti (2014), the attribute
rule model of Gul, Natenzon, and Pesendorfer (2014), and the additive perturbed utility model of
Fudenberg, Iijima, and Strzalecki (2015)
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on a full set of alternatives and on a subset, then under IIA the two estimates

should not be statistically different.

An equivalent version of this axiom is the following product rule.20 We will

write ρ(A,B) :=
∑

x∈A ρ(x,B) whenever A ⊆ B. This is the probability that

something from A gets chosen from the menu B.

Axiom 3.4 (Luce’s Choice Axiom). For all x ∈ A ⊆ B

ρ(x,B) = ρ(x,A)ρ(A,B).

Theorem 3.5. The following are equivalent for any set X:

(i) ρ satisfies Luce’s IIA and positivity

(ii) ρ satisfies Luce’s Choice Axiom and positivity

(iii) ρ has a Luce representation w

(iv) ρ has a logit representation v(x) = log(w(x)).

3.1.4. The Noise Parameter. Sometimes we want to scale the variance of

the extreme-value shocks ϵ̃. In logit with noise parameter λ we set Ũ(x) :=

v(x) + λϵ̃x, where ϵ̃x are i.i.d. TIEV. This leads to the choice probabilities:

ρ(x,A) =
ev(x)/λ∑

y∈A ev(y)/λ
. (3.1)

If we let λ → 0, then ρ converges to a deterministic choice function that is the

argmax of v (ties are broken uniformly). On the other hand, as λ → ∞ choice

from any menu becomes uniform. In machine learning, equation (3.1) is known

as the softmax.

3.1.5. Social Surplus. Logit has a nice closed-form “log-sum” expression for

social surplus (Section 1.8).21

Proposition 3.6. In logit with noise parameter λ the social surplus equals

Vλ(A) = λ log

(∑
x∈A

exp(v(x)/λ)

)
. (3.2)

Note that as we increase the number of goods, the consumer welfare grows

without bound.

3.1.6. Another form of IIA*. Luce’s IIA has a cardinal feel to it (we require

products or ratios of probabilities to be equal to each other). Gul, Natenzon,

and Pesendorfer (2014) consider an ordinal axiom that says that the ranking

of probabilities does not change when adding/taking away other alternatives.

This axiom relies only on ordinal information; the exact magnitudes of choice

probabilities do not matter.

20These two axioms are equivalent with or without positivity (Cerreia-Vioglio, Maccheroni, Mari-
nacci, and Rustichini, 2017). Other models that obtain a Luce-like representation without positiv-

ity are Echenique and Saito (2019), Ahumada and Ülkü (2018), and Horan (2021).
21For a history of this expression, see De Jong, Daly, Pieters, and Van der Hoorn (2007).
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Axiom 3.7 (GNP’s IIA). If A ∪B and C ∪D are disjoint, then

ρ(A,A ∪ C) ≥ ρ(B,B ∪ C) =⇒ ρ(A,A ∪D) ≥ ρ(B,B ∪D).

The dagger symbol † means I am not stating all technical details. A serious

reader will want to consult the original paper.

Theorem†3.8. (Gul, Natenzon, and Pesendorfer, 2014) In the presence of a

richness condition, ρ satisfies GNP’s IIA iff ρ ∼ Luce.

3.2. i.i.d. ARU

3.2.1. The Model. Under logit, ϵ̃(x) are i.i.d. across x ∈ X, distributed

TIEV. Thurstone’s model from Example 1.15 had i.i.d. Normal distributions.

We will now allow all distributions. Axiomatizing the general class is an open

question.

Definition 3.9. ρ ∼ i.i.d. ARU if ρ ∼ ARU(v, ϵ̃) where ϵ̃(x) and ϵ̃(y) are i.i.d.

for every x ̸= y.

Recall that ρ(x, y) denotes the probability that x is chosen over y, i.e.,

ρ(x, {x, y}). If ϵ̃(x) are i.i.d. then we have

ρ(x, y) = P
(
v(x) + ϵ̃(x) ≥ v(y) + ϵ̃y

)
= P

(
ϵ̃(y)− ϵ̃(x) ≤ v(x)− v(y)

)
= F

(
v(x)− v(y)

)
, (3.3)

where F is the cdf of the symmetric random variable η̃ := ϵ̃(y)− ϵ̃(x). Models

with such a representation for pairwise choices are called Fechnerian; we will

discuss them later in this chapter.

3.2.2. Identification. The i.i.d. ARU has very clean identification properties.

Proposition 3.10. Suppose that ρ has two i.i.d ARU representations with

positive density: (v1, ϵ̃1) and (v2, ϵ̃2). Let Fi be the cdf of ϵ̃i(x) − ϵ̃i(y). If

the range of v1 is a nontrivial interval, then there exist α > 0, β such that

v2 = αv1 + β and F2(t) = F1(α
−1t) for all t ∈ {v2(x)− v2(y) : x, y ∈ X}.

Proof. Appendix A.3.2. □

The proposition says that if there is enough variation in v, then v is unique

up to a positive affine transformation and the distribution of ϵ differences is

unique up to a multiplicative factor. Notice that identification occurs only

within the i.i.d. ARU class; by Proposition 2.16 (v, ϵ̃) is not identified within

the ARU class.

Does knowing F pin down the distribution of ϵ̃? Of course, the mean of

ϵ̃ cancels out, so we won’t be able to pin it down. How about pinning down

the distribution modulo the mean? This is true within some special classes of
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distributions, such as Normal, but not in general.22 I do not know what are

the exact uniqueness properties of the distribution of ϵ̃ outside of these classes.

3.2.3. Blue Bus-Red Bus. The following paradox was originally conceived

by Debreu (1960) as a critique of Luce’s IIA. It actually applies to all i.i.d.

ARU models. McFadden adapted his example to transportation choices.

Example 3.11. People can comute by a train or a bus. There are two kinds

of buses: a blue bus and a red bus. So X = {t, bb, rb}. Suppose that we

observed that ρ(t, bb) = ρ(t, rb) = ρ(bb, rb) = 1
2 . If ρ ∼ i.i.d. ARU , then by

formula (3.3) we infer that v(t) = v(bb) = v(rb) and predict that ρ(t,X) = 1
3 .

But this doesn’t make much sense if you think that the main choice is between

the modes of transportation (train or bus) and the bus color is just an icing

on the cake. In that case we would like to have ρ(t,X) = 1
2 . (If you are

still not convinced, imagine that there n colors of buses. Would you insist on

ρ(t,X) → 0 as n → ∞? If people behaved this way, a firm could capture

the whole market by introducing a bunch of new products that are virtually

identical to each other.) △

This is a paradox for i.i.d. ARU because in that model all three modes

of transportation must be indifferent in terms of v. But really they are not

indifferent, and the i.i.d. model just doesn’t have enough degrees of freedom

to capture this. More generally, i.i.d. ARU with positive density satisfies the

following axiom.

Axiom 3.12 (Interchangeability). If ρ(x, y) = 0.5, then ρ(x, z) = ρ(y, z) for

all z ̸= x, y.

This is precisely what goes wrong in Example 3.11. From the fact that

ρ(t, bb) = 0.5 we should not infer that those two are interchangeable. They

could be very different objects that have different substitution patterns with

a third object rb. However, i.i.d. ARU models squish all of this onto a one-

dimensional scale. This might make sense for perception of weight and other

physical stimuli, but it is too simplistic to capture economic demand.

Note that this is a paradox only for i.i.d. ARU, not for RU in general. Here

is a very simple RU that gives the desired choice probabilities.

22This is the subject of decomposition theory, see Loève (1978). Feller (1957) gives an example of
two symmetric distributions that lead to the same F , yet differ by more than just the scaling of
v (this is number iii of his Curiosities on page 506). I thank Jetlir Duraj for pointing me to this
example. These are not full support distributions but perhaps such counterexamples also exist.
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Example 3.13. Let X = {bb, rb, t}. Let µ assign weight 1
4 to each of the

following four orderings:

t ≻ bb ≻ rb

t ≻ rb ≻ bb

bb ≻ rb ≻ t

rb ≻ bb ≻ t

Then each pairwise choice is fifty-fifty, but ρ(bb,X) = ρ(rb,X) = 1
4 and

ρ(t,X) = 1
2 .

The above RU implicitly introduces correlation between ϵ. But in fact,

these choice probabilities can be explained by ARU with independent but not

identical distribution of ϵ. To see that, let v = 0 and ϵt equal +10 or -10 with

equal probabilities, ϵbb equal +1 or -1 with equal probability and ϵrb = 0. (I

owe this example to Christopher Turansick.) △

3.3. Mixed Logit

Mixed logit is an average of logits with different v functions.

Definition 3.14. ρ has amixed-logit representation if there exists a probability

measure α over functions v : X → R such that

ρ(x,A) =

∫
ev(x)∑

y∈A ev(y)
α(dv).

Every ρ with a mixed logit representation must have a RU representation

(since every logit has one and a mixed logit is just another randomization over

those). Conversely, if ρ has a RU representation, then it can be approximated

by a sequence of mixed logits (in other words, mixed-logit is dense in RU).

Proposition 3.15. If ρ ∼ RU , then there exists a sequence ρn ∼ mixed logit,

such that ρn(x,A) → ρ(x,A) for all A ∈ A and x ∈ A.

Intuitively, every ρ that has a RU representation is by definition a mix-

ture of deterministic choice functions and each of those deterministic choice

functions is a limit of logit choice functions with noise going to zero (Section

3.1.4).

Proof. Suppose that X is finite and let µ ∈ ∆(P) represent ρ. For any ≿∈ P
pick a utility function v that represents it. For any n define the logit ρnv (x,A) :=

exp(nv(x))∑
y∈A exp(nv(y)) . Define the mixed logit ρn(x,A) :=

∑
v ρ

n
v (x,A)µ(v). Define

ρ∗v(x,A) to be one if x is the argmax of v over A and zero otherwise (this a well

defined s.c.f. because v is one-to-one). Note that limn→∞ ρnv (x,A) = ρ∗v(x,A).

Thus,

ρ(x,A) =
∑
v

ρ∗v(x,A)µ(v) = lim
n→∞

∑
v

ρnv (x,A)µ(v) = lim
n→∞

ρn(x,A).
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For arbitrary X, see Theorem 3 of Gul, Natenzon, and Pesendorfer (2014). In

Chapter 10 we will see a similar result by McFadden and Train (2000). □

In fact, there is nothing special about logit in the theorem above. The

mixed i.i.d. probit is also dense in RU, and so is any other i.i.d. ARU model.

Notice that we could think of mixed-logit as a random v function ṽ : Ω ×
X → R so that ρ(x,A) = E

[
eṽ(x)∑

y∈A eṽ(y)

]
. Even though you could call ṽ a

random utility, note that ṽ is not a RU representation of this ρ. The RU

representation of ρ is Ũ(x) = ṽ(x) + ϵ̃(x) where ϵ̃(x) is i.i.d. TIEV.

Mixed logit suggests a general class of mixture models. Suppose that we

have a class C of ρ’s. A mixed-C model contains all ρ that can be written as

ρ(x,A) =
∑n

i=1 αiρi(x,A) such that αi ≥ 0,
∑n

i=1 αi = 1, and ρi ∈ C (or an

integral more generally). For example, if C is the class of deterministic choice

functions that satisfy Sen’s α condition, then the class of mixed C equals the

RU class. We get mixed logit if C is the logit class. RU is closed under mixtures,

whereas logit and i.i.d. ARU are not (Apesteguia and Ballester, 2017a).

3.4. Nested Logit

This is an older solution to the blue bus-red bus paradox. Imagine that instead

of a one-shot choice from {t, bb, rb} the agent is choosing first from {t, b} and

then conditional on choosing b the choice is between {bb, rb}, like in Figure 3.1.

red bus

blue busbus

train

Figure 3.1. A nested decision problem.

It’s clear how to model the second step within the logit framework, but to

assign probabilities in the first stage we need to define the value of the menu

{bb, rb} so that we can compare it with the value of {t}. The idea is to use

expected utility, i.e., the social surplus:

Vλ(A) := E
[
max
x∈A

v(x) + λϵ(x)

]
= λ log

(∑
x∈A

exp(v(x)/λ)

)
.

Intuitively, when evaluating the menu A, the agent does not yet know the

realizations of ϵ(x) for x ∈ A. They think that for each possible realization

they will choose the optimal item in the menu and V (A) is the expected value

of this optimal strategy. In the context of nested logit, this expression is called

the “inclusive value” (McFadden, 1981).
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Formally, rho is nested logit the set of alternatives is partitioned into nests

B1, . . . , Bk. The conditional probability of choosing x from a nest Bi is

exp(v(x)/λ2)∑
y∈Bi

(exp v(y)/λ2)

and the probability of choosing nest i in the initial stage is

exp(Vλ2
(Bi)/λ1)∑k

l=1 exp(Vλ2(Bl)/λ1)
,

where λ1, λ2 are the noise parameters for stage 1 and stage 2 respectively.23

Whereas in the basic logit model all ϵ are independent, nested logit can be

thought of as allowing for correlation of ϵ within the nest (but not across the

nest).

While nesting seems like a nice approach, the analyst has to decide about

the nest structure. The advantage of mixed logit is that the correlation struc-

ture between utilities of different goods is being estimated instead of being

imposed by the analyst upfront. Other approaches include Gul, Natenzon, and

Pesendorfer’s (2014) model in which (generalized) nests are revealed from data.

Axioms for nested logit are given by Fudenberg, Iijima, and Strzalecki (2014)

and Kovach and Tserenjigmid (2022a).

3.5. Other models of correlated ϵ*

Mixed logit and nested logit implicitly allow ϵ to be correlated. There are a

few other models that do that. Figure 3.2 illustrates their relationship.

RU =ARH =closure (mixed legis

·id ARU
=closure (GEU

nested
logit bit

logit iid pro

GEV
probit

Figure 3.2. A categorization of models with correlated ϵ.

23Nested logit is consistent with RU iff λ1 ≥ λ2 (?).
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3.5.1. Multivariate Probit. Here ϵ ∼ N (0,Σ) where Σ is the variance-

covariance matrix, so we are confronting the correlation issue head-on. Closed

forms for choice probabilities are missing, so this literature relies on simulation

(see Chapter 5 of Train, 2009).

3.5.2. GEV. Nested logit can be represented as ARU where the ϵ̃ are cor-

related. This distribution belongs to the class of generalized extreme value

distributions proposed by McFadden (1981), which allows for even more flex-

ible substitution patterns. Like mixed logit, GEV is dense in RU (Dagsvik,

1995). For more, see Appendix A.3.1.

3.6. Fechnerian Models

Fechnerian models come from the psychometric tradition, where choice random-

ness is often interpreted as decision error or discrimination error (see Examples

1.5 and 1.15). Whether ρ is Fechnerian or not depends only on its restriction

to binary menus.

Definition 3.16. We say that ρ has a Fechnerian representation if there exist

real functions v : X → R and F : D → R such that

ρ(x, y) = F
(
v(x)− v(y)

)
.

where D := {v(x) − v(y) : x, y ∈ X}, F is strictly increasing and symmetric,

i.e., F (−k) = 1− F (k) for all k ∈ D.24

In a perception task x is the true stimulus strength and v(x) is the perceived

stimulus strength. An S-shaped F leads to an S-shaped psychometric function.

A canonical Fechnerian model is i.i.d. ARU model with positive density.

This follows from Equation (3.3) where we take F to be the c.d.f. of the ϵ

difference. In fact, when X is finite, all Fechnerian models can be written

this way. For infinite X the Fechnerian class is richer because not every F is

decomposable as a difference of two i.i.d. random variables.25 In general, RU

is not Fechnerian (Marschak, 1959).

There are a couple of important models that look Fechnerian but where

the F function is not strictly increasing and is instead a step-function.

Example 3.17 (Just-noticable Difference). There is a number δ > 0 such that

F (t) =


0 if t < −δ

0.5 if − δ < t < δ

1 if t > δ,

This F is plotted in panel (a) of Figure 3.3. This is the old psychology model

of just-noticable difference. Here, the agent perfectly distinguishes the objects

24In the early literature this model was sometimes called the strong utility model and its special
case Luce was called the strict utility model.
25For example, the uniform distribution is not decomposable, see Example A.0 in the Appendix.
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if they are far enough, but can’t distinguish them at all otherwise. These are

known as semiorders (Luce, 1956). This is the language in wich the orignal

Weber Law was formulated, see footnote 8. A weaker class of interval orders

allows for δ to depend on the alternatives. A recent extension to choice from

bigger menus makes δ dependent on the size of the menu (Frick, 2016). △

Example 3.18 (The Constant-Error Model). There is a number 0 < π < 1
2

such that

F (t) =


π if t < 0

0.5 if t = 0

1− π if t > 0.

This F is plotted in panel (b) of Figure 3.3. Here, the agent makes a mistake

with a fixed probability p, regardless of how serious this mistake is (Harless

and Camerer, 1994). △

0

0.5

1

(a) Just-noticeable difference

0.5

(b) Constant-error model

Figure 3.3. Examples of F that is not Fechnerian.

Turning back to models that are Fechnerian, the reader can easily check

that the following axiom is necessary (Davidson and Marschak, 1959).

Axiom 3.19 (Quadruple Condition).

ρ(x, y) ≥ ρ(w, z) if and only if ρ(x,w) ≥ ρ(y, z)

Debreu (1958) proved that this axiom is also sufficient if a richness con-

dition (sometimes called solvability or stochastic continuity) is assumed. This

condition implies that X is infinite.

Axiom 3.20 (Richness). If ρ(x, y) ≤ α ≤ ρ(z, y), then there exists w ∈ X

such that ρ(w, y) = α.

This theorem uses our convention that ρ(x, x) = 1
2 for all x.

Theorem 3.21 (Debreu 1958). Suppose that ρ satisfies Richness. It has a

continuous Fechnerian representation if and only if it satisfies the Quadruple

condition. Moreover, if (v1, F1) and (v2, F2) both represent ρ, then there exists

α > 0 and β ∈ R such that:
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v2(x) = αv1(x) + β for all x ∈ X,

F2(αt) = F1(t) for all t ∈ D1,

where D1 = {v1(x)− v1(y) : x, y,∈ X}.

Proof. In Appendix A.3.3 I show how this follows from Debreu’s theorem. □

Scott (1964) axiomatized the model for finite X.

Axiom 3.22 (Acyclicity). For all n, all sequences x1, . . . , xn, y1, . . . , yn and

all bijections f, g : {1, ..., n} → {1, ..., n}

ρ(xk, yk) ≥ ρ(xf(k), yg(k)) for 1 ≤ k < n

implies

ρ(xn, yn) ≤ ρ(xf(n), yg(n)).

The simplest way to understand why the axiom is necessary is to plug it

into the representation and see what happens. I invite you to do this right now.

Theorem 3.23 (Scott). ρ has a Fechnerian representation if and only if it

satisfies the Quadruple condition and Acyclicity.

Proof. See Appendix A.3.4 □

3.7. Stochastic Transitivity*

We say that x is stochastically preferred to y, denoted x≿∗y, if x is more

frequently chosen than y in pairwise choice, i.e., ρ(x, y) ≥ 0.5. Suppose that

x≿∗y and y≿∗z. What can we conclude about the frequency of choices between

x and z? Let p := ρ(x, y) ≥ 0.5, q := ρ(y, z) ≥ 0.5, and r = ρ(x, z). We have:

• weak stochastic transitivity (WST) if r ≥ 0.5

• moderate stochastic transitivity (MST) if r ≥ min{p, q}
• strong stochastic transitivity (SST) if r ≥ max{p, q}.

WST is the same thing as transitivity of the relation ≿∗. In general, WST

does not imply RU and RU can violate WST, as the following example shows.

Example 3.24 (Condorcet Paradox). Let X = {x, y, z}. Let µ assign weight
1
3 to each of the following three orderings:

x ≻ y ≻ z

y ≻ z ≻ x

z ≻ x ≻ y

Then we have ρ(x, y) = ρ(y, z) = ρ(z, x) = 2
3 , a violation of WST. If we

interpret µ as a population of agents and ρ as recording their vote fractions in

a pairwise election then we have what is called the Condorcet cycle. △



3.7. Stochastic Transitivity* 47

Another popular example formulates this idea in the language of distribu-

tion over utilities.

Example 3.25 (Intransitive Dice). Consider the following three dies:

die x with sides 2, 2, 4, 4, 9, 9

die y with sides 1, 1, 6, 6, 8, 8

die z with sides 3, 3, 5, 5, 7, 7.

Then ρ(x, y) = ρ(y, z) = ρ(z, x) = 2
3 . △

This may make you relatively uninterested in WST and even stronger prop-

erties. But prominent models satisfy them and they are a point of reference in

the literature. Notice for instance that WST is satisfied in Fechnerian models

because ρ(x, y) ≥ 0.5 iff v(x) ≥ v(y). Fechnerian models not only satisfy WST,

but also SST (why?). In fact, SST is satisfied by a wider class.

Definition 3.26. ρ has a simple scalability representation if

ρ(x, y) = H(v(x), v(y))

for some function v : X → R and function H : D×D → R such that D = v(X)

and H is strictly increasing in the first argument and strictly decreasing in the

second argument and symmetric H(s, t) = 1−H(t, s).

Of course, Fechnerian representations are a special case. Simply scalable

ρs are characterized by a slight strengthening of SST.

Axiom 3.27 (SST+). ρ satisfies SST and a strict inequality in both hypotheses

implies a strict inequality in the conclusion.

There are two alternative axioms that characterize simple scalability.

Axiom 3.28 (Substitutability).

ρ(x, z) ≥ ρ(y, z) iff ρ(x, y) ≥ 0.5.

Axiom 3.29 (Tversky’s IIA).

ρ(x, z) ≥ ρ(y, z) iff ρ(x,w) ≥ ρ(y, w).

Note that Tversky’s IIA is a singleton version of GNP’s IIA (Axiom 3.7).

Proposition 3.30 (Tversky and Russo 1969). The following are equivalent for

any binary ρ that satisfies Positivity:

(i) ρ satisfies SST+

(ii) ρ satisfies Substitutability

(iii) ρ satisfies Tversky’s IIA

(iv) ρ has a simple scalability representation.
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A characterization of a slightly stronger version of MST was recently ob-

tained by He and Natenzon (2018). These are the models that are represented

by moderate utility, where

ρ(x, y) = F

(
v(x)− v(y)

d(x, y)

)
for some v : X → R, distance metric d : X×X → R+, and F : R → [0, 1] strictly

increasing transformation, defined on an appropriate domain, that satisfies

F (t) = 1− F (−t).

Axiom 3.31 (MST+). If ρ(x, y) ≥ 0.5 and ρ(y, z) ≥ 0.5, then ρ(x, z) >

min{ρ(x, y), ρ(y, z)} or ρ(x, z) = ρ(x, y) = ρ(y, z).

Proposition 3.32 (He and Natenzon 2018). If X is finite, then ρ satisfies

MST+ if and only if it has a Moderate Utility representation.

He and Natenzon (2018) also obtain a representation for WST similar to

Moderate Utility, but where d is a distance semimetric (does not need to satisfy

the triangle inequality).

The final axiom that we will consider in this section is known as the triangle

axiom.

Axiom 3.33 (Triangle). For any three distinct x, y, z ∈ X

ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

Marschak (1959) thought that Triangle is necessary and sufficient for RU on

binary menus but in fact it is only necessary, see Cohen and Falmagne (1990),

Gilboa (1990), and Marley (1990). Sprumont (2020) shows that if ρ satisfies

Triangle, then it has an extension to all menus that satisfies Regularity.

Rieskamp, Busemeyer, and Mellers (2006) discuss experimental evidence

on stochastic transitivity. From a theoretical point of view, it is reasonable

to expect stochastic transitivity in some applications, like in one-dimensional

perception tasks. But in settings with richer substitution patterns, like the

blue-bus red-bus example (Example 3.11), we should not be surprised to see

violations. Likewise, if we know that ρ represents aggregate behavior, then we

should not expect WST to hold because Condorcet cycles might exist (Example

3.24).

3.8. Perturbed Utility*

Definition 3.34. ρ has a perturbed utility (PU) representation if for each A

the probability ρ(·, A) solves

max
p∈∆(A)

∑
x∈A

v(x)p(x)− c(p),

where v ∈ RX is a deterministic utility function and c : ∆(X) → (−∞,∞] is

the cost of implementing the probability mixture p.
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The leading interpretation is that c is the implementation cost van Damme

(1991). The agent implements their choices with an error (trembling hands)

that can be controlled at a cost. A commonly used example is where c equals

the negative entropy −H (Stahl, 1990; Fudenberg and Levine, 1995).

Definition 3.35. Entropy is defined as H(p) = −
∑

x∈X p(x) log p(x) with

the condition that 0 · log 0 = 0.

The more chaotic is the p, the higher is its entropy H(p). A uniform p has

the highest entropy. That’s the cheapest thing for our agent to implement, but

their utility function v will be pulling them in a specific direction.

Interestingly, if cost equals the negative entropy, then this is observationally

equivalent to logit.

Proposition 3.36 (Rockafellar 1970; Anderson, de Palma, and Thisse 1992).

The following are equivalent:

(i) ρ has a logit representation with utility v

(ii) ρ has a PU representation with utility v and cost −H.

A generalization of the entropy model is Additive Perturbed Utility.

Definition 3.37. ρ has an additive perturbed utility (APU) representation if

it has a perturbed utility representation where

cA(p) =
∑
x∈A

ϕ(p(x))

for some ϕ : [0, 1] → (−∞,∞] that is strictly convex and C1 over (0, 1). We

say that the cost is steep if limq→0 ϕ
′(q) = −∞.

APU always satisfies Regularity, but APU and ARU are different classes

of s.c.f. (logit being in their intersection).

Steep cost implies Positivity. It is satisfied under the negative entropy cost

because we know that logit satisfies it. Logarithmic costs ϕ(t) = − log(t) used

by Harsanyi (1973b) are also steep.

The quadratic costs ϕ(t) = t2 used by Ben-Akiva and Lerman (1985);

Rosenthal (1989) are not steep and choices can violate Positivity. The quadratic

cost are known in machine learning as sparsemax (as opposed to softmax, which

is their name for logit).(Martins and Astudillo, 2016)

In general the solution to APU is characterized by the first-order condition

associated with the maximization problem in Definition 3.34: v(x) + λ(A) =

ϕ′(ρ(x,A)), where λ(A) are the Lagrange multipliers on the constraint that

choice probabilities from menu A sum up to one. Imagine a binary relation

on menu-item pairs defined by (x,A) ≿∗ (y,B) if ρ(x,A) ≥ ρ(y,B). The first-

order condition means that ρ satisfies APU with steep costs if and only if ρ∗

has an additive representation.
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An additive representation is guaranteed by the following axiom, similar

to Axiom 3.22 that guarantees a Fechnerian representation.

Axiom 3.38 (Acyclicity). For any n and bijections f, g : {1, ..., n} → {1, ..., n},
such that xk ∈ Ak, and xf(k) ∈ Ag(k) for all k = 1, . . . , n

ρ(x1, A1) > ρ(xf(1), Ag(1))

ρ(xk, Ak) ≥ ρ(xf(k), Ag(k)) for 1 < k < n

implies

ρ(xn, An) < ρ(xf(n), Ag(n)).

One intuition for the axiom is as follows: suppose you have n xylophones

and n Accordions. You have a scale that records the weight of an (x,A) pair.

The sum of these weights should not depend on how you pair up the instru-

ments.

Acyclicity implies that ρ(x,A) ≥ ρ(y,A) iff ρ(x,B) ≥ ρ(y,B), so the

agent’s choice probabilities do not reverse due to “menu effects” (recall Exam-

ple 2.5). The ranking that ρ induces on X is represented by the utility function

v. Additionally, acyclicity implies that ρ(x,A) ≥ ρ(x,B) iff ρ(y,A) ≥ ρ(y,B).

The ranking that ρ induces over (nested) menus can be interpreted as “com-

petitiveness” of menus and is represented by λ.

Theorem 3.39 (Fudenberg, Iijima, and Strzalecki 2015). Suppose that X is

finite and ρ satisfies Positivity. Then ρ has an APU representation with steep

cost if and only if it satisfies Acyclicity.

Positivity can be dropped by weakening Acyclicity. The finiteness of X can

be relaxed by adding continuity and richness. Moreover, on binary menus and

under Positivity and technical conditions, Acyclicity holds if and only if there

is a Fechnerian representation (see Proposition 1 of Fudenberg, Iijima, and

Strzalecki, 2014). The uniqueness properties are inherited from the Fechnerian

model. Because of the Fechnerian property, APU is not a good explanation of

the blue bus-red bus paradox.

Flynn and Sastry (2023) apply APU to coordination games. Another place

where APU shows up are models with attributes. We defer this discussion till

Section 10.8.

3.9. Single Crossing*

In many applications the alternatives are linearly ordered (e.g., levels of effort).

We will write x > y to denote that order. Suppose that the admissible prefer-

ence relations are also ordered (e.g., each reflecting a different level of ability).

Formally, let ≿1, . . . ,≿m be such that for any x > y if x ≿n y, then x ≿n+1 y.
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A SCRU is any RU model in which the set preferences satisfy this property

with probability one.

This can be captured behaviorally by the following axiom.

Axiom 3.40 (Centrality). If x > y > z and ρ(y, {x, y, z}) > 0, then ρ(x, {x, y, z}) =
ρ(x, {x, y}) and ρ(y, {x, y, z}) = ρ(y, {x, y}).

Theorem 3.41 (Apesteguia, Ballester, and Lu 2017). A s.c.f. ρ has a SCRU

representation µ if and only if it satisfies Regularity and Centrality. Moreover,

µ is unique.

Apesteguia, Ballester, and Lu (2017) show that a stronger version of cen-

trality, which does not require the premise ρ(y, {x, y, z}) > 0 characterizes RU

with single-peaked preferences.
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4.1. Expected Utility

Our agent will now be choosing between alternatives that involve risk, such

as insurance plans, career paths, etc. We will call them lotteries. Formally,

let Z be the set of prizes. A lottery is a mapping p : Z → [0, 1] such that

p(z) > 0 for finitely many z ∈ Z and
∑

z∈Z p(z) = 1. The set of such “sim-

ple” lotteries is denoted ∆s(Z). The assumption here is that the agent knows

these probabilities perfectly. Of course this is not realistic; we will relax this

assumption in Chapter 5, which allows for subjective probabilities. Lotteries

will be denoted p, q, r ∈ ∆s(Z) and elements of Z will be denoted by z, z′, etc.

As a prerequisite, this section reviews deterministic choice between lotteries.

Our agent now has preferences over lotteries: ≿ is defined on X = ∆s(Z).

As usual, we say that U represents ≿ if U(p) ≥ U(q) ⇐⇒ p ≿ q.

Definition 4.1. U : ∆s(Z) → R is an expected utility (EU) function if

U(p) = Epu :=
∑
z∈Z

u(z)p(z)

for some function u : Z → R.

The function u : Z → R is called the Bernoulli utility. The function

U : ∆s(Z) → R is called the von Neumann–Morgernstern utility, or the vNM

utility for short.

4.1.1. Mixing Lotteries. The key new thing to play with is the additional

structure on X given by the mixing operator. Given any two lotteries, p, q ∈
∆s(Z) and a number α ∈ [0, 1] we can define a new lottery

αp+ (1− α)q ∈ ∆s(Z).

This lottery attaches to each prize z the probability equal to αp(z)+(1−α)q(z),

so it’s a weighted average of the two lotteries.

One way to achieve this mixed lottery is to first toss a coin that with

probability α lands on heads and 1− α on tails. Then give the agent lottery p

if heads come up and q if tails come up. Such a two-stage lottery, or compound

lottery, is formally an object that lives in a different space ∆s(∆s(Z)). Our

preferences here are defined just on one-shot lotteries ∆s(Z), so we need to

think of αp(z) + (1 − α)q(z) as the reduced, or flattened lottery, where the

probabilities are multiplied out.

4.1.2. The Axioms. A key property of EU is linearity in probabilities:

U(αp+ (1− α)q) = αU(p) + (1− α)U(q). (4.1)

The reader should verify that U is an EU function if and only if it is linear

in probabilities.

Linearity in probabilities is captured by the following axiom on preferences.
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Axiom 4.2 (vNM Independence). For all α ∈ (0, 1) and r ∈ ∆s(Z)

p ≿ q if and only if αp+ (1− α)r ≿ αq + (1− α)r.

The agent likes p more than q if and only if they like a mixture of p with

some lottery r more than a mixture of q with r, as long as the mixtures are of

identical proportion.

Since X is now uncountably infinite, it is useful to have some continuity.

Axiom 4.3 (Archimedean Continuity). If p ≻ q ≻ r there exist α, β ∈ (0, 1)

such that

αp+ (1− α)r ≻ q ≻ βp+ (1− β)r.

Another axiom that works is the following.26

Axiom 4.4 (Mixture Continuity). For any p, q, r ∈ ∆s(Z) the sets

{α ∈ [0, 1] : αp+ (1− α)q ≿ r} and {α ∈ [0, 1] : αp+ (1− α)q ≾ r}

are closed in [0, 1].

Theorem 4.5. (Von Neumann and Morgenstern, 1944) A preference ≿ on

∆s(Z) has an EU representation if and only if it satisfies vNM Independence

and Archimedean Continuity (or Mixture Continuity). Moreover, u is cardi-

nally unique, i.e., whenever u1, u2 represent ≿, there exists a > 0, b ∈ R such

that u2(z) = au1(z) + b for all z ∈ Z.

Proof. See Theorem 5.5 of Kreps (1988). □

The idea behind cardinal uniqueness is similar to the measurement of tem-

perature: Celsius and Fahrenheit are affine transforms of each other.27 Cardi-

nal uniqueness makes it meaningful to talk about the curvature of u once we

assume that Z = R. As we will soon see, its curvature will control risk aversion.

This theorem combines two of the exercises we talked about in Chapter 2:

characterization and identification. The third exercise, comparative statics, is

the topic of the next subsection.

4.1.3. Risk Aversion. We say that someone is risk averse if they demand

insurance. Suppose that payoffs are monetary, i.e., Z ⊆ R, and for any lottery

p define p̄ to be its expected monetary value. For any prize z ∈ Z let δz denote

the lottery that gives z for sure; I will sometimes call it a point mass on z.

Definition 4.6. ≿ is risk averse if δp̄ ≿ p for all p ∈ ∆s(Z).

26Another notion of continuity is topological. When Z is finite, we equip ∆(Z) with the Euclidean
topology and with the weak∗ topology for Z infinite. In the infinite case the set of lotteries is

∆B(Z)—the Borel probability measures and U(p) =
∫
u(z)dp(z) (see, e.g., Grandmont, 1972).

Total nerds will keep in mind that ∆B(Z) is a subset of the dual space of the space of bounded
and continuous functions from Z to R hence weak star.
27This implies that U is also cardinally unique. We still have ordinal uniqueness of U from Chapter
1: for any strictly increasing function ϕ the function ϕ ◦U represents the preference. However this
function will not be of the vNM form unless the function ϕ is affine.
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Intuitively, the agent is risk averse if they prefer to get rid of all the risk

and get the expected payoff for sure.

Notice that the concept of risk aversion is defined for all risk preferences,

not just expected utility. In the EU model there is a particularly nice charac-

terization.

Definition 4.7. u : Z → R is concave if

u(αx+ (1− α)y) ≥ αu(x) + (1− α)u(y)

for all x, y ∈ Z, α ∈ (0, 1) such that αx+ (1− α)y ∈ Z.

Proposition 4.8. Suppose that ≿ has an EU representation with Bernoulli

utility u. ≿ is risk averse iff u is a concave function.

Proof. The proof is a restatement of Jensen’s inequality. □

Another definition helps us compare risk aversion of two individuals.

Definition 4.9. ≿1 is more risk averse than ≿2 if for all z ∈ Z and p ∈ ∆s(Z)

δz ≿2 p =⇒ δz ≿1 p

and

δz ≻2 p =⇒ δz ≻1 p.

If agent 2 chooses a sure thing over a lottery, then agent 1 who is more risk

averse should also go for the sure thing.

Proposition 4.10. Suppose that ≿1,≿2 have an EU representation with Bernoulli

utilities u1, u2. ≿1 is more risk averse than ≿2 iff u1 = ϕ ◦u2 for some strictly

increasing and concave function ϕ whose domain is the range of u2.

The price we have to pay for such nice comparative statics is that we

restrict attention to a certain subclass (in this case expected utility). This is

generally the case: we pay for identification by making assumptions. Ideally,

we can test these assumptions by checking whether some axioms hold (in the

case of expected utility, its the the vNM axiom).

4.1.4. Stochastic Dominance*. There are three main dominance relations

over lotteries with monetary payoffs. They are transitive, but incomplete.

We say that lottery p first-order stochastically dominates (FOSD) lottery

q if all EU preferences with an increasing u like p more than q, denoted by

p ≥FOSD q. The relation ≥FOSD can be characterized by comparing the c.d.fs

of the two distributions: p ≥FOSD q iff Fp(z) ≤ Fq(z) for all z ∈ Z, where Fp

is the cdf of p and Fq the cdf of q, see, e.g., expression (1.A.7) of Shaked and

Shanthikumar (2007). In other words, p is a definite improvement over q: for

any prize z, the probability of getting at least z under p is higher than under q.
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We say that lottery p dominates q in the concave order if all EU pref-

erences with a concave u like p more than q. This is denoted p ≥cv q and

implies that the expectations of those two lotteries are equal (why?). This

order is represented as follows: for any p, q with the same mean p ≥cv q iff∫ x

−∞ Fp(z)dz ≤
∫ x

−∞ Fq(z)dz (see, e.g., Theorem 3.A.1 of Shaked and Shan-

thikumar, 2007).

Finally, lottery p second-order stochastically dominates (SOSD) lottery q

if all EU preferences with an increasing and concave u like p more than q.

