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Static Random Utility

e Agent is maximizing utility subject to private information

— randomness ( “utility shocks") at individual level

— population heterogeneity

o Analyst observes agent: choices appear stochastic because analyst
does not have access to this private information

— for each menu of options, the analyst observes a probability distribution
of choices (a stochastic choice rule p)

Choice probability:

p(x, A) = ]P’(U(x) = max U(y))

yeA



Dynamic Random Utility (DRU)

Conditional choice probability:

pt(Xt,At|ht) =P Ut(X) = MmaXx Ut(yt)

Yt€A:

|
Two main dynamic effects that connect p; and p¢41

e Backward Looking: (if U; and Uy are correlated)

— History-Dependence, Choice-Persistence

e Forward Looking: (if U; satisfies the Bellman Equation)

— Agent is forward-looking and Bayesian-rational



History Dependence and Selection on Unobservables

ublica?

Rep

If political preferences persistent over time, expect history dependence:

p(R2020|R2016) > p(R2020] D2016)

History independence only if preferences completely independent over time.

History Dependence is a result of informational asymmetry



Types of History Dependence (Heckman, 1981)

1. Choice-Dependence: A consequence of the informational asymmetry
between the analyst and the agent

— Dynamic selection on unobservables
— Utility is serially correlated (past choices partially reveal it)

2. Consumption-Dependence: Past consumption changes the state of
the agent

— Habit formation or preference for variety (preferences change)
— Experimentation (beliefs change)

For today, assume 2 away, focus on 1:
e Frick, lijima, and Strzalecki (2017) has an extension to 2
e Main question here: how much history-dependence can there be?

e What are the axioms that link p; and p¢17



Dynamic Decisions

Decision Trees: x; = (z;, At+1)
— Choice today leads to an immediate payoff and a menu for tomorrow

— Stopping problems, e.g., patent renewal, Pakes (1986)



Example: Stopping problem

You can either:
e buy the legacy iPhone a in t = 0 (and nothing in period 1)

e defer purchase till t = 1 and choose between a or new iPhone b

a

Ar

e Formally, Ap :={a, A1} and A; := {a, b}

e Buying now is a, waiting is A;



Bellman Equation

Ue(ze, Ar1) = ur(ze) + E| max Urp1(yet1)
Yer1€A1

-

Bayesian Rationality:

— Preference for Flexibility (like bigger menus)
— Rational Expectations (dynamic consistency)
— Preference for late decisions (value of information)

Dynamic Discrete Choice (DDC) models in Econometrics often assume

Ue(ze, Arg1) = ve(ze) + E| max  Upgr1(ye41)

Ye41€A4

]:t:| + EgZhAH»l)

If ¢ is i.i.d., this can lead to
— violations of Bayesian Rationality

— biased estimates in optimal stopping problems
— this generalizes beyond i.i.d. €



This paper

Analyzes fully general /nonparametric model of dynamic random utility:

1. Axiomatically characterize implied dynamic stochastic choice behavior

e Backward-looking axioms

e Forward-looking axioms
2. Axiomatic analysis and comparative statics of persistence

3. Relationship with the DDC—modeling tradeoffs



Dynamic Random Utility



Decision Trees

Time: t =0,1
Per-period outcomes: Z
Decision Nodes: A; defined recursively:

e period 1: menu A; is a subset of X; :=Z2
e period 0: menu Ag is a subset of Xp := Z x A

pairs xg = (2, A1) of current outcome and continuation menu

Comment: Everything extends to finite horizon by backward induction



Conditional Choice Probabilities
p is a sequence of history-dependent choice distributions:

period 0: for each menu Ap, observe choice distribution
po(:; Ao) € A(Ao)

period 1: for each menu A; and history hO that leads to menu Aj, observe
choice distribution conditional on h°

p( Aclh®) € A(A)



Conditional Choice Probabilities
p is a sequence of history-dependent choice distributions:

period 0: for each menu Ap, observe choice distribution
po(:; Ao) € A(Ao)

period 1: for each menu A; and history hO that leads to menu Aj, observe
choice distribution conditional on h°

p( Aclh®) € A(A)

L2/ RRREEERERRRE period-0 histories
Ho = {h® = (Ao, x0) : po(x0, Ag) > 0}
Ho(Ap) - vovenee is set of histories that lead to menu A;

Ho(A1) = {h0 = (Ao, Xx0) € Ho : xo = (20, A1) for some zy € Z}



Dynamic Random Utility

Definition: A DRU representation of p consists of
e a probability space (Q, F,P)
e a stochastic process of utilities U, : Q — RXt

such that for all xg € Ag

,Oo(Xo,Ao) =P |:U0(X0) = maxX Uo(yo):|
Yo€A
and for all x; € Ay and histories (Ao, x0) € Ho(A1),

pl(X17A1’AO;XO) =P |:U1(X1) = maX Ul(yl)’Ug(Xo) = maX UO(}/O):|
y1€AL YoE€Ao



Ties

For technical reasons allow for ties and use tie-breaking

| will say that p(x, A) > 0 modulo ties if p(x", A") > 0 for x" — x
and A” — A or something roughly like that