This order is represented as follows: for any p, q we have p ≥SOSD q iff∫ x

−∞ Fp(z)dz ≤
∫ x

−∞ Fq(z)dz (see, e.g., Theorem 4.A.2 of Shaked and Shan-

thikumar, 2007).

4.1.5. Popular Parameterizations. Two most used families of Bernoulli

utility functions are Constant Absolute Risk Aversion (CARA) and Constant

Relative Risk Aversion (CRRA). CARA says that risk aversion over incremen-

tal wealth stays constant as we make the agent richer (shift-invariance). CRRA

is a multiplicative version (scale-invariance). u is CARA if

u(z) =

{
− exp(−θz)

θ if θ ̸= 0

z if θ = 0

for some parameter θ ∈ R. u is CRRA if

u(z) =

{
z1−θ−1
1−θ if θ ̸= 1

ln(z) if θ = 1.

In either case, higher θ means more risk aversion.

4.1.6. Non-expected Utility. A substantial literature is motivated by the

Allais (1953) paradox and the related Common Ratio Paradox.

Example 4.11 (Common Ratio Paradox). Consider these four lotteries:

p

$0

20%

$4,000
80%

p′

$0

80%

$4,000
20%

q $3,000
100%

q′

$0

75%

$3,000
25%

Figure 4.1. The two lottery pairs in the common ratio paradox.
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The Independence axiom implies that q ≿ p if and only if q′ ≿ p′. This

is because p′ = .25p + .75δ0 and q′ = .25q + .75δ0. However in their experi-

ment Kahneman and Tversky (1979) find that among 95 subjects 80 have the

preference q ≻ p while only 35 have the preference q′ ≻ p′, so preferences of a

substantial fraction of subjects are inconsistent with EU.28 △

To accomodate such behavior, non-EU preferences relax linearity in prob-

abilities. A number of classes of nonlinear functions V : ∆s(Z) → R have been

developed and axiomatized.29

4.2. Stochastic Models for Expected Utility

It is widely documented that individual choices between lotteries are stochastic

(Mosteller and Nogee, 1951). Given a class of deterministic utility functions U
there are two basic ways to construct a stochastic model ρ: one is to randomize

over utilities u ∈ U and the other is to fix a particular v ∈ U and add an error

term ϵ. We will now apply these two ideas to U = “EU preferences.”30

Our ρ is defined on menus of lotteries: all finite subsets of ∆s(Z).

Definition 4.12 (Random Expected Utility). ρ has a Random Expected Utility

(REU) representation if it has a proper RU representation where with proba-

bility one the realized utility satisfies Definition 4.1.

We can think of REU as a probability distribution over EU preferences

or alternatively as a distribution over Bernoulli utilities u or a distribution

over vNM utilities U . When dealing with a parametric class such as CARA or

CRRA, we can think of it as a distribution over the parameter space Θ.

On the other hand, we have a model where shocks are added to the expected

utility values.

Definition 4.13 (i.i.d. Additive Random Expected Utility). ρ has an Additive

Random Expected Utility (i.i.d. AREU) representation if it has a RU represen-

tation where Ũ(p) = Epv + ϵ̃(p) for some deterministic v : Z → R and smooth

ϵ̃ i.i.d. across lotteries.

28This experiment has been replicated a number of times, using both within- and between-subjects
designs. Notice that in a between-subject design we cannot test Axiom 4.2 because we don’t observe
a preference relation, but instead a s.c.f. ρ(q, p) = 80

95 and ρ(q′, p′) = 35
95 .

29Prospect theory: Kahneman and Tversky (1979), Cumulative Prospect Theory: Tversky and
Kahneman (1992), Rank-dependent Expected Utility: Quiggin (1982), Yaari (1987), Betweenness
preferences: Chew (1983); Dekel (1986); Gul (1991), Quadratic Utility: Chew, Epstein, and Se-
gal (1991), and Cautious Expected Utility: Cerreia-Vioglio, Dillenberger, and Ortoleva (2015).
Machina (1982) pioneered a model-free approach by considering the classes of all differentiable and
FOSD-monotone or cv-monotone representations.
30Sometimes in the literature the first model is called “random parameter” whereas the second
“random utility;” we will not use this terminology here. Both kinds of stochastic models were
introduced Block and Marschak (1960) and Becker, DeGroot, and Marschak (1963). By the way,
the latter is not the famous paper of the trio. The experimental technique of random incentive
systems was introduced in (Becker, DeGroot, and Marschak, 1964).
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This is the i.i.d. ARU model adapted to the world of lotteries: the deter-

ministic utility function is expected utility and the error term (known to the

agent at the time of choice) is i.i.d. across lotteries.

REU and i.i.d. AREU are both special cases of RU but they are very

different animals. By definition, under REU the realized utility Ũ is with

probability one linear. On the other hand, as we will see in Section 4.6, in i.i.d.

AREU the realized utility Ũ with probability one represents a preference that

violates the vNM Independence axiom.

4.3. Axioms for Random Expected Utility

As we saw in Section 2.3, in the world without lotteries the axioms for ran-

dom utility are complicated and hard to interpret. Gul and Pesendorfer (2006)

showed that the axioms get much simpler in the EU case: we just need Reg-

ularity, Continuity, and two versions of Independence. We will also get much

better uniqueness properties.

The first version of Independence compares choices from a menu A to

choices from a menu A that is mixed with some lottery r. Formally, for any

α ∈ (0, 1) and r ∈ ∆(Z) define a new menu

αA+ (1− α)r := {αp+ (1− α)r : p ∈ A}.

Axiom 4.14 (Linearity). For any α ∈ (0, 1) any p ∈ A and r ∈ ∆(Z) ρ(p,A) =

ρ(αp+ (1− α)r, αA+ (1− α)r).

This axiom is necessary for REU because every vNM utility function is

linear in probabilities, so U(p) ≥ U(q) iff U(αp+(1−α)r) ≥ U(αq+(1−α)r).

This implies that

N(p,A) = N (αp+ (1− α)r, αA+ (1− α)r) ,

which implies that the choice probabilities are equal. Geometrically, N(p,A) is

one of the dashed angles in panel (a) of Figure 4.2, defined as the normal cone

of the convex hull of A at point p1. It equals the other dashed angle because

of the “corresponding angles theorem.”

In the next axiom the set ext (A) denotes the set of extreme points of A,

i.e., lotteries p ∈ A that cannot be represented as convex combinations of other

lotteries in A.

Axiom 4.15 (Extremeness). ρ(extA,A) = 1.

Extremeness is a consequence of linearity of the vNM utility and properness

of RU. Any fixed U is maximized on the boundary of A, see panel (b) of Figure

4.2. This may be an extreme point of A, but it may also a nonextreme point

(called exposed point, such as p4 in the figure) if the indifference curve happens

to be parallel to the side of A. But since we required REU to be proper, for

any fixed A, the probability of finding such a non-generic utility is zero.
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i

rent
(a) Linearity with A = {p1, p2, p3}

P5
-

· P4

q

P6
&

·py
P7

·
I P2
Pl

A

(b) Extremeness with A = {p1, . . . , p6}

Figure 4.2. Linearity and Extremeness Axioms.
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Finally, we need a flavor of continuity. This is a technical axiom, so you can

ignore the details. For a fixed menu A we treat ρ(·, A) as a Borel probability

measure on ∆(Z) and equip the set of all Borel measures, ∆(∆(Z)), with the

weak∗ topology. We endow the set M(∆(Z)) with the Hausdorff metric.

Axiom 4.16 (Continuity). The function ρ : M(∆(Z)) → ∆(∆(Z)) is contin-

uous.

I say that continuity is a technical axiom because to reject it we need to

observe an infinite number of menus. On the other hand, to reject the other

axioms we just need a small number of menus (especially if we cook them up

in a smart way). Of course, to verify that any of those axioms are satisfied, we

still need infinitely many menus.

Theorem 4.17 (Gul and Pesendorfer, 2006). Suppose that Z is finite. A s.c.f.

ρ satisfies Regularity, Linearity, Extremeness, and Continuity if and only if

ρ ∼ REU . In this case the measure µ is unique over the twice-normalized

Bernoulli utilities, that is µ is unique on the Borel σ-algebra of the set {u :

Z → R : u(z0) = 0,
∑

z∈Z u2(z) = 1}, where z0 ∈ Z is a fixed prize.31

Recall Example 2.14, which showed that in general we can’t determine the

probability that p is better than q and at the same time p′ is better than q′.

The reason we are getting stronger uniqueness now is that mixing allows us

to determine this probability. We simply need to look at the probability that
1
2p+

1
2p

′ gets chosen from the set
{

1
2p+

1
2p

′, 1
2p+

1
2q

′, 1
2q +

1
2p

′, 1
2q +

1
2q

′}.
More generally, the event N(αp + (1 − α)q, αA + (1 − α)B) equals the

intersection of N(p,A) and N(q,B). This is true for any α ∈ (0, 1) because for

any linear U : ∆(Z) → R we have

U(αp+ (1− α)q) ≥ U(αp′ + (1− α)q′) for all p′ ∈ A and q′ ∈ B

iff

αU(p) + (1− α)U(q) ≥ αU(p′) + (1− α)U(q′) for all p′ ∈ A and q′ ∈ B

iff

U(p) ≥ U(p′) for all p′ ∈ A and U(q) ≥ U(q′) for all q′ ∈ B.

As you may recall from Chapter 1, in a proper RU representation ties

must occur with probability zero. This may be confusing because any fixed

EU preference over lotteries must have nontrivial indifference curves (as long

as |Z| ≥ 3). To make this work, in a proper REU representation every single

preference has probability zero. This can be done by taking a distribution

over preferences that is smooth enough so every particular preference gets zero

probability and for any pair x, y the probability of a tie is zero (for example

take a positive density over the set RZ of Bernoulli utilities).

31Gul and Pesendorfer (2006) have a weaker uniqueness result. The stronger claim asserted here
follows from the Caratheodory extension theorem and the construction in Section S3.2 of the
supplement of Ahn and Sarver (2013).
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4.4. Technical Aspects of REU*

To work with examples or applications, we might want to have a REU that

puts positive probability on finitely many utilities and therefore is improper. To

do so, Gul and Pesendorfer (2006) introduce tiebreakers, just as we discussed

in Section 1.6, with the additional requirement that the tiebreaker a proper

REU.32

A technical wrinkle is that for tiebreakers we need to relax the countable

additivity assumption and require that they be only finitely additive. This is

obtained by relaxing the continuity axiom to mixture continuity.

Axiom 4.18 (Mixture Continuity). For any menus A and B, the function

α 7→ ρ(·, αA+ (1− α)B) is continuous.

Theorem 4.19 (Gul and Pesendorfer, 2006).

(i) ρ has a finitely additive proper REU representation if and only if it satis-

fies Regularity, Linearity, Extremeness, and Mixture Continuity. In this

case the measure µ is unique on the algebra generated by the sets N(p,A).

(ii) ρ has a finitely additive improper REU representation with a GP tiebreaker

if and only if it has a finitely additive proper REU representation.

Ahn and Sarver (2013) study REU representations with finitely many vNM

utilities. In the supplement to their paper they present a Finiteness axiom that

guarantees that the REU representation is discrete (with a GP tiebreaker).

The main idea hinges on their clever construction of a “separating menu.” If

ρ has a REU representation with finitely many utilities, then for any utility

u in the support of µ there is a lottery pu such that N(pu, A) = {u}, where
A = {pu : u ∈ suppµ}. This guarantees that ρ(pu, A) = µ(u). By using such

constructions it is possible to behaviorally define “menus without ties” and

“menus with ties.”

Finally, the discussion here assumes that Z is finite. Extensions to infinite

Z were obtained by Ma (2018), Frick, Iijima, and Strzalecki (2019), and Lu

and Saito (2019).

4.5. Axioms for Additive Random Expected
Utility

An axiomatic characterization of i.i.d. AREU is not known because we don’t

know axioms for i.i.d. ARU. However, it is easy to see that there are some

necessary axioms.

As in Section 3.7, define the stochastic preference p≿∗q by ρ(p, q) ≥ 1
2 .

i.i.d. AREU satisfies a weakening of Linearity.

32This is done in the supplement to their paper. Another way to proceed would be to break ties
at random. This was used for example by Loomes and Sugden (1995). This leads to a ρ which
satisfies Linearity but violates Extremeness (why?).
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Axiom 4.20 (Stochastic Independence). ≿∗ satisfies Axiom 4.2.

i.i.d. AREU also satisfies the following continuity axiom.

Axiom 4.21 (Stochastic Continuity). ≿∗ satisfies Axiom 4.3.

A Luce model for choice over lotteries is also sometimes considered.

Definition 4.22 (Luce Expected Utility). ρ has a Luce Expected Utility (LEU)

representation if it has a Luce representation with w(p) = h(Epv) for some

deterministic functions v : Z → R and h : R → R++, where h is strictly

increasing on the convex hull of the set {v(z) : z ∈ Z}.

There are also Fechnerian versions of EU, see, e.g., Becker, DeGroot, and

Marschak (1963) and Loomes and Sugden (1995).33

LEU is a special case of i.i.d. AREU if h is the exponential function. It is

worthwhile to notice that LEU is characterized by the above two axioms (plus

Luce’s IIA and positivity).

Proposition 4.23 (Dagsvik 2008). The following are equivalent:

(i) ρ ∼ LEU

(ii) ρ satisfies Positivity and Luce’s IIA, Stochastic Independence, and Sto-

chastic Continuity.

Proof. Appendix A.4.1. □

4.6. Comparison of REU and i.i.d. AREU

Table 4.1 summarizes the comparisons between the two models. My take on

this is that if we believe in EU, then REU is the more appealing of the two

models because i.i.d. AREU leads to non-EU behaviors of a particular form.

On the other hand, if we are motivated by departures from EU, then i.i.d.

AREU is not the right model either. We may want instead to build the kinds

of departures we care about directly into the baseline model, as opposed to

generating them as an artifact of the ϵ.

The first row of Table 4.1 says that under REU the realized preference is

EU with probability one, while under i.i.d. AREU this happens with probability

zero. The first assertion comes directly from Definition 4.12. To see that the

second one is true, consider lotteries p, q such Epv = Eqv. Fix a realization of

ϵ̃ and suppose w.l.o.g. that Ũ(p) ≥ Ũ(q). For any α ∈ (0, 1) and r ∈ ∆(Z) we

have Eαp+(1−α)rv = Eαq+(1−α)rv. Because ϵ̃(αp+(1−α)r) and ϵ̃(αq+(1−α)r)

33Simple axiomatizations of Fechnerian EU have been obtained, see, e.g., Dagsvik (2008) who also
shows what additional axioms guarantee the linearity of the function h. Blavatskyy (2008) offers
a different axiomatization of the special case of Fechnerian EU with linear h; for a correction see
Ryan (2015). Dagsvik (2015) explores the relationship between these axioms.
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Table 4.1. Comparison of REU and i.i.d. AREU

REU i.i.d. AREU

P(≿∈ EU) = 1 P(≿∈ EU) = 0

Linearity, Extremeness Stochastic Independence, Positivity

can violate WST satisfies SST

FOSD monotone with prob 1 FOSD monotone with prob ∈ ( 12 , 1)

cv-monotone with prob 1 non cv-monotone with prob 1

are i.i.d. across α ∈ (0, 1), by the exact law of large numbers, with probability

one there exists α such that ϵ̃(αp+ (1− α)r) < ϵ̃(αq + (1− α)r).34

Moving to the second row of Table 4.1, i.i.d. AREU violates Extremeness.35

Likewise, it also violates Linearity (Axiom 4.14).

Example 4.24 (Spurious Common Ratio Paradox). Recall Example 4.11,

where

.63 = ρ(p′, q′) > ρ(p, q) = .16.

It follows from Linearity that under REU those two choice probabilities are

always identical. On the other hand, if we take an i.i.d. AREU model with a

deterministic risk-averse EU function v then we get the qualitative preference

pattern ρ(p′, q′) > ρ(p, q). However, both choice probabilities will be on the

same side of 1
2 , so i.i.d. AREU cannot really explain the common ratio paradox

(Loomes, 2005). △

The third row of the table presents another distinguishing feature of i.i.d.

AREU and REU: stochastic transitivity. i.i.d. AREU satisfies SST, whereas

REU typically violates even WST. Thus, rejections of stochastic transitivity are

rejections of i.i.d. AREU, not of Expected Utility in general, see also Mellers

and Biagini (1994).

The last two rows of the table refer to the stochastic dominance relations.

The idea is easiest to see by implementing both models parametrically. Take

for example CARA or CRRA preferences, both parametrized by θ ∈ Θ. Fix

the “average” level risk aversion θ ∈ Θ and let ϵ̃ be a real-valued random

variable that perturbs the risk aversion coefficient. Under REU this leads to

the following choice probabilities for p, q ∈ ∆(Z):

ρθ(p, q) := P (Ep[uθ+ϵ̃] ≥ Eq[uθ+ϵ̃]) .

In the i.i.d. AREU version of the model there are still θ ∈ Θ and a random

variable ϵ̃. However, ϵ does not perturb the coefficient of risk aversion, but

34See, e.g., Sun (2006) and Podczeck (2010). If you are uncomfortable with the exact law of large
numbers, choose a discrete grid on the interval [0, 1] ∋ α and notice that the desired α exists with
a probability approaching one as the number of grid points approaches infinity.
35Becker, DeGroot, and Marschak (1963) propose to test EU by testing Extremeness. Sopher and
Narramore (2000) and Feldman and Rehbeck (2022) show that experimental subjects typically
violate Extremeness.
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the value of each lottery; that is ϵ ∈ R∆(Z). This leads to the following choice

probabilities.

ρθ(p, q) = P (Ep[uθ] + ϵ(p) ≥ Eq[uθ] + ϵ(q)) .

Suppose that q strictly FOSD-dominates p. Then under i.i.d. AREU

ρθ(p, q) > 0. On the other hand, under REU we have ρθ(p, q) = 0 because

all u are increasing. The difference between the two models becomes stark-

est when q is just a little bit better than p: under i.i.d. AREU their choice

probabilities will be about equal.36

Suppose now that p is a mean-preserving spread of q and that ϵ̃ has full sup-

port. Under REU for any q ≥cv p the choice probability ρθ(p, q) is decreasing in

θ.37 On the other hand, as shown by Wilcox (2008, 2011) and Apesteguia and

Ballester (2017b), under i.i.d. AREU there exists θ̄ above which the function

θ 7→ ρθ(p, q) is increasing in θ.

Given all of this, it sounds like REU is a better model. But perhaps we

need a little bit of ϵ to estimate the model, otherwise our likelihood function

will be degenerate. This suggests a BLP-style model for choice under lotteries

(BLP is discussed in Section 10.6). A model like this is sketched in Section

5.1.2. of Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2018).

Nevertheless, the literature in industrial organization typically uses REU

models, where the randomness is purely population heterogeneity (each agent’s

choices are deterministic), see, e.g., Einav, Finkelstein, Ryan, Schrimpf, and

Cullen (2013); Handel (2013); Ho and Lee (2020). The only BLP-style model

I’m aware of is Ho and Lee (2017).

4.7. Non-Expected Utility*

Machina (1985) noticed that even if the preference is fixed and deterministic,

the agent may want to deliberately randomize over alternatives. With a non-

linear preference a mixture of lotteries that belong to the menu may be strictly

better than any of those lotteries. To implement such a mixture, the agent

will toss a “mental coin” and randomly pick a lottery from the menu; thus the

choices observed by the analyst will be stochastic.

To see how this works, suppose that the agent’s preferences are represented

by a quasi-concave function V : ∆(Z) → R. Figure 4.3 depicts the indifference

curves of V . If the menu is A = {p, q} with V (p) > V (q), then the agent will

weakly prefer the mixture rα = αp + (1 − α)q to both of the lotteries in the

menu, as long as α is large enough. Let α∗ be the value of α that maximizes

V (rα). The agent will implement lottery rα∗ by choosing p with probability

α∗ and q with probability 1− α∗, so we have ρ(p, q) = α∗.

36These patterns were first noticed by Becker, DeGroot, and Marschak (1963) and Loomes and
Sugden (1995) in the context of Fechnerian EU models.
37This probability can be positive because with some probability uθ+ϵ is risk loving. However, as
θ increases, this probability goes down.
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Figure 4.3. Deliberate Randomization

More generally, let ρ̄(A) be the lottery induced by the stochastic choices

of the agent, i.e., ρ̄(A) :=
∑

q∈A ρ(q, A)q. For each menu A this lottery corre-

sponds to the “mental mixture” of the agent. We say that ρ has a Machina

representation if there exists a FOSD-monotone preference ≿ over ∆(Z) such

that ρ̄(A) ≿ q for all q ∈ co(A), where co(A) is the convex hull of the points

(lotteries) in menu A.

Machina’s model was recently axiomatized by Cerreia-Vioglio, Dillenberger,

Ortoleva, and Riella (2019) using the following acyclicity-like axiom.38

Axiom 4.25. Rational Mixing For any k ≥ 2 and menus A1, . . . , Ak if

ρ̄(A2) ∈ co(A1), . . . , ρ̄(Ak) ∈ co(Ak−1),

then q ∈ co(Ak) implies that q ≯FOSD ρ̄(A1)

Proposition 4.26 (Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella 2019).

Suppose that ρ is defined over finite menus of Borel probability measures with

prizes in some compact interval. A s.c.f ρ satisfies Rational Mixing if and only

if it has a Machina representation.

They also show that this class of ρ typically violates Regularity: as long

as ≿ has a point of strict convexity. To see that, consider the lotteries p and q

as above and the lottery r′ that is close to r∗ = α∗p+ (1−α∗)q, but is FOSD-

dominated by it. The choice from menu {p, q, r′} is p with probability α∗ and q

with probability 1−α∗; this is because tossing the mental coin implements the

lottery r∗ which is better than r′. On the other hand, from the menu {p, r′} the

agent will choose r′ with probability close to one because choosing p without

being able to mix it with q is not very appealing.

A separate question is what does the agent choose if the optimal mental

lottery actually belongs to the menu. Agranov and Ortoleva (2017) show that

experimental subjects have a preference for r∗ being in the menu, i.e., not

38As far as I know, nobody has tested those axioms yet. Hey and Carbone (1995) estimate a
parametric version of this model (and find that it explains only 10% of subject’s choices).
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having to toss the mental coin. Agranov and Ortoleva (forthcoming) provide

further evidence of preference for randomization by devising a version of multi-

ple price lists that allows subjects express such a preference. See also Dwenger,

Kübler, and Weizsäcker’s (2018) field study on university admissions. As far as

I understand Machina-style preferences are not a good model of that because

in that model all lotteries (mental or not) are treated the same way.

At the level of representation, Machina’s model is similar to Perturbed

Utility, where the agent maximizes expected utility plus a non-linear term

(Section 3.8, see also Marley (1997)). This is reflected on the level of axioms

in the fact that both models are characterized by acyclicity conditions.

There are two other ways deal with non-EU preferences, akin to what we

did with REU and i.i.d. AREU: randomize over preferences or add noise to

the value of each lottery. The first one was studied by (Lin, 2019a,b), who

shows that if the random preferences belong to the betweenness class, sto-

chastic choices still satisfy Regularity and Extremeness. Kashaev and Aguiar

(2022) complement these results by studying random Rank- dependent Ex-

pected Utility. See also Melkonyan and Safra (2016) who study weak stochas-

tic transitivity of such models. In mathematical psychology, researchers have

developed standardized software for testing random non-EU models (Regen-

wetter, Davis-Stober, Lim, Guo, Popova, Zwilling, Cha, and Messner, 2014;

Zwilling, Cavagnaro, Regenwetter, Lim, Fields, and Zhang, 2019).

The second approach was taken by Hey and Orme (1994) who considered

i.i.d. ARU implementations of non-EU (without allowing the agent to toss

any mental coins). A similar, but different method was introduced by Har-

less and Camerer (1994) who considered a constant-error choice rule (such as

in Example 3.18). Ballinger and Wilcox (1997) derive tests for both imple-

mentations. Their experimental data is consistent with the first, but rejects

the second. More recently, i.i.d. ARU versions of non-EU models were used

by De Palma, Ben-Akiva, Brownstone, Holt, Magnac, McFadden, Moffatt, Pi-

card, Train, and Wakker (2008) and Barseghyan, Molinari, O’Donoghue, and

Teitelbaum (2013).39 See also DellaVigna (2018).

39Those authors allow for unobservable heterogeneity (i.e., consider models where the parameters
of the non-EU risk function vary from person to person), i.e., a mixture over i.i.d. ARU models.
But importantly, the parameter is fixed within a person, so the stochastic choices of each individual
suffer from the same monotonicity violations as those described in Section 4.6.
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5.1. The Bayesian Model

Under Random Utility, the agent’s observed choices ρ are stochastic because

their tastes are randomly fluctuating. Another possible reason for random

choices could be that the agent’s beliefs are fluctuating because the agent is

learning new information over time (while tastes stay fixed, for simplicity).

We will start with the simplest model, where the agent gets the same

information regardless of the menu they are facing. This is similar to RU

(where the distribution over utilities stays the same).

We will then discuss a model where information can depend on the menu.

This is similar to making the distribution of utilities menu-dependent. In the

extreme case, if dependence is arbitrary, we can explain any ρ.

All of the above are models of passive learning, where information arrives

whether the agent wants it or not. Active learning is when the agent can

choose how much and what kind of information to acquire. We will study this

in Chapter 6.

5.1.1. Bayes Representations. Let S be the set of states: this is what the

agent is learning about.40 The state is initially unknown to the agent.

In economic theory we distinguish three stages: At the ex ante stage (before

receiving information), the agent’s initial belief about the state is represented

by a prior p ∈ ∆(S). From Nature’s point of view, the state s is not random: it

is fixed and simply unknown to the agent. Their beliefs reflect that subjective

uncertainty. At the iterim stage (after receiving information) the belief is the

posterior, i.e., the prior updated in light of the new information (according to

the Bayes rule). Sometimes the ex post stage is also considered when the agent

fully learns the state. We will not really discuss it here.

interim
stage

posterior
belief

prior
belief

ex ante
stage

ex post
stage

state is fully
learned

time

information
arrives

initial 
uncertainty

Bayes rule

-

Figure 5.1. Timing in the Bayes model.

40In statistics it is customary to denote states by Θ. In Chapter 2 we used θ for the parameters
of the model that our analyst is learning about. Since the analyst and the agent are two different
people, we need another letter, to denote the states of the agent. Note that S is different from Ω
in a RU representation. The relationship between S and Ω will become clear as you keep reading
along.
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Information is modeled as a message m ∈ M . In each state s there is a

probability distribution over possible messages. The function β : S → ∆(M)

is called an experiment (or a signal structure, or a signal). In statistics this

object is known as the likelihood function.

For each message m ∈ M there is a posterior belief q(·|m) ∈ ∆(S). When

S and M are finite, this is given by the Bayes rule:

q(s|m) =
β(m|s)p(s)∑
s′ β(m|s′)p(s′)

(5.1)

as long as the denominator is positive. We will write qm ∈ ∆(S) for the vector

q(·|m) and βs ∈ ∆(M) for the vector β(·|s). If β and p are densities, the density

of the posterior is:

q(s|m) =
β(m|s)p(s)∫

s′
β(m|s′)p(s′)ds

.41

The agent has a state-dependent utility function v : X × S → R, i.e., the
utility of alternative x can depend on the state s. For any belief q ∈ ∆(S) the

expected utility of x is denoted by Eqv(x) :=
∑

s∈S q(s)v(x, s). Our agent is

faced with some menu A ⊆ X and solves maxx∈A Eqv(x).

We assume that the utility function is deterministic (tastes don’t fluctu-

ate), so for any given q the agent’s choice is deterministic (modulo ties). In

particular, if we observed the agent at the ex ante stage, then the recorded

choices would be deterministic.

However, at the interim stage in the eyes of the analyst choices appear to

be stochastic because the noisy signals are private to the agent. Modulo ties,

the interim choice probability conditional on state s is

ρs(x,A) = βs

({
m ∈ M : Eqmv(x) = max

y∈A
Eqmv(y)

})
.

Note that our primitive is now the collection (ρs)s∈S , i.e., we have a state-

dependent s.c.f. The observed choice probabilities differ in each state because

the distribution of messages is different.

Definition 5.1. (ρs) ∼ Bayes if there exists an experiment β : S → ∆(M),

a prior p ∈ ∆(S), and a utility function v : X × S → R such that ρs has

an improper RU representation with a GP-tiebreaker and state space Ω = M ,

probability P = βs, and utility Ũ(x,m) = Eqmv(x).

Even though this is a very natural representation, and one that is widely

used, I do not know what the corresponding axioms are. These ρs are connected

to each other across s because they all come from the same prior and same

experiment. This suggests that we need some axiom that ties them together,

but I don’t know what that axiom is. I will have slightly more to say about

this in Section 5.3.3.

41In the most general case, S is a Borel space, M is a measurable space, and β is a probability
kernel from S to M . Then the posterior is the regular conditional probability, which is a probability
kernel from M to S, see Theorem 6.3 of Kallenberg (2001).
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5.1.2. HR Example. This is the simplest possible example, with two states,

two messages, and two actions. The agent is a HR recruiter who is hiring

an applicant based on an interview. Let S := {0, 1} be the qualification of

the applicant (low or high). The interview can either be a flop or go well:

M = {m0,m1}. Suppose that the experiment is symmetric with precision

b := β(m1|s = 1) = β(m0|s = 0). Let p := p(s = 1) be the prior belief. Then

the recruiter’s posterior beliefs are

qm1
=

(
bp

bp+ (1− b)(1− p)
,

(1− b)(1− p)

bp+ (1− b)(1− p)

)
qm0

=

(
(1− b)p

(1− b)p+ b(1− p)
,

b(1− p)

(1− b)p+ b(1− p)

)
.

Consider first how the signal changes as we vary its precision b over the

interval [0.5, 1]. If b = 0.5, then the experiment is completely uninformative so

qm = p for all m. On the other hand, if b = 1, then the recruiter learns the

true state perfectly: their belief is a point mass. In general, b measures the

“strength” of the evidence.42

Notice that M are just “labels.” In particular, if we set b = 0, we also get

a perfectly informative experiment, despite the fact that β tells the “opposite”

of the true state. Our Bayesian agent is smart enough to invert the message.

Likewise, an uninformative experiment is any constant function β, not just the

one that corresponds to b = 0.5.

Let A := {0, 1} be the HR recruiter’s menu of choices (make no hire, or

make a hire). The recruiter’s utility of hiring a qualified applicant equals 1 and

an unqualified applicant, −1. The utility of not hiring is zero. Thus, for any

belief that puts probability bigger than a half on s = 1 the HR recruiter will

make a hire and will not hire for beliefs below that threshold. Let’s pick values

of p and b such that the recruiter wants to hire after m1 but not after m0.

The analyst who observes the qualification of the applicant sees high-skilled

applicants hired b percent of the time and low-skilled applicants being hired

1 − b percent of the time. In particular, the high-skilled applicants are hired

more frequently than low skill applicants. △

5.1.3. Distribution over Posteriors. An alternative way to set up the

model bypasses the message space M and looks directly at the agent’s ex ante

distribution of posteriors. To see how this works, fix a Bayesian model. In any

given state the experiment leads to a distribution over messages, and for each

message the agent has a posterior belief. Thus, in each state, there is an in-

duced distribution over posteriors. This is the distribution over posteriors that

an outside observer who knows the state would expect the agent to have. In

Example 5.1.2 in state s = 1 the distribution over posteriors puts probability b

42Starting with Blackwell (1951), there is a tradition of measuring the informational content of β
by a partial ordering: we will write β ≥ β′ if β is Blackwell-more informative than β′. Section
A.6.2 in the Appendix provides an overview. In this example, the Blackwell ranking coincides with
the ranking of real numbers b on [0, 0.5].
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on belief qm1
and probability 1−b on belief qm0

. In state s = 0 the distribution

over posteriors puts probability 1− b on belief qm1 and probability b on qm0 .

The main object of interest in this section is not the state-dependent dis-

tribution, but its average according to the prior. This average distribution

over posteriors, denoted by µ ∈ ∆(∆(S)), reflects the expectations of the

agent who does not know the state.43 In the HR example, µ puts probability

pb+ (1− p)(1− b) on belief qm1 and probability p(1− b) + (1− p)b on qm0 .

Given any prior p and any experiment β the procedure described above

gives us a distribution over posteriors µ. The most important property of µ is

that its average equals p; that is, beliefs don’t change on average. Formally,∫
qµ(dq) = p. This important property is sometimes called the martingale

property of beliefs or Bayes plausibility.

To see that it holds, consider the joint probability measure P ∈ ∆(S×M)

induced by p and β. The prior is the marginal of P on S and the posterior is

the conditional of P on m. By the law of iterated expectations, the average of

the conditionals is equal to the marginal, so Bayes plausibility follows. A more

mechanical way to see it is to write the average posterior belief that state s is

true as ∑
s′∈S

∑
m∈M

q(s|m)β(m|s′)p(s′),

substitute (5.1) for q(s|m) and reverse the order of the sums.

The marginal property of beliefs holds only unconditionally (i.e., for the

average distribution over posteriors µ). Conditional on state s′ the distribution

over posteriors averages to a belief that is “closer” to s′ than p, i.e., information

brings the agent closer to knowing the truth.

We can go in both directions between these two levels of description. For

any µ there exists a prior (uniquely given by Bayes plausibility pµ :=
∫
qµ(dq))

and an experiment βµ such that µ is induced by p and β.44

Because of this equivalence, if we want to describe the agent’s unconditional

choice distribution we can interchangeably use experiments or distributions over

posteriors. Modulo ties, we have

ρ(x,A) = µ
({

q ∈ ∆(S) : Eqv(x) = max
y∈A

Eqv(y)
})

.

Definition 5.2. ρ ∼ distribution over posteriors if there exists µ ∈ ∆(∆(S))

such that ρ has an improper RU representation with a tiebreaker and Ω = ∆(S),

P = µ, and Ũ(x, q) = Eqv(x).

Notice, that this ρ does not condition on the state, but rather it should be

thought of as the unconditional distribution of choices.

43Notice that we already used the symbol µ for the distribution of utilities. Now we are using it
for the distribution of posteriors, which is a bit of an abuse of notation, but the two distributions
play conceptually the same role.
44Given µ, the experiment is not necessarily unique. Denti, Marinacci, and Rustichini (2022a)
summarize a number of properties of the mapping between β and µ.
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5.1.4. Equivalence. Even though the previous two sections present essen-

tially the same model, they involve different primitives (conditional vs uncon-

ditional s.c.f.).

To complete the connection at the level of the primitive, imagine that the

the analyst does not observe s but all she can see is the marginal choice distri-

bution: the average of ρs over s according to the true probability distribution

π that governs s. In principle, this true distribution may or may not be equal

to the agent’s prior p. We will assume that whenever p assigns probability zero

to an event, π also assigns probability zero, and denote this π ≪ p. Under the

rational expectations assumption, the agent’s prior is correct, i.e., p = π.45

Definition 5.3. ρ ∼ average Bayes if for some (p, β, v) there exists (ρs) ∼
Bayes(p, β, v) and π ∈ ∆(S), π ≪ p such that

ρ(x,A) =

∫
s∈S

ρs(x,A)π(ds).

Moreover, we say that ρ ∼ average Bayes with rational expectations if p = π.

Under average Bayes representations the analyst does not observe (ρs), nor

the frequency π, but just the average s.c.f. ρ.

As we will now see, looking at average choices is not enough to test the

rational expectations assumption. On the other hand, if the analyst has access

to the conditional choice probabilities ρs, then she presumably also has access

to the distribution π ∈ ∆(S). In this case, one test of rational expectations

could involve comparing π to the prior distribution revealed from (ρs).

Proposition 5.4. If X is finite, then the following are equivalent:

(i) ρ ∼ RU.

(ii) ρ ∼ average Bayes,

(iii) ρ ∼ average Bayes with rational expectations,

(iv) ρ ∼ distribution over posteriors.

Proof. (i) ⇒ (iii): By Proposition 1.9, ρ is represented by a distribution

over preferences µ ∈ ∆(P). For each ≿∈ P let U≿ be a utility function that

represents ≿. Define S := P (notice that in average Bayes the analyst does

not observe s so we can take it to be whatever we want, in contrast with state-

dependent Bayes). Define v(x,≿) := U≿(x), p = µ, M := P, β(·| ≿) := δ≿.

This way the agent learns their utility perfectly. For a fixed, x ∈ A we have

ρ(x,A) =µ({≿∈ P : x ≿ y for all y ∈ A}) = p(s ∈ S : v(x, s) = max
y∈A

v(y, s))

=
∑
s∈S

p(s)βs(m ∈ M : Eqmv(x) = max
y∈A

Eqmv(y)).

45This term is used by economists to describe the idea that the agent’s beliefs are equal to the true
data generating process. In multi-person settings the data generating process includes behavior of
“nature” as well as other agents, so rational expectations assumption is an equilibrium requirement.
In our one-agent settings the equilibrium part of it is turned off.
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(iii) ⇒ (ii): The former is a special kind of the latter.

(ii) ⇒ (iv) Let qm ∈ ∆(S) be the posterior belief given message m. For any

measurable set of beliefs B ⊆ ∆(S) define the probability that the posterior

will land in that set

µ (B) :=

∫
s∈S

βs ({m ∈ M : qm ∈ B})π(ds).46

By definition of average Bayes, modulo ties, we have

ρ (x,A) =

∫
s∈S

βs

({
m ∈ M : Eqm [v (x)] = max

y∈A
Eqm [v (y)]

})
π(ds)

so using the definition of µ

ρ (x,A) = µ

({
q ∈ ∆(S) : Eq [v (x)] = max

y∈A
Eq [v (y)]

})
.

The new tiebreaker needs to be a π-average of the old tiebreakers over states.

(iv) ⇒ (i): By Definition 5.2. □

The equivalence with RU is a bit disappointing. We added all this machin-

ery and don’t get anything out. In Section 5.3.1 we will break this equivalence

by allowing for a separation of tastes and beliefs.

Another way to break this equivalence is to experimentally vary the prior,

for example give the agent many batches of trials, each batch with a dif-

ferent empirical frequency of state. If ρ ∼ RU , behavior is independent of

the frequency, whereas an average Bayes representation allows such frequency-

dependence. We will see this shortly in a series of examples.

5.1.5. Action-Recommendations*. Consider a special kind of experiment,

where the message space M is the set of available actions A. It is in some

sense without loss of generality to consider such experiments. Intuitively, for

any experiment we can “glue together” all the messages that lead to the same

action choice. This gives us a new experiment that just suggests which action

should be taken. We will call such experiments action-recommendations.

Taking this action is the optimal thing to do for the agent as long as the

original action choice was optimal conditional on each message because upon

hearing the message the agent’s posterior is the average of all the posteriors

given the messages that got “glued together.” For this reason this new exper-

iment leads to the same expected utility and same observed state-dependent

choice frequencies as the original experiment.

For a fixed menu A the experiment is given by the stochastic choice function

itself, β(x|s) := ρs(x,A). This can be a useful simplification because we can

read off the experiment directly from the observable.

46The sets {m ∈ M : qm ∈ B} are measurable because by Lemma 1.40 of Kallenberg (2001) the
function q : M → ∆(S) is measurable.
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Suppose that the analyst knows the agent’s prior p. If ρs(x,A) is the

agent’s experiment, then their posterior upon hearing message x is

q̂(s|x) = ρs(x,A)p(s)∑
s∈S ρs′(x,A)p(s′)

.

This is sometimes called the revealed posterior .

The following condition, called Obedience (Myerson, 1982), says that the

agent wants to follow the action-recommendation: the expected utility of choos-

ing x upon hearing the action recommendation x is higher than choosing some

non-recommended action y. This is basically a restatement of Definition 5.1

by restricting attention to action-recommendations.

Condition 5.5. (Obedience) For all x such that ρ(x,A) > 0 we have∑
s∈S

v(x, s)q̂(s|x) = max
y∈A

∑
s∈S

v(y, s)q̂(s|x).

Obedience is used in game theory for defining correlated equilibrium (Berge-

mann and Morris, 2016). Another name for obedience is no improving action

switches (NIAS) (Caplin and Martin, 2015).

To check Obedience, the analyst needs to know not only the prior p, but

also the utility function v. For the following proposition to hold we need to

allow the tie breakers to be message-dependent.

Proposition 5.6. Suppose that S is finite and that p and v are given to the

analyst. For any fixed menu A the choice probabilities ρs(·, A) have a Bayes

representation if and only if Obedience holds.

Proof. Section A.5.1 □

While this equivalence holds for a fixed menu, when the menu varies be-

cause Proposition 5.6 only delivers menu-dependent experiments, whereas in a

Bayes representation β stays fixed. In this sense, the action-recommendation

is “as-if” and may not reflect the true underlying information of the agent. It

would seem that to ensure Bayes we need extra axioms that tie choice proba-

bilities across menus.

Another way in which action-recommendations are “as-if” is to consider

what happens as we vary the prior of the agent. If we pretend that ρ is the

experiment, then it will seem that the agent is choosing a different experiment

for each prior. But in the Bayes representation the experiment they are endowed

with is actually fixed. They just happen to be producing a different experiment

each time.

The assumption that the analyst knows p and v makes sense in controlled

lab experiments, where the analyst can manipulate beliefs and payoffs (under

reasonable assumptions about risk preferences). As shown by Denti (2022), if

we state the problem in the Anscombe–Aumann setting (Section 5.3.1), then

the analyst just needs to know the prior.
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5.2. Examples

5.2.1. HR—continued. So far, we showed that with a binary signal the

high-skilled applicants are hired more frequently than low skill applicants.

Axiom 5.7. A s.c.f. ρ is accurate if

ρ(x = 1|s = 1) ≥ ρ(x = 1|s = 0).

An equivalent way to state this is that conditional on hiring, the workers

type is higher in expectation, than conditional on not hiring. Let p ∈ ∆(S)

be any full support prior and P be the joint distribution over S ×X given by

ρ and p, i.e., P (s, x) = ρ(x|s)p(s). The reader can easily verify (by using the

formula for conditional probability) that Axiom 5.7 is equivalent to

P (s = 1|x = 1) ≥ P (s = 1|x = 0)

We will now show that Axiom 5.7 is necessary under any experiment, not

just the binary one. They key is that the agent wants to match the state with

their action:

v(x = 1, s = 1) ≥ v(x = 0, s = 1) and v(x = 0, s = 0) ≥ v(x = 1, s = 0). (5.2)

Indeed, for any utility function that satisfies (5.2), there will be a threshold

t such that if the posterior belief q(s = 1|m) ≥ t, then the agent chooses

x = 1 and chooses x = 0 otherwise. By the law of iterated expectations,

P (s = 1|x = 1) is the expectation of q conditional on x = 1, which is larger

than t because x = 1 implies q ≥ t. Likewise, P (s = 1|x = 0) is lower than t

because x = 0 implies q < t. Therefore,

P (s = 1|x = 1) ≥ t > P (s = 1|x = 0), (5.3)

which as you verified above implies Axiom 5.7.

In fact, Axiom 5.7 is not only necessary but also sufficient for a Bayes

representation with a utility that satisfies (5.2). As you verified above, Axiom

5.7 implies P (s = 1|x = 1) ≥ t > P (s = 1|x = 0). If this holds with an

equality, then assume that the agent has an uninformative signal and randomly

chooses their action. If there is a strict inequality, then there exists t such that

condition (5.3) holds. Pick v to be any utility function that leads to that

particular threshold t and note that condition (5.3) is equivalent to Obedience

with respect to that utility v and the prior p. By Proposition 5.6, ρ has a Bayes

representation with that v and p.

Rambachan (2021) studies an extension of this model where the analyst

has access to some regressor ξ, which does not enter the utility function, but

does affect the agent’s beliefs. In this case, our primitive is a joint distribution

P over (x, s, ξ). The axiom now becomes:

Axiom 5.8. A s.c.f. ρ is strongly accurate if

min
ξ

P (s = 1|x = 1, ξ) ≥ max
ξ

P (s = 1|x = 0, ξ).
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Proposition 5.9 (Rambachan 2021). A s.c.f. ρ is strongly accurate if and

only if it has a Bayes representation with a utility function that is independent

of ξ and satisfies (5.2).

To prove necessity, observe that for all ξ we will now have

P (s = 1|x = 1, ξ) ≥ t > P (s = 1|x = 0, ξ).

Take the maximum of the first inequality and then the minimum of the second.

For sufficiency, repeat the above construction pointwise for each value of ξ.

Rambachan (2021) combines this approach with a potential outcomes model

to study a similar decision problem (pretrial release decisions of judges); he uses

Axiom 5.8 to determine whether judges make systematic mistakes. △

5.2.2. Character Recognition by Human Subjects. The Bayes represen-

tation is known in the perception literature as Signal Detection Theory (Tanner

and Swets, 1954; Green and Swets, 1966). Here is a simple example of how this

model is applied to a perception task.

In each trial the subject is briefly shown a character c or e and asked to

identify it. Formally, X = {c, e} and S = {c, e} and v(c, c) = v(e, e) = 1,

v(c, e) = v(e, c) = 0. Let p be the subject’s prior. Let M = R, so the subject

gets a random perception of the sort “the character looks much more like c

than e” or “the character only kind of looks like e, but it could be c”, etc. Let

β(m|s) be the experiment with density b(m|s). The Bayes rule says that the

posterior is
q(s = c|m)

q(s = e|m)
=

b(m|s = c)

b(m|s = e)

p(s = c)

p(s = e)
.

Let p := p(s = c) and ℓ be the likelihood ratio: ℓ(m) := b(m|s=c)
b(m|s=e) . Given v,

it follows that the agent chooses c conditional on message m if q(s = c|m) >

q(s = e|m), which by Bayes rule is equivalent to ℓ(m) > 1−p
p , and chooses e

if the opposite inequality holds. Let L(k) := {m ∈ M : ℓ(m) > k} and notice

that k > k′ implies L(k) ⊆ L(k′). Thus, if ρ has such a Bayes representation

we have ρp,s(c) = β(L( 1−p
p )|s), an increasing function of p in every state s.

We conclude that the model predicts that the probability that the agent

chooses c is an increasing function of the ex ante probability of occurrences

of c. This is a key distinction from models like RU which predict no such

frequency-dependence. Experiments show that behavior is indeed monotone in

the prior (Swets, 1973; Gescheider, 1997). Figure 5.2 shows how data looks like

in a typical perceptual experiment. Plots like this are sometimes called ROC

(receiver operating characteristic) curves.

A key issue is matching the predictive Bayes model with data from the

experiment. Suppose that the true state (character) varies from trial to trial.

In a typical experiment trials are batched, so that the frequency of characters

π is constant within each batch but varies across batches. Under the rational

expectations assumption the agent knows the frequency in each batch, so p = π.
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ρ   (c)
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Figure 5.2. A ROC curve. Each point on the curve corresponds to a
different prior p for a fixed difficulty of the task. Making the task harder

shifts the curve toward the diagonal.

The simplest justification for this assumption is that the subject habituates

to each batch of trials. It’s conceivable that by trial 100 out of 250 they adapt to

the current batch and believe that the prevalent distribution of s is governed

by π. A more detailed model would assume that the agent knows that π

changes over time and rationally updates their beliefs about π. In cognitive

science this is sometimes called an “online prior” (Petzschner and Glasauer,

2011; Verstynen and Sabes, 2011; Cicchini, Anobile, and Burr, 2014). △

5.2.3. Law of Comparative Judgment from Bayes Rule. Recall Exam-

ple 1.15, where we assumed that the agent is facing two objects and is incen-

tivized to pick the one with higher weight. Thurstone’s model says that the

agent picks the object with a higher perceived weight. In that model the agent

is taking their perception at face value. We will now show that this is indeed

the optimal thing to do for a Bayesian agent with a symmetric prior.

Suppose that one of the objects is on the left and the other is on the

right, so X = {l, r}. The state consists of the true weights of the two items

s = (s(l), s(r)). The message space is M = R2, so the message contains the

weight perception of each of the items. In state s the agent gets a message

(m̃(ℓ), m̃(r)), where

m̃(x) = γ(s(x)) + ϵ̃(x), x = ℓ, r
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where γ is Thurstone’s transformation function and ϵ̃(x) ∼ N (0, σ2
ϵ ) are inde-

pendent across x.

The agent’s prior belief is symmetric: γ(s(x)) ∼ N (µ0, σ
2
0) independently

across x with the same mean and variance. For example if γ is log this means

that s(x) is distributed log-normally.

The Bayes rule (see, e.g., Lemma 15.7 of Williams 1991) says that the

posterior given message m(x) is γ(s(x)) ∼ N (µ1(m(x)), σ2
1), where

µ1(m) = σ2
1

(
µ0

σ2
0

+
m

σ2
ϵ

)
and σ2

1 =

(
1

σ2
0

+
1

σ2
ϵ

)−1

.

Thus, the agent’s posterior is Normal, with a variance that is deterministic

(does not depend on the message realization) and mean equal to a weighted

average of the prior mean and the message realization. The weights depend on

how informative the message is relative to the prior: for a fixed prior sending

σϵ → ∞ results in putting zero weight on the message, and sending σϵ → 0

results in putting all the weight on the message.

In the language of distributions over posteriors, µ puts probability one on

the collection of Normals with a fixed variance σ2
1 . A calculation reveals that

their mean is distributed N (µ0, σ
2
0 − σ2

1).

Given the payoff structure it is optimal for the agent to choose l over r

if their posterior probability that s(l) > s(r) is bigger than a half. Given the

Normality assumption, this holds iff the posterior mean of γ(s(l)) is greater

than the posterior mean of γ(s(r)), i.e., γ(s(l)) + ϵ̃(l) > γ(s(r)) + ϵ̃(r). This is

exactly Thurstone’s probit!

Because of this connection, the model explains the same two of the stylized

facts as probit: S-shaped psychometric function and diminishing sensitivity

(recall Example 1.15), but cannot give us payoff-monotonicity. We also cannot

explain frequency-dependence because the choice probabilities are independent

of σ0. However, we can get another form of frequency-dependence: if the

subject is consistently presented with a heavier left item, then as opposed to

Thurstone’s model, the subject will choose the left item with a higher frequency,

much like in the character recognition example (Example 5.2.2).

So far we assumed that m is unobservable to the analyst. Neuroscientists

use animal experiments to connect m to neuronal activity, both of single neu-

rons (Hanes and Schall, 1996) and populations of them (e.g., Ratcliff, Cherian,

and Segraves, 2003). Kiani and Shadlen (2009) introduce a new kind of exper-

imental task where the subject is offered a third alternative: opt out and get

a sure but lower payoff. The above model predicts that the agent should take

the outside option if |µ1(ml)−µ1(mr)| < t(σ1), i.e., when their belief is weaker

than some threshold t(σ1) that is increasing in posterior variance. Kiani and

Shadlen (2009) show that the measured neuronal activity behaves very much

in the same way. △
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Remark 5.10 (Noisy Coding and Efficient Coding). Fechner and Thurstone

taught us to think of m as an internal mental representation of the stimulus,

a noisy encoding of the truth (Khaw, Li, and Woodford, 2021). Noisy cod-

ing does not have to be efficient: in Examples 5.2.2 and 5.2.3 the signals are

given exogenously, not optimized over. What is efficient is their usage (the

action is Bayes-optimal given the message). In cognitive science efficient cod-

ing generally means that the signal is fixed but the agent is optimally choos-

ing Thurstone’s transformation function γ (e.g., the firing rate of neurons)

subject to a metabolic cost (Barlow et al., 1961; Rustichini, Conen, Cai, and

Padoa-Schioppa, 2017; Polańıa, Woodford, and Ruff, 2019; Bucher and Bran-

denburger, 2021). This is the territory of active learning (Chapter 6). △

5.3. Random Tastes vs Random Beliefs

Proposition 5.4 shows that random tastes (RU) leads to the same behavior as

random beliefs (average Bayes). This is because with state-dependent utility

there is no a separation between tastes and beliefs. To see that, suppose that

S is finite and we have a (deterministic) preference over X represented by

a belief p and a state-dependent utility v, i.e., x ≿ y iff
∑

s∈S v(x, s)p(s) ≥∑
s∈S v(y, s)p(s). For any other q ∈ ∆(S) such that q(s) > 0 in all states s,

there exists v̂ (given by v(x, s)p(s)/q(s)) such that (v̂, q) is a state-dependent

representation of the same preference. To overcome this problem it is often

assumed that v is state-independent. The next section illustrates this approach

in the deterministic choice setting.

5.3.1. Deterministic Choice. In this model the agent is choosing between

acts, which are state-contingent payoffs. Let Z be the set of primitive payoffs,

like in Chapter 4. In the Savage (1972) model, an act is a mapping f : S → Z

that describes which prize the agent gets in every state. Following Anscombe

and Aumann (1963), we will study acts f : S → ∆s(Z). Here, in each state

the agent gets a (simple) lottery over prizes. These acts are a bit contrived but

they simplify the analysis considerably.47

Typical acts are denoted f, g, h and the agent has a preference ≿ over

acts. An Anscombe Aumann (AA) representation U(f) of ≿ consists of a prior

p ∈ ∆(S) and a state-independent vNM utility function v : ∆s(Z) → R, such
that

U(f) = Epv(f) =
∑
s∈S

v(f(s))p(s).

The key assumption is that utility is state-independent, i.e., it does not

depend on s. State independence is heavily debated, see, e..g, Aumann and

Savage (1987), Karni, Schmeidler, and Vind (1983), but it is an important

identifying assumption because it pins down p uniquely and v cardinally.

47Actually, Anscombe and Aumann (1963) studied even more contrived acts. The exposition in
this section is due to Fishburn (1970).
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The representation is characterized by three axioms. The first one relies

on the mixing operation for acts. For any fixed α ∈ [0, 1] an α-mixture of

two acts f and g is another act that in each state s ∈ S gives the lottery

αf(s) + (1 − α)g(s). We will denote this act αf + (1 − α)g. Formally, (αf +

(1− α)g)(s) := αf(s) + (1− α)g(s).

Note that U is linear in those mixtures. As a consequence, the main axiom

is Independence (Axiom 4.2) written using those mixtures.

Axiom 5.11 (Independence). For all α ∈ (0, 1) and f, g, h : S → ∆s(Z)

f ≿ g if and only if αf + (1− α)h ≿ αg + (1− α)h.

Independence only gives us a state-dependent representation. We need

another axiom to get state-independence. For each s ∈ S with a slight abuse

of notation we understand f(s) to be a constant act that pays off the same

lottery f(s) in every state, i.e., the agent gets the lottery f(s) for sure.

Axiom 5.12 (Monotonicity). If f(s) ≿ g(s) for all s ∈ S, then f ≿ g.

Intuitively, if for each s you’d prefer to get f(s) for sure rather than g(s) for

sure, then you should choose f over g before knowing which state is realized.

Finally, we need some form of continuity: the following Mixture Continuity

axiom or an Archimedian Continuity axiom similar to Axiom 4.3.

Axiom 5.13 (Mixture Continuity). For any f, g, h the sets

{α ∈ [0, 1] : αf + (1− α)g ≿ h} and {α ∈ [0, 1] : αf + (1− α)g ≾ h}

are closed in [0, 1].

Theorem 5.14 (Anscombe–Aumann). Suppose that S is finite. A preference

≿ satisfies Axioms 5.11, 5.12, and 5.13 if and only if it has an Anscombe–

Aumann representation. Moreover, if ≿ is nontrivial, then the probability is

unique and utility is cardinally unique.

5.3.2. Stochastic Choice and Learning. Let’s now build a model of sto-

chastic choice based on this approach. Our agent has a deterministic and

state-independent utility and a random posterior, which makes their choices

look random. In Section 5.1.3 we said this can be modeled by a distribution

over posteriors µ ∈ ∆(∆(S)). Because utility is deterministic, all randomness

in choice is driven by learning (variation in information) and not by random-

ness in tastes.48 For any posterior q the conditional expected utility of act f is

Eqv(f).

This theory was developed for the average s.c.f. (unconditional on state).

Our analyst now observes the agent choosing from finite menus of (Anscombe–

Aumann) acts.

48This distinction is absent in the model without acts. If we assumed that v(x, s) does not depend
on s in Section 5.1, this would have given us a model of deterministic choice.
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Definition† 5.15. ρ has an Anscombe–Aumann representation if there exists

a distribution over posteriors µ ∈ ∆(∆(S)), and a deterministic and state-

independent vNM utility function v : ∆s(Z) → R such that

ρ(f,A) = µ
({

q ∈ ∆(S) : Eqv(f) = max
g∈A

Eqv(g)
})

.

This is not well defined if there are ties. The original paper develops a

novel approach to this problem, which I will not discuss but put a dagger † on

all the results. A serious reader will want to consult the paper.

If ρ has an Anscombe–Aumann representation, then it satisfies Regularity

and the Gul–Pesendorfer axioms (Axioms 4.14, 4.15, and 4.16) written using

our new mixture operation over. However, these axioms alone are not enough:

they lead to a random linear Ũ defined over acts, but this doesn’t guarantee

state-independence. Such a Ũ can be written as Ũ(f) =
∑

s∈S ṽ(f(s), s)q̃. Lu

(2016) showed precisely what other axioms ρ has to satisfy.

The first axiom guarantees state-independence of v. Similarly to the de-

terministic version, it says that that if there is an act that is best in each

state, then this act should be chosen ex ante before the state is known. As

you recall, f(s) is understood as a constant lottery that pays off f(s) in every

state. Likewise, A(s) is a menu of such lotteries as f varies over A; formally,

A(s) := {f(s) : f ∈ A}.

Axiom 5.16. If ρ
(
f(s), A(s)

)
= 1 for all s ∈ S then ρ(f,A) = 1.

The next axiom guarantees that v is deterministic and thus all the ran-

domness in choice comes from random posteriors, not random tastes.

Axiom 5.17. If A is a menu of constant acts, then ρ(f,A) = 1 for some f ∈ A.

Theorem† 5.18 (Lu 2016). Suppose that S is finite. ρ has an Anscombe–

Aumann representation iff it satisfies Regularity and Axioms 4.14, 4.15, and

4.16 plus 5.16 and 5.17. Moreover, the information structure µ is unique and

the utility function v is cardinally-unique.

This result can be extended in several ways. First, as discussed before,

when utility is state-dependent the prior is completely unidentified. However,

as Lu (2019) shows, the above methodology can be used to point-identify the

prior even under state-dependent utility. The key is to observe the agent’s

behavior across two information structures. We refer the curious reader to

that interesting paper.

Another extension of Theorem 5.18 can used to characterize state-dependent

Bayes representations (as opposed to the average s.c.f)

5.3.3. An extension to state-dependent s.c.f. In Section 5.1.1 we left

open the question of characterization of Bayes representations. Here we have

developed enough structure that we can take this question up again. Suppose
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that in each state ρs satisfies all the axioms of Theorem 5.18. The question is

what other conditions need to be added to guarantee a Bayes representation

like in Definition 5.1. Intuitively, the conditions need to link ρs across different

states s to ensure that they all come from the same experiment β and same

utility v.

The first condition ensures that the utility is the same in each state.

Axiom 5.19 (State-Independence of Tastes). For all s ∈ S, when restricted

to constant acts, the s.c.f. is the same.

To develop the second condition, assume that the analyst observes the ob-

jective frequency of states π ∈ ∆(S). (Since our analyst observes the choice

probabilities in each state, it is conceivable that they can also record the dis-

tribution of states.)

Theorem 5.18 implies that in each state s ∈ S there is a distribution over

posteriors µs. Suppose for simplicity that each µs has finite support. For the

moment, let’s treat µs as the experiment of the agent with message space equal

∆(S) (Blackwell, 1951, called them standard experiments). For now, let’s treat

those messages as just labels, i.e., let’s ignore the fact that they are beliefs. In

state s there is probability µs(q) that the agent will get “message” q.

The following condition says that if the agent gets message q and updates

their prior π using the Bayes rule, then their posterior belief is precisely equal

to q. In other words, the agent can take messages at face value and they are

not just “labels.”

Condition 5.20 (Bayes Consistency). For all s ∈ S and for all q that is in the

support of at least one µs

π(s)µ(q|s)∑
s′∈S π(s′)µ(q|s′)

= q(s).

I hesitate to call Bayes Consistency an axiom because it uses derived ob-

jects, such as distributions over beliefs.

Proposition†5.21. Suppose that S is finite and ρs satisfies the axioms from

Theorem 5.18 in each state and Axiom 5.19 and Condition 5.20 hold. Then

there exists an experiment β and a vNM utility v : ∆s(Z) → R such that in

each state modulo ties we have

ρs(f,A) = βs({m ∈ M : Eqmv(f) = max
g∈A

Eqmv(g)}),

where qm is the Bayesian posterior given the prior π and experiment β.

This result follows by taking M := ∆(S) and β(q|s) := µs(q). By Axiom

5.19, the utility functions are affine transformations of each other; take v to be

one of them. Then Condition 5.20 is just (5.1).
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Note that this proposition assumes rational expectations. To relax this

assumption, we could put an existential quantifier into Condition 5.20. A

different approach was taken by Duraj (2018).

5.3.4. Comparative Statics. In this section we will investigate what hap-

pens to choices when the experiment becomes more informative. First, let’s

start with some examples. In Example 5.2.3 we developed the Normal-Normal

model of perception. Suppose that the true weights are s(ℓ) > s(r), and let

γ be the Thurstone transformation function. The parameter σϵ controls the

noisiness of the experiment. In this model the agent chooses ℓ with probability

Φ(γ(xℓ)−γ(r)√
2σϵ

), so as σϵ → 0 the probability of choosing ℓ converges monotoni-

cally to 1. Thus, more informative experiments lead to choices that are more

deterministic (less stochastic).

Notice that this comparative does not hold in the above example if we only

look at unconditional (average) choices. If the analyst does not know which

item is heaver, they will observe the agent choosing half-half no matter how

informative their signal is. The following example shows a situation in which

more information does lead to less randomness in choice unconditional on the

state.

Example 5.22. Let S = {s1, s2, s3, s4}. There are two acts f and g with

payoffs given in Table 5.1.

s1 s2 s3 s4

f 1 0 0 1

g 0 1 50 0

Table 5.1. Payoffs in Example 5.22

Suppose that v(x) = x and the prior is (.49, .01, .01, .49). Consider two infor-

mation structures: in the first one, the agent learns perfectly whether the state

is in the cell {s1, s2} or {s3, s4}; the second information structure perfectly

reveals the state.

Under the first partition with probability .5 the first cell is realized and

leads the agent to deterministically choose f ; with probability .5 the second cell

is realized and the agent chooses g. Thus, for an analyst who does not observe

the state (only has access to the average ρ) the observed choice probabilities are

(.5, .5). Under the second partition those choice probabilities are are (.98, .02)—

much less random. △

While these examples suggest that more information leads to (weakly) less

random choices, there is a sense in which the opposite is true. I will now
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try to explain that. We say that µ is more informative than µ′ if µ Blackwell-

dominates µ′ (Section A.6.2). Intuitively, this means that under µ the posterior

is more random than under µ′. Since it’s the randomness of the posterior that

drives randomness in choice, more information means that choices are more

random.

To see how this works, suppose that we are in the Anscombe–Aumann

setting. Let f̄ , f denote the best and worst acts (with state-independent utility

we can choose them to be constant acts). Normalize their utilities to 1 and 0.

The utility of act fα := αf + (1− α)f̄ is deterministically equal 1− α.

By adding fα to any menu A we can see what is the probability that the

expected utility of some act from the original menu is above 1− α. This helps

us get a grasp on the distribution µ. The test function of A is the mapping

α 7→ ρ(A,A ∪ {fα}). For each menu this is an increasing function from [0, 1]

to itself; in fact (modulo ties) it is a c.d.f.

We say that ρ is more random than ρ′ if for any menu A the test function of

ρ second-order stochastically dominates the test function of ρ′ (Section 4.1.4).

Theorem†5.23 (Lu 2016). Suppose that ρ has an AA representation (v, µ)

and ρ′ has a AA representation (v, µ′) such that pµ = pµ′ . In this case ρ is

“more random” than ρ′ if and only if µ is more informative than µ′.

This can be illustrated using the following example.

Example 5.24. The agent is a risk-neutral lender who is faced with a pool

of loan applications and has to decide whether to approve or decline each

applicant A = {a, d}. Each applicant has a fixed probability of default. Let

S := {0, 1} denote whether there is default or not. Approving an applicant

results in a payoff of zero for the lender if the applicant defaults and one if they

don’t default, so it’s an AA act a(1) = δ0, a(0) = δ1. The payoff of declining

an application is a constant act d(s) = 1 − α ∈ [0, 1]. The lender has utility

linear in money and uses a fixed information structure µ ∈ ∆(∆(S)) to learn

about the likelihood of default q̃ before making a decision. This implies that

the agent will choose a over d iff q̃(0) ≥ 1− α.

The analyst is a regulator who wants to check whether the lender is fol-

lowing proper anti-discrimination policies, e.g., not taking into account demo-

graphic information when evaluating loan applications. The regulator cannot

condition on the information available to the lender, so the observed approval

probability is

ρ(a, d) = µ ({q ∈ ∆(S) : q(0) ≥ 1− α}) .

If the regulator is able to vary α, she can uncover the cdf of µ. Suppose

there is another lender ρ′ who is known not to condition on demographics.

Our regulator can compare the variability of ρ and ρ′ and potentially raise a

flag. △
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5.4. Menu-Dependent Signals

So far information was independent of the menu. But sometimes new items

can provide new information that sheds light on existing items. Consider the

following, admittedly silly, example.

Example 5.25. Suppose that our agent is choosing between dishes in a restau-

rant: steak tartare (st), chicken (c), and fish (f). Their utility is given by

Ũs(steak tartare) Ũs(chicken) Ũs(fish)

s = good chef 10 7 3

s = bad chef 0 5 0

Table 5.2. Payoffs in Example 5.25.

Moreover, if a restaurant serves fish, then the moment our agent enters the

restaurant this provides an informative experiment about the quality of the

chef: If the agent enters the restaurant and the whole restaurant smells like

fish, this means that the chef is bad (so our agent chooses c). If the restaurant

serves fish but there is no fishy smell in the air, the chef is good (and our

agent chooses st). Thus an analyst who observes choice unconditional on the

state will record the choice frequencies as ρ(st, {st, c, f}) = ρ(c, {st, c, f}) = 1
2

and ρ(f, {st, c, f}) = 0. On the other hand, in absence of fi on the menu the

agent gets no message and has to go by their prior and maximizes ex ante

expected utility; this leads to ρ(st, {st, c}) = 0 and ρ(c, {st, c}) = 1 (if the

prior is uniform). Thus, menu-dependent information behaves very much like

menu-dependent utility and can lead to a violation of the Regularity axiom. △

Definition 5.26. ρ has a menu-dependent Bayes representation if there exists

a prior p ∈ ∆(S), a utility function v : S → RX and for each menu A there

exists βA : S → ∆(M) such that

ρ(x,A) =
∑
s∈S

βA
s

({
m ∈ M : EqAm

v(x) = max
y∈A

EqAm
v(y)

})
,

where qAm is the posterior given message m, prior p and experiment βA.

Theorem 5.27 (Safonov 2017). Let x ≿∗ y if ρ(x,A) = 1 for some A ∋ y.

A s.c.f. ρ has a menu-dependent learning representation iff ≿∗ is acyclic. In

particular, this is true when ρ satisfies Positivity (Axiom 1.14).

One way to add bite to the general model is to add parametric assump-

tions. Natenzon (2019) develops a Bayesian probit model, where the agent

observes a Normal signal of the utility of each item in the menu. The prior be-

lief is that each v(x) is Normal with mean v̄(x) and independent across x ∈ X.

The message is m(x) = v(x) + ϵ(x), where ϵ is jointly Normal. The correla-

tion of messages means that adding new items to the menu can shed light on
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the utilities of existing items and therefore different menus lead to different

experiments.

Natenzon (2019) develops a behavioral notion of similarity that captures

the ranking of correlation coefficients. In addition he develops identification

results, and necessary axioms for the model (versions of moderate stochastic

transitivity and the BM axiom.). He uses the model to explain decoy effect,

compromise effect, and similarity effects. Natenzon (2019) uses the concept

of phantom alternatives—ones that are not available for choice, but are seen

by the decision maker and therefore convey the message attached to them.

This is similar to Safonov’s (2017) assumption that information can be varied

independently of the menu.

Note that in Bayesian Probit adding an item gives more information about

the state. It might be interesting to work out the implications of such a mono-

tonicity assumption in a model without the Normal assumptions.

5.5. Other Work on Learning*

5.5.1. Menu correlated with the state. So far, the state was uncorrelated

with the menu. We considered the case where information depended on the

menu but the true state was uncorrelated with the menu (the distribution of s

was the same for each A). What if there is such a correlation? Given Theorem

5.27, it should not be surprising that such a model does not have any bite.

Kamenica (2008) considers a version of such a model where consumers

make inferences from menus and firms strategically exploit this. He shows that

the model explains choice overload and compromise effect.

5.5.2. Other Related Work. Gabaix and Laibson (2017) use a multiperiod

learning model to microfound “as-if” discounting and present bias. Even

though the agent’s utility is not discounted, their choices appear to reveal

impatience because signals about future objects are noisier, so the agent relies

more on her prior.

The idea that agents perceive quantities imperfectly can be applied to

stochastic choice between lotteries (such as in Chapter 4). Here the agent has

a fixed Bernoulli utility function u but perceives the probabilities of each lottery

with an error. This model is analyzed in Khaw, Li, and Woodford (2021) and

further experiments done by Frydman and Jin (2022); a related idea is Enke

and Graeber (2019).49

Woodford (2020) overviews the perception literature in much more detail

than here. In addition to the two tasks discussed here (Examples 1.5 and

5.2.2), he discusses a reproduction task, directly aimed at measuring the agent’s

subjective perception of a given stimulus. A Bayesian model can explain a

49Gabaix and Laibson (2017) and Khaw, Li, and Woodford (2021) are in a sense an application of
a similar idea, to the domains of time and risk, respectively.
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number of stylized facts about this task: the estimate is biased toward the

prior (the mean of the batch π), and the variance of the estimate is higher for

higher baches (for details see Jazayeri and Shadlen, 2010).

Finally, there is the classic line of work demonstrating biases in updat-

ing and probabilistic reasoning more broadly, such as: gambler’s fallacy, hot

hand fallacy, base rate neglect, confirmation bias, law of small numbers, and

non-belief in the law of large numbers, etc. This line of work is very rich in

interesting phenomena. There is an ostensible contradiction between using the

Bayesian model to explain a number of perceptual phenomena like above, and

at the same time noting that it is violated in a number of ways.
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6.1. The Model and Motivating Examples

In Chapter 5 randomness of choices was generated by the randomness of agent’s

messages. The experiment generating those messages was exogenous: it was

fixed once and for all and could not be affected by the actions of the agent.

This is called passive learning.

Active learning is when information can be chosen by the agent (at least

to some degree). The agent may decide what to learn about and how much.

This is sometimes used as a modeling tool for attention.

While passive learning satisfies Regularity, active learning can violate it.

This can happen because changing the menu changes the incentives to learn

about the state and therefore changes the experiment. The following example

illustrates this.

Example 6.1. Suppose that the state is determined by the number of red

balls on the screen. There are two equally likely states s1 = 49 and s2 = 51.

Let X = {x, y, z} and the state-dependent utility is given in Table 6.1.

s1 s2

x 50 50

y 40 52

z 100 0
Table 6.1. Payoffs in Example 6.1

If the menu is {x, y} then the payoff from distinguishing the states is low.

Provided that the cost of learning the state is higher than 1, the agent chooses

y with probability zero in each state. On the other hand, if the menu is {x, y, z}
then it might make sense to pay attention to the state and choose y in state

s2 and z in state s1. Thus, there is a violation of Regularity: from the point

of view of the analyst who does not observe the state the agent chooses y with

probability a half (and z with probability a half). The violation of Regularity

also occurs conditional on state s2, where the probability of choosing y goes

up from zero to one. Dean and Neligh (forthcoming) document such violations

experimentally. △

In this chapter we will study a general model of active learning, where the

agent can buy any kind of information they please and there is a cost function

defined over information structures. Intuitively, the agent solves:

max
i

[
V A(i)− cost(i)

]
,

where i stands for “information” and V A(i) is the value of information i given

by maximizing posterior expected utility over the menu A.

There are two prevailing interpretations of this model:



6.1. The Model and Motivating Examples 91

1. Costly information acquisition: The agent can run actual physical experi-

ments, at a cost. For example, hire a geologist to drill in the ground and

estimate how much oil there is. This approach has roots in the statistics lit-

erature (Wald, 1947; Bohnenblust, Shapley, and Sherman, 1949; Blackwell,

1951; Raiffa and Schlaifer, 1961) and is the basic model in microeconomics

(Persico, 2000; Bergemann and Välimäki, 2002).

2. Costly information processing aka rational inattention: Information is al-

ready out there in front of the agent. The cost represents the mental energy

of processing this information (Sims, 2003, 2006, 2010).50.

The literature on rational inattention traditionally uses a specific cost func-

tion from information theory, called mutual information. It leads to a tractable

model, but is at odds with some basic stylized facts. For instance, in the weight

perception task (Example 1.5) it leads to a psychometric function that is a step

function (the error rate is a constant function of the weight difference: it de-

pends only on its sign). This is because, under mutual information, it is equally

difficult to distinguish between two “nearby” states (e.g., weight difference of

1g) and between two “far away” states (e.g., a weight difference of 500g). We

will delve more formally into this later in this chapter.

These problems can be fixed by choosing a cost function different than

mutual information. Section 6.4 maps out different classes of cost functions and

discusses how they relate to each other. Section 6.5 discusses the corresponding

axioms on s.c.f.

Active learning is also present in dynamic models, such as sequential sam-

pling that will be discussed in Chapter 9. Another example of active learning

are experience goods, where the agent can learn about their utility through

consuming the good (we will discuss them briefly in the Chapter 7).

In the literature there is sometimes a different formulation of the decision

problem, without a cost function but with a constraint. In that alternative

formulation the agent solves maxi∈Γ V
A(i), where Γ is some set of constraints

on i. For example Γ includes only normal experiments conditional on the state.

For any fixed decision problem the two formulations are equivalent, but

across decision problems the cost formulation is more general. To see that cost

is more general, set c(i) = 0 if i ∈ Γ and infinity otherwise.51

One implication of the constraint formulation is that scaling up the payoffs

does not change behavior. On the other hand, the cost formulation predicts

payoff-monotonicity, i.e., the agent makes (weakly) better choices when stakes

50In decision theory this is referred to as costly contemplation, see, e.g., Ergin (2003), Ergin and
Sarver (2010), De Oliveira, Denti, Mihm, and Ozbek (2016), de Oliveira (2019)
51This is similar to the literature on ambiguity aversion, where maxmin preferences have a con-
straint and variational preferences have a cost (Gilboa and Schmeidler, 1989; Maccheroni, Mari-
nacci, and Rustichini, 2006). Likewise, in Hansen and Sargent (2008) there are “constraint prefer-
ences” and “multiplier preferences.”
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are raised. Dean and Neligh (forthcoming) show in a perception-style experi-

ment that error rates indeed diminish when payoffs scale up.

6.2. Value of Information

6.2.1. Expected Payoff. In the introduction above, we had an abstract no-

tion of information i. It is now time to be more specific. Suppose that S is

a finite state space. Recall from Chapter 5 that we can define i either as an

experiment β : S → ∆(M) or as a distribution over posteriors µ ∈ ∆(∆(S)).