Formalized by Ahn and Sarver (2013), we use similar notions

| will gloss over this here and focus on conceptual points



History Independence

General idea:

e Agent's choice history h® = (Ag, xo) reveals something about his
period-0 private information, so expect p1(:|h°) to depend on h°

e But dependence cannot be arbitrary: some histories are equivalent as
far as the private information they reveal
e QOur axioms:

— Identify two types of equivalence classes of histories

— Impose history independence of p; within these classes



Contraction History Independence

Axiom (Contraction History Independence): If
(i) Ao C By

(ii) po(x0,Ao) = po(xo, Bo),

then
Pl('7 '|A07 XO) — pl('7 '|BOa XO)



Example

e z does not steal any customers from x in period t =0
e so what people do in t = 1 after choosing x should be the same

e (note that z steals from y, so we have a mixture)



Necessity of CHI
Define the event C(x¢, A¢) iff Ug(x¢) = maxy,ca, Ue(ye)

Then
po(x0, Ao) = P[C(x0, Ao)]

and for all x; € Ay and histories (Ao, x0) € Ho(A1),

p1(x1, A1|Ao, x0) = P [C(x1, A1)| C(x0, Ao)]

Part (i) of CHI says Ag C By so C(xp, Bo) € C(xp,Ao)

Part (ii) of CHI says po(x0,Ao) = po(xo, Bo), so the two events are
identical almost surely

So conditioning on them should lead to the same prediction going forward



Adding Lotteries
Add lotteries: X; = A(Z x A¢41), assume each utility function is vNM

Denote lotteries by p; € X;

Helps formulate the second kind of history-independence

Makes it easy to build on the REU axiomatization

Helps overcome the limited observability problem

— not all menus observed after a given history; how to impose axioms?

Helps distinguish choice-dependence from consumption-dependence

h% = (Ao, x0) vs h° = (Ao, po, 20)



Consumption History Independence

Assume away consumption dependence and allow only for choice
dependence

Axiom (Consumption Independence): For any py € Ap with
PO(ZO)7 pO(Zé) >0

p1(-|Ao; Po; 20) = p1(+|Ao, Po, z(’))



Weak Linear History Independence

Idea: Under EU-maximization, choosing pg from Ap reveals the same
information as choosing option Apg + (1 — A)go from menu
Ao + (1= M{qo}-

Axiom (Weak Linear History Independence)

p1(-,-|A0, po) = p1 (- -|Mo + (1 = X)go, Apo + (1 — A)qo).



Necessity of WLHI

Note we have

1 1 1 1
- Zan. —An 1 = - A
C <2P0 + 5905 540 + 2{670}) C(po, Ao)

This is true because of Expected Utility:

1 1 1 1
Uy <2po + 2%) > Uy <2r0 + 2q0> for all rp € Ap
Uo(po) > Uo(ro) for all rp € Ag

So conditioning on either of these events leads to the same prediction



Example

@)

P (20%)

school 2 offers two after-school programs, school 1 offers three
different partents self-select to different schools

how would school-1 parents choose between {H, P}?

lottery to get in to the school

Axiom says choice between {H, P} independent of A



Linear History Independence

Axiom (Weak Linear History Independence)

p1(+ | Ao, po) = p1 (-5 | AAo + (1 — N)go, Apo + (1 — A)qo).

Idea was to mix-in a lottery gp. Next we mix-in a set of lotteries By

Axiom (Linear History Independence)

p1(+5:| Ao, Po)po(po, Ao)

—Zpl( | AA0+(1=A) By, Apo+(1— >\)¢0> Po()\Po+(1 A)go,MAo+(1— )\)Bo>
qo€ By



Necessity of LHI

Note that by Expected Utility we have

1 1 1 1
Zpo+ 2qo,Ao+ =B
C<2Po+ 5905 A0 + 5 o)

I

C(pQ,Ao) and C(q(), Bo)



Necessity of LHI

Axiom (Linear History Independence)
p1(+5:|Ao, Po)po(Po, Ao)

_Zpl( | AA0+(1=A) By, Apo+(1— >\)¢0> Po()\Po+(1 A)go,AAo+(1— )\)Bo>
qo€ By

Under the representation, this is equivalent to:

P(E|C(po, Ao))P(C(po, Ao))
= ZP(HC(PO,AO) N C(qo, Bo))'P<C(P0,Ao) N C(qo, Bo))

qo€Bo

This is equivalent to

P(E 1 C(po, Ao)) = S~ B(E 1 C(po, Ao) (1 C(o, Bo))

qo€Bo

This is the Law of Total Probability



Dynamic Random Ezxpected Utility

Theorem 1: p has a DREU representation if and only it satisfies
— Contraction History Independence

— Consumption History Independence

Linear History Independence
~ REU axioms in each period®
~ History-Continuity!
Remark: For REU axioms we use the approach of Gul and Pesendorfer

(2006); Ahn and Sarver (2013). We need to extend their result to infinite
spaces because Xj is infinite (our Theorem 0).