Moreover, given a prior p and an experiment β we get a distribution over poste-

riors, which we will denote here by µ = p⊕β. As you may recall, the martingale

property of beliefs says that for any β and p if µ = p⊕ β, then
∫
qµ(dq) = p.

Define the interim utility of menu A under belief q ∈ ∆(S) to be: vA(q) :=

maxx∈A Eqv(x). This is the maximal utility that can be attained given the

belief q.

The value of information is computed given a prior p ∈ ∆(S). The idea is

that given an information structure the agent will arrive at a number of possible

posteriors q and each time take the optimal action. The value of information

is then the expectation over interim utilities. This can be written in two ways:

V A
p (β) =

∑
s∈S

∫
m∈M

vA(qm)β(dm|s)p(s), (6.1)

or alternatively as:

V A(µ) =

∫
q∈∆(S)

vA(q)µ(dq). (6.2)

We have V A
p (β) = V A(p⊕ β) for any p and β.52 The value of information

depends on the prior (either explicitly in (6.1) or implicitly in (6.2)) because

the value of a piece of information depends on what the agent already knows.

Here is a simple example that illustrates that.

Example 6.2. Suppose that A = {x, y} and S = {sx, sy}. The agent wants

to match the state: v(x, sx) = 1 = v(y, sy) and otherwise zero. The reader

can easily check that Figure 6.1 plots the interim utility as a function of the

posterior. Suppose that β is a binary experiment that is almost uninformative,

so that if p is a prior, then the resulting p ⊕ µ puts weight on two posteriors

which are very close to p. If p = 1
2 , then we are in the strictly convex part of

vA(·) and therefore the benefit of experiment β is positive: V A
p (β)−vA(p) > 0.

On the other hand, if p is close enough to zero or one, then both those posteriors

will lie on the linear segment of the function vA(·) and therefore the net benefit

will be zero.53 △

52If M is infinite we need to change the second sum in (6.1) to an integral. If the support of µ is
infinite, we need to do the same with (6.2).
53In general, vA(q) is a convex and continuous function (why?), so the benefit of any experiment is

nonnegative. In general, with finitely many actions vA(·) will have linear regions where the agent’s
demand for information is zero, see Radner and Stiglitz (1984) and Chade and Schlee (2002).
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Figure 6.1. The graph of the interim utility function vA(q) in Example 6.2.

6.2.2. Cost. We will denote by h a cost function defined on experiments and

by c a cost function defined on distributions over posteriors. Going forward,

we will assume that all h and c are Blackwell-monotone, i.e., more information

is more costly. This is without loss of generality because if a less informative

experiment costs more, then nobody would use it.54 It is also without loss to

assume cost is normalized so that uninformative experiments are costless, i.e.,

c(δp) = 0 for all p ∈ ∆(S) and h(β) = 0 for any constant experiment β.

The universe of cost functions c is larger than the universe of cost functions

h. Recall that for any µ there exists a prior (equal to pµ =
∫
qµ(dq)) and an

experiment βµ such that µ = pµ⊕βµ. Therefore, given a cost function h we can

construct a cost function ch(µ) := h(βµ).
55 Such a cost function is independent

of the prior: c(p ⊕ β) = c(p′ ⊕ β) for all full support p, p′. But not all cost

functions c have this property; in general, c can be prior-dependent.

Definition 6.3. A cost function c : ∆(∆(S)) → [0,∞] is prior-independent if

c(p ⊕ β) = c(p′ ⊕ β) for all β and all full support p, p′. A cost function c is

prior-dependent if it is not prior-independent.

This distinction doesn’t matter if we only observe behavior for a fixed

prior. But it does matter if there is experimental variation in prior, or we

observe behavior across time (yesterday’s posterior is today’s prior), or in game

theoretic models where the prior is an equilibrium quantity.

I view prior-dependence is a useful working distinction between “costly

information acquisition” and “costly information processing.” Imagine that

you are acquiring information, e.g., hiring an expert to perform a geological

survey. The expert charges only based on the number of drillings, not on your

prior belief, so the cost is prior-independent. On the other hand, the workhorse

54The Blackwell order is introduced in Section A.6.2 in the Appendix. Formally, we can define
another cost function where this experiment now costs as much as the more informative one. This
will not change behavior because the value function (6.1) and (6.2) is Blackwell-monotone.
55It doesn’t matter which βµ we choose, as by part (3) of Theorem A.6.4 they are all Blackwell-
equivalent, so they have the same cost.
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cost function in the information processing literature, the mutual information,

depends not only on the experiment but also on the prior, which means that

the mental cost of processing the same information β is different for people

holding different beliefs.

6.2.3. Optimization. A Bayesian agent maximizes the value of information

minus the cost. We can write the maximization problem as choosing an exper-

iment, or equivalently, as choosing a distribution over posteriors.

max
β∈E

V A
p (β)− c(p⊕ β) = max

µ∈∆(∆(S))s.t.pµ=p
V A(µ)− c(µ) (6.3)

These maxima exist if we assume that c is lower-semicontinuous, S is finite,

and M is compact.

Definition 6.4 (Active Learning). (ρs) has an active learning representation

if there exists a prior p ∈ ∆(S), utility v : S×X → R, and cost c : ∆(∆(S)) →
[0,∞] such that

ρs(x,A) = β∗
A

({
m ∈ M : Eqmv(x) = max

y∈A
Eqmv(y)

}
| s
)
,

where β∗
A solves (6.3) for each A and qm is the Bayesian posterior given m, β∗

A

and p.

Passive Learning is a special case where cost equals to zero for a given

information structure (and all information structures less informative than it)

and infinity otherwise.

In Definition 6.4, attention is perfectly tailored to the details of each choice

problem (A, v, p). In reality we know little about how fast it adjusts as choice

problems change, except in some controlled experiments on perception. Per-

haps it is tailored to situations we are facing on average? Maybe agents make

systematic mistakes in allocating it?

This optimality assumption should not be taken literally: this is a hard

optimization problem. It is a convenient as-if assumption that adds structure

to the model and is sensible at least in those cases where we’d expect attention

to respond positively to incentives.

For a fixed menu A this maximization problem can be simplified by focusing

action-recommendations (where the message spaceM equals the set of available

actions A as in Section 5.1.5). The class of such experiments will be denoted

R. If c is Blackwell monotone then without loss the agent can restrict the

maximization problem to R.

max
β∈E

V A
p (β)− c(p⊕ β) = max

β∈R
V A
p (β)− c(p⊕ β).

Intuitively, the action recommendation “glues” together all the messages that

lead to the same action choice. This new experiment is (weakly) less costly

(because gluing messages together makes it less informative) and leads to the

same expected utility. Because of this, an optimal experiment is precisely equal
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to the state-dependent stochastic choice function βs(x) = ρs(x). This means

that the agent never pays attention to features of the problem that are payoff-

irrelevant. This seems like a very strong and likely counterfactual prediction of

the model.

6.3. Mutual Information

Rational inattention means solving (6.3) with the mutual information cost.

The mutual information between the state and the message is given by∑
s

∑
m

P (s,m) log
P (s,m)

P (s)(m)
, (6.4)

where P is a discrete joint distribution over S × M , see Cover and Thomas

(2006). This can also be written in terms of the distribution over posteriors.

Definition 6.5. The mutual information of µ is defined to be

c(µ) = λ

∫
∆(S)

[H(pµ)−H(q)]µ(dq),

where λ>0 and H(q) = −
∑

s∈S q(s) log2 q(s) is the entropy of q.

Intuitively, H(q) measures how much uncertainty is contained in belief q,

so c(µ) is the average reduction in uncertainty in beliefs.

The following lemma gives us a recipe to determine the state-dependent

choice probabilities induced by this cost function: solve problem (6.5) and then

then plug it into formula (6.6). The observed choice probability is given by a

Luce-like formula, where the Luce choice probabilities are reweighed towards

the average choice probabilities.

Lemma 6.6. Suppose that the cost function is mutual information with pa-

rameter λ and the prior is p. Let ρs∗ be the optimal choice probabilities and

ρ∗(x,A) :=
∑

s∈S ρs∗(x,A)p(s) be the average optimal choice probability. Then

ρ∗(·, A) is a unique solution to

max
ρ∈∆(A)

∑
s∈S

log

∑
y∈A

ρ(y)ev(y,s)/λ

 p(s). (6.5)

Moreover, the conditional choice probabilities (and hence the optimal action-

recommendation) are

ρs∗(x,A) =
ρ∗(x,A)e

v(x,s)/λ∑
y∈A ρ∗(y,A)ev(y,s)/λ

. (6.6)

Finally, if ρ∗(x,A) > 0, then the posterior belief in state s given action recom-

mendation x equals

p(s)ev(x,s)/λ∑
y∈A ρ∗(y,A)ev(y,s)/λ

.
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Proof. See Proposition 2 of Steiner, Stewart, and Matějka (2017) which com-

bines Theorem 1 and Lemma 1 of Matejka and McKay (2015) and Theorem 1

of Caplin and Dean (2013). This result holds also for an infinite state space S,

replacing the sum in (6.5) with an integral. □

Rather than solving (6.5) directly, in applications the Blahut–Arimoto al-

gorithm is used (Cover and Thomas, 2006, Section 10.8). Another approach

using reinforcement learning was given by Lai and Gershman (2021).

Lemma 6.6 makes it possible to axiomatically characterize behavior of an

agent with mutual information cost. Matejka and McKay (2015) study an

analyst who observes the state-dependent s.c.f. ρs defined over Savage acts.

Each of their two axioms is a specific weakening of Luce’s IIA (Axiom 3.3).

Representing the choice problem as maximizing utility minus entropy cost

is superficially similar to the maximization problem under perturbed utility

(PU) model of Section 3.8. Proposition 3.36 says that we also have a logit-

like formula for choice probabilities. However, in the PU model the agent was

maximizing over a different variable and also the interpretation of the model

was different, so this analogy is purely formal.

The following example applies Lemma 6.6 to the weight perception task

(Example 1.5). We will show that the predicted psychometric function is not

S-shaped (as typically observed in experiments), but instead a step function.

Example 6.7 (Weight Perception with Mutual Information Cost). Let X =

{ℓ, r} and S = RX like in Example 5.2.3. Suppose that the prior is symmetric,

i.e., p(s(ℓ) > s(r)) = p(s(ℓ) < s(r)). Let w > 0 be the reward for correct

answers. The payoff function is v(ℓ, s) = w if s(ℓ) > s(r) and zero otherwise,

v(r, s) = w if s(r) > s(ℓ) and zero otherwise.

To solve (6.5), notice that it equals

1

2
log
(
ρ(ℓ)ew/λ + ρ(r)e0

)
+

1

2
log
(
ρ(ℓ)e0 + ρ(r)ew/λ

)
,

which is symmetric in ρ(ℓ) and ρ(r). Given that the objective is concave, the

solution must be symmetric, i.e., ρ(ℓ, r) = .5.

By (6.6), we have

ρs(ℓ, r) =


ew/λ

ew/λ+1
if s(ℓ) > s(r),

1
2 if s(ℓ) = s(r),

1
ew/λ+1

if s(ℓ) < s(r).

This is exactly the same step-function as in the constant-error model (Example

3.18). △

Intuitively, this prediction is due to the fact that mutual information

“doesn’t know” how far states are from each other: the formula for mutual

information (6.4) sums uniformly over states without any reference to their



6.4. Other Cost Functions 97

distance; the only distinguishing feature is their probability. This motivates

the study of other cost functions in the next section.

6.4. Other Cost Functions

First, we define a generalization of mutual information that replaces H with

an arbitrary convex and continuous function.

Definition 6.8. A cost function c is uniformly posterior-separable (UPS) if

c(µ) =

∫
∆(S)

[L(pµ)− L(q)]µ(dq),

where L : ∆(S) → R is convex and continuous.

This generalizes the notion of expected uncertainty reduction, allowing for a

weaker notion of “uncertainty.” This class is referred to as uniformly posterior-

separable costs (Caplin, Dean, and Leahy, 2022) because the function L is

uniformly the same for all priors. An even larger class of posterior separable

costs allows for such dependence.

Definition 6.9. A cost function c is posterior-separable (PS) if

c(µ) =

∫
∆(S)

[D(pµ, pµ)−D(q, pµ)]µ(dq),

where D : ∆(S)×∆(S) → R is convex and continuous in the first variable.

The UPS class is characterized by the following condition. Suppose that

we have an experiment β′ and then conditional on message m we run another

experiment β′′
m. We could execute it step by step, like a compound lottery, or

reduce it and execute it in one shot. We say that a cost function is indifferent

to sequential learning if for any prior the cost of each execution is the same.

Proposition†6.10. c is UPS if and only if it is indifferent to sequential learn-

ing.

Proof. See Lemma 1 of Bloedel and Zhong (2021). They assume a slightly

smaller domain of the cost function where µ = p ⊕ β for some full-support

prior and β such that β(s) is bounded away from the boundary of the simplex

∆(M). □

There is something at first sight paradoxical going on with the UPS class.

Given that the function L is prior-independent, it is tempting to think that c

is prior-independent. But in fact the opposite is true.

Proposition 6.11. If c ̸= 0 is bounded and UPS, then it is prior-dependent.

In particular, mutual information is prior-dependent.
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Proof. For details, see Appendix A.6.1. This result is Proposition 4 of Mensch

(2018), Proposition 1 of Denti, Marinacci, and Rustichini (2022a), and footnote

38 of Bloedel and Zhong (2021). The fact that the mutual information cost is

prior-dependent was discussed by Woodford (2012), Gentzkow and Kamenica

(2014), and Che and Mierendorff (2019). □

The PS class is larger than UPS and allows for prior-independent costs.

The PS class is characterized by the following condition. Suppose that we

have two experiments β′ and β′′ and assume that the set of messages of the

two experiments is disjoint so the agent always knows which one was used.

Consider another compound experiment that with probability α executes β′

and otherwise executes β′′. A cost function is indifferent to randomization if

for any prior the direct cost of the compound experiment equals the expected

cost of running the compound experiment. The characterizing condition has the

same flavor as linearity in probabilities of EU (4.1) and posterior-separability

can be seen as an EU-like representation.

Proposition 6.12. c is PS if and only if it is indifferent to randomization.

Proof. See Theorem 1 of Mensch (2018) and p. 354 of Torgersen (1991). □

The relationship between UPS, PS, and PI is illustrated in Figure 6.2. The

figure also depicts some additional classes, which we discuss in the remainder

of this section.

An important class of prior-independent cost functions was studied by Po-

matto, Strack, and Tamuz (2023). They assume constant marginal cost (CMC).

This consists of two axioms: (1) the cost of running the experiment twice (i.i.d.

conditional on s) is twice the cost of running it once. (2) running an experi-

ment with probability a half (and an null experiment with probability half) is

equal to half its cost. Notice that the first property is implied by indifference

to sequential learning while the second is implied by indifference to randomiza-

tion. Taken together with prior independence, these conditions plus continuity

imply that h has a weighted relative entropy (WRE) representation

h(β) =
∑

s,s′∈S

αs,s′R(βs||β′
s),

for some collection weights (αs,s′)s,s′∈S in R+ where for any π, π′ ∈ ∆(M)

the relative entropy or Kullback-Leibler divergence is defined by R(π||π′) :=∑
m∈M π(m) log π(m)

π′(m) if π′(s) > 0 ⇒ π(s) > 0 and R(π||π′) = ∞ otherwise.

Pomatto, Strack, and Tamuz (2023) show that this class is PS with D(q||p) =∑
s,s′ βs,s′

qs
ps

log qs
q′s
. This is not UPS because it is prior-independent. They

showt that unlike mutual information, WRE leads to reasonable psychometric

functions in Example 1.15.
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Figure 6.2. A categorization of Blackwell-monotone and bounded cost

functions: PI-prior-independent, PS-posterior-separable, UPS-uniformly

posterior-separable, CMC-constant marginal cost, WRE-weighted rela-
tive entropy, NB-neighborhood based, LS-likelihood-separable, TI-Total

Information, W-Wald, F-Fisher Information, MI-Mutual Information,

CC–Channel Capacity, 0-zero cost.

If we take CMC (the two axioms) and instead of PI we insist on UPS, then

we get

c(p⊕ β) =
∑

s,s′∈S

p(s)αs,s′R(βs||β′
s)

which was shown independently by Pomatto, Strack, and Tamuz (2023) and

Bloedel and Zhong (2021). The latter paper dubs them total information costs

and studies interesting dynamic stability properties. The UPS representation

of total information costs is given by L(q) =
∑

s,s′ βs,s′qs log
qs
qs′

.

A classic prior-independent cost function is channel capacity, defined as

h(β) := maxp∈∆(S) cmi(p ⊕ β), where cmi is mutual information. That is,

the cost of a given experiment is the maximal mutual information obtained by

choosing over all priors.56 Woodford (2012) analyzed a series of examples using

this cost.

The intersection of prior-independent and posterior-separable costs was

characterized by Denti, Marinacci, and Rustichini (2022b). For any prior p and

posterior q we can form the vector of likelihood ratios q(s)/p(s); let’s denote it

56According to Shannon’s coding theorem, if we think of β as a communication channel, then
h(β) is the maximal transmission rate achievable with arbitrarily low error probability (Cover and
Thomas, 2006).
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by q/p. The function c belongs to the intersection of those two classes if and

only if it is likelihood-separable: c(µ) =
∫
∆(S)

ϕ(q/pµ)µ(dq), where ϕ : RS
+ → R

is a continuous and sublinear function.

Hébert and Woodford (2021) propose a family of “neighborhood-based”

cost functions that allow for the cost of learning about states to be affected

by their proximity. This family contains mutual information and is a subset of

uniformly posterior-separable class, so by Proposition 6.11 is prior-dependent.

Such costs are flexible enough to generate S-shaped psychometric functions.

The intersection of total information costs and neighborhood-based costs

includes the Wald costs (Morris and Strack, 2019) and the Fisher Information.

6.5. Behavioral Characterizations

Most papers discussed in this section assume that the analyst knows the agent’s

utility function v and the prior p, similar to Section 5.1.5. In this setting Caplin

and Dean (2015) characterize the class of state-dependent s.c.f (ρs) that have

an active learning representation (with a general cost function). Their charac-

terization involves obedience (Condition 5.5) and a new acyclicity condition.

To state this new condition we need the concept of revealed distribution over

posteriors. Suppose the menu isA and the agent faces an action-recommendation

that in state s ∈ S suggests action x ∈ A with probability ρs(x,A). Then as

discussed in Section 5.1.5, by Bayes rule (5.1) the agent’s revealed posterior is

now

q̂(s|x) = ρs(x,A)p(s)∑
s′∈S ρs′(x,A)p(s′)

.

In every state s there is a distribution over those revealed posteriors with

weights given by ρs(x,A). Notice that by construction it satisfies Bayes Con-

sistency (Condition 5.20). Unconditionally on the state, the distribution over

revealed posteriors µ̂A ∈ ∆(∆(S)) is the average of those according to the prior.

Formally the probability of any posterior q is given by

µ̂A(q) :=
∑
s∈S

∑
x∈A

q̂(·|x)=q

ρs(x,A)p(s),

where the sum over the empty set is zero.

Given any distribution over posteriors µ the agent’s net utility is
∫
vAdµ−

c(µ). Consider now two menus A and B and the associated revealed distribu-

tions over posteriors µ̂A and µ̂B . It may happen that µ̂B is more informative

than µ̂A. In this case the agent’s gross utility of using µ̂B when choosing from

menu A is higher than using µ̂A, that is
∫
vAdµ̂B >

∫
vAdµ̂A. However, since

µ̂A is optimal when choosing from menu A, it must be that µ̂B is not worth

the extra cost in this situation:∫
vAdµ̂A − c(µ̂A) ≥

∫
vAdµ̂B − c(µ̂B) (6.7)
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and likewise when the menu is B and the agent considers using µ̂A:∫
vBdµ̂B − c(µ̂B) ≥

∫
vBdµ̂A − c(µ̂A). (6.8)

Adding (6.7) and (6.8) we get∫
vAdµ̂A +

∫
vBdµ̂B ≥

∫
vAdµ̂B +

∫
vBdµ̂A.

The NIAC condition generalizes this to longer cycles. The intuition behind it

is similar to other acyclicity conditions that we have seen before (Axioms 3.38,

3.22, and 4.25).

Condition 6.13 (NIAC). ρ satisfies no improving action cycles (NIAC) if for

any sequence of menus A1, . . . , An such that A1 = An we have

n−1∑
i=1

∫
vAidµ̂Ai ≥

n−1∑
i=1

∫
vAidµ̂Ai+1 .

Theorem 6.14 (Caplin and Dean 2015; Caplin, Dean, and Leahy 2017). Sup-

pose that S is finite, that p and v are given. (ρs) satisfies Obedience and NIAC

if and only if it has an active learning representation (Definition 6.4). In ad-

dition, the cost function can be chosen to be convex in µ.

Their original theorem is formulated for Savage acts, but with a known

state-dependent utility it is equivalent to Theorem 6.14. The result in Caplin

and Dean (2015) assumes that ρ is given on a finite collection of menus and

provides partial uniqueness results in the form of bounds on the cost function.

Caplin, Dean, and Leahy (2017); Gonczarowski, Kominers, and Shorrer (2020)

show that it extends to full domain and under a richness condition the cost

function is pinned down uniquely.

Denti (2022) works on the same domain and characterizes the PS class. He

also characterizes the UPS class, along with Caplin, Dean, and Leahy (2022).

Both papers offer characterizations of the mutual information cost that are

different from each other and also from Matejka and McKay (2015). Dean and

Neligh (forthcoming) design an experiment that tests these axioms and show

that UPS is typically satisfied.

Theorem 6.14 can be used to characterize the prior-independent class. If

we impose NIAC for each prior separately (each cycle has its fixed prior), then

the theorem delivers a cost function for each prior. But imposing NIAC across

priors gives us a prior-independent cost function (Denti, 2023).

Chambers, Liu, and Rehbeck (2020) characterize a general model without

the additive separability between the value and cost of information.

The approach taken by the above papers assumes that the analyst knows

the prior p and the utility function v. This may seem restrictive, but as shown

by Denti (2022), if we state the problem in the Anscombe–Aumann setting

(Section 5.3.1), then the analyst just needs to know the prior.
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6.5.1. Other Work. Another approach was taken by Lin (2022), who worked

with Anscombe–Aumann acts. Here the analyst does not know the utility func-

tion nor the prior: they are recovered from the data. The analyst only observes

the unconditional s.c.f. ρ. His work builds on Lu’s (2016) characterization of

passive learning on this domain (Theorem 5.23) and De Oliveira, Denti, Mihm,

and Ozbek’s (2016) characterization of active learning on the domain of pref-

erences over menus. Lin (2022) characterizes convex and Blackwell-monotone

costs, and obtains essential uniqueness of cost. This means that in principle

we don’t have to observe (ρs) but only the average ρ.

Yet another approach was taken by Ellis (2018) who restricts attention to

partitional experiments (i.e., in each state of the world the message is deter-

ministic). Conditional on the state the analyst observes the (deterministic)

choice function. See also Van Zandt (1996).

For further reviews of this literature see Caplin (2016) and Mackowiak,

Matejka, and Wiederholt (2018).
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7.1. Dynamic Random Utility

Dynamic models have important applications to the consumer side of the econ-

omy (durable goods purchases, labor supply, education, fertility, and retire-

ment), as well as to the firm side (investment decisions, patent renewals).

Suppose that we are tracking agent’s choices over time. In each period t

they are choosing xt from menu At. We will now explore the ways in which

their choices are connected across periods.

For now, let’s set aside the fact that the agent might be forward-looking:

incorporating their own future choices into their current decision. We will treat

dynamic optimality in Chapter 8. For now, we focus on phenomena that exist

whether agents are sophisticated or myopic (or anything in between). These

phenomena are backward-looking in nature and have to do with the fact that

observed choices may appear history-dependent, or correlated over time, even

if in fact they are not. Consider the following example.

Example 7.1 (History-Dependence). Suppose that r is a habit-forming drug

and d is not. We would expect to see history-dependent choice probabilities:

ρt+1(rt+1|rt) > ρt+1(rt+1|dt) (7.1)

because taking rt makes the agent crave r more in the future. In terms of

the representation, we could capture this by letting Ut depend not only on

xt but also on lagged consumption. This feature of a utility representation is

sometimes called state-dependence and it covers many more applications than

just habit formation.

dt+1

rt+1
d
t

dt+1

rt+1

r t

Figure 7.1. Conditioning on Past Choices.

But history dependence can also occur in a more subtle way. Suppose

that you had to predict someone’s vote in the presidential election. In forming

your prediction it would make sense to condition on how this person’s voted

previously (if you had access to such data). In this case we would expect (7.1)

to hold because political preferences are persistent over time, not because past
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votes are habit-forming. In other words, we get history-dependence of ρ as

a consequence of self-selection: republican-leaning voters select rt and to the

extent to which their political preferences are persistent, they are more likely

to select rt+1. In terms of the representation, we could have

Ũt(xt) = ṽ(xt) + ϵ̃t,

where ϵ̃t is a transitory i.i.d. shock and ṽ is a persistent preference, unobservable

to the analyst. If someone votes Republican in year t, they reveal that probably

ṽ(r) > ṽ(d), so they are more likely to vote republican next period. Crucially,

in this case choices appear correlated to the analyst because of asymmetric

information (the agent knows their ṽ, the analyst does not), and not because

xt−1 enters Ũt.

One way to tell apart state-dependence from asymmetric information would

be for the analyst to exogenously randomize choices in period 1. In this case,

we would expect history-dependence to go away in the voting example (because

period t votes are not informative anymore about period t+1 preferences), but

not in the drug example (because period t consumption directly affects period

t+ 1 preferences). △

For now, we will assume away state-dependence and focus on asymmetric

information. We will return to it in Section 7.4.

We will also assume that in each period the menu is determined exoge-

nously, i.e., drawn independently of past choices. I will call the universe of

such choice situations the simple domain. This means that the agent’s choice

in period t does not influence the menu of options available in period t + 1.

For example, the set of candidates today is unaffected by previous votes of our

agent. This assumption is also made by the literature on brand choice dynam-

ics in marketing, where in each period t the agent chooses a brand xt from

some exogenously determined menu At. We will relax this assumption later in

this chapter.

Assumption 7.2 (Simple Domain). First the menu A1 is drawn, then the

agent learns Ũ1 and chooses x1 ∈ A1 to maximize it. The analyst observes that

choice. Then the new period begins, the menu A2 is drawn independently of

x1, the agent learns Ũ2 and chooses x2 ∈ A2 to maximize it, and the analyst

observes that.

If we take the sample size to infinity, we will get the joint choice probability

ρ(x1, x2;A1, A2)
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for all menus A1, A2.
57 Equivalently, we could record the marginal choice prob-

ability ρ1(x1, A1) and the conditional choice probability

ρ2(·|x1, A1).

The latter formulation is useful in recursive settings. It is sometimes known as

a dynamic s.c.f.: a s.c.f. in period t = 1 and a s.c.f. in period t = 2 conditional

on each history.

The representation needs to keep track of the distribution of preferences

over time. The utility in each period is random Ũt : Ω → RXt and by definition

independent of past choices. Define the event

N(xt, At) := {Ũt(xt) = max
yt∈At

Ũt(yt)}.

Definition 7.3. ρ has a Dynamic Random Utility (DRU) representation if

there exists a probability space (Ω,F ,P) and utility functions Ũt : Ω → RXt

such that

ρ(x1, x2;A1, A2) = P
(
N(x1, A1) ∩N(x2, A2)

)
.

Alternatively, ρ1(x1, A1) = P(N(x1, A1)) and

ρ2(x2, A2|x1, A1) = P (N(x2, A2)|N(x1, A1))

for each (x1, A1) such that ρ1(x1, A1) > 0. As in the static model, we assume

that P does not depend on the menu pair.

Examples of DRU abound. In panel data econometrics the random effects

model assumes that Ũt(xt) = ṽ(xt) + ϵ̃t(x), where ϵt are i.i.d. over time and

alternatives; the agent’s “type” v is drawn at t = 1 and is perfectly persistent.

Notice that we could rewrite this representation as Ũt = v(xt) + ϵ̃t with a

deterministic v, but then the ϵt would be serially correlated. In practice, this

model includes attributes, which we will discuss in Chapter 12; here we focus

on models where the source of variation is the menu.

Another example are models of brand choice, where Ũt follows a Markov

process and the transition matrix is estimated based on how persistent the

choices ρt are.
58

A knife-edge case is when Ũt is independent over time. In this case we

don’t need to condition on histories. Equivalently, this means that the joint is

the product of the marginals.

57Similar limiting assumptions are made in the literature on panel data, where joint choice prob-
abilities are assumed to be identified from the data. If ρ represents choices of a single individual,
we need many trials for each history and we need to observe many histories. This is asking for a
lot, but can be done in some experiments.
58For example, Jeuland (1979); Keane (1997); Dubé, Hitsch, and Rossi (2010); Seetharaman (2004);
Dew, Ansari, and Li (2020).
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7.2. Axioms for DRU

Because we ruled out state-dependence, the realization of U2 does not depend

on x1 as a function. This implies that the marginal choice distribution in period

t = 2 is independent of the menu in period t = 1.

Axiom 7.4 (Marginal Consistency). For any x2 ∈ A2 and any A1∑
x1∈A1

ρ2(x2, A2|x1, A1)ρ1(x1, A1).

We already implicitly assumed a flavor of Marginal Consistency by writing

ρ1(x1, A1) in a way that does not depend on the future menu A2. Under this

notational assumption, Marginal Consistency is equivalent to a Marginality

axiom on the joint distribution (Chambers, Masatlioglu, and Turansick, 2021).

Axiom 7.5 (Marginality). For any x1 ∈ A1 and any A2, B2∑
x2∈A2

ρ(x1, x2;A1, A2) =
∑

x2∈B2

ρ(x1, x2;A1, B2).

For any x2 ∈ A2 and any A1, B1∑
x1∈A1

ρ(x1, x2;A1, A2) =
∑

x1∈B1

ρ(x1, x2;B1, A2).

Another necessary axiom is a dynamic version of Supermodularity (Axiom

2.6). It implies Supermodularity conditional on each history (including the

empty history in period t = 1).

Axiom 7.6 (Joint Supermodularity). For any xt ∈ At ⊆ Bt.

ρ(x1, x2;A1, A2) + ρ(x1, x2;B1, B2) ≥ ρ(x1, x2;A1, B2) + ρ(x1, x2;B1, A2).

Proposition 7.7 (Li 2021). When |X1| ≤ 3 and |X2| ≤ 3, DRU is character-

ized by Axiom 7.5 and Axiom 7.6.

Chambers, Masatlioglu, and Turansick (forthcoming) show that when |X1| ≤
3 or |X2| ≤ 3, DRU is characterized by Axiom 7.5 and strengthening of Ax-

iom 7.6 based on the BM Axiom 2.8. However, when both of these sets have

cardinality larger than 3, there exists a ρ represented by a state-dependent

DRU that satisfies Marginality and the dynamic BM-style axiom yet cannot

be represented by a state-independent DRU (this is their Example 2).

Chambers, Masatlioglu, and Turansick (forthcoming) show that such cases

are ruled out if in at least one of the periods the marginal s.c.f. has a unique

RU representation. Under this condition, their Theorem 3 implies that Axiom

7.5 and the dynamic BM-style axiom are necessary and sufficient for a state-

independent DRU representation.

Chambers, Masatlioglu, and Turansick (forthcoming) also show that re-

gardless of the cardinality of Xt, and regardless of the collection of observable

menus, state-independent DRU can be characterized by a joint version of ARSP
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(Axiom 2.10). Li (2021) shows that the same is true using Coherence (Axiom

2.11).

To understand DRU better, we will introduce another axiom which will

be useful going forward. Intuitively, we get history-dependent choices because

past choices reveal something to the analyst about the persistent component

of agent’s utility. If two histories reveal similar information, they should lead

to similar choices going forward. To gain more intuition, consider the following

example where two histories reveal the exact same amount of information.

Example 7.8. We have A1 = {x, y}, B1 = {x, y, z} and A2 = {x, y}. The

choice probabilities are given in Figure 7.2. Comparing the choice probabilities
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)
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)
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x(4
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Figure 7.2. History Independence

from menus A1 and B1 in Figure 7.2 we can conclude that z does not steal

any customers from x, it only steals customers from y. Given this (admittedly

extreme) pattern of substitution, period 2 choices of consumers who chose x

in t = 1 should be the same in each situation. This is because it’s exactly the

same selection of people who are making this choice. On the other hand, the

choices of people who previously chose y are different in the two situations,

as these represent different selections of customers. In particular, given that z

steals only from y the types that chose y from A1 are a mixture of the types

who chose y from B1 and those who chose z from B1. △

This example motivates the following axiom.

Axiom 7.9 (α-History Independence). For all x1 ∈ A1 if

(i) A1 ⊆ B1 and

(ii) ρ1(x1, A1) = ρ1(x1, B1) > 0,

then ρ2(x2, A2|x1, A1) = ρ2(x2, A2|x1, B1) for all x2 ∈ A2.
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Both (i) and (ii) are crucial for the conclusion to hold. In particular, it

is not enough to just require (i) because in general the analyst learns weakly

more after history (x1, B1) since x1 had to beat more alternatives to be chosen.

Axiom 7.9 is silent when (ii) fails. However, in this case DRU still makes

predictions: intuitively, ρ2 should be close after the two histories that are close.

Proposition A.7.1 in the Appendix shows that DRU implies the following axiom.

Axiom 7.10 (Bounded History Dependence). If x1 ∈ A1 ⊆ B1, then for all

x2 ∈ A2 ∣∣∣ρ2(x2, A2|x1, A1)− ρ2(x2, A2|x1, B1)
∣∣∣ ≤ 1− ρ1(x1, B1)

ρ1(x1, A1)
.

7.3. Axioms with Lotteries

Like in the static model, axioms look nicer if we add lotteries and restrict to

EU. We will call this model Dynamic Random Expected Utility.

In this model the sets N(pt, At) are linar so the REU axioms are satisfied

conditional on all observable histories (including t = 1). A mirror implication is

linearity of ρ in the conditioning event. Choosing p1 from A1 reveals the same

information as choosing option λp1+(1−λ)q1 from menu λA1+(1−λ){q1}, so
conditioning on either of these observations leads to the same prediction (see

also the discussion after Axiom 4.14 and Theorem 4.17). This is captured by

the following axiom.

Axiom 7.11 (Linear History Independence).

ρ2(·, ·|p1, A1) = ρ2
(
·, ·
∣∣λp1 + (1− λ)q1, λA1 + (1− λ){q1}

)
for all p1 ∈ A1 such that ρ1(p1, A1) > 0, all q1 and λ ∈ (0, 1).

A stronger version of this is mixing with a menu B1 instead of a singleton.

Axiom† 7.12 (Strong Linear History Independence).

ρ2(·, ·|p1, A1) = ρ2
(
·, ·
∣∣λp1 + (1− λ)B1, λA1 + (1− λ)B1

)
for all p1 ∈ A1 such that ρ1(p1, A1) > 0, all B1 and λ ∈ (0, 1).

The dagger symbol (†) is here because I am not telling you what it means

to mix with a menu. Axiom 7.12 implies Axiom 7.11 and Axiom 7.4.

Below I will present two axiomatizations. In the first axiomatization there

are more “conditional” axioms. To avoid conditioning on probability zero

events, the distribution of each Ũt is discrete and there are tiebreakers (W̃t)
T
t=1

as in Section 4.4. Technically speaking the first theorem is stated on the do-

main of decision trees (which we will discuss in Section 7.5), but it holds on

the simple domain as well.

Theorem†7.13 (Frick, Iijima, and Strzalecki 2019). ρ has a Dynamic Random

Expected Utility representation with finite support if and only it satisfies
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(i) α-History Independence

(ii) Strong Linear History Independence†

(iii) The GP axioms: Regularity, Linearity, Extremeness, Mixture Continuity,

and Finiteness† conditional on each history

(iv) History-Continuity.†

The second axiomatization assumes joint Regularity instead of conditional

Regularity. This allows them to weaken the assumptions that discipline history

dependence: Strong Linear History Independence and α-History Independence.

Theorem†7.14 (Chambers, Masatlioglu, and Turansick 2021). ρ has a Dy-

namic Random Expected Utility representation if and only it satisfies

(i) Joint Regularity

(ii) Linear History Independence†

(iii) The GP axioms: Linearity and Extremeness conditional on each history

(iv) Joint Mixture Continuity.†

All axioms in the second theorem can be expressed in terms of the joint

distribution.

7.4. State-Dependence

So far, we allowed history-dependence of observed choices only to the extent

that is implied by self-selection and we ruled out state-dependence of utility,

or what Heckman (1981) calls structural state-dependence: period-2 utility Ũ2

depends on the period-1 choices x1. Heckman’s (1981) term for the kinds

of history-dependence of observed choice probabilities that come from pure

self-selection is spurious state-dependence. There is an extensive literature in

econometrics that studies state-dependence, including Chamberlain (1993) and

Honoré and Kyriazidou (2000). In such models we have

ρ2(x2, A2|x1, A2) = P
(
Ũ2(x2;x1) = max

y2∈A2

Ũ2(y2;x1)
∣∣∣N(x1, A1)

)
.

This formulation of utility allows for things like habit formation and other

psychological effects.59

A controversial example of what looks like state-dependence comes from

psychology. According to the famous cognitive dissonance theory, people change

their preferences to rationalize past choices: rejected alternatives are devalued

and the chosen ones are bumped up (Brehm, 1956; Harmon-Jones and Mills,

1999). However, as pointed out by Chen (2008) and Chen and Risen (2010),

59See, e.g., Becker and Murphy (1988), Constantinides (1990), Campbell and Cochrane (1999), and
decision theory papers by Gul and Pesendorfer (2007), Rozen (2010), Gilboa and Pazgal (2001).
Related phenomena include preference for variety McAlister (1982), Rustichini and Siconolfi (2014),
and memorable consumption Gilboa, Postlewaite, and Samuelson (2016).
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the prevalent method used to test this theory suffers from a spurious state-

dependence problem.

Example 7.15 (Cognitive Dissonance). There are three periods. In period 1

the subjects rate n items on a discrete numerical scale. In period 2 the exper-

imental group chooses between two equally rated items (since the numerical

scale is discrete, the experimenter can always find such items). Let x be the

chosen item and y an unchosen one. The control group makes a choice between

items that are rated far from each other or does not make a choice at all. In

period 3 the subject is asked to choose between y and z—another item that

was initially rated the same as x and y.

The main empirical finding is that in the treatment group subjects are

more likely to choose z over y while there is no systematic tendency in the

control group. This finding is typically attributed to cognitive dissonance

because it looks as if people rationalize their rejection of y by devaluing it.

However, Chen (2008) shows that it can be explained purely by spurious

state-dependence. To see that, note that even though x, y, z receive the same

numerical rating, the rating system is discrete, so the agent may actually

have strict preferences over them. In period 2 the analyst observes the event

N(x, {x, y}) = {xyz, xzy, zxy}. Assuming a uniform distribution over rank-

ings, conditional on N(x, {x, y}) the probability that z is above y is 2
3 (in the

control group there is no conditioning so the probability remains at 1
2 ).

60 △

Less controversial examples of state-dependence are models of switching

costs (Pakes, Porter, Shepard, and Calder-Wang, 2020) and models of exper-

imentation or experience goods (see, e.g., Erdem and Keane, 1996; Crawford

and Shum, 2005). The following example illustrates the latter concept.

Example 7.16 (Experience Goods). Suppose that there are three products

X = {x, y, z} and two periods. Each of the goods can either be a “match”

for the agent (give utility one) or a “mismatch” (give zero utility). The agent

does not know whether a product is a match or not before trying it out. For

each product the probability of a match is α > 0.5 and the three goods are

independent.

The optimal strategy of the agent is to pick the product at random in the

first period and stick with it in the second period if it turns out to be a match

and switch to one of the other product if it’s a mismatch. This strategy yields

the following choice probabilities:

ρ2(x2 = x|x1 = x) = α >
1− α

2
= ρ2(x2 = x|x1 = y). (7.2)

Notice that history-dependence in this example occurs due to a differ-

ent force than the informational asymmetry discussed so far. The example is

60Another, more popular, version of the experiment elicits strict rankings instead of numerical
ratings, but a similar argument shows that the observed cognitive dissonance is spurious, provided
that subjects make small mistakes when reporting their rankings.
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cooked up so that the period-1 choice of x does not reveal anything about the

“type” of the agent: it is purely random. Nevertheless, the observed choices

look history-dependent because utility is state-dependent. △

Distinguishing between structural and spurious state-dependence is a key

problem. If mere self-selection leads to history-dependent choices, then how

much should the analyst attribute to state-dependence? How can we let the

data speak on this issue? Heckman (1981) and the literature that follows

develop stochastic choice models and econometric techniques that tease apart

structural from spurious state-dependence. We will not discuss these techniques

here and instead take a different route and assume that there exist lotteries

which serve as perfect randomized controlled trials. Consider the following

example.

Example 7.17 (Habit Formation). A pharmaceutical researcher wants to de-

termine whether drug x is habit forming. The other drug, y is known not to

be habit-forming. If the researcher has only access to the observed choices in

the left panel of Figure 7.3, she won’t be able to determine how much of the

observed serial correlation in choices (i.e., history-dependence) to attribute to

selection and how much to habit-formation.

This can be solved if the researcher can randomly assign x and y in the first

period. The idea of random assignment is routinely used in econometrics. If the

lottery in the first period is independent of everything else, then the population

assigned x is the same as those assigned y and therefore if ρ2(x|x) > ρ2(x|y),
we can conclude that the drug is habit forming. This is illustrated in the right

panel of the Figure. The convention introduced by (Raiffa, 1968) is to denote

decision nodes by squares and chance nodes, i.e., lotteries, by circles. △
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Figure 7.3. Teasing out structural and spurious state-dependence.

Lotteries are an idealized randomizing device, but they do sometimes occur

in reality.61 The next section formulates an axiom based on lotteries that rules

out structural state-dependence. In doing so, we will introduce the notion of

61For example, schools ration their seats via lotteries, a fact that is widely exploited in the empirical
literature on school choice to generate quasi-experimental variation, e.g., Abdulkadiroglu, Angrist,
Narita, and Pathak (forthcoming); Angrist, Hull, Pathak, and Walters (forthcoming); Deming,
Hastings, Kane, and Staiger (2014); Deming (2011).
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decision trees which will also prepare us for treating dynamic optimality in the

next Chapter.

7.5. Decision Trees

We have so far worked on the Simple Domain (Assumption 7.2), which assumed

away a key feature of dynamics: that choices made today shape the menu

available tomorrow. This feature is present in the classic consumption-savings

problem where the amount consumed in period t influences the income available

in period t+1. Classic discrete choice examples include studies of fertility and

schooling choices (Todd and Wolpin, 2006), engine replacement (Rust, 1987),

patent renewal (Pakes, 1986), or occupational choices (Miller, 1984).

The following example shows the dangers of trying to use a simple domain

in such situations.

Example 7.18 (Spurious Violation of Regularity). Consider choices of super-

market customers depicted in Figure 7.4. If we naively defineA := {medium, cheap}
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Figure 7.4. A spurious violation of Regularity

and B := {premium, medium, cheap}, then we code this as a violation of reg-

ularity because ρ(medium, A) < ρ(medium, B). This happens because the

distribution of preferences is different between menus A and B as a result of

self-selection: agents of different types select differently into the two supermar-

kets. △

To avoid such problems, we will enhance the description of each alternative

and define xt = (zt, At+1), where zt is an immediate consumption (or payoff)

and At+1 is a menu of choices available in the next period.
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In order to also incorporate lotteries, we will define what are known as

decision trees. This is a canonical domain in dynamic decision theory (Kreps

and Porteus, 1978). Now x is a lottery over pairs like (zt, At+1).
62 Formally,

there are finitely many time periods t = 1, . . . , T and let Z be a finite set of

instantaneous consumptions. Each period-t menu is a finite set of lotteries over

the period-t outcome space Xt; formally, the set of period-t menus is At :=

A(∆(Xt)), where for any set Y the collection of finite subsets of Y is denoted

by A(Y ). The spaces Xt are defined recursively: in all periods t < T the

outcome space Xt := Z ×At+1 consists of pairs of current-period consumption

and next-period continuation menus. To close this construction, the outcome

space in the final period T is just XT = Z, as there is no continuation menu

in the terminal period.63

As opposed to the simple domain (Assumption 7.2) here only A1 is exoge-

nous. All subsequent menus are chosen by the agent (and possibly random-

ized). More precisely, the chronology works as follows: each trial is defined by

a menu A1 of lotteries p1. In period 1 the agent chooses a lottery p1, which

subsequently resolves giving the agent immediate consumption z1 and menu

A2. The new period begins with history (A1, p1, z1) and the agent chooses p2
from A2, then (z2, A3) is realized according to p2, and the cycle continues. Like

on the simple domain, we could be sampling from a population of individuals

or sampling the same agent over and over again in a stationary environment.

Our simple domain is a subset of decision trees where the agent cannot

choose future menus. Formally, there is a fixed lottery πt+1 over menus At+1

and each pt ∈ At is a product measure of a lottery over Z and the lottery πt+1.

The choices that occur with positive probability under ρ1 define the set of

all period-1 choice histories: pairs (p1, A1) such that ρ1(p1, A1) > 0. Condi-

tioning on choice histories will allow our analyst to take care of self-selection.

As discussed in Example 7.17, the analyst might also want to keep track of con-

sumption histories: triples (z1, p1, A1) such that ρ1(p1, A1) > 0 and p1(z1) > 0.

Conditioning on consumption histories allows for a simple axiom that rules

out state-dependence.

Axiom 7.19 (State Independence). For all p1 ∈ A1 with p1(z1), p1(z
′
1) > 0

ρ2(·, A2|z1, p1, A1) = ρ2(·, A2|z′1, p1, A1).

Frick, Iijima, and Strzalecki (2019) showed that under Axiom 7.19 Theorem

7.13 offers a characterization of (state-independent) DRU on decision trees

62A small technical difference is that Kreps and Porteus (1978) look at Borel instead of simple
lotteries, and compact instead of finite menus. Their paper is often remembered for temporal
lotteries: the important special case of decision trees where all the decision nodes are singletons.
However, general decision tress are also defined and analyzed in Sections 1–3 of that classic paper.
63Thus, in a sense, the sets Xt are getting “smaller” as time goes by. This construction can be
extended to an infinite time horizon, see, e.g., Gul and Pesendorfer (2004), where Xt is constant
over time.
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If we go outside of the simple domain, we will have a limited observability

problem. In Example 7.18, if the agent chooses to go to supermarket A, we only

observe their choices from menu A. We do not have access to the choices they

would make from the menu B. We cannot extrapolate from choices of those

who go to B because they are a different population with different preferences.

In the extreme case, if we do not know anything about the selection mechanism,

then we do not learn anything from those choices.

When lotteries are absent, there is only one observable menu after each

history, so limited observability is very severe. The following example shows

that by adding lotteries we can overcome the limited observability problem and

extrapolate across histories.

Example 7.20 (School Choice). In period 1, parents decide to enroll their child

in one of two schools, which differ along many decision-relevant dimensions.

Upon enrolling, in period 2, parents must choose between a number of after-

school care options: H (home); Q (high quality after-school); or B (basic

after-school program offered only by school 1). Thus, choosing school 1 leads

to period-2 menu {H,Q,B}, whereas school 2 leads to menu {H,Q}.
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Figure 7.5. Limited Observability.

This situation is illustrated by the decision tree in the left panel of Figure

7.5. There is limited observability, similar to Example 7.18: we don’t know

how parents who select to school 1 would choose from the menu {H,Q}. We

need to overcome this problem if we want to make policy recommendations

about eliminating option B in school 1.

The inclusion of lotteries allows us to do so. Consider the decision tree in

the right panel of Figure 7.5. Here seats to school 1 are allocated by a lottery

and the student gets admitted with probability λ, while with probability 1− λ

they must go to school 2. If preferences in period 1 are EU, then the event in

which the agent chooses school 1 in the decision tree on the left is precisely the

same as the event in which the agent chooses the lottery in the decision tree



7.5. Decision Trees 117

on the right, i.e., we get the same selection of people. Another way to see this

is to notice that Linear History Independence ensures that choice probabilities

from {H,Q,B} are the same in the left and right panels of Figure 7.5. △
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8.1. The Bellman Equation

In Chapter 7 we defined dynamic random utility (DRU), where the agent in

each period t maximizes a random utility function Ũt. This is a very general

model that does not take a stance on whether the agent thinks about the future:

it allows for both myopic and forward-looking agents. Typically, economists

assume that Ũt additionally satisfies the Bellman equation, which implies that

agents are forward-looking and have correct expectations. We will now explore

this in detail.

Assume that Ω = Ω1 × Ω2 × · · · , where in period t the agent observes

ωt ∈ Ωt. The vector ωt = (ω1, . . . , ωt) describes information known by the

agent at time t.64 The utility function is Ut : Ωt → RXt . Each alternative

is xt = (zt, At+1), i.e., it involves a payoff today and a continuation menu for

tomorrow. In other words, the domain of choice are the deterministic decision

trees (Section 7.5).

Definition 8.1. (Ũt) satisfies the Bellman equation if

Ut(zt, At+1, ω
t) = ut(zt, ω

t) + δE
[

max
xt+1∈At+1

Ũt+1(xt+1, ω
t+1)

∣∣∣ ωt

]
(8.1)

where ut : Ω
t → RZt is a random flow utility (also called felicity) and δ ∈ [0, 1]

is the discount factor.65

This means that preferences are additively separable over flow utility, and

continuation value, which is the expectation of future (maximized) utility

Ṽt(At+1) := E
[

max
xt+1∈At+1

Ũt+1(xt+1)|ωt

]
,

which captures the fact that the agent is forward looking (unless δ = 0). The

formula for Ṽ is a generalization of the social surplus formula (Section 1.8). A

Bellman agent is using that formula to evaluate their own future welfare (con-

ditional on their current information). By applying the equation recursively it

follows that the agent is looking into all the future periods. Notice that (Ũt)

satisfies the Bellman equation vacuously on what we called the simple domain

(Assumption 7.2) because the agent was forbidden from affecting the future

(the continuation menu was fixed).

This specific form of Vt makes two important assumptions. First, the agent

foresees that they will learn something between periods t and t+ 1 and adapt

their action optimally to this new information. This implies that, adding more

options to the menu is always weakly better because they may be useful in

64The analyst does not have access to this information. Her information is much coarser: she
knows only as much as she can infer from agent’s past choices via the events N(ht). A similar
situation occurs in dynamic mechanism design, see, e.g., Pavan, Segal, and Toikka (2014), where
the mechanism designer gradually learns information about the agent’s type by looking at their
choices.
65In general, δ is not identified because ut can depend on t in an arbitrary way, so it could absorb
δ. However, δ is identified for some important special cases, for example under stationarity, where
ut(zt, ω

t) = u(zt, ωt) for some time-invariant function u.
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some situations and they cannot hurt in any situation. This implication is

often called preference for flexibility. The following example illustrates.

Example 8.2 (Sun glasses and rain coat). Suppose that on Saturday you are

going on a trip and on Friday you are packing your bag. You can bring: your

sun glasses {g}, your rain coat {c} or both items {g, c}. By packing {g, c} you

de facto delay the choice between g and c until Saturday. If you don’t choose

that menu, then you are de facto choosing between g and c on Friday. Of

course, it’s better to make an informed choice, so you bring both items.66

Suppose that t = 1 is Friday and t = 2 is Saturday. In period t = 2 you

will learn the weather and pick the most appropriate item from your bag. You

have some weather-dependent utility function ũ2. There are no more periods

after t = 2, so we just set Ũ2 := ũ2. Since we are not interested in what you

are consuming while you are packing your bag, we set ũ1 := 0. For simplicity

set δ := 1.

The Bellman equation says that:

Ũ1({g}) = E[ũ2(g)|ω1],

Ũ1({c}) = E[ũ2(c)|ω1],

Ũ1({g, c}) = E[max{ũ2(g), ũ2(c)}|ω1].

There are two ways to see that the last expression dominates. The first one

is to notice that the component-wise maximum always has a higher expecta-

tion, i.e., max{ũ2(g), ũ2(c)} ≥ ũ2(g) in each state of the world (ω1, ω2) and

taking conditional expectations preserves this inequality (likewise for ũ(c)).

Another way to see this is to notice that max : Rn → R is a convex func-

tion, so by conditional Jensen’s inequality we have E[max{ũ2(g), ũ2(c)}|ω1] ≥
max{E[ũ2(g)|ω1],E[ũ2(c)|ω1]}. △

The second assumption behind the Bellman equation is that the agent’s

belief over future states is correct, i.e., it corresponds to the true data generating

process P. In general, there could be one distribution that governs the true

variability of preferences (say in our example, the true probability of rain) and

another that represents the agent’s subjective belief (say the weather forecast).

(8.1) says that those two are the same; this is often called rational expectations.

This assumption seems innocuous in the weather forecast example. It seems

strong in other settings: consumers predicting their future income streams,

firms predicting profitability of new products, etc.

Notice a formal difference between preference for flexibility and rational

expectations: the latter imposes a consistency condition between ρt and ρt+1.

On the other hand, the former is purely a condition on the structure of Ũt, so

it will manifest itself by axioms imposed on ρt alone.

66If delay is costly, then there is a tradeoff between the option value and the delay cost. This
typically generates a probability distribution over the choice to delay. We will discuss such models
in Chapter 9.
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Models used in the dynamic discrete choice literature in econometrics

and industrial organization specify the Bellman equation somewhat differently.

While similar in spirit, those models are not equivalent: many specifications,

such as dynamic logit, violate preference for flexibility and associated notions.

We discuss this in Chapter 12.

8.2. Preference for Flexibility

It’s good to keep our options open, as long as it is costless. If the agent is

directly choosing between a menu and its superset, they will always take the

superset, except if the added items are so bad that they are dominated in each

state of the world by something already in the menu (in that case there is a tie

between the two menus).

Like in Example 8.2 above, we will make the following simplifications: there

are two periods and consumption in period t = 1 is suppressed, so in that period

we observe choices over menus of t = 2 consumptions. Moreover, suppose that

there is no private information in period t = 1 so that choices between menus

are deterministic in the eyes of the analyst. This allows us to capture observed

choices by a preference relation ≿1 instead of a s.c.f. ρ1.
67

As a further simplification, let’s forget about ρ2 for now and just focus on

choices made in period t = 1. This allows us to drop the subscripts and write

things like A ≿ B instead of A2 ≿1 B2.

8.2.1. Preferences over Menus. Our primitive is ≿ defined over A(X). On

this domain, the Bellman equation boils down to the following.

Definition 8.3. ≿ has a Koopmans representation if there exists a random

utility Ũ : Ω → RX such that

V (A) = E
[
max
x∈A

Ũ(x)

]
represents ≿.

Koopmans (1964) asks what axioms on ≿ pin down this representation.

The key axiom says that bigger menus are better.

Axiom 8.4 (Preference for Flexibility). If A ⊇ B, then A ≿ B.

This is almost all that we need: we just need to add another axiom that

disciplines the ties.

Axiom 8.5 (Modularity). If A ∼ A ∪B, then A ∪ C∼A ∪B ∪ C.

Intuitively, if adding B to A doesn’t create any value, this must be because

items in B are statewise dominated by items in A. Adding C to both sides

does not change that.

67This is more generally true under a weaker assumption that ω2 ⊥ ω1.
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Theorem 8.6 (Kreps 1979). Suppose that Z is a finite set. A preference

≿ satisfies Preference for Flexibility and Modularity if and only if it has a

Koopmans representation.

Preference for flexibility makes sense in an idealized model. But in real

life, it can be violated in many ways. For example, if there is choice overload,

then going through the options in the menu and making a decision is costly

to the agent. If they anticipate this cost, they may prefer to rule out options

right away (presumably at some cost too, but suppose that such cost is sunk).

Other situations involve temptation, where preferences at t and t+1 (about

xt+1) disagree with each other. There are several ways to resolve this conflict.

The agent could be sophisticated and perfectly foresee their future preferences

(Strotz, 1955). Or they could try to resist temptation by exerting costly self-

control (Gul and Pesendorfer, 2001). Or they could be naive and think there

is no conflict whatsoever. Agents who are sophisticated or have costly self-

control will violate the preference for flexibility axiom because they may want

to commit to exclude options from the menu that are tempting and harmful.

Naive agents will satisfy it. They think they think they satisfy the Bellman

equation, but they do not actually satisfy it: they violate rational expectations.

The large axiomatic literature on temptation is summarized in Lipman and

Pesendorfer (2013).

8.2.2. Preferences over Menus of Lotteries. Kreps’s theorem is very el-

egant, but has very weak uniqueness properties. Perhaps this should not come

as a surprise, given the weak uniqueness properties of RU we discussed in Sec-

tion 2.4: the distribution of Ũ is not identified, nor is the set of preferences

they represent.

Adding lotteries helped with RU, and it does here as well. Following Dekel,

Lipman, and Rustichini (2001), henceforth DLR,letX = ∆(Z) and assume that

preferences ≿ are defined on all nonempty and compact subsets of X.

Definition 8.7. ≿ has a DLR representation if there exists a random expected

utility Ũ : Ω → R∆(Z), such that

V (A) = E
[
max
p∈A

Ũ(p)

]
represents ≿.

Instead of Modularity, we will now have axioms that rely on the lottery

structure, which allows us to mix menus in the following way:

αA+ (1− α)B := {αp+ (1− α)q : p ∈ A and q ∈ B}.

Axiom 8.8 (Menu Independence). If A ≻ B, then for all C and all α ∈ (0, 1]

we have αA+ (1− α)C ≻ αB + (1− α)C.
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This is just the menu version of the vNM axiom (Axiom 4.2). We also need

a form of continuity.

Axiom 8.9 (Archimedean Continuity). If A ≻ B ≻ C, then there exist α, λ ∈
(0, 1) such that αA+ (1− α)C ≻ B ≻ λA+ (1− λ)C.

Theorem 8.10 (DLR). A preference ≿ has a DLR representation if and only

if it satisfies Preference for Flexibility, Menu Independence, and Archimedean

Continuity.

Proof. See Theorem S.2 in the supplement to Dekel, Lipman, Rustichini, and

Sarver (2007). □

Adding lotteries to the domain helps with uniqueness in the following sense.

In each state ω ∈ Ω the agent has a preference over lotteries ≿ω represented

by Ũ(·, ω). Let P (Ũ) := {≿ω: ω ∈ Ω}. In other words, P (Ũ) is the support of

the distribution over preferences induced by Ũ .

Theorem†8.11 (DLR). If there is a representation with a finite state space,

then the sets P (Ũ) coincide for all representations.

Proof. See Theorem 1, parts B and C of Dekel, Lipman, and Rustichini (2001).

This result holds under the additional assumption that all states are relevant.

In the infinite case, the closures of those spaces coincide. □

This sort of uniqueness is weaker than the one we have for REU representa-

tions, where the probability distribution over P (Ũ) was pinned down uniquely

(Theorem 4.17). Here we can only pin down its suport. In the next section we

will discuss how to get a stronger form of uniqueness by coupling preferences

over menus in period t = 1 with choices from menus in period t = 2.68

8.3. Rational Expectations

Another assumption behind the Bellman Equation is that the agent has ra-

tional expectations. In the weather example (Example 8.2) this means that

the weather forecast is correct on average. Whenever the states are objective,

rational expectations impose consistency between the objective frequency of

states and the agent’s beliefs revealed by ρ (as in Chapter 5). In this chapter

states are subjective to the agent and unobservable to the analyst. In this case,

rational expectations imposes a connection between ρt and ρt+1.

The simplest case is when the only meaningful private information is in

period t = 2, so the analyst observes a deterministic preference ≿1 on menus

and a s.c.f. ρ2. Formally, ρ2 is defined on X2 = ∆(Z2) and ≿1 on X1 = A(X2).

Suppose that we have a DLR preference ≿1 and a REU s.c.f. ρ2.

68An alternate route (Dillenberger, Lleras, Sadowski, and Takeoka, 2014) involves adding an ob-
jective state space (observable by the analyst) and studying choices between menus of Anscombe–
Aumann acts.
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Definition 8.12. We say that (≿1, ρ2) is a Ahn–Sarver pair if ≿1 has a

DLR representation (Ω,F ,P1, Ũ2) and that ρ2 has a REU representation with

(Ω,F ,P2, Ũ2) and Ũ2 has finitely many possible realizations.

Here P1 is the belief that the agent holds in period t = 1 and P2 is the

true data generating process that drives random variation in agent’s period

t = 2 choices.69 These two probability measures can be very different for an

arbitrary pair (≿1, ρ2). For example, the agent may be over-optimistic about

option value, or over-pessimistic. Rational expectations is when the agent’s

expectations are exactly right.

Definition 8.13. We say that a Ahn–Sarver pair (≿1, ρ2) has Rational Expec-

tations if the distribution of Ũ2 under P1 is the same as under P2.
70

Ahn and Sarver (2013) found a sharp axiom that captures this property.

Axiom† 8.14 (Sophistication). For any menu without ties† A2 ∪ {p2}

A2 ∪ {p2} ≻1 A2 ⇐⇒ ρ2(p2, A2 ∪ {p2}) > 0

This axiom says that the agent wants to include additional options into

the menu if and only if they actually choose them at least some of the time.

Theorem†8.15. (Ahn and Sarver, 2013): (≿1, ρ2) has Rational Expectations

iff it satisfies Sophistication.

To understand Sophistication better, assume that it holds only in one di-

rection. First imagine that

A2 ∪ {p2} ≻1 A2 =⇒ ρ2(p2, A2 ∪ {p2}) > 0.

Whenever the agent wants to include a new option in period 1, they then choose

it at least some of the time in period 2. But there could be options the agent

is sometimes choosing in period 2 that they do not value in period 1. This is

because of unforeseen contingencies: scenarios that the agent does not imagine

happening and does not not value flexibility along these dimensions. In other

words, the agent does not perceive all the option value there actually is in a

menu.

Now imagine the opposite:

A2 ∪ {p2} ≻1 A2 ⇐= ρ2(p2, A2 ∪ {p2}) > 0.

Whenever it’s sometimes worth choosing an option in period 2, the agent wants

to include it in period 1. Yet the agent may want to include some options that

never end up getting used. This may be because some scenarios that they are

imagining are completely impossible. In other words, the agent perceives too

much option value in a menu.71

69It is without loss of generality to assume that they share the measurable space (Ω,F) and

period-2 utility function Ũ2.
70In other words, P1 and P2 are equal except for payoff-irrelevant events.
71Another explanation is that the agent enjoys a pure freedom of choice.
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The Rational Expectations assumption helps with identification. As dis-

cussed in Section 8.2, looking at ≿1 alone identifies just the support of the

distribution over ordinal risk preferences. Theorem 4.17 says that just looking

at ρ2 identifies that distribution. This still means that in each state we can mul-

tiply the utility by a positive constant α and add a constant β to it, where both

constants can depend on the state. Remarkably, Ahn and Sarver (2013) show

that putting ≿1 and ρ2 together the constant α has to be state-independent.

The reason for this stronger uniqueness result is that the probability P1 =

P2 is identified, so although changing the scale of utility in some states does

not change period t = 2 choices, it does impact the option value and therefore

changes preferences because changes in utility cannot be absorbed by rescaling

the probability.

Finally, the rational expectations assumption becomes much weaker if we

don’t observe a preference ≿1 over menus, but instead just a preference over

lotteries (singleton menus). Suppose that our primitive is an EU preference ≿1

over lotteries and a REU s.c.f. ρ2. Given that there are finitely many possible

realizations of Ũ2, we have finitely many possible EU preferences in period 2:

≿1
2, . . . ,≿

n
2 .

Definition 8.16. We say that there is a preference reversal if there exist

p, q ∈ ∆(Z) such that p ≿1 q and q ≿i
2 p for all i with at least one of the

preferences ≿1,≿1
2, . . . ,≿

n
2 strict.

Theorem 8.17. (Strack and Taubinsky, 2021) (≿1, ρ2) has Rational Expecta-

tions iff there are no preference reversals.

8.4. Recent Axiomatic Work*

So far we allowed for private information only in period t = 2. Frick, Iijima,

and Strzalecki (2019) allow for intermediate payoffs and more importantly for

private information in all periods, so their primitive is the collection (ρt). They

define the stochastic versions of DLR axioms and Sophistication and prove

that they are equivalent to Definition 8.1. They also axiomatize a multiperiod

learning model where tastes are not allowed to vary over time, but only beliefs.

Lu and Saito (2019) unpack the simple domain Assumption 7.2. As dis-

cussed above, the simple domain makes sense under the time-separability as-

sumption that is built into the Bellman equation. Lu and Saito (2019) study

a model where time-separability is violated, as in Kreps and Porteus (1978)

and Epstein and Zin (1989). In such models the (fixed) continuation menu

will affect the current risk attitudes. They show that the analyst’s estimates

of the function u may be biased if they are contaminated by the nonlinear

continuation utility.

Lu and Saito (2018) study static choices between consumption streams.

In their model the randomness in choices is driven by preference shocks to
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discounting attitudes: the felicity function is deterministic, but the discount

factor is stochastic. They provide an axiomatic characterization of this model.

They also look at an extension where the analyst observes the average of ρt in

each period t, that is the unconditional choice probabilities.

Following Ahn and Sarver (2013), the two papers by Ahn, Iijima, Sarver,

and Yaouanq (2019); Ahn, Iijima, and Sarver (2020) study a pair (≿, ρ), where

≿ is a preference over menus and ρ is a stochastic choice function from menus.

These papers look at models where the rational expectations assumption is

violated, and in particular focus on naivete for time-inconsistent preferences.
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9.1. New Variable and New Questions

So far we looked at what the agent choses. In this chapter we will turn our

attention to a new variable: how much time it takes them to make a choice.

In psychology these are known as response times. They are routinely col-

lected for perceptual tasks such as those discussed in Section 1.3.72 The in-

creased availability of data about online and in-app behavior makes response

times a potentially fruitful object to study in economics.

One stylized fact that can be formulated using this primitive is that difficult

problems take more time than easy ones. For example, in the weight perception

task (Example 1.5) reaction times are longer if the two items are closer in

weight. The models that we study in this chapter predict this stylized fact.

Another stylized fact is that fast decisions are better (or more accurate)

than slow ones.73 That is, conditioning on trials in which the agent makes

their decision quickly, the quality of this decision is better than conditioning

on trials in which the agent takes longer. The situation here is more complicated

because there are two effects that push in opposite direction. First, spending

more time making the decision presumably has some benefits, for example the

agent receives more information about the alternatives. This is known as the

speed-accuracy tradeoff : the agent can make quick but inaccurate decisions,

or take more time to improve accuracy. Based on this effect alone, we would

expect that the more time the agent spends on the decision, the better this

decision is. In other words, if we forced the agent to stop at time t, accuracy

would be increasing in t.

However, our agent’s decision when to stop is endogenous. If the agent

made a fast decision, they may have had a reason for doing so and likewise for

a slow decision. In particular, taking more time typically has some opportunity

costs, so the decision to stop depends on how much the agent expects to learn

(the option value of waiting). If they get an informative signal, they may want

to stop early, but they will continue if the signal is noisy. If the informative-

ness of the signal required to trigger stopping (i.e., the stopping boundary) is

decreasing over time, then the observed choice accuracy is decreasing.

To study these effects formally, we will set up a model of optimal stopping

or sequential sampling, where the agent is optimally choosing when to stop (and

what to choose in the event of stopping). This is a model of active learning

because by choosing when to stop the agent de facto decides how much to learn.

In Wald’s model (binary prior) the optimal stopping boundary is constant in

72See, e.g, Luce (1986), Gold and Shadlen (2007), and Ratcliff and McKoon (2008). Response
times are also used in other contexts: a historic example is Jung’s (1910) word association test
used for revealing subject’s emotional states. An example from contemporary psychology is the
implicit association test, see Greenwald, McGhee, and Schwartz (1998).
73For perceptual tasks see, e.g., Swensson (1972); Luce (1986); Ratcliff and McKoon (2008);
Shadlen, Hanks, Churchland, Kiani, and Yang (2006). A similar patterns appears for economic
choices, see, e.g., Reutskaja, Nagel, Camerer, and Rangel (2011), Fehr and Rangel (2011), Krajbich,
Armel, and Rangel (2010).



9.2. Optimal Stopping 129

time, so fast choices are equally good as slow ones. But this is an exception:

with other priors the optimal boundary is time-dependent.

Papers in psychology and cognitive science often use a “reduced-form”

model where the boundary is not optimally chosen by the agent, but instead

exogenously specified by the analyst. The most popular Drift-Diffusion Model

(DDM) uses a constant boundary. We will relate such models to models of

optimal stopping.

Remark 9.1 (The dual system hypothesis). There are situations in which

fast decisions are impulsive, instinctive, and often wrong, while slow decisions

are deliberate, cognitive, and often right (Kahneman, 2011). The evidence

behind this focuses mostly on choices where to arrive at the correct answer,

the agent needs to solve a puzzle of some sort, or “think about the problem

the correct way” (Rubinstein, 2007; Caplin and Martin, 2016). In contrast, in

simple perception experiments, the gut feeling is often correct and if we start

doubting ourselves, there is a good chance we are off base. Of course, economic

choices involve a combination of both kinds of processes. △

Remark 9.2 (Bandits). In another popular model of dynamic learning the

agent continually experiments with each alternative and potentially flips back

and forth each period. This is a different dynamic optimization problem, known

as multiarmed bandit (Gittins, 1979; Gittins, Glazebrook, and Weber, 2011;

Weitzman, 1979; Keller, Rady, and Cripps, 2005; Doval, 2018). Example 7.16

was a very simple illustration in the context of experience goods. The primitive

here is different because the analyst observes choices in each period. Little is

known about stochastic choices induced by optimal choice rules in this envi-

ronment. The deterministic decision theory literature includes Piermont and

Teper (2019), Hyogo (2007), and Cooke (2017). △

9.2. Optimal Stopping

9.2.1. Primitive. The set of time indices is T = [0,∞) or T = {0, 1, 2, . . .}.
To simplify the exposition, I will favor the discrete time formulation as much

as possible. In an idealized situation with a lot of data the analyst has access

to the joint distribution ρ ∈ ∆(A×T ), for some collection of (typically binary)

menus A ∈ A.74 For any menu A we can decompose the joint distribution ρ

into the distribution of response times and the conditional choice probability

ρt ∈ ∆(A) for each t ∈ T . For simplicity, assume that the response times

distribution has full support, so the conditional choice probabilities ρt can be

computed for each t. Typically ρt will depend on t, i.e., there will be some

correlation between time and choice.

74This data can be obtained in one of two ways: either by sampling one individual many times,
or by sampling each individual a limited number of times (maybe even once) and using a mixture
model that accounts for heterogeneity in tastes and/or stopping dynamics.
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It is useful to think of our agent as solving the stopping problem depicted

in Figure 9.1, with the binary menu A = {ℓ, r}. In each period, the agent can

pick one of the items immediately, or they can delay, ponder the decision a bit

more and make their decision later, or delay even more, etc.

wait

choose r

ch
oo
se

ℓwait

choose r

ch
oo
se

ℓ

Figure 9.1. A stopping tree.

9.2.2. Dynamic Learning. Let S be the state space, as in Chapters 5 and 6.

At each time t the agent receives a message Mt ∈ Mt and M t := (M1, . . . ,Mt)

denotes the history of messages up to time t.75 The agent is endowed with

a prior on S and a dynamic experiment: the distribution of M t depends on

s ∈ S (typically messages are i.i.d. conditional on s). It is useful to consider the

probability space Ω = S ×
(×t∈T Mt

)
, so that the message and the stopping

times are random variables carried by Ω.

The message process can be interpreted in various ways: recognition of ob-

jects in a lab experiment or some form of introspection, e.g., retrieving pleas-

ant or unpleasant memories. In perceptual tasks it is assumed that the signal

strength depends on the difficulty of the task; for decision tasks it depends on

the true underlying utility. Consistently with Chapters 5 and 6, we will treat

messages as unobserved by the analyst.

The agent has a state-dependent utility v : S → RX . In period t their

conditional expected utility of choosing x is Ut(x) := E[v(x)|M t]. The agent’s

optimal choice from menu A is given by the choice function χt = x iff Ut(x) >

Ut(y) for all y ∈ A.76 Given that M t is private, observed choices are stochastic.

75In this chapter we will use upper case M for messages and M for the set in which they live.
76For expositional purposes we assume away ties; in parametric models discussed below they will
happen with probability zero.
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9.2.3. Stopping Times. Let τ be the time at which the agent stops and

makes a choice. We say that stopping is exogenous if the agent is forced to

make a decision precisely at a time that is controlled by the analyst. In this

case, τ is a random variable that is independent of M t. We say that stopping

is endogenous when the agent can decide themself when to stop; in this case,

τ typically depends on M t.

To model this formally, we will use the notion of a stopping time from

probability theory. The main idea is that the event “the agent stops at time t”

is fully determined by the message history up to time t and does not depend on

future messages. Let Σt denote the collection of message histories after which

the agent stops at time t.

Definition 9.3. A stopping time τ is a mapping τ : Ω → T such that for each

t we have τ(ω) = t iff M t ∈ Σt.77

Given a stopping time τ , the agent’s choices are χτ and their ex ante

expected utility is E[Uτ (χτ )]. The analyst observes ρ
s, which is the distribution

of (χτ , τ) in state s. ρst is the distribution of χt conditional on state s and the

event that the agent stopped at time t, i.e., {τ = t}.

9.2.4. Optimal Stopping/Sequential Sampling. So far, we described an

arbitrary stopping time. But in this model the stopping time is chosen op-

timally: there is a deterministic cost of waiting, a non-decreasing function

c : T → R. The optimal stopping time τ∗ solves:

max
τ

E[Uτ (χτ )− c(τ)]. (9.1)

In statistics, this is known as sequential sampling: the analyst can buy addi-

tional data (experiments) at a cost. The special case of linear time cost is often

used where c(t) = γt for some γ > 0.78

Even though the stopping time is optimal, the experiment (Mt) is fixed

and cannot be chosen by the agent. Yet, there is still an element of active

learning, in the sense of Chapter 6, because waiting longer gives the agent

more information (at a cost). However, the scope for attention allocation is

limited here: our agent cannot pay more attention to one item than the others,

just get more information overall. Section 9.8 discusses papers where the agent

optimizes over (Mt).

9.2.5. Accuracy. Accuracy is the probability of making the correct choice

conditional on stopping at time t.

Definition 9.4. Let xs := argmaxx∈A v(x, s) be the correct choice in state s.

Accuracy is defined as αs(t) := ρst (x
s, A).

77Formally, for τ to be well defined, we need the following condition: Σt+1 ⊆ (Γt)c × Mt+1.
78Another flavor of this model, which we will not discuss here, involves discounting: there is
δ ∈ (0, 1) such that τ∗ solves maxτ E[δτUτ (χτ )].
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Here “correct” means “ex post correct,” i.e., correct conditional on the

state. Since the agent does not know the state, they will sometimes make ex-

post errors, even though their decisions are correct from a dynamic point of

view, i.e., they are dynamically optimal by solving (9.1).