Consumption Persistence

o p1(x|x) > pa(x]y)
e again, there is no habit here
e but serially correlated utility

e widely studied in marketing
literature

e comparative statics?



Consumption Persistence

Decision trees in which t = 0 choice does not influence t = 1 menus.
Let C C A(Z) denote a typical consumption menu
Primitive consists of:

e period 0 consumption choice: po(co, Co)

e period 1 consumption choice: pi(c1, C1|Co, o)

Axiom: p features consumption persistence if for all consumption menus
C1 C Gy without ties, and ¢, ¢’ € G,

,01(C, C1|C07 C) > Pl(C7 Cl‘C07 C/)



Example

Suppose that U; follows an irreducible Markov chain
o U :={ut,...,u™}, transition matrix M
e assumptions:
~ no collinearity: u' & [co{w/, u¥, u*}] for all i,j, k,¢
~ uniformly-ranked pair: 3 ¢,c € A(Z) s.t. u'(€) > u'(c) for all i

— initial distribution has full support (but need not be the stationary
distribution)



Example

Corollary: In the Markov chain example, TFAE:
1. p features consumption persistence

2. (U, M) is a renewal process, i.e., Ja € [0,1) and v € A(U) such
that M; = o+ (1 — a)v(uv') and M = (1 — a)v ()

So either you stay put, or switch randomly according to the stationary
distribution.

In the paper:
e Comparative statics: definition in terms of p/ and p < o' > «
e General characterization (outside of Markov)

e Axioms for Markov (trivial for two periods, but not in general)



Dynamic Optimality



How to incorporate Dynamic Optimality?

e In the definition above, no structure on the family (U;)

o But typically U; satisfies the Bellman equation

Definition: p has an Bayesian Evolving Utility (BEU) representation if it
has a DREU representation where the process (U;) satisfies

Ut(ze, Ar1) = ur(ze) + OE | max  Upi1(pes1)|Fr
Pt+1€AL+1

for § > 0 and a F;-adapted process of vNM utilities u; : Q — R?

Question: What are the additional assumptions?

Answer:
¢ Option value calculation (Preference for Flexibility)

e Rational Expectations (Sophistication)



Preference for Flexibility

We develop the stochastic version of axioms of Kreps (1979); Dekel,
Lipman, and Rustichini (2001)

Axiom (Preference for Flexibility): For any A, By such that A; C B;

po((z0, B1), {(20, A1), (20, B1)}) = 1

modulo ties.
Axiom (Stochastic DLR) Preference for Flexibility + Technical conditions'

Result Stochastic DLR + Separability’ implies

A

Ut(ze, Ar1) = ur(ze) + 0E | max  Uri1(pes1)|Fr
Pt+1€AL+1

for some expectation operator I, possibly different than the true DGP



Rational Expectations (following trivial history)

e Need an axiom that ensures that & = E i.e., beliefs=DGP
e Fix a trivial history ho = ({po}, po) and menus B; D A;

Agent sometimes chooses an option in B; \ A; following hg

I

In some states of the world she must value B strictly more than A;

e Like Ahn and Sarver (2013) but they have deterministic t = 0 choice

Axiom (Sophistication): For any hg = ({po}, po) and By D A; the
following are equivalent modulo ties

1. p1(p1, B1|h®) > 0 for some p; € By \ Ay
2 p0<(z, B1),{(z, By), (z,Al)}> —1



Rational Expectations (following any history)

e Now fix any history hy = (Ao, po) and menus B; D A;

e Agent sometimes chooses an option in By \ A; following hg

!

e In some states of the world in which she chooses py from Agp, she
must value Bj strictly more than A;

Axiom (Conditional Sophistication): For any hg = (Ao, po) and B1 D A;
the following are equivalent modulo ties

1. p1(p1, B1|Ao, po) > 0 for some p1 € By \ Ay
2 po(3po+ (2. Br), 30 + 3{(2, Br), (2, A1)} ) > 0



Analogues in econometrics

o Analogue of Sophistication is the Williams-Daly-Zachary theorem

— p1 is the gradient of Uy (in the space of utilities)
— see, e.g., Chiong, Galichon, and Shum (2016)

— It is an envelope-theorem result, like the Hotelling lemma

e Hotz and Miller (1993) and the literature that follows exploits this
relationship

e Qur axiom is in a sense a “test” of this property



Characterization of BEU

Theorem 2: Suppose that p admits a DREU representation.

p has a BEU representation iff p satisfies Separability, Stochastic DLR, and
Conditional Sophistication.



Preference for making choices late

e Suppose you got admitted to PhD programs at Harvard and MIT

e Do you make your decision before the visit days or after?

y




Preference for making choices late

Proposition 2: If p has a BEU representation, then absent ties
pO(A:ifter {Ag)efore A?fter}) -1

Comment:

e BEU has positive value of information: desire to delay the choice as
late as possible to capitalize on incoming information (unless there is
a cost)



Learning

o Bayesian Evolving Utility: randomness in choice comes from changing
tastes

e Bayesian Evolving Beliefs: randomness in choice comes from random
signals
— tastes are time-invariant, but unknown