Definition 9.4 applies in situations when the analyst knows the true state

of the world. This makes sense in the domain of perceptual tasks, where the

analyst knows which choice is objectively correct in each trial (e.g., which

weight is heavier). In choice tasks, where preferences are subjective, even if

the analyst is conditioning choices on some fixed state s, she may not know

whether v(x, s) > v(y, s) or the opposite holds in that fixed state. Typically in

choice experiments an additional elicitation of preferences is made as a proxy

for the true v.79 Alternatively, with a lot of data, the correct choice is revealed

by the modal choice (the sign of the utility difference is revealed by which item

is chosen with the higher probability).

9.3. Wald Model

In the Wald model the agent is choosing from a binary menu A = {ℓ, r}. There
are two states S = {sℓ, sr}. We have v(x, s) = 1{s=sx}, i.e., the agent wants

to match the state, and cost is linear, c(t) = γt for γ > 0. Conditional on the

state s, messages are i.i.d. Mt ∼ N (δ(s), σ2), where δ(sℓ) = η and δ(sr) = −η

for some η, σ > 0. Because of the Normality assumption, it is sufficient for the

agent to keep track of the running sum M̂ t := M1 + · · · +Mt, instead of the

whole vector M t.

From the point of view of the agent, the process M̂ t is a random walk with

unknown drift (η or −η). The agent is learning about the drift by observing

realizations of M̂ t. By Bayes rule, the posterior log-likelihood ratio is

Lt(M̂) := log
P(sℓ|M̂ t)

P(sr|M̂ t)
= log

P(sℓ)
P(sr)

+ M̂ t 2η

σ2
. (9.2)

Given v, the agent chooses ℓ over r whenever P(sℓ|M̂ t) > P(sr|M̂ t), which

by formula (9.2) holds whenever M̂ t > σ2

2η log P(sr)
P(sℓ) =: w. Thus, in state sℓ, if we

force the agent to choose at time t they will choose ℓ with probability Psℓ(M̂ t >

w) = 1−Φ
(

w−tη√
2tσ

)
, where Φ is the cdf of the standard Normal distribution. If

the prior is symmetric, then w = 0 and this function is increasing in t, which

formalizes the intuitive reasoning behind the speed-accuracy tradeoff.80

79For example, Krajbich, Armel, and Rangel (2010) for each subject elicit a rating of each x ∈ X
on the scale -10, . . . , 10 and equate “accurate” with “higher ranked.” Likewise, Oud, Krajbich,
Miller, Cheong, Botvinick, and Fehr (2016) elicit willingness to pay for each item. Of course, the
subject’s rating may itself be stochastic, so this approach should be treated only as the first step.
In addition, this approach is probably not well suited in situations where preference reversals are
present (Tversky and Thaler, 1990). See also a discussion in Khaw, Li, and Woodford (2021).
80Notice a subtlety: a nonmonotonicity occurs the agent initially believes that ℓ is more likely.
For small values of t they mostly go by their prior and correctly choose ℓ. For large values of t,
their posterior will correctly put a high weight on ℓ, so they will choose correctly as well. But for
intermediate values of t, there will be signal realizations that make the agent change their mind
and incorrectly choose r.
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The following theorem describes the optimal stopping time in the Wald

model.

Theorem 9.5. In the Wald model there exists k > 0 such that

τ∗ = min{t ≥ 0 : |Lt| ≥ k}, (9.3)

where (Lt) is given by (9.2). Moreover, if the prior is symmetric, τ∗ can also

be written as

τ∗ = min{t ≥ 0 : |M̂ t| ≥ b} (9.4)

for some b > 0.

Proof. See Arrow, Blackwell, and Girshick (1949). □

Thus, under τ∗, the agent stops the first time the posterior hits a time-

invariant boundary (9.3). The constancy of the boundary in the space of beliefs

does not depend on the assumption that signals are Normally distributed. It

holds for any distribution ofMt as long as they are i.i.d. and the cost is linear.81

When the prior is symmetric, then the boundary in the signal space (9.4)

is also constant in time. This again has to do with the fact that there are

two states. To see that, suppose that M̂ t is close to zero after a long t. With

two states, the agent is certain that the drift is either η or −η, so this signal

is interpreted as pure noise (and the agent continues). On the other hand, if

there are more states, e.g., the agent is learning about the difficulty of the task,

or about the stakes, then there are many possible values of the drift, so M̂ t ≈ 0

is now interpreted as carrying some information (for example that the task is

difficult, or that the stakes are low) and the agent may want to stop. We will

see this later on in more detail.

Equation (9.4) has no reference to the belief process. The agent follows

a simple heuristic: stop the first time the signal process M̂ t hits b > 0 and

choose ℓ if it hits the upper boundary and r if it hits the lower boundary. This

makes it tempting to forget about optimization altogether and think of (9.4)

as a “reduced-form” model of reaction times. The continuous time version of

such a model is known as the Drift-Diffusion Model (DDM).

9.4. The Drift-Diffusion Model

DDM was brought to psychology by Stone (1960) and Edwards (1965) to study

perception and by Ratcliff (1978) to study memory retrieval. It is now a well

established benchmark in psychology and neuroscience. In this model the cu-

mulative signal is a diffusion with drift δ and noise σ: time is continuous

T = [0,∞) and

M̂ t = tδ + σBt, (9.5)

81If the current belief equals p ∈ [0, 1], then it doesn’t make any difference how much time has
elapsed so far: it’s as if the agent is starting with a prior equal to p, as long as the marginal cost
is constant over time.
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where Bt is a standard Brownian motion82 This ensures that M̂ t ∼ N (tδ, tσ2),

just like in the discrete-time version.

Definition 9.6. Fix A = {ℓ, r}. The s.c.f. ρ ∈ ∆(A×T ) has a DDM represen-

tation if there exists δ ∈ R and σ, b > 0 such that (9.5) holds and ρ is induced

by χ and τ where

χt = ℓ if M̂ t = b,

χt = r if M̂ t = −b,

τ = inf {t ≥ 0 : |M̂ t| ≥ b},

In this case we write ρ ∼ DDM(δ, σ, b).

To see how this fits with the previous section, note that in the (con-

tinuous time version of the) Wald model we have ρsl ∼ DDM(η, σ, b) and

ρsr ∼ DDM(−η, σ, b).

The assumption that Mt is a diffusion is key. For a general process Mt,

Definition 9.6 is vacuous, see, e.g., Jones and Dzhafarov (2014) and Fudenberg,

Strack, and Strzalecki (2015).

The DDM is a very tractable model thanks to the following result from

probability theory.

Theorem 9.7 (Gambler’s Ruin Problem). If ρ ∼ DDM(δ, σ, b), then the pa-

rameters are unique up to a common positive scalar multiple. Moreover, ρ is

a product measure, i.e., ρt is a constant function of t. Furthermore, for any

t ∈ T

ρt(ℓ, r) =
eδb/σ

2

eδb/σ2 + e−δb/σ2

and

E [τ ] =
b

δ
tanh

(
bδ

σ2

)
,

where tanh is the hyperbolic tangent function; tanh(x) = ex−e−x

ex+e−x .

Since ρt is independent of t, to describe ρ we can just look at the marginals

on A and T . We are already familiar with the marginal on A: it’s the psycho-

metric function. The theorem above says it is of a Luce/logit variety. The new

object is the chronometric function: the mapping δ 7→ E[τ ].83 A comparison of

these two functions (Figure 9.2) illustrates the usefulness of including response

82A standard Brownian motion starts at zero, has continuous sample paths, and independent
normally distributed increments, meaning that for t′ > t the value of Bt′ − Bt is distributed
N (0, t′ − t) independently of the past.
83Just to clarify, the psychometric function and the chronometric function are functions of δ and
other parameters. In contrast, accuracy is a function of t. Theorem 9.7 does not uniquely pin
down the distribution of τ . There are Fourier series expressions for the cdf of τ , see Chapter 10,
Section 4 of Feller (1957) and Smith (1990).
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times in estimation. The psychometric function is flat where the chronometric

function is steep and vice versa (see e.g., Clithero and Rangel, 2013).

-2 -1 1 2

0.25

0.5

0.75

1

(a) psychometric function

-2 -1 1 2

1.0

1.5

2.0

(b) chronometric function

Figure 9.2. Psychometric and chronometric functions in DDM, as a
function of δ ∈ [−2, 2]. Fixed parameters are b = 1.5, and σ = 1.

The chronometric function is decreasing in |δ|, which means that difficult

trials (|δ| small) take longer than easy trials (|δ| large). This is consistent with
the first stylized fact from Section 9.1. However, DDM is inconsistent with

the second stylized fact because ρt is independent of t, i.e., the model predicts

constant accuracy. This was recognized in the psychology literature from the

beginning and many extensions off DDM have been proposed to address this

issue. We will discuss them later in this chapter.

DDM is a good description of some perceptual tasks, where the drift of M̂t

can take one of two possible values. However, it doesn’t not really make sense

in situations where there are more than two possible states because the Wald

model does not apply to such situations. For example in a weight perception

task (Example 1.5) there are many possible values of the drift (many possible

values of the weight difference between the two objects). This makes the state

space larger than two points and, as we will see later in this chapter, makes a

constant boundary suboptimal. Thus, an application of DDM to such tasks is

inconsistent with the rational expectations assumption (that the agent’s prior

equals the data generating process).

DDM has recently been used to study choice tasks.84 Let A be the col-

lection of all binary menus. The analyst observes the family ρA ∈ ∆(A × T )

such that ρA ∼ DDM(v(x) − v(y), σ, b) for A ∈ A, where v : X → R is the

utility function of the agent. Like in perception tasks, the application of DDM

to choice tasks is inconsistent with the rational expectations assumption. The

agent who faces a randomly chosen pair of items from X should have a prior

belief given by the distribution of utilities of all items in X, which is not a

binary prior.

84Roe, Busemeyer, and Townsend (2001),Krajbich, Armel, and Rangel (2010),Krajbich, Lu,
Camerer, and Rangel (2012),Milosavljevic, Malmaud, Huth, Koch, and Rangel (2010),Reutskaja,
Nagel, Camerer, and Rangel (2011).
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9.5. Time-Dependent DDM

One of the extensions of DDM proposed to address the constant accuracy

prediction relaxes the constant boundary assumption of DDM.

Definition 9.8. Fix A = {ℓ, r}. The s.c.f. ρ ∈ ∆(A×T ) has a time-dependent

DDM representation if there exists δ ∈ R and a boundary b : T → R+ such

that ρ is induced by χ and τ

χt = ℓ if M̂ t = b(t)

χt = r if M̂ t = −b(t)

τ = inf {t ≥ 0 : |M̂ t| ≥ b(t)},

M̂ t = δt+ σBt,

whereBt is a standard Brownian motion. In this case we write ρ ∼ DDM+(δ, σ, b).

Similarly to DDM, here the chronometric function is decreasing in |δ|, so
the model explains the first stylized fact. Moreover, in DDM+, the choice prob-

abilities have a logit-like closed-form expression that generalizes the gambler’s

ruin formula.

Theorem 9.9 (Fudenberg, Strack, and Strzalecki 2018). Suppose that ρ ∼
DDM+(δ, σ, b). Then

ρt(ℓ, r) =
eδb(t)/σ

2

eδb(t)/σ2 + e−δb(t)/σ2 .

Thus, DDM+ can explain our second stylized fact if the boundary is a

decreasing function. To see the intuition behind this result, suppose that b is a

decreasing function. This means that there is a higher bar to clear for smaller t

than for larger t. So, if the agent stopped early, |M̂ t| must have been high

and therefore the chance of making the correct choice is higer than if the agent

stopped late, where |M̂ t| was low.85

While DDM+ can explain both stylized facts, it has the same “reduced-

form” status as DDM because the boundary is exogenously specified and not

tied to the optimization problem of the agent. The next section microfounds a

special case of DDM+.

9.6. Chernoff model

In this section we will study a model similar to Wald’s, except that the prior

of the agent is Normal, as opposed to binary.

The agent is facing a menu A = {ℓ, r}. The state space is S = RA and

we assume that the prior is such that s(x) ∼ N (µx
0 , σ

2
0) independently across

85There is a complication, as we need to condition on the event that the boundary has not been
crossed before. However, because of the symmetry of the boundary, the same “number” of paths
cross the upper and the lower boundary, so the conditioning event does not matter.
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x ∈ A. For each dimension x of s the agent gets a cumulative signal M̂ t
x, which

is a diffusion with drift s(x) and noise σ

M̂ t
x = ts(x) + σBx

t ,

where the Brownian motions Bx
t are independent across x.

The payoff of choosing x is v(x, s) = s(x), the true utility of good x, which

is unknown to the agent. The posterior is in the same family as the prior:

s(x) ∼ N (µx
t , σ

2
t ), where

µx
t := µx

0

σ2
t

σ2
0

+ M̂ t
x

σ2
t

σ2
and σ−2

t := σ−2
0 + tσ−2 (9.6)

This is a continuous-time version of the Normal updating formula in Example

5.2.3. The posterior mean is combination of the prior mean and the cumulative

signal. The posterior precision evolves deterministically and linearly in time.

To sum up, the Chernoff model is an optimal stopping model with a Normal

prior, diffusion signal, payoff v(x, s) = s(x), and linear time cost.86

Proposition 9.10 (Fudenberg, Strack, and Strzalecki 2018). In the Chernoff

model there exists a decreasing function k : T → R such that

τ∗ = inf{t ≥ 0 : |µt| ≥ k(t)},

where µt := µℓ
t − µr

t is the posterior mean difference process given by (9.6).

Moreover, if µ0 = 0, then there exists b : T → R such that

τ∗ = inf{t ≥ 0 : |M̂ t| ≥ b(t)},

where M̂ t = M̂ t
ℓ − M̂ t

r.

The net signal M̂ t is a sufficient statistic for our agent’s decision because of

the diffusion assumption and the additive cost assumption; it is not sufficient

in models with discounting, where the absolute level of the signals matters as

well as their difference.

The key intuition for this result is non-stationarity: with a Normal prior

the option value of waiting is decreasing. Suppose that the agent observes

M̂ t
l ≈ M̂ t

r after a long t. With a Normal prior, the agent will conclude that the

two items are nearly indifferent and they will decide to stop, given that there is

not much left to learn. This is different from the Wald model, where there is no

room for such an interpretation of the signal and the posterior given M̂ t
l ≈ M̂ t

r

is nearly uniform over the two states (and uniform belief actually maximizes

the option value of waiting in the Wald model). Hence the agent behaves as if

Mt is pure noise and starts from scratch.

86Chernoff’s (1961) original formulation involved regret-minimization. It can be shown that this
formulation is equivalent (Fudenberg, Strack, and Strzalecki, 2018).
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The theorem is silent on the monotonicity properties of b. For some pa-

rameter values it is decreasing, but for some it is hump-shaped. However, Fu-

denberg, Strack, and Strzalecki (2018) show that accuracy is always decreasing

in expectation (according to agent’s prior).

A similar model can be used for perception tasks. The only difference is

that v(x, s) = 1{sx>s−x}, i.e., the agent is rewarded for guessing correctly but

the payoff is independent of the difficulty of the task. Drugowitsch, Moreno-

Bote, Churchland, Shadlen, and Pouget (2012) numerically estimate such a

model. Tajima, Drugowitsch, Patel, and Pouget (2019) extend their compu-

tational framework beyond binary menus. These papers also allow for the

marginal cost to be non-constant.

The following result shows that any boundary can be rationalized by an

appropriately chosen nonlinear cost function.

Theorem†9.11 (Fudenberg, Strack, and Strzalecki 2018). Consider either the

binary or Normal prior. For any b there exists a (potentially nonlinear) cost

function c such that b is the optimal solution to the stopping problem.

Remark 9.12. A common stylized fact in behavioral economics is that people

“overthink” decision problems that don’t matter and “underthink” those that

are important. Whether this intuition is consistent with our models depends

how we define “problems that don’t matter” and those that are “important.”

Let’s focus on choice tasks where the drift equals the difference in utilities.

Here problems that don’t matter are those where |v(ℓ) − v(r)| is small and

problems that are important are those where the utility difference is large. As

mentioned before, in DDM and DDM+ the expected reaction time is decreasing

in |δ|. Thus, it is optimal to spend more time on problems that (ex post) don’t

matter than on those that are important (because important problems are

easier, under the assumption about drift being equal to the utility difference)

Of course, in many situations important decisions are actually difficult (e.g.,

choosing a retirement plan), so this assumption is violated.

Oud, Krajbich, Miller, Cheong, Botvinick, and Fehr (2016) designed ex-

periments where subjects are sometimes forced to make decisions after a set

amount of time elapsed. This de facto implements a new boundary that col-

lapses at zero at some point in time. On trials with such an intervention

subjects perform better than on trials when the response time is freely chosen

by them. This shows that the orignal boundary couldn’t have been optimal.

This pattern is true for value-based choices as well as perceptual choices where

subjects are incentivized more on easy trials and less on hard trials. △

9.7. Other Models from Psychology

9.7.1. Full DDM. Full DDM or extended DDM is a mixture of constant-

boundary DDMs where mixing occurs over three parameters: the drift δ, the
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starting point M0, and the initial latency T0 (inaction period, so that the an-

alyst observes the realizations of T0 + τ .).87 We have encountered mixture

models in static domain (e.g., the mixed logit model in Section 3.3). We in-

terpreted this as pooling over subjects. Here, the randomization is done for a

fixed experimental subject.

The full DDM model is extremely popular in applications, as it introduces

more parameters that can be estimated and in particular allows for time-varying

accuracy.

The example below introduces a related model where the randomness of

the initial starting point M0 has a nice interpretation.

Example 9.13 (Ads). Imagine that there is a non-skippable advertisement in

agent’s phone app. This advertisement adds an initial latency (of a determin-

istic length) and endows the agent with a signal, thus randomly moving the

agent’s belief at the beginning of the decision phase.

Let T0 be the length of the advertisement. If the drift of the signal during

the advertisement is κ(v(ℓ)− v(r)), then

M0 ∼ N (T0κ(v(ℓ)− v(r)), T0).

Chiong, Shum, Webb, and Chen (2018) estimate a DDM with M0 distributed

as above and simulate what would happen in a counterfactual, where the mar-

keting company allows for skippable ads. This approach is somewhat different

from the way the full DDM is typically used because in full DDM, the distri-

bution of M0 is independent of T0. △

9.7.2. Attentional DDM. In lab experiments we can record additional data,

such as eye movements (Krajbich, Armel, and Rangel, 2010; Krajbich and

Rangel, 2011; Krajbich, Lu, Camerer, and Rangel, 2012; Gaia Lombardi, 2020;

Callaway, Rangel, and Griffiths, 2020). That literature uses the Attentional

DDM model, which is an extension of DDM that incorporates eye movement

data. In those models “attention” is an exogenous process that does not con-

dition on the signal M̂t. Evidence is accumulated only for the item that is

currently paid attention to. This assumption makes the model easy to esti-

mate, but makes it difficult to think of good microfoundations akin to the

Wald or Chernoff models.

9.7.3. Race Models or Accumulator Models. Race models, otherwise

known as accumulator models assume a separate signal M̂ t
x and a separate

boundary for each x ∈ X. The agent stops the first time one of those sig-

nals hits the corresponding boundary. Here the evidence can be accumulated

at different speeds and there can be correlation between the signals, see, e.g.,

Vickers (1970). Pike (1966) studies finite Markov models. The following ex-

ample assumes a Poisson process (Audley, 1960).

87See, e.g., Ratcliff (1978), Ratcliff and McKoon (2008), Ratcliff and Smith (2004), and Bogacz,
Brown, Moehlis, Holmes, and Cohen (2006).
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Example 9.14 (Eureka Moment). There is a utility function v : X → R and

each M̂ t
x is an independent Poisson process with intensity ev(x). The agent stops

the first time one of these processes hits the value 1 and picks the corresponding

x. It is easy to show (see Appendix A.9.1) that such defined ρ ∈ ∆(A× T ) is

a product measure, where the marginal on choices is of the logit form

ρt(x,A) =
ev(x)∑

y∈A ev(y)

and the marginal distribution of τ is exponential with parameter
∑

x∈A ev(x).88

Given the closed forms, this model is equally easy to fit as the DDM and

it extends beyond binary menus. However, a constant boundary is not optimal

for a model where M̂x
t is a Poisson process with intensity proportional to the

utility of x. △

Smith and Vickers (1988) derive the stopping probabilities for a general

class of accumulator models. An even more general model was proposed by

Marley (1989). Here, each item x is associated with a random time Tx and the

agent chooses the item whose time comes first.

A special kind of accumulator models are Linear Ballistic Accumulator

(LBA) models, see Brown and Heathcote (2008) and Terry, Marley, Barnwal,

Wagenmakers, Heathcote, and Brown (2015). In those models the paths of M̂x
t

are linear and randomization is over the starting point and the angle of the

path (uniform and Normal, respectively).

As shown by Jones and Dzhafarov (2014) without those parametric as-

sumptions LBA has no predictive content, see also Marley and Colonius (1992).

Webb (2019) shows that for accumulator models, the marginal choice proba-

bility is governed by a static ARU model with attributes like in Definition 10.3

but where the distribution of ϵ is allowed to depend on v.

9.7.4. Mean Reverting Stimulus or Leaky Models. Busemeyer and Townsend

(1993) study an accumulator model where instead of M̂t being a diffusion with

a constant drift, it is a mean-reverting (Ornstein-Uhlenbeck) process:

dM̂ t = (δ − γM̂ t)dt+ σdBt.

Such a mean-reverting accumulator model is sometimes called a “leaky accu-

mulator” or “Decision-Field Theory.” A nice exposition of these and other

models is given by Bogacz, Brown, Moehlis, Holmes, and Cohen (2006).

88The constant accuracy prediction depends on the assumption that the boundary equals one. For
b > 1 accuracy is decreasing (Lensman, 2023). A peculiar feature of this model is that adding
options reduces the reaction time. This may seem counterintuitive, given what we know about
choice overload. In perceptual tasks there is the “Hick–Hyman Law” which says that the average
decision time increases logarithmically in the menu size (Luce, 1986).
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9.7.5. Recent papers in economics. Alós-Ferrer, Fehr, and Netzer (2021)

take as a primitive the marginal over choices ρ ∈ ∆(A) together with a distri-

bution over stopping times. They look at a generalization of ARU where the

distribution of ϵ is menu-dependent.

Epstein and Ji (2020) study learning in a diffusion setting where there is

prior ambiguity. Auster, Che, and Mierendorff (2022) look at a similar setting

with Poisson signals.

Branco, Sun, and Villas-Boas (2012) look at decisions derived from opti-

mal stopping rules where the gains from sampling are exogenously specified as

opposed to being derived from Bayesian updating. Ke, Shen, and Villas-Boas

(2016) apply this model to consumers searching for products.

Duraj and Lin (2019) and Duraj and Lin (2021) provide a decision-theoretic

analysis of versions of the general model presented in Section 9.2. Baldassi,

Cerreia-Vioglio, Maccheroni, Marinacci, and Pirazzini (2020) give a partial

axiomatization of DDM with a constant boundary. Fudenberg, Newey, Strack,

and Strzalecki (2020) give necessary and sufficient conditions for an arbitrary

boundary.

9.8. Dynamic attention

This is a very active area of research and it should be its own chapter, but the

literature is moving faster than I can catch up, so this is just a brief introduc-

tion. We can distinguish three types of problems.

• Pure stopping (choose τ given (M t)):

• Pure attention (choose (M t) given τ)

• Joint optimization (choose both τ and (M t))

9.8.1. Pure stopping. In the pure stopping problem, the agent cannot direct

their attention. But they can decide how much overall information to get.

Notice that by choosing τ we are facto choosing a distribution over posteriors

µ. Morris and Strack (2019) show that with a diffusion signal and binary state

space any µ can be obtained by an appropriate choice of τ . They define the

induced cost of µ to be E
∫ τ

0
c(qt)dt, where qt is agent’s posterior and c(qt) is

the (potentially posterior-dependent) flow cost of waiting. This induced cost

function is prior-dependent because it depends on the expectation of τ under

the prior. Morris and Strack (2019) show that the induced cost function is

posterior separable and moreover all PS cost functions can be written this

way.89 An interesting special case is posterior-independent flow cost, which

leads to a special case of total information cost. Another special case is mutual

89With more than two states not all µ are achievable, but the cost for any τ is still PS. Hébert and
Woodford (2017) show a similar reduction to a static separable problem in the joint optimization
problem.
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information, which corresponds to the case where the flow cost is posterior-

dependent and equals the variance of the posterior.

9.8.2. Pure attention. Woodford (2014) solves an optimal attention prob-

lem (with a constant boundary and the mutual information cost, or more pre-

cisely constraint) and shows that optimal behavior leads to decreasing accuracy.

Steiner, Stewart, and Matějka (2017) study optimal attention with mutual in-

formation and evolving state. They apply their general solution to the study

of time-varying accuracy. Miao and Xing (2023) generalize these results to

uniformly posterior-separable cost functions.

9.8.3. Joint optimization. Fudenberg, Strack, and Strzalecki (2018) study

joint optimization with Normal signals and show that it is always optimal to

pay equal attention to alternatives (or switch between them infinitely often),

under a parametric assumption on the tradeoff between the informativeness

of each signal. Liang, Mu, and Syrgkanis (2022) generalize this by allowing

the prior to have an arbitrary covariance matrix. Liang and Mu (2020) find

conditions under which the dynamically optimal strategy is close to the myopic

strategy. Ke and Villas-Boas (2016) study joint optimization with two states

per alternative.

Che and Mierendorff (2019) study the joint optimization problem with

two states by restricting the class of signals to be Poisson. They find that

coexistence of two strategies is optimal: a contradictory strategy that seeks to

challenge the prior and a confirmatory strategy that seeks to confirm the prior.

Zhong (2022) shows that Poisson signals are optimal under discounting.
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10.1. Attributes

So far, our alternatives were some abstract items x ∈ X. In discrete choice

theory the alternatives are described by their attributes. We already saw some-

thing like that. In the weight perception task (Example 1.5) each item was

identified with its weight (one-dimensional attribute). In Chapter 4, a lottery

was a vector of probabilities of each prize (a vector of attributes).

In general, for each alternative x let ξx be a vector of its attributes. These

are also called characteristics or hedonics, see, e.g., Griliches (1961); Lancaster

(1966). Sometimes ξ can be controlled by the researcher (in a lab experiment),

but sometimes it cannot (market prices are endogenous).

A version of ARU is typically assumed where Ũ(x) = v(ξx)+ ϵ̃x. The TIEV

parameterization is the conditional logit McFadden (1973).

The literature typically assumes that the menu is fixed and equal to X and

focuses on attribute-variation.90

The primitive is a stochastic choice function that maps the profile of at-

tributes of all items to their choice probabilities. Formally, let ξ := (ξx)x∈X be

the profile of characteristics of all the items. Let E be the space of attributes;

assume that E ⊆ Rn for some n. Let EX be the set of all attribute profiles of

members of X.

Definition 10.1. A s.c.f. with attributes is a function ρ : EX → ∆(X). We

will write ρ(x, ξ) to mean the probability of choosing x when the vector of

atributes is ξ.

For example, in applications to consumer demand the analyst observes a

number of markets. In each market k she records the attributes of all goods

(ξk) ∈ EX and the market shares sk ∈ ∆(X). We assume here that each

market is large enough so that sk = ρ(·, ξk) for all k. By observing enough

markets with different ξk, we can trace out the function ρ pretty well. If price

is one of the attributes, then we can study price elasticities and substitution

patterns between various goods. In demand applications it is quite important

to explicitly include an outside good. This makes it possible to model market

size and it makes price elasticities more realistic (Berry, 1994).

Though there is no explicit menu variation in this model, if an attribute of

x changes, this in fact does change the menu because now the new “version”

of x is included and the old one is absent. For this reason, any s.c.f. with

attributes can be represented by our usual s.c.f. with menu variation defined

on a restricted set of menus with a fixed size.

Because of this close association, I denote those two by the same letter

ρ. However, I will keep distinguishing them as functions, ρ : A → ∆(X) and

90There are some exceptions, such as Hausman and McFadden (1984) and Buchholz, Doval, Kastl,
Matějka, and Salz (2020).
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ρ : EX → ∆(X), because the two have a different mathematical structure and

different results have been proved about them.

Sometimes an additional assumption is made that all relevant information

about alternatives is encoded in their characteristics, so x are just labels that

do not affect choice (Manski, 1977; McFadden, 1981).91 Taken literally this is

very restrictive. For example, consumers can prefer brand x over generic brand

y even if they have identical physical attributes ξx = ξy. This problem goes

away if we include brands as characteristics.

A different, but related model in consumer theory allows agents to con-

tinuously choose the quantities of each good. This is the classical setting of

GARP (Afriat, 1967). The analyst observes the population frequency of each

chosen consumption bundle. McFadden (2005) shows how to transform this

continuous problem to a discrete RU problem.92

10.2. Independent Additive Random Utility

10.2.1. IARU. In this model the utility of item x depends on the vector

ξx ∈ E of observable attributes of x, but not on attributes of other items.

(Utility can potentially also depend on the attributes of the consumer, but we

will abstract from that here).

Definition 10.2. Let X be a finite set. ρ : EX → ∆(X) is represented by

Independent Additive Random Utility (IARU) if

ρ(x, ξ) = P
({

ω ∈ Ω : Ũ(x, ξx)(ω) = max
y∈X

Ũ(y, ξy)(ω)
})

,

where the agent’s random utility equals

Ũ(x, ξx) = vx(ξx) + ϵ̃(x),

where for each x ∈ X the utility function vx : E → R is deterministic and ϵ̃ is

a random vector independent of ξ with a smooth distribution.

Here ϵ̃(x) does not have to be independent across x ∈ X, but the vector ϵ̃

is assumed to be independent of ξ. The independence of ϵ and ξ is the analog

of the independence assumption from the model with menu variation, where ϵ

was independent of the menu (Sections 1.5.1 and 1.7).93

In applications independence often fails. For example, firms endogenously

adjust prices in response to demand shocks, which are driven by utility shocks of

consumers, which makes prices correlated with ϵ. We will discuss endogeneity

91Formally, for any permutation π of X and any ξ define ξπ by ξπx := ξπ(x). McFadden’s (1981)

assumption PC5.2 says that ρ(x, ξ) = ρ(π(x), ξπ).
92Kitamura and Stoye (2018) take this insight further and construct a test of this model. Smeul-
ders, Cherchye, and Rock (2021) show that implementing this test is NP-hard.
93Notice that while with menu-variation the independence assumption can be expressed both
for RU and ARU, with attribute-variation this notion only makes sense for ARU. In RU, the
distribution of utilities must depend on ξ, otherwise ρ will be constant in ξ.
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in Section 10.7; for now we will assume that the econometrician has solved this

problem for us and handed us the ρ that satisfies independence.

10.2.2. Simple IARU. In applications, the distribution of ϵ is often fixed

and not estimated. The econometrician focuses on estimating the functions

v. This is done as follows: for each possible v we can compute the choice

probabilities ρ. We then check how far those are from the observed data and

choose another v that gets us closer (iterate till we converge). A key object

here is the mapping between v and ρ, we will write this as ρ(x, v).

Definition 10.3. ρ : RX → ∆(X) has a simple IARU representation if there

exists a random variable ϵ̃ with values in RX distributed smoothly and inde-

pendently of v, such that

ρ(x, v) = P
(
v(x) + ϵ̃(x) = max

y∈X
v(y) + ϵ̃(y)

)
.

Simple IARU can be thought of as a special case of IARU, where the

utilities are “magically” observed by the analyst, but in reality it’s more of an

intermediate object of analysis. A situation where the analyst gets close to

observing v occurs when utility is quasilinear in prices.94

10.2.3. Conditional Logit. With attributes, the logit model (Section 3.1) is

called conditional logit (McFadden, 1973). This means that ϵ̃x are i.i.d. TIEV

and v is a linear function given by the inner product

vx(ξ) = ⟨β, ξx⟩

for some vector of parameters β, to be estimated. To capture fixed effects, we

add the intercept

vx(ξ) = β0
x +

n∑
i=1

βiξix.

We will still write this as the inner product ⟨·, ·⟩ with an extra entry equal 1

added to ξ.

A curiosity: the early literature (McFadden, 1975; Train, 1986) discussed

something called the mother logit. Here, we have Ũ(x, ξ) = vx(ξ) + ϵ̃x, where

the function vx can depend on the characteristics of not only good x but also

other goods. It is easy to see any s.c.f. with attributes that satisfies Positivity

has a mother-logit representation.

94For example, see Koning and Ridder (2003). Such models are a special case of IARU where
E = R and v(x, ξ) = w(x)− ξx for some deterministic function w, where ξx is the price of good x.
More genrally, E could also include observable attributes other than price. Interestingly, despite
its seeming generality, such a model cannot generate a linear demand schedule (Jaffe and Weyl,
2010).
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10.3. Identification

If ρ ∼ IARU , then the utility function v and the distribution of ϵ are identified

up to a normalization, provided that there is enough variation in attributes,

see Theorems 2, 3, and 4 of Matzkin (1993) (see also Manski, 1988; Matzkin,

1992; Khan, Ouyang, and Tamer, 2021). Theorem 1 of Matzkin (1993) relaxes

the assumption that ϵ is independent of ξ, but imposes the assumption that

conditional on ξ it is i.i.d. across members of X. For a review of this area see

Matzkin (2013).

There are also results on partial identification using moment inequalities.

Here it is assumed that the analyst has at her disposal a parametric function

that approximates v, or some additively separable component of v, such as

transportation cost, (Pakes, 2010; Pakes, Porter, Ho, and Ishii, 2015).

For simple IARU, point identification means that the mapping ρ : RX →
∆(X) is invertible (upon normalizing the utility of one item). Such inver-

sion plays an important role in dynamic models (Hotz and Miller, 1993) and

when correcting for endogeneity (Berry, 1994; Berry, Levinsohn, and Pakes,

1995). See also Chiong, Galichon, and Shum (2016) and Soerensen and Fos-

gerau (2020).

10.4. The WDZ Lemma

The Williams–Daly–Zachary (WDZ) Lemma says that in the simple IARU

model the choice probability ρ is the gradient of the social surplus function

(Williams, 1977; Daly and Zachary, 1979; McFadden, 1981). The WDZ lemma

allows us to compute welfare by integrating the choice probabilities (if we can

observe a sufficiently rich variation in v). Formally, the social surplus is

V (v) := E[max
x∈X

v(x) + ϵ̃(x)].

Lemma 10.4 (WDZ). Suppose that X is finite. If ρ ∼ simple IARU and ϵ̃

has finite first moments, then:

(i) For any v ∈ RX the associated social surplus V (v) is finite

(ii) The function V : RX → R is differentiable and convex

(iii) ρ = ∇V.

Equation (iii) can be directly verified in case of logit. By the log-sum

expression (3.2) we have V (v) = log
∑

x∈X ev(x), so taking the partial derivative

of V with respect to the utility of good y we get ∂V (v)
∂v(y) = ev(y)∑

x∈X ev(x) = ρ(x; v).

For a formal proof, see Shi, Shum, and Song (2018). Intuitively, part (iii)

is the envelope theorem. Its analog in production theory is Hotelling’s (1932)

lemma, which says that the quantity produced equals the derivative of the

profit function. The analog in classical demand theory is Roy’s (1947) identity.
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10.5. The WDZ Theorem

The WDZ theorem is basically an axiomatization of simple IARU.

10.5.1. The Theorem. For the purpose of this section let ∂ρx

∂vy
(v) denote the

derivative of ρ(x, v) with respect to the y-th coordinate of v (computed at v).

For any v and k ∈ R the function v + k assigns utility v(x) + k to item x.

Theorem 10.5 (WDZ). Suppose that ρ : RX → ∆(X) is |X|-times continu-

ously differentiable. Then ρ ∼ simple IARU iff it satisfies:

(i) translation invariance: ρ(v) = ρ(v + k) for all v ∈ RX , k ∈ R
(ii) zero limit demand: lim

vx→−∞
ρ(x, v) = 0 for all v−x ∈ RX\{x}

(iii) symmetric partials:

∂ρx
∂vy

(v) =
∂ρy
∂vx

(v) for all v ∈ Rn and x ̸= y

(iv) gross substitutes:

∂ρx
∂vy

(v) < 0 for x ̸= y and all v ∈ RX

(v) alternating signs of partials:

(−1)k
∂kρx0

∂vx1
· · · ∂vxk

(v) > 0

for all v ∈ RX and for each k = 2, . . . , |X| − 1 and each set of k + 1

distinct elements {x0, . . . , xk} ⊂ X.

For more about this theorem, see Appendix A.10.1.

10.5.2. Intuition Behind These Conditions.

Translation invariance means that shifting all utilities by a constant does

not change the choice. This is because what matters are utility differences, not

absolute levels.

Zero limit demand says that by sufficiently lowering the utility of x we

can reduce demand for x as much as we want (holding the utilities of y ̸= x

constant). This is because the distribution of ϵ̃ is fixed so for x to be chosen

ϵ̃x must clear a higher and higher bar, and the probability of such a tail event

goes to zero.

Symmetric partials is similar to the symmetry of the Slutsky matrix in the

classical demand theory.95 It is equivalent to ρ = ∇V for some differentiable

function V .

Gross substitutes means that demand for good x decreases if the utility of

good y ̸= x increases.

95See a discussion in McFadden (1981) in whose model the agent is also consuming some perfectly
divisible commodities and has a Gorman-style utility, which guarantees that the indirect utility is
quasilinear in prices.
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Alternating signs is a stronger version of gross substitutes, similar to the

exclusion-inclusion formula in Axiom 2.8.

10.5.3. Relationship Between These Conditions. Symmetric partials to-

gether with gross substitutes imply that the Jacobian of ρ is symmetric and

positive semi-definite, see Hofbauer and Sandholm (2002).

We have symmetric partials and positive semi-definiteness if and only if ρ

is the gradient of a convex function.96

As we know from the WDZ Lemma, that function, will turn out to be the

social surplus function.97

Another way to capture both symmetric partials and positive semi-definiteness

is cyclic monotonicity, see Theorem A.10.1 in the Appendix.

Definition 10.6. ρ satisfies cyclic monotonicity (cm) if for any k and any

sequence of values v1, . . . , vk ∈ RX where vk+1 = v1
k∑

i=1

⟨ρ(vi), vi − vi+1⟩ ≥ 0.

Note that (cm) is discrete in nature and thus it may be easier to test on a

finite data set, as it does not rely on small variations in v.

Related conditions were used to axiomatize the GEV model (Smith, 1984).

In Section 10.8 we’ll see that perturbed utility satisfies (i), (ii), (iii), and positive

definiteness, but not the stronger conditions (iv) and (v).

10.5.4. Tests of These Conditions. Of course we can’t test these conditions

directly, as we do not observe v. However, if utility is quasilinear in prices, then

prices play the same role as utilities and the conditions below can be tested.98

In precisely such setting Koning and Ridder (2003) test gross substitutes,

Shi, Shum, and Song (2018) test cyclic monotoncity, and Abaluck and Adams-

Prassl (2021) test translation invariance and symmetric partials.

In economic applications prices are often correlated with unobserved taste

shocks, so care needs to be taken when directly testing conditions (i)-(v) and

(cm), as they rely on independence.

10.6. Patterns of Substitution

Suppose that we are in a market setting where each good x has a price px. Let

p be the vector (px)x∈X . There may be other attributes but for simplicity we

96This follows from Theorem 10.9 of Apostol (1969) and Theorem 35 of Fenchel (1953).
97Actually, the WDZ Lemma assumes finite moments of ϵ̃ but this assumption does not auto-
matically follow from Theorem 10.5. While this assumption was w.l.o.g. with menu-variation, it
is not with attribute-variation. In this case, if moments are infinite, ρ is a gradient of another
function, which is defined even in that case. For more on the issue of finite moments, see Fosgerau,
McFadden, and Bierlaire (2013).
98Since in the quasilinear model prices enter with a negative sign, the signs in conditions (ii), (iv),

and (v) need to be adapted; in particular the term (−1)k drops from condition (v).
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will abstract from them. Suppose that utility is quasilinear in prices so that

v(x, px) = w(x)−px, where w ∈ RX is a fixed and deterministic utility function

and px is the price of good x. We know from the WDZ theorem (Theorem 10.5)

that goods are gross substitutes: if the price of good x increases, the demand

for all other y ̸= x goes up (and the demand for x decreases).

A particularly stark example is the logit model, which has proportional

substitution: for any x ̸= z

∂ρx
∂pz

= ρ(x, p)ρ(z, p)

This is a very strong prediction, which is obviously counterfactual. For

example, a full-size car x and a mid-size car y, must have the same elasticity

with respect to the price of a compact car z. This inflexibility of the model is

another manifestation of the blue bus-red bus problem (Example 3.11). This is

not a consequence of the TIEV assumption but rather of the i.i.d. assumption.

Proposition 10.7. If ρ ∼ IARU with quasilinear prices like above and i.i.d. ϵ̃,

then ρ(x, p) = ρ(y, p) implies that x and y have the same elasticity with respect

to the price of a third good z.

Proof. See Appendix A.10.2 □

As Berry and Haile (2021) stress, “this is a bug, not a feature.” The con-

clusion can be escaped by relaxing the i.i.d. assumption and introducing some

correlation into ϵ. This can be done directly, by estimating the covariance

matrix of ϵ̃, which can be hard when there are many alternatives. Nested mod-

els, as in Section 3.4, are another route. Yet another route are mixed models,

which we will discuss next. They are more tractable and intuitive because they

can be interpreted as heterogenous tastes for product characteristics and they

generate more intuitive substitution patterns.

10.6.1. Random Coefficient Models. Under logit, we have

Ũ(x, ξ) = ⟨β, ξx⟩+ ϵ̃x,

where the coefficients β are deterministic (Section 10.2.3).

In random coefficients models the coefficients β are random to reflect the

heterogeneity of unobserved individual characteristics.

Ũ(x, ξ) = ⟨β̃, ξx⟩+ ϵ̃x

You can think of this as a special case of mixed logit (Section 3.3), where the

randomization over the coefficients implements a mixture over linear utility

functions v. Here the preference heterogeneity is explicitly modeled by the

mixing distribution and the shocks ϵ̃ are i.i.d. Early papers include Daly and

Zachary (1975); Boyd and Mellman (1980); Cardell and Dunbar (1980). Fox,

il Kim, Ryan, and Bajari (2012) show that the distribution over β̃ is identified

nonparametrically. Fox, Kim, Ryan, and Bajari (2011) and Fox, il Kim, and
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Yang (2016) develop finite-mixture estimators (such estimators are nonpara-

metric and often rely on tuning parameters that can be sometimes hard to

select in practice). There is also mixed polynomial logit.

Definition 10.8. ρ has a mixed polynomial logit representation if it has a

mixed logit representation where all functions v are polynomials of ξ.

Saito (2018) offers an axiomatization of mixed polynomial logits, where the

polynomials are of degree at most d.

McFadden and Train (2000) show that if E is a compact set, then any ρ

with a RU representation is a limit of ρ’s with mixed polynomial logit repre-

sentation. The additional difficulty here (as compared with Proposition 3.15)

is approximating the v function by polynomials. Under the assumption that

E is finite, Chang, Narita, and Saito (2022) show that the convergence result

of McFadden and Train (2000) may not hold if we insist that there exists a

uniform bound on the order of all the polynomials.

Random coefficient models were also studied for mixed probit (Hausman

and Wise, 1978). Brownstone and Train (1998) only add random intercepts

(the multiplicative coefficients are deterministic). When the mixture over the

intercepts is normal, this mixed probit is simply a probit.

10.6.2. Pure Characteristics and Address Models. Berry and Pakes

(2007) consider a pure characteristics model which is a mixture over deter-

ministic utility functions. (You can also think of this as a limit of mixed

polynomial logit representations with the noise parameter going to zero). For

example, random expected utility from Chapter 4 is a pure characteristics

model. Pure characteristics is explicitly a RU representation (a randomization

over utility functions). In contrast, random coefficients is only implicitly RU (a

randomization over logits, each being itself a randomization over utility func-

tions). Broadly speaking, random coefficients and pure characteristics models

are similar, the key difference being that in former there is positive demand for

dominated products. A formal connection was drawn by Lu and Saito (2022).

Hotelling (1929) assumed that each agent has a deterministic utility with

a blisspoint. The address models, which generalize the idea of a blisspoint, are

reviewed in Chapter 4 of Anderson, de Palma, and Thisse (1992).

10.6.3. Complementarities? While random coefficients models can help us

avoid some unrealistic patterns of substitution, all goods are still gross substi-

tutes. This is basically because those models can be written as IARU that are

quasilinear in prices. Here v function is deterministic (the average of the mixing

distribution) and all the preference heterogeneity is hidden in the distribution

of ϵ̃. By condition (iv) of the WDZ theorem, the derivative of demand for good

x with respect to the price of good y is negative. Are there models where goods

are complements? The following simple example, due to Nicola Rossaia, shows

that models of attention (like in Chapter 6) can have this property.
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Example 10.9 (Attention creates complementarities). Suppose there are three

goods X = {x1, x2, x3}, and two states S = {s1, s2}. The utility of good xi in

state sj equals v(xi, sj)− pi, where pi is the price of good i. The function v is

defined in Table 10.1.

Table 10.1. Payoffs in Example 10.9

v(x, s1) v(x, s2)

x1 4 0

x2 0 4

x3 3 3

The agent can pay a cost 1
2 of observing the true state (or remain with their

uniform prior at no cost). Suppose that initially the price of all three goods

is zero. The agent chooses to learn the state and the observed (unconditional)

choice probabilities are ( 12 ,
1
2 , 0). Suppose that the price of good x2 increases by

one. The agent now chooses not to observe the state and the choice probabilities

are (0, 0, 1), so demand for good 1 went down as price of good 2 went up. The

same conclusion obtains when demand is observed conditional on the state:

when prices are (0, 0, 0) demand in state s1 is (1, 0, 0) and when prices are

(0, 1, 0), demand in state s1 is (0, 0, 1).99 △

10.7. Dealing with Endogeneity*

So far, we have been maintaining the assumption that the distribution over

preference shocks is independent of the attribute ξ. However, this assumption

is often violated. A common example is when there are demand shocks that

influence the equilibrium prices.

Suppose that the analyst observes K independent markets.100 In each

market k we observe a vector of prices pk and non-price attributes ξk. Let η̃kx
be the (unobservable to the analyst) demand shifter. The random utility equals

Ũ(x, px, ξx) = ⟨β, ξx⟩ − px + η̃x + γ̃x, where the realization of η̃x is constant

within each market but i.i.d. across markets whereas γ̃x are i.i.d. within and

across markets, independent of (ξ̃, p̃, η̃) and distributed TIEV.

It is useful to write the random utility as Ũ(x, px, ξx) = δ̃x + γ̃x, where

δ̃x = ⟨β, ξx⟩ − px + η̃x. (10.1)

99The cost of attention in this example takes a very specific form. Fosgerau, Melo, De Palma, and
Shum (2020) study a general class of Bregman divergences and show that they lead to behavior
equivalent to a form of RU.
100The independence assumption is often relaxed, see, e.g., the discussion on pp. 617–618 of Berry,
Linton, and Pakes (2004).
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Each market is large enough so that the observed market share of good x

equals the theoretical choice probability, i.e.,

skx(p
k) =

eδ̃
k
x∑

y∈A eδ̃
k
y

.

Given the invertibility of logit, the analyst can recover δk from sk up to a

normalization. Let 0 ∈ X be the outside good and set δk0 := 0 and

δkx := log skx − log sk0 . (10.2)

In principle, this could work for any invertible model (see Section 10.3).

To see what can go wrong with the naive approach, suppose that whenever

there is a positive demand shock, firms can capture all the benefits from it

by increasing prices, so that pkx = π̃k
x + η̃kx, where π̃k

x is unobservable to the

analyst and independent of everything else. Equation (10.1) then implies that

δkx = ⟨β, ξkx⟩ − π̃k
x. So an analyst who naively regresses market shares on prices

will “estimate” a zero own-price elasticity.

To do inference correctly, we need to use instrumental variables. Suppose

that we have an independent source of variation in prices, for example shocks

to firm’s costs. We will say that z is an instrumental variable if:

• z is correlated with p (instrument relevance)

• E[η̃|z] = 0 (instrument validity).

Because of the same inversion argument, the analyst can deduce δk from

market shares sk, so for any choice of β she can impute a value of ηk using

equations (10.2) and (10.1). The optimal value of β̂ minimizes the sample

correlation between imputed ηk and observed zk (as k varies over the markets).

The IV approach can also be combined with other models. Berry (1994)

discusses nested logit (recall Section 3.4) and vertical differentiation models.

Berry, Levinsohn, and Pakes (1995) combine it with random coefficients (Sec-

tion 10.6.1). Here

δ̃x = ⟨β̃, ξx⟩ − α̃px + η̃x, (10.3)

so that the coefficients α̃ and β̃ are random (vary within each market) and inde-

pendent of (η̃, ξ̃, p̃). There is a large literature on estimation of BLP, with many

applications to various settings.101 The IV approach can also be combined with

the pure characteristics model (Berry and Pakes, 2007).

10.8. Perturbed Utility*

Recall perturbed utility from Section 3.8. Now, instead of menu-variation,

we will consider attribute-variation. This version of PU was used in game

theory by: Hofbauer and Sandholm 2002, Mattsson and Weibull (2002), and

101See, e.g., Nevo (2000), Ackerberg, Benkard, Berry, and Pakes (2007), and Shum (2016). For
identification results, Berry and Haile (2009, 2014). See also Berry and Haile (2021) for a review.



10.8. Perturbed Utility* 155

van Damme and Weibull (2002). This class can be characterized by a weak-

ening of the WDZ conditions (Theorem 10.5): dropping alternating signs and

weakening gross substitutes to positive definiteness. Thus, this is a weaker

model than simple ARU, but still has quite a bit of bite. (Recall that with

menu-variation the general form of PU had no bite.)

Definition 10.10. We say that ρ ∼ simple PU if ρ(·, v) solves

max
p∈int∆(X)

∑
x∈X

v(x)p(x)− c(p)

where c : int (∆(X)) → R is such that at each point the Jacobian of c is positive

definite on {v ∈ Rn :
∑

x v(x) = 0} and the norm of its gradient approaches

infinity near the boundary of ∆(X).

Theorem 10.11 (Hofbauer and Sandholm 2002). Suppose that ρ : RX →
∆(X) is continuously differentiable. ρ ∼ simple PU if and only if it satis-

fies translation invariance, zero limit demand, symmetric partials, and positive

definiteness.

A recent study of identification of PU with attributes is Allen and Rehbeck

(2019). In their model each individual solves

max
p∈∆(X)

∑
x∈X

p(x)vx(ξx)− c(p, ϵ),

where ξx are observed attributes of good x and ϵ is unobservable heterogeneity.

This is observationally equivalent to

max
p∈∆(X)

∑
x∈X

p(x)vx(ξx)− c̄(p),

which enables them to prove a generalization of the WDZ lemma from which

they are able to identify utility indices, changes in average indirect utility, and

obtain bounds for counterfactuals.
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11.1. Introduction

So far, the agent was considering all the items on the menu. In this very short

chapter the agent will pay attention only to a subset of the menu, called the

consideration set. Here “attention” is exogenous to the agent—it is perhaps

determined by advertising.102 Another interpretation is random product avail-

ability (unobservable to the analyst).

The consideration set is randomly drawn from some distribution. This

distribution can depend on the menu offered and/or on attributes ξ, such as

prices, branding, advertising, etc. We will start with the menu-variation lit-

erature and talk about attribute-variation later in this chapter. Technically,

we could have discussed menu-variation already in Chapter 3, but I wanted to

present it side by side with attribute-variation (even though the two literatures

don’t talk to each other as much as they might want to).103

11.2. Models with Menu Variation

Typically, in this literature one selected item is the status quo or the outside

option. Choosing this item, denoted o ∈ X, means falling back on the status

quo: not making a choice at all and sticking with the default. Here Ao is the

collection of all menus that contain the staus quo.

Definition 11.1 (Random Consideration Set). A random consideration set is

a probability space (Ω,F ,P) and a random mapping Γ̃ : Ω × Ao → Ao such

that P(Γ̃(A) ⊆ A) = 1 for all A ∈ Ao. We will define its distribution by

mA(C) := P(Γ̃(A) = C).

This definition assumes that o is always considered; Horan (2019) explores

models of choice with default when the no-choice behavior is unobservable. For

each possible realization of the consideration set Γ̃(A), the agent maximizes a

random utility function Ũ on the set Γ̃(A).

Definition 11.2 (Random Consideration). ρ ∼ RC if there exists a random

consideration set Γ̃ and a random utility function Ũ such that

ρ(x,A) = P

(
x ∈ Γ̃(A) and Ũ(x) = max

y∈Γ̃(A)
Ũ(y)

)
.

As recognized by Manski (1977), this model does not have any bite be-

cause all the randomness in choice can be attributed to the randomness of the

consideration set. Unless we impose more assumptions, it will be impossible

to separately identify the variation in utility and consideration. For simplicity

102In Chapter 6, “attention” was a margin of choice: the agent paid attention only if it made sense
to do it given the cost. A recent paper of Caplin, Dean, and Leahy (2019) builds a link between
these two approaches.
103A third literature exists where the consideration set is a deterministic function of the menu, see
e.g., Hauser and Wernerfelt (1990), Masatlioglu, Nakajima, and Ozbay (2012), Bordalo, Gennaioli,
and Shleifer (2013) and citations therein.
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many decision-theoretic models assume that utility is deterministic and focus

the analysis entirely on Γ̃.

Various assumptions about Γ̃ are being made. Manzini and Mariotti (2014)

assumed that items belong to Γ̃ independently of each other: each x ∈ A

belongs to Γ̃(A) with probability γx, independently over x.

Definition 11.3 (Independent Random Consideration). ρ ∼ IRC if ρ ∼ RC

with

mA(C) =
∏
x∈C

γx
∏

x∈A\C

(1− γx)

for each C ∈ Ao such that C ⊆ A, where the numbers (γx)x∈X are all between

zero and one and independent of the menu A and γo = 1.

In particular, under IRC the probability that the consideration set consists

just of the default option equals
∏

x∈A\{o}(1− γx).

The independence assumption seems strong. In particular, it rules out the

following simple example.

Example 11.4 (Sleeping Agent). The agent is in one of two states (asleep, or

awake). When asleep, they only pay attention to o. When awake, they consider

the whole menu A. The probability α that the agent wakes up is independent

of the menu. △

The above example is a special case of a more general model of Aguiar

(2017), where a set B̃ ∈ Ao of options gets generated at random and the

consideration set equals the intersection of B̃ with the menu. In the above

example B̃ = X with probability α and B̃ = {o} with probability 1− α.

Definition 11.5. (Constant Random Consideration) ρ ∼ CRC if ρ ∼ RC

with Γ̃(A) = B̃ ∩A for some random menu B̃ : Ω → Ao.

Proposition 11.6. Any ρ with a IRC representation has a CRC representa-

tion. Any ρ with a CRC representation has a RU representation.

Another way to relax IRC was proposed by Brady and Rehbeck (2016).

Here, the distribution of Γ̃ is defined by a Luce-type formula over the collection

of menus.

Definition 11.7 (Luce-Random Consideration). ρ has an LRC representation

if it has a RC representation with

mA(C) =
αC∑

C′⊆A αC′

for each set C ∈ Ao and the numbers (αC)C∈Ao are positive and independent

of the menu A.

Kovach and Suleymanov (2021) show that a given representation Γ̃ is of the

IRC variety if and only if it is at the same time CRC and LRC representation.
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It can be further shown that this propagates to the level of primitives: ρ ∼ IRC

if it has a ρ ∼ CRC and ρ ∼ LRC (Suleymanov, 2023).

Proposition 11.8. A ρ satisfies Definition 11.3 if and only if it satisfies Def-

initions 11.5 and 11.7.

IRC, CRC, and LRC have been axiomatized respectively by Manzini and

Mariotti (2014), Aguiar (2017), and Brady and Rehbeck (2016). Here is the

uniqueness result.

Proposition 11.9. Suppose ρ ∼ RC with a deterministic utility function that

ranks o last.

(i) If ρ has a IRC representation, then the utility function is ordinally unique

and the set of probabilities (γx)x∈X is unique.

(ii) If ρ has a CRC representation, then the utility function is ordinally unique

and the distribution of C̃ is unique

(iii) If ρ has a LRC representation, then the utility function is ordinally unique

and the distribution α is unique.

The assumption that ρ is defined on all menus Ao can be somewhat relaxed.

In part (i) the domain of ρ needs to contain sets of the form {x, y, z, o} and be

closed under set-inclusion, In part (iii) the domain of ρ needs to contain sets

of the form {x, y, o} and be closed under set-inclusion.

Remark 11.10. Uniqueness obtains only within these classes. Since IRC and

CRC also have RU representations, all the choice variation could be attributed

to taste variation. Thus, a ρ can have a RC representation with some determin-

istic utility function v and at the same time a RU representation with a random

utility Ũ . In this situation, the analyst is not in the position of deciding which

representation is the “true” one, unless she makes some assumptions about

unobservables, for example insists that there is absolutely no taste variation.

We will see that this is different with attribute-variation. △

Cattaneo, Ma, Masatlioglu, and Suleymanov (2020) further relax the prop-

erties of Γ̃, while keeping the assumption that preferences are deterministic

(They drop the status quo from the domain.) The only restriction they impose

on attention is a form of regularity.

Definition 11.11 (Monotone-Random Consideration). ρ ∼ MRC if ρ ∼ RC

with Γ̃ such that for any C ⊆ A and x ∈ A \ C we have

mA(C) ≤ mA\{x}(C).

This assumption is satisfied by the IRC, CRC, and LRC models and many

other examples discussed by Cattaneo, Ma, Masatlioglu, and Suleymanov (2020).

This class of representations provides further insight into the issue of identi-

fication. The paper defines revealed preference by a violation of regularity:
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x ≻∗ y if adding y to a menu causes x to be chosen strictly more often from

that menu. They show that in the MRC class x ≻∗ y if and only if for all

monotone representations the utility of x is above y. Moreover, they show that

the MRC class is characterized by acyclicity of ≻∗.

All the papers above assume that utility is deterministic, which leaves no

room for preference heterogeneity. Aguiar, Boccardi, Kashaev, and Kim (2023)

and Kashaev and Aguiar (2021) relax the deterministic utility assumption and

study uniqueness properties of various subclasses of MRC. They also construct

statistical tests and design an experiment to tell various classes apart. Gibbard

(2021) also studies uniqueness in the model where both utility and consideration

are random.

11.3. Models with Attribute Variation

In the applied literature the menu is fixed to be X and instead what varies

are the attributes of each alternative like in Chapter 10. Let E be the set of

possible attribute profiles which determine the random consideration set and

the random utility function.

Definition 11.12. ρ ∼ RCwithattributes if there exists a random considera-

tion set Γ̃ : Ω × E → Mo and a random utility function Ũ : Ω → RX×E , such

that

ρ(x, ξ) = P

(
Ũ(x, ξ) = max

y∈Γ̃(ξ)
Ũ(y, ξ)

)

Like with menu-variation, the general model has no bite, so various re-

strictions have been studied. For an overview of this literature see Crawford,

Griffith, and Iaria (2021).

Historically, the first special case is nested logit (Section 3.4). Here the

nest is randomly drawn according to Luce probabilities and then choice from

each nest is also Luce. Intuitively, this involves two assumptions: 1) the con-

sideration sets form a partition of X, 2) the probabilities of drawing different

consideration sets and the probabilities of choosing from those consideration

sets are driven by the same underlying function v. A number of models have

been proposed that relax the first assumption but keep the second one: Swait

(2001), Wen and Koppelman (2001) and Cascetta and Papola (2001), Cantillo

and de Dios Ortúzar (2005), and Calastri, Hess, Choudhury, Daly, and Gabrielli

(2019).

Other models relax both assumptions. A version of independent ran-

dom consideration (IRC) with attributes was studied by Swait and Ben-Akiva

(1987); Ben-Akiva and Boccara (1995); Goeree (2008); Van Nierop, Bronnen-

berg, Paap, Wedel, and Franses (2010). Here γx(ξx) is a function only of the

characteristics of item x but not the other items. For example, in Goeree (2008)

γ can depend on the level of advertising.
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A version of the “sleeping agent” model (Example 11.4) was studied by Ho,

Hogan, and Scott Morton (2017); Hortaçsu, Madanizadeh, and Puller (2017);

Heiss, McFadden, Winter, Wuppermann, and Zhou (2016). Here the probabil-

ity of waking up is a function only of the characteristics of the status quo (but

not the other items).

Abaluck and Adams-Prassl (2021) study identification properties of a hy-

brid of those two models, under the assumption that utility is quasilinear in

prices. While the standard IARU model (Definition 10.2) satisfies the symme-

try of the partials condition (Theorem 10.5), they show that nontrivial attention

leads to asymmetric partials. In fact, they show that attention can be identified

from those asymmetries. Their paper contains an interesting proof-of-concept

experiment. Imagine that for each menu A the analyst randomly draws a set

C ⊆ A with probability mA(C) and makes sure that the agent considers all of

these items before making a choice according to ρ (none of the items in A \ C
are shown to the agent). If we now average over all C, the recorded stochastic

choices will be

ρ∗(x,A) =
∑
C⊆A

ρ(x,C)mA(C).

Abaluck and Adams-Prassl (2021) run such an experiment and confirm that

when ρ∗ is fed to the model the correct set of weights mA is estimated.

Barseghyan, Molinari, and Thirkettle (2021) and Barseghyan, Coughlin,

Molinari, and Teitelbaum (2021) study nonparametric restrictions on the con-

sideration set distribution. They allow for arbitrary correlation between con-

sideration sets and preferences and only restrict the cardinality of the consid-

eration set from below. In general, their approach is computationally challeng-

ing because of the presence of an infinitely dimensional nuisance parameter

mX(·|ξ).

11.4. Other “behavioral” models

Kovach and Tserenjigmid (2022b) study a model where items in the consider-

ation set receive a boost in utility, but items outside of that set can still be

chosen.

Echenique, Saito, and Tserenjigmid (2018) study a model where the agent

processes alternatives in several batches and within each batch chooses using

a modified Luce rule.

Manzini and Mariotti (2018) axiomatize a model where the distribution

over preferences depends directly on the menu without the intermediation of

the consideration set. They assume that µA = αAδu + (1 − αA)δv, where

u, v : X → R are independent of the menu and αA is menu-dependent; see also

Manzini, Mariotti, and Petri (2019).

In Simon (1956) the agent is satisficing : they go through a menu in some

order and stop the first time they hit an item that is “good enough” (see also
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Rubinstein and Salant, 2006). Aguiar, Boccardi, and Dean (2016) study a

model where this order is random and unobservable to the analyst. Here, with

a deterministic preference and threshold, all the choice variability is attributed

to this random order.

Tversky (1972a,b) studies a model of elimination by aspects (EBA).104 In

this model, each alternative is described by binary characteristics (aspects).

The agent randomly picks an aspect and eliminates all items from the menu

that do not posses this aspect. The process continues with a randomly picked

aspect until there is only one item left or all items have the same aspects

and such a tie is broken uniformly. EBA is a special case of RU, but there

are no known axiomatizations of it. Gul, Natenzon, and Pesendorfer (2014)

axiomatize a closely-related attribute rule.

Limited memory is similar to limited consideration (Yegane, 2021). There

is an active literature in behavioral economics (Bordalo, Gennaioli, and Shleifer,

2020) and in psychology (Kahana, 2012).

104Becker, DeGroot, and Marschak (1963) sketched a version of this model where a subset of
aspects can be considered at the same time.
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12.1. Panel Data

In Chapter 7 we studied dynamic choices of a “myopic” agent, whose utility

is given by some stochastic process. That exposition focused on the case with

menu variation. In econometrics, the menu is fixed but there is variation in

the attributes of each good. For completeness, I will now briefly describe this

model. I will use ξxt to denote the vector of attributes and ξt will stand for

stacked vector. Following the static definition (Definition 10.2), we have

Ũt(xt, ξt) = v(xt, ξxt) + ϵ̃t(xt).

Here, the function v is just like in the static model (deterministic, typically

linear or polynomial, with coefficients identical for all agents). The stochastic

process (ϵ̃t) can be either i.i.d. or involve permanent unobservable heterogeneity :

ϵ̃t(x) = α̃(x) + η̃t(x), (12.1)

where α̃ is drawn once for the agent at the beginning of time, and η̃t is i.i.d.

and independent of α. This approach allows for unobserved heterogeneity, but

only in the levels (the coefficients of v are not random).

As discussed in Chapter 7 the econometric problem with panel data is

nontrivial because past choices of the agent may appear as if they influence

future choices, even if in reality they simply carry information about their

unobservable type (which here is α̃).

Estimation and identification are covered in Hsiao (2022). Chamberlain

(1984) showed that if ηt are TIEV i.i.d. over time and alternatives, then the

linear coefficients of v are identified without imposing any restrictions on the

distribution of α̃ conditional on ξ. Manski (1987) relaxed the i.i.d. assumption

to full support and stationarity (i.e., conditional on ξt and α̃ the distribution

of ϵ̃t is the same in each time period, but allowed to be serially correlated). He

showed that inference is possible if there is enough variation in ξ. Chamberlain

(2010) showed that having enough variation in ξ is necessary for inference, and

even under this assumption inference is slow unless we are in the TIEV family.

12.2. Markov Decision Problems

In Chapter 8 we introduced forward-looking agents, who anticipate their future

choices. Their utility satisfies the Bellman equation that ties together Ũt and

Ũt+1. In Section 8.2 we showed that such agents like bigger menus because such

menus give them more option value. There, we used the domain of decision trees

(Section 7.5), which is a dynamic extension of menu variation. The econometric

approach uses Markov Decision Problems, which can be thought of as a dynamic

extension of both menu variation and attribute variation. The model is richer

than the panel data model from Section 12.1 because the action today controls

the future distribution of (ξt, ϵt). Their utility is forward-looking and takes this

possibility into account.
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This model was introduced by Rust (1994); for exposition see Aguirre-

gabiria and Mira (2010) and Abbring (2010). In a Markov Decision Problem

(MDP) in each period t the state st ∈ S is revealed to the agent. The set of

available actions in state st is given by A(st). The agent has a state-dependent

utility vt(xt, st). There is a transition probability over st+1 that depends on

the current action xt and the current state st. Thus, choices made in period

t affect both the current payoffs as well as the distribution over future states

(and therefore future menus and future utilities). The transition probability is

known by the agent and estimated by the analyst under a set of assumptions.

The MDP is partially observed by the analyst. The state has two com-

ponents st = (ξt, ϵt) where ξt is observed by the analyst while ϵt is private to

the agent. The menu in period t depends only on the observable part of the

state, ξt. The transition probability satisfies the conditional independence (CI)

assumption:

P[ξt+1, ϵt+1|ξt, ϵt, xt] = P[ϵt+1|ξt+1] · P[ξt+1|ξt, xt]. (CI)

This means two things: (1) conditional on the current decision and current ob-

servable state variable, the next period observable state variable is independent

of the current ϵ, (2) conditional on the current observable state variable, the

current ϵ is independent of the past ϵ.

Observed choice probabilities are given by

ρ(xt, ξt) = P
[
Ũt(xt, ξt) = max

yt∈A(ξt)
Ũt(yt, ξt)

∣∣∣ ξt], (12.2)

where the utility of action xt equals

Ũt(xt, ξt) = v(xt, ξt)+ ϵ̃t(xt)+δE
[

max
xt+1∈A(ξ̃t+1)

Ũt+1(xt+1, ξ̃t+1)
∣∣∣xt, ξt

]
. (12.3)

Notice that because CI rules out persistence in unobservables, the choice prob-

ability can be written without conditioning on the history of past choices, i.e.,

observed choices are history-independent (c.f. Example 7.1). Thanks to CI we

can also drop the subscript on Ut; I kept it above for greater clarity.

The literature typically couples CI with the i.i.d. assumption

ϵt(x) and ϵt(y) are i.i.d. and independent of ξt (i.i.d.)

Rust (1987) introduced dynamic logit, which combines CI and i.i.d. with

the additional parametric TIEV assumption on ϵt. Due to its tractability, this

model is a workhorse for estimation.105

Example 12.1 (Bus Engine Replacement). Rust (1987) studied the choices

of Harold Zurcher, the superintendent of a bus company. Zurcher is managing

a fleet of buses, each characterized by current milage ξt ∈ [0,∞]. In each

period for each bus, Zurcher can make a replacement decision. Replacing the

engine, xt = 1, means resetting the current mileage to zero, at a cost RC. Not

105See, e.g., Miller (1984), Rust (1989), Hendel and Nevo (2006), Gowrisankaran and Rysman
(2012)



12.3. Serial Correlation of ε̃ 166

replacing, xt = 0, preserves the current mileage. There is a maintenance cost

c(ξt). Let θ be the vector of parameters of c that also includes RC. The state

variable next period is ξt+1 = ξt(1− xt) + ηt+1, where the mileage increments,

ηt+1, are random and independent of the current decision. Since ξ is observable,

this process can be separately estimated by the econometrician. Zurcher’s

utility function solves:

Ũt(0, ξt; θ) = −c(ξt; θ) + ϵ̃t(0) + δE[max
xt+1

Ut+1(xt+1, ξt + η̃t+1; θ)]

Ũt(1, ξt; θ) = −c(0; θ)−RC(θ) + ϵ̃t(1) + δE[max
xt+1

Ut+1(xt+1, η̃t+1; θ)]

where ϵt(1) and ϵt(0) are i.i.d. TIEV. △

Rust’s original approach was to use dynamic programming to compute

U(·; θ) for each value of θ to obtain ρ(·; θ) and then estimate θ. This was later

simplified by Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith

(1994) using an inversion argument (Section 10.3). Roughly speaking, by the

WDZ Lemma (Lemma 10.4) the continuation value can be directly computed

by integrating the choice probabilities. This method works for general i.i.d.

models. See, e.g., Shum (2016) for exposition. A related result in decision

theory is Theorem 3 of Lu (2016).

12.3. Serial Correlation of ε̃

The CI assumption rules out persistent unobservables. One simple way to relax

this assumption is to assume permanent unobservable heterogeneity, which can

be thought of as a time-1 mixture of i.i.d. models. Here, the utility in each

period depends on the agent’s “type” (which they privately learn in period

1), but each type of agent is also subject to i.i.d. shocks, exactly like in the

panel data formulation (12.1). Such a formulation was used for example by Lee

(2013).

The so called Eckstein–Keane–Wolpin models combine permanent unob-

served heterogeneity with transitory shocks that are allowed to be correlated

across actions, see, e.g., Example 2 of Aguirregabiria and Mira (2010).

Pakes (1986) relaxed CI in another way by endowing (ϵt) with a Markov

structure.

Example 12.2. Figure 12.1 illustrates a simple example of patent renewal.

The firm can renew the patent (xt = 1) at cost ct. The instant reward for

renewing is ϵ̃t. Not renewing the patent (xt = 0) makes it lapse forever. Thus,

renewing gives an immediate payoff of ϵ̃t− ct plus the option value of renewing

in the future.

The econometrician knows ct and wants to estimate the option value assum-

ing that the distribution of rewards (ϵt) follows a first-order Markov process.
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The agent’s utility is Ũt(0) = 0 and

Ũt(1) = ϵ̃t − ct + δE[max
xt+1

Ũt+1(xt+1)|ϵ̃t]}

There is actually no state variable in this model, except for t. Pakes (1986)

shows that the solution involves a decreasing sequence of deterministic thresh-

olds such that in period t it is optimal for the agent to renew iff ϵt is above the

threshold. Based on this he formulates a maximum likelihood estimator. △

00
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ϵ̃1

0

lapse
ϵ̃2

patent expires

ϵ̃3
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ϵ̃2
− c2

re
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w
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Figure 12.1. The patent renewal decision tree.

Finally, general models of unobservable serially correlated state variables

go beyond the Markov assumption and impose almost no structure on ϵ̃ (Norets,

2009; Hu and Shum, 2012).

12.4. Identification

In general, under CI the value of δ is not identified (Manski, 1993; Rust,

1994). This is because we can define a new utility function v̂(x, ξ) := v(x, ξ) +

δE[maxx′ U(x′, ξ′)|x, ξ] and set δ̂ = 0.

To identify v, it is assumed that δ is known to the analyst. Let k be the

cardinality of E and n be the cardinality of X. There are kn utility parmeters.

Because CI imposes history-independence, we observe kn conditional choice

probabilities. Since they have to sum up to one for each ξ, to get point identi-

fication we need to make k normalizing assumptions.

One typical approach is to fix an alternative x0 and set v(x0, ξ) = 0 for all

ξ. Other normalizations include: exclusion restrictions (setting some elements

of v equal to each other) or parametric restrictions. A vast literature on iden-

tification both under CI and with serial correlation, which includes Hotz and

Miller (1993); Taber (2000); Magnac and Thesmar (2002); Norets and Tang

(2013); Kasahara and Shimotsu (2009) and is summarized by Abbring (2010)

Abbring and Daljord (2020) show that local point identification holds. Un-

der an exclusion restriction, a range of δ is identified and for each δ there is



12.5. Dynamic Logit 168

a unique v. Other partial identification approaches involve imposing shape

restrictions on v, e.g., monotonicity, concavity, supermodularity, or obtaining

bounds on parameter values (Honoré and Tamer, 2006). Even if parameters

are partially identified, it is sometimes possible to point-identify the counterfac-

tuals (Kalouptsidi, Scott, and Souza-Rodrigues, 2021; Kalouptsidi, Kitamura,

Lima, and Souza-Rodrigues, 2021).

12.5. Dynamic Logit

It is relatively easy to axiomatically characterize dynamic logit if we dispense

with the observable states ξt. Let each action be identified with a payoff today

and a continuation menu tomorrow, i.e., xt = (zt, At+1). This is just like

deterministic decision trees from Section 7.5. On this domain, the MDP (12.3)

becomes what I will call Additive Dynamic Random Utility (ADRU).

Ũt(zt, At+1) = vt(zt) + δE
[

max
xt+1∈At+1

Ũt+1(xt+1)

]
+ ϵ̃t(zt, At+1), (12.4)

with deterministic utility functions vt ∈ RZ , discount factor δ ∈ [0, 1], and

random payoff shock ϵ̃t : Ω
t → RXt .

Note that in ADRU δ is not identified because we represent the same

choices with δ′ = 0 and

ϵ′t(zt, At+1) = δE
[

max
xt+1∈At+1

Ũt+1(xt+1)

]
+ ϵt(zt, At+1).

Dynamic logit is ADRU plus the i.i.d. and TIEV assumptions. Fudenberg

and Strzalecki (2015) showed that the main axiomatic consequences of these

assumptions are Luce’s IIA (Axiom 3.3, period by period) and the analogues

of Preference for Flexibility (Axiom 8.4) and Sophistication (Axiom 8.14).

Axiom 12.3 (Weak Preference for Flexibility). For all t if Bt+1 ⊋ At+1 and

At := {(zt, Bt+1), (zt, At+1)}

0 < ρt ((zt, At+1), At) <
1

2
.

Weak Preference for Flexibility holds for all i.i.d. representations with un-

bounded support. Compared with Preference for Flexibility (Axiom 8.4), which

says that in pairwise choice (zt, Bt+1) is chosen with probability one, here this

probability is strictly less than one (because the support of ϵ̃t is unbounded).

Axiom 12.4 (Recursivity). For all t, zt, At+1, Bt+1 andAt := {(zt, Bt+1), (zt, At+1)}

ρt((zt, At+1), At) ≥ ρt((zt, Bt+1), At)

⇕∑
xt+1∈At+1

ρt+1(xt+1, At+1 ∪Bt+1) ≥
∑

xt+1∈Bt+1

ρt+1(xt+1, At+1 ∪Bt+1)
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Recursivity says that (zt, At+1) is chosen more frequently at time t than

(zt, Bt+1) if and only if an alternative from At+1 is chosen more frequently

at time t + 1 than an alternative from Bt+1. This leverages the “log-sum”

expression (3.2) and is specific to the TIEV assumption and does not hold for

all i.i.d. models.

Fudenberg and Strzalecki (2015) also show that all the parameters of the

model, i.e., δ and v are identified under a stationarity assumption on v. I think

this result extends to all of i.i.d. models. This sharp result comes from the rich

variation in intertemporal problems that may be absent in the field, but can

be easily incorporated in experimental settings.

A number of recent decision theory papers use dynamic logit as a building

block, such as the dynamic attribute rule of Gul, Natenzon, and Pesendorfer

(2014). Other papers view ϵ̃t as errors, not utility shocks. In Fudenberg and

Strzalecki (2015) errors lead to “choice aversion” (each menu is penalized by

a function of its size). This makes the agent averse to bigger menus and leads

to stochastic versions of the Set-Betweenness axiom which is studied in the

literature on temptation and self-control (Gul and Pesendorfer, 2001; Dekel,

Lipman, and Rustichini, 2009). Ke (2018) offers a dynamic model of mistakes

(agent evaluates each menu by the expectation of the utility under her own

s.c.f.).

12.6. Consequences of the i.i.d. assumption

In this section we will further explore the consequences of the i.i.d. assumption

in the simplified framework without observable attributes. The part of i.i.d.

that we will be focusing on is that ϵ is i.i.d. across alternatives. (Once we

eliminate the covariates, i.i.d. over time is guaranteed by CI.)

The consequences described here hold not only for i.i.d. ϵ̃t, but also under

certain forms serial correlation, for example with permanent unobserved het-

erogeneity, where we have a mixture of i.i.d. models that inherits its properties.

12.6.1. Preference for Flexibility. Under the i.i.d. assumption each alter-

native xt = (zt, At+1) gets its own realization of the ϵ-shock. In particular

even if Bt+1 ⊋ At+1, the two random variables ϵ̃t(zt, At+1) and ϵ̃t(zt, Bt+1) are

i.i.d. Thus, as Weak Preference for Flexibility (Axiom 12.3) says, dominated

choices will be made with positive probability. Mechanically this makes sense

because small menus sometimes get a shock that outweighs their lower option

value. Yet, from a theoretical point of view, it seems reasonable to assume

that smaller menu gets chosen with probability zero, as asserted by Preference

for Flexibility (Axiom 8.4). However, as discussed by Rust (1987), models

that predict zero choice probabilities for some alternatives will be impossible

to estimate, so this can be an issue for applications.
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The i.i.d. assumption is a solution to a practical problem, but is it the right

solution? Consider what happens if we increase the variance of ϵ. Intuitively,

increasing the variance of shocks in period t + 1 should increase the attrac-

tiveness of the bigger menu, as it now offers more option value. For example,

suppose that vt+1(x) = 0 for all x and consider a singleton menu versus a menu

of two items. If ϵt+1 are i.i.d. normal with mean zero and standard deviation

λ, then the expected value of the first one is zero, whereas the expected value

of the second one is λ√
π
, which is increasing in the variance; intuitively, if we

increase the noise, the chance that we get at least one favorable draw gets

higher. Given this logic, one would expect that the bigger menu gets chosen

with a higher probability as λ increases.

However, there is another effect: increasing λ automatically brings today’s

choice probabilities closer to a half because we are also increasing the variance

of ϵt. This is happening because under the i.i.d. assumption each option (z1, A1)

and (z1, B1) gets its own independent shock even though the consumption today

is the same. It turn out that this second effect is stronger.

Proposition 12.5 (Frick, Iijima, and Strzalecki 2019). Suppose that there are

two periods and ϵ are i.i.d. and scaled multiplicatively by λ > 1. Let A2 = {z2},
B2 = {z2, z′2}, and A1 = {(z1, A2), (z1, B2)} for some fixed z1, z2, z

′
2 such that

v(z′2) > v(z2). Then the probability ρ1 ((z1, A2), A1) strictly increases in λ.

As you recall, the i.i.d. assumption also leads to unrealistic predictions

about substitution patterns (Section 10.6) and about choices over lotteries (Sec-

tion 4.6). In the static setting these problems can be fixed by appropriately

disciplining the ϵ̃, such as in the random characteristics model and random

expected utility model. In the dynamic setting the model from Chapter 8 is

imposing similar discipline.

To summarize Chapter 8: if we think of ϵ as representing shocks to utilities,

then continuation menus cannot directly impact today’s utility (as they do

in the i.i.d. model). They can do so only indirectly, via the expectation of

tomorrow’s utility. Becase of this, shocks to continuation menus cannot be

arbitrary and should be carried by the conditional expectation operator. This

is the maintained assumption in some dynamic discrete choice papers, notably

Pakes (1986) and Taber (2000).

12.6.2. Postponing Decisions. The implications of the i.i.d. assumption

can be seen perhaps even more starkly if we consider a slight variation of the

above problem and focus on the timing of choices.

Suppose that you are packing your bag for a trip that starts on Saturday.

Right now is Friday morning (t = 1) and you can decide to pack the bag today

after checking the weather forecast (t = 2), or wait and pack on Saturday

morning (t = 3).
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Suppose that the objects you can pack are your sun glasses g or your rain

coat c (but not both). If you decide to pack today, then the menu you are

choosing is Anow
2 = {{g}, {c}}, that is in period t = 2 you will be choosing

between {g} and {c}. If instead you decide to pack on Saturday, then in

period t = 2 you will face the menu Alater
2 = {{g, c}}, i.e., you will not be

making any choices in t = 2. Your period t = 1 choice, illustrated in Figure

12.2, is between those two menus. Let A1 := {Anow
2 , Alater

2 }, i.e., there is no

intermediate consumption; suppose further that packing is not a costly activity.

A
no
w

2

A later2

{g}

{c}

{g, c}

g

c

g

c

Figure 12.2. Early and late decisions.

The agent from Chapter 8 will deterministically choose Alater
2 To see that,

note that we have

Ũ1(A
later
2 ) = E

[
E
[
max

{
ũ3(g), ũ3(c)

}
|ω2
]
|ω1

]
≥ E

[
max

{
E
[
ũ3(g)|ω2

]
,E
[
ũ3(c)|ω2

]}
|ω1

]
= Ũ1(A

now
2 ).

This holds because of conditional Jensen’s inequality, which is exactly the same

reason why the agent has preference for flexibility, cf. Example 8.2. (The agent

may be indifferent if they think that the accuracy of Friday’s forecast is perfect,

i.e., that there is no information gained between t = 2 and t = 3.)

Instead, the i.i.d. agent packs early with probability bigger than a half.

Proposition 12.6 (Fudenberg and Strzalecki 2015; Frick, Iijima, and Strza-

lecki 2019). If (ρt) has a i.i.d. representation with δ < 1, then

1

2
< ρ1 (A

now
2 , A1) < 1.

Moreover, if ε is scaled by λ > 1, then ρ1(A
now
2 , A1) strictly increases (modulo

ties).
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This is mechanically true under i.i.d. because the agent receives the ϵ not

at the time of consumption, but at the time of decision, even if the decision

has only delayed consequences. Thus, in a sense, making decisions early allows

them to get the max ϵ earlier. To illustrate that, consider the special case where

v3(g) = v3(c) = v. Here, we have

V (Alater
2 ) = δ2v + δ2E[max{ϵ̃3(g), ϵ̃3(c)}]

≤ δ2v + δE[max{ϵ̃2(g), ϵ̃2(c)}] = V (Anow
2 ),

so by (3.3) the probability of packing now is more than a half.106

Such behavior is suggestive of a preference for commitment, which is usually

associated with choice overload or self-control problems (see the discussion after

Theorem 8.6). One might argue that consumers do suffer from such behavioral

issues, but perhaps in that case we might prefer to have a structural model

of their preference for commitment, along the lines of Strotz (1955) and Gul

and Pesendorfer (2001), instead of commitment being a mechanical side-effect

of the i.i.d. assumption? Another issue is that dynamic discrete choice models

are often applied to choices of profit-maximizing firms. Do we want to argue

that firms also suffer from such behavioral biases?

The above examples hinge on somewhat artificial situations, where the

agent is offered a direct choice between two nested menus, or offered an option

to defer choice at no cost. My remarks may thus be only of theoretical interest.

However, I think some caution may be warranted when applying the i.i.d.

assumption to practical situations. For example, Frick, Iijima, and Strzalecki

(2019) show how i.i.d. models can lead to biased parameter estimates even more

realistic stopping problems.

106Fudenberg and Strzalecki (2015) show that a modification of dynamic logit leads to the opposite
prediction: late choices are more frequent. However this coincides with the agent liking smaller
menus more, so does not address the issues discussed in Section 12.6.1.
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A.1. Chapter 1

Example A.0 (Positivity does not imply positive density). This example is

due to Ricky Li. Let X = {x, y, z} and let ρ be represented by distribution

over preferences

µ(x ≻ y ≻ z) = µ(y ≻ x ≻ z) = µ(z ≻ x ≻ y) =
1

3
.

It is easy to verify that ρ satisfies Positivity. Moreover, notice that ρ(z, {y, z}) =
ρ(z, {x, y, z}).

Suppose that ρ has an ARU representation with a positive density for some

v : X → R. Let

E := {ϵ ∈ RX : v(x) + ϵ(x) > v(z) + ϵ(z) > v(y) + ϵ(y)}.

Notice that this is a set of positive Lebesgue measure; however, we have

0 = ρ(z, {y, z})− ρ(z, {x, y, z}) = P(E),

contradiction. △

A.3. Chapter 3

A.3.1. GEV. Let X = {x1, . . . , xn}. The joint cdf equals

G(ϵ) = exp(−H(e−ϵ1 , . . . , e−ϵn)),

where the function H : Rn
+ → R+ is:

• homogenous of degree α for some α > 0

• satisfies tx → ∞ with fixed t−x implies H(t) → ∞

• for any distinct x1, . . . , xk the crosspartial ∂kH
∂tx1 ,··· ,∂txk

is positive for

odd k and negative for even k.

The advantage of this class is that the choice probabilities are given in

closed form by

ρ(x,X) = α−1 ∂

∂vx
lnH(ev1 , . . . , evn).

This is because the formula for consumer surplus under GEV is V (X) =

logH(ev1 , . . . , evn) and by the WDZ lemma (Lemma 10.4), the choice prob-

abilities are the gradient of consumer surplus.

We get logit by setting H(t1, . . . , tn) :=
∑n

i=1 t
α
i . We get nested logit

by setting H(t1, . . . , tn) :=
∑k

i=1

(∑
x∈Bi

tα2
x

)α1
α2 where {B1, . . . Bk} the nest

structure (a partition of X). When α1 < α2, then this H satisfies the above

conditions, which shows that nested logit with such parameters has a RU rep-

resentation.

For more on this class, see Section 2.7.2 of Anderson, de Palma, and Thisse

(1992), and Section 4.6 of Train (2009).
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A.3.2. Proof of Proposition 3.10. Note that we have two Fechnerian repre-

sentations (v1, F1) and (v2, F2) that satisfy Richness (Axiom 3.20). By Theorem

3.21, there exists α > 0 and β ∈ R such that v2 = αv1 + β and F2(αt) = F1(t)

for all t ∈ D1. □

Weaker results can be obtained in the finite X case:

(i) If F1 = F2, then there exists β ∈ R such that v2(x) = v1(x) + β for all

x ∈ X.

(ii) If v1 = v2, then F1 and F2 coincide on the set {v(x)− v(y) : x, y ∈ X}.

To prove (i), let F be the shared cdf of ϵ̃x − ϵ̃y for x ̸= y. We have

ρ(x, y) = F (v1(x)− v1(y)) = F (v2(x)− v2(y)),

for all x ̸= y. The function F is strictly increasing since ϵ̃ has a positive density

(why?), so

v1(x)− v1(y) = v2(x)− v2(y),

for all x ̸= y. Thus, v1(x)− v2(x) is a constant function of x.

To prove (ii), We have

F1(v(x)− v(y)) = ρ(x, y) = F2(v(x)− v(y)).

Part (i) says that if we know that the distribution of ϵ is the same, then

v is pinned down uniquely up to an additive constant. Similarly, part (ii) says

that if we know that v is the same, then the distribution of ϵ differences is the

same (on the relevant domain).

Example A.0 (Fechnerian that is not i.i.d. ARU). This example is due to

Jetlir Duraj. Suppose that X =
[
− 1

2 ,
1
2

]
and ρ(x, y) = 1

2 (1 + x − y). This ρ

has a Fechnerian representation where v(x) = x and F is the cdf of a uniform

distribution on [−1, 1]. Moreover, it can be checked that ρ in our example

satisfies the Richness condition in Theorem 3.21, so F is pinned down up to

the scale factor. But F cannot be the c.d.f. of the difference of two i.i.d.

random variables. The characteristic function of the difference of two i.i.d.

random variables is a real and non-negative function |φ(t)|2, where φ is the

characteristic function of one of them. But the characteristic function of F

equals sin(t)/t, which takes negative values. △

A.3.3. Proof of Theorem 3.21. The necessity of the quadruple condition

is trivial. Sufficiency follows from Debreu’s (1958) theorem, which says that

there exists v : X → R such that for any x, y, z, w ∈ X

ρ(x, y) ≥ ρ(z, w) ⇐⇒ v(x)− v(y) ≥ v(z)− v(w). (A.1)

It remains to conjure up the F function. Expression (A.1) defines a preference≿
onX×X with two representations (x, y) 7→ ρ(x, y) and (x, y) 7→ v(x)−v(y). By

ordinal uniqueness (Proposition 1.3) there exists a strictly increasing function

F : D → R such that ρ(x, y) = F (v(x)− v(y)).
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The existence of α > 0 and β ∈ R such that v2 = αv1 + β follows from

Debreu (1958). This implies that F1(v1(x) − v1(y)) = ρ(x, y) = F2(v2(x) −
v2(y)) = F2(α(v1(x)− v1(y))).

To prove that F is continuous, we need to prove a converse to the inter-

mediate value theorem: that every increasing function with the “intermediate

value property” is continuous. This is a known result but we will prove it from

scratch because at this point in the proof we don’t know if D is an interval.

Toward contradiction, suppose that F is discontinuous at some point d ∈
D. This means there is a sequence dn → d such that F (dn) does not converge

to F (d). Without loss we can restrict attention to a subsequence such that

dn < dn+1 < d for all n.

Since F is increasing, the sequence F (dn) is increasing and bounded from

above by F (d), so it has a limit. Let q := limn F (dn). Pick any number

q∗ ∈ (q, F (d)). We will invoke the Richness axiom to show that there must

exist d∗ for which F (d∗) = q∗. This means that dn < d∗ < d for all n which is

a contradiction because dn → d.

So it just remains to invoke Richness and find d∗. Let d1 = v(x1) − v(y1)

and d = v(x)−v(y). If either v(x1) = v(x) or v(y1) = v(y) then apply Richness

directly. Otherwise, are four cases to check:

(1) v(x1) < v(x) and v(y1) < v(y). Then v(x1) − v(y1) < v(x) − v(y) <

v(x)−v(y1), so ρ(x1, y1) < q∗ < ρ(x, y1) and by Richness there exists

x∗ ∈ X such that ρ(x∗, y1) = q∗. Define d∗ := v(x∗)− v(y1).

(2) v(x1) > v(x) and v(y1) < v(y). Then v(x1) − v(y1) < v(x) − v(y) <

v(x1)− v(y), so v(y1)− v(x1) < v(y)− v(x1) and F (v(y1)− v(x1)) <

1 − q∗ < F (v(y) − v(x1)), so by Richness there exists y∗ ∈ X such

that ρ(y∗, x1) = 1− q∗. Define q∗ := v(x1, y
∗).

(3) v(x) > v(x1) and v(y1) > v(y). Then there are two subcases:

(a) v(x1) − v(y) < v(x) − v(y1). Then either ρ(x1, y) < q∗ < ρ(x, y)

or ρ(x1, y1) < q∗ < ρ(x, y1) (or both). Each of those subcases can

be dealt with analogously to case 1.

(b) v(x)− v(y1) < v(x1)− v(y). Then again there are two subcases,

which can be dealt with analogously to case 2.

(4) v(x1) < v(x) and v(y1) > v(y). This can be dealt with analogously

to case 3. □

A.3.4. Proof of Proposition 3.23. Sufficiency follows from Scott’s (1964)

theorem, which says that there exists v : X → R such that for any x, y, z, w ∈ X

ρ(x, y) ≥ ρ(z, w) ⇐⇒ v(x)− v(y) ≥ v(z)− v(w). (A.2)

It remains to conjure up the F function. This is done exactly like in Appendix

A.3.3. □
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A.4. Chapter 4

A.4.1. Proof of Proposition 4.23. Let X = ∆s(Z). By Theorem 3.5, ρ has

a Luce representation

ρ(p,A) =
w(p)∑
q∈A w(q)

for some function w : X → R++. In particular, the function w represents ≿∗.

By Theorem 4.5, ≿∗ has an EU representation U(p) = Epv for some v : Z → R.
Let U(X) denote the range of U . By ordinal uniqueness, there exists a strictly

increasing function h : U(X) → R such that w(p) = h(Epv). □

A.5. Chapter 5

A.5.1. Proof of Proposition 5.6.

Bayes ⇒ obedience: Fix A and suppose that (ρs) ∼ Bayes(p, β, v). Then

ρs(x,A) = β(Mx|s), (A.3)

where

Mx = {m ∈ M :
∑
s∈S

v(x, s)p(s|m) ≥
∑
s∈S

v(y, s)p(s|m) for all y ∈ A}.

Consider now the action recommendation x ∈ A. Upon hearing it, the agent’s

posterior is the average of all the posteriors in Mx:

p(s|Mx) =
p(s,Mx)

p(Mx)
=

∑
m∈Mx

p(s|m)p(m)

p(Mx)
=
∑

m∈Mx

p(s|m)λ(m),

where λ(m) = p(m)
p(Mx)

. Thus, taking the average of the inequalities in the

definition of Mx with weights λ(m) gives us∑
s∈S

v(x, s)p(s|Mx) ≥
∑
s∈S

v(y, s)p(s|Mx) for all y ∈ Y. (A.4)

Notice that p(s|Mx) =
β(Ex|s)p(s)

Dx
, where Dx =

∑
s′∈S β(Ex, s

′)p(s′). Plugging

in (A.3) gives us

p(s|Mx) =
ρs(x,A)p(s)

Dx

Substituting to (A.4) and multiplying both sides by Dx gives us obedience.

Obedience ⇒ Bayes: Fix menu A and define M := A and β(x|s) := ρs(x,A).

Obedience implies that upon hearing x the agent wants to choose x, so mod-

ulo ties in the Bayes representation the set Mx equals {x}. Thus the Bayes

representation implies that the probability of choosing x ∈ A in state s equals

β(x|s), which as we know is the actual choice probability ρs(x,A).

As mentioned in the text, to deal with ties we need to allow a different

tiebreaker after each message: if x, y ∈ Mx then the tiebreaker needs to put

probability zero on choosing y. □
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A.6. Chapter 6

A.6.1. Proof Sketch of Proposition 6.11. Fix s ∈ S and let pn be such

that pn(s) → 1. Fix an experiment β and let µn := pn ⊕ β. Notice that

we have µn → δδs (in the weak∗ topology). If c is prior independent, then

c(p ⊕ β) = c(pn ⊕ β) for all n. We will now show that under UPS, the right

hand side converges to zero, which means that c(p ⊕ β) = 0 and since β was

arbitrary, this implies that c is identically equal to zero.

Suppose that c is UPS. We have c(µn) =
∫
[L(q)−L(pn)]µn(dq). Consider

first the expression
∫
L(q)µn(dq). Since µn → δδs we have that

∫
L(q)µn(dq) →

L(δs), assuming that L is bounded. Likewise, L(pn) → L(δs) since L is contin-

uous.

A.6.2. The Blackwell Theorem. There are many equivalences known as

the Blackwell theorem. Most of them characterize an incomplete ranking of

experiments β ≥ β′. Others characterize a ranking of distributions over pos-

teriors µ ≥ µ′. The two orders are connected, which is why I am using the

same symbol to denote them. There is a vast literature on this topic, starting

with Bohnenblust, Shapley, and Sherman (1949) and Blackwell (1951, 1953). A

nice summary of the Blackwell theorem is given by Le Cam (1996). Torgersen

(1991) is a very very dense book on this topic.

This section collects results from many sources and is incomplete. We

assume that M is rich enough so that by varying β we can trace out all µ. The

set S is finite; all measures are Borel.

First, we introduce the notion of a garbling that lets us compare two ex-

periments. Intuitively, β′ is a garbling of β if we can first generate the signal

m according to β and then add “noise” to it.

Axiom A.6.1 (Garbling). β′ : S → ∆(M ′) is a garbling of β : S → ∆(M) if

there exists a probability kernel G : M → ∆(M ′) such that for every measur-

able set E′ ⊆ M ′

β′(E′|s) =
∫
M

G(E′|m)β(dm|s).

The key here is that the distribution G(·|m) is independent of the state,

so it does not carry any additional information: it is pure noise.

Next, we need a notion of dilation that lets us compare two distributions

over posteriors. Intuitively, µ′ is a dilation of µ if it is a mean-preserving spread

of it: we generate q according to µ and then in its place plug in a distribution

over posteriors that averages to q.

Axiom A.6.2 (Dilation). µ′ is a dilation of µ if for some probability kernel

D : ∆(S) → ∆(∆(S)) such that q =
∫
∆(S)

q′D(dq′|q) for all q and for every
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measurable set B ⊆ ∆(S)

µ′(B) =

∫
∆(S)

D(B|q)µ(dq).

Axiom A.6.3 (Achievable Payoff Profiles). For any menu A define a behavioral

strategy to be a mapping from signals to mixed actions σ : M → ∆(A). Let

Σ be the set of behavioral strategies; the advantage of considering mixtures is

that this set is now convex. The expected payoff of σ (given β) in state s is

v(σ, s;β) :=
{∫

M

∑
x∈A

v(x, s)σ(x|m)β(dm|s)
}

and let v⃗(σ;β) be the profile of such payoffs as s ranges over S. Let AEP (β) :={
v⃗(σ;β) : σ ∈ Σ

}
be the set of achievable expected payoff profiles given β.

Axiom A.6.4 (Blackwell).

(1) The following are all equivalent definitions of β ≥ β′:

(i) β′ is a garbling of β

(ii) V A
p (β) ≥ V A

p (β′) for any decision problem A, v, p

(iii) For any decision problem AEP (β) ⊇ AEP (β′).

(iv)
∑

s∈S

∫
M

ϕ(qm)β(dm|s)p(s) ≥
∑

s∈S

∫
M

ϕ(qm)β′(dm|s)p(s) for

any convex and continuous function ϕ : ∆(S) → R and any prior

p

(2) The following are equivalent definitions of µ ≥ µ′:

(i) µ is a dilation of µ′.

(ii) V A(µ) ≥ V A(µ′) for any decision problem A, v

(iii)
∫
∆(S)

ϕ(q)µ(dq) ≥
∫
∆(S)

ϕ(q)µ′(dq) for any convex and continu-

ous function ϕ : ∆(S) → R.

(3) Moreover, the following are equivalent

(i) β ≥ β′

(ii) p⊕ β ≥ p⊕ β′ for some full support p ∈ ∆(S)

(iii) p⊕ β ≥ p⊕ β′ for all full support p ∈ ∆(S)

Notice that the Blackwell ordering of informativeness is expressed in op-

posite ways for µ and for β. To make β less informative we need to apply a

garbling, i.e., also add risk to it. Intuitively, this makes sense: adding uncorre-

lated noise makes the message less informative. To make µ more informative

we need to apply a dilation, i.e., also add risk to it. (Recall the concave order

over lotteries. Condition 2(iii) is a multi-dimensional extension of the convex

order.) This may seem at first confusing, but recall that in the world of distribu-

tions over posteriors having no information means a point mass on some p and

adding information means splitting that mass point into a random posterior.

A perfectly informative signal splits p into the vertices of the simplex.
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A.7. Chapter 7

Axiom A.7.1. If (ρ1, ρ2) has a DRU representation, then it satisfies Bounded

History Dependence and therefore α-History Independence.

Proof of Proposition A.7.1. I thank Ricky Li for helping sharpen this proof.

Let E := N(x2, A1), F := N(x1, A1), and G := N(x1, B1). The axiom implies

that G ⊆ F . Let H := F \G. We have∣∣P (E|F )− P (E|G)
∣∣ = ∣∣P (E|G)P (G|F ) + P (E|H)P (H|F )− P (E|G)

∣∣
=
∣∣P (E|G)(P (G|F )− 1) + P (E|H)P (H|F )

∣∣
=
∣∣− P (E|G)P (H|F ) + P (E|H)P (H|F )

∣∣
= P (H|F )

∣∣P (E|H)− P (E|G)
∣∣

≤ P (H|F ) = 1− P (G|F ) = 1− P (G)

P (F )
□

A.9. Chapter 9

A.9.1. A Calculation behind Example 9.14. Let wx := ev(x). Let Y x
t

be independent Poisson processes with intensities wx respectively. Let Yt :=∑
x∈A Y x

t . The stopping time is the first time the process Yt hits value 1.

By Theorem 18.2 of Gravner (2017), Yt is a Poisson process with intensity

wA :=
∑

x∈A wx. By Proposition 18.1 the distribution of the stopping time

is exponential with parameter wA. By Example 18.5 of Gravner (2017), the

conditional choice probabilities are of the Luce form. □

A.10. Chapter 10

A.10.1. More about Theorem 10.5. This theorem is usually stated with

more generality by not assuming continuous differentiability: Theorem 5.1 of

McFadden (1981), Theorem 3.1 of Anderson, de Palma, and Thisse (1992),

Theorem 3 of Koning and Ridder (2003), Corollary 8 of Fosgerau, McFadden,

and Bierlaire (2013), or Theorem 1 of Yang (2021).

Continuous differentiability of ρ simplifies exposition as it saves us yet

another condition, which implies that the distribution of ϵ̃ is in some sense

smooth.

Formally, Theorem 10.5 follows from Theorem 3.1 of Anderson, de Palma,

and Thisse (1992) because if ρ is continuously differentiable, then conditions

(iv) and (v) imply their condition P1, their condition P2 is our (iii), their

condition P3 is our (i), and their P4 is our (ii). □
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A.10.2. Proof of Proposition 10.7. Let G be the CDF of ϵ̃x. By definition,

we can write for any x ∈ X and any p ∈ RX

ρ(x, p) = P
(
w(x)− px + ϵ̃x ≥ w(x′)− px′ + ϵ̃x′ ∀ x′ ̸= x

)
=

∫ ex=+∞

ex=−∞

∏
x′ ̸=x

G(w(x)− px + ex − w(x′) + px′)g(ex)dex.

This formula implies that if ρ(x, p̄) = ρ(y, p̄) for some x, y ∈ X and p̄ ∈ RX ,

then w(x)− p̄x = w(y)− p̄y.

This in turn implies that, ρ(x, (p̄−z, pz)) = ρ(y, (p̄−z, pz)) as a function of

pz for a fixed value of p̄−z; thus their derivatives in pz must coincide as well. □

A.10.3. Cyclic Monotonicity. Blume (2008) attributes the concept of cyclic

monotonicity to Hotelling (1929). Rockafellar (1966) showed that a correspon-

dence satisfies cyclic monotonicity if and only if it is a subdifferential of a proper

convex function. What follows is a simpler result, for functions, as opposed to

correspondences. An analogous result for deterministic demand systems with

quasilinear utility was obtained by Nocke and Schutz (2017).

Theorem A.10.1. Suppose that ρ : RX → ∆(X) is continuously differentiable.

The following conditions are equivalent:

(a) ρ satisfies cyclic monotonicity

(b) ρ satisfies symmetric partials and the Jacobian of ρ is positive semi-definite

(c) ρ = ∇V for some convex and differentiable function V : RX → R.

Moreover, the equivalence of (a) and (c) holds for any continuous function.

Proof. (c)⇒ (b) Symmetric partials follows from Schwartz’s theorem (also known

as Young’s theorem), Theorem 9.41 of Rudin (1976). Positive semi-

definiteness follows from Theorem 35 of Fenchel (1953).

(b)⇒ (c) By Theorem 10.9 of Apostol (1969), condition (iii) ρ = ∇V for some

potential function V : RX → R. Thus the Jacobian of ρ is the Hessian

of V . By Theorem 35 of Fenchel (1953), if the Hessian is positive

semidefinite, then V is a convex function.

(c)⇒ (a) Follows from Theorem 24.8 of Rockafellar (1970).

(a)⇒ (c) I thank Terry Rockafellar for helping me with this part. By Theorem

24.8 of Rockafellar (1970), cyclic monotonicity implies that ρ ⊆ ∇V

for some closed, proper convex function V : RX → R. By Theorem

12.17 of Rockafellar and Wets (2009), the mapping ∇V : Rn → Rn is

monotone according to their Definition 12.1. By their Example 12.17

a continuous function is maximally monotone, which implies that ρ =

∇V . The conclusion follows from Theorem 25.1 of Rockafellar (1970).

□



Appendix B

Bibliography

Abaluck, J., and A. Adams-Prassl (2021): “What do consumers consider before
they choose? Identification from asymmetric demand responses,” The Quarterly
Journal of Economics, 136(3), 1611–1663. 150, 161

Abbring, J. H. (2010): “Identification of dynamic discrete choice models,” Annu.
Rev. Econ., 2(1), 367–394. 165, 167

Abbring, J. H., and Ø. Daljord (2020): “Identifying the discount factor in dy-
namic discrete choice models,” Quantitative Economics, (11), 471–501. 167

Abdulkadiroglu, A., J. D. Angrist, Y. Narita, and P. A. Pathak (forth-
coming): “Research design meets market design: Using centralized assignment for
impact evaluation,” Econometrica. 113

Ackerberg, D., C. L. Benkard, S. Berry, and A. Pakes (2007): “Econometric
tools for analyzing market outcomes,” Handbook of econometrics, 6, 4171–4276.
154

Afriat, S. N. (1967): “The construction of utility functions from expenditure data,”
International Economic Review, 8(1), 67–77. 146

Agranov, M., P. J. Healy, and K. Nielsen (2023): “Stable Randomisation,” 133,
2553–2579. 15

Agranov, M., and P. Ortoleva (2017): “Stochastic choice and preferences for
randomization,” Journal of Political Economy, 125(1), 40–68. 15, 66

(forthcoming): “Ranges of Preferences and Randomization,” Review of Eco-
nomics and Statistics. 67

Aguiar, V. H. (2017): “Random categorization and bounded rationality,” Economics
Letters, 159, 46–52. 158, 159

Aguiar, V. H., M. J. Boccardi, and M. Dean (2016): “Satisficing and stochastic
choice,” Journal of Economic Theory, 166, 445–482. 162

Aguiar, V. H., M. J. Boccardi, N. Kashaev, and J. Kim (2023): “Random
utility and limited consideration,” Quantitative Economics, 14(1), 71–116. 160

Aguirregabiria, V., and P. Mira (2010): “Dynamic discrete choice structural
models: A survey,” Journal of Econometrics, 156(1), 38–67. 165, 166

183



B. Bibliography 184

Ahn, D., R. Iijima, T. Sarver, and Y. L. Yaouanq (2019): “Behavioral Char-
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Honoré, B. E., and E. Kyriazidou (2000): “Panel data discrete choice models
with lagged dependent variables,” Econometrica, 68(4), 839–874. 111
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Appendix N

Notation

x, y, z ∈ X — alternatives (in the grand set)

A,B,C ∈ A — menus

ρ(x,A) — the probability that x is chosen from A

ρ : A → ∆(X) — stochastic choice function (s.c.f.)

P — set of all strict preferences over X

µ ∈ ∆(P) — distribution over preferences

(Ω,F ,P) — probability space

Ũ : Ω → RX — random utility

µ ∈ ∆(RX) — distribution over utilities (the law of Ũ under P)
s ∈ S — state (in the state space)

m ∈ M — message (in the message space)

β : S → ∆(M) — experiment, lives in the set E
µ ∈ ∆(∆(S)) — distribution over posteriors

f : S → ∆(Z) — an Anscombe–Aumann act

h : E → [0,∞] — cost function defined on experiments

c : ∆(∆(S)) → [0,∞] — cost function defined on distribution over posteriors

ρt(xt, At|ht) — conditional choice probability

ρ : EX → ∆(X) — stochastic choice function with attributes
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action-recommendation, 74, 100

acyclicity

cyclic monotonicity, 150, 182

for APU, 50

for Fechnerian, 46

no improving action cycles, 101

rational mixing, 66

additive perturbed utility (APU), 49

additive random expected utility, 58

additive random utility (ARU), 21

i.i.d. ARU, 22, 39

independent ARU (IARU), 146

simple IARU, 147

Ahn–Sarver Theorem, 124

Anscombe–Aumann

representation of s.c.f., 82

theorem, 81

Anscombe–Aumann (AA)

representation of preferences, 80

attention, 90, 157

attributes, 145

Bayes

average Bayes representation, 73

consistency, 83, 100

plausibility, 72

representation, 70

rule, 70

rule in the Normal-Normal model, 79

Bellman equation, 119

Blackwell theorem, 179

Block–Marschak (BM)

Axiom, 31

Polynomials, 31

Theorem, 31

blue bus and red bus, 40

character recognition, 77

Chernoff model, 137

choice function

deterministic, 10, 130

stochastic, see stochastic choice

function

chronometric function, 134

conditional logit, 147

consideration set, 157, 160

cost

of waiting, 131, 138

over experiments, 93, 97, 141

cyclic monotonicity, see acyclicity

decision tree, 115

Dekel–Lipman–Rustichini (DLR)

representation, 122

theorem, 123

diminishing sensitivity, 14

discrete choice, 13, 145

distribution over posteriors, 71

representation, 72

drift-diffusion model (DDM), 134

dynamic

logit, 165, 168
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random expected utility (DREU), 110

random utility (DRU), 107

entropy, 49, 95

expected utility

non-expected utility, 57, 65

expected utility (EU), 54, 70, 119

experiment, 70, 92, 179

Extremeness Axiom, 59, 82

Fechnerian

Expected Utility, 63

representation, 44, 50

frequency-dependence, 14, 23, 77, 79

Gul–Pesendorfer (GP)

theorem, 61

tiebreakers, 20, 62

history-dependence of s.c.f., 105

i.i.d. AREU, see additive random

expected utility

i.i.d. ARU, see additive random utility

IARU, see additive random utility

identification, see also uniqueness

under ARU, 34

under i.i.d. ARU, 39

under REU, 61

under RU, 33

with attributes, 148

Independence Axiom, 55, 81

Koopmans representation, 121

Kreps theorem, 122

Linearity Axiom, 59, 82

logit

and entropy cost, 49

and rational inattention, 95

axioms, 37

conditional, 147

dynamic, 165, 168

mixed, 41, 152

nested, 43

representation, 22, 37

with attributes, 147

with noise parameter, 38

lottery, 54

Luce

and entropy cost, 49

axioms, 37, 96

representation, 37

with lotteries, 63

Machina representation, 66

Markov Decision Problem (MDP), 165

martingale property of beliefs, 72, 92

McFadden-Train theorem, 42, 152

menu, 10

continuation menu, 115

in period t, 106

menu effects, 29

menu-dependent signal, 86

menu-variation vs attribute variation,

145

of acts, 81

of lotteries, 58

preferences over menus, 121

without ties, 62

message, 70

mutual information, 95

NIAS, see obedience

obedience, 75

optimal stopping, 129, 131

panel data, 107, 164

payoff-monotonicity, 14, 23, 81

perception, 13, 77, 78

perturbed utility (PU), 48

posterior, 70

preference, 10

over acts, 80

over lotteries, 54

strict, 10

preference for flexibility axiom, 121, 123

prior, 69

probit, 22, 23, 44, 79

Bayesian, 86

mixed, 42

psychometric function, 14, 79, 91, 96, 98,

100, 135
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random coefficient models, 151

random expected utility (REU), 58

random utility (RU), 18

additive, see additive random utility

rational expectations, 73, 123, 135

rational inattention, 95

Regularity axiom, 27, 51, 61, 62, 82, 111

joint version, 111

violations of, 29, 66, 86, 90, 114

relative entropy, 98

response times, 128

distribution of, 134

revealed posterior, 75, 100

revealed preference, 10

risk aversion, 55

comparative, 56

paradoxical result for i.i.d. AREU, 65

sequential sampling, 131

serial correlation of ϵ, 166

signal, see experiment

simple domain, 106

social surplus, 24, 42, 119, 148

under logit, 38

softmax, see logit with noise parameter

sophistication axiom, 124

sparsemax, 49

state, 69

state-dependent s.c.f., 70, 82, 95, 100

state-dependent utility, 70

state-independent utility, 80, 82

state-dependence, 105, 111

statistical model, 26

stochastic choice function (s.c.f.)

dynamic, 107

static, 13

with attributes, 145

stochastic transitivity, 46, 64, 87

stopping time, 131

substitution patterns, 150

supermodularity axiom, 30

joint version, 108

uniqueness, see also identification

cardinal, 55, 81, 82

ordinal, 12

up to addition, 37

up to multiplication, 37

utility function, 11

Bernoulli, 54

interim utility, 92

von Neumann–Morgernstern, 54

value function

continuation value, 119

value of information, 92

Wald model, 132

Williams–Daly–Zachary (WDZ)

Lemma, 148

Theorem, 149
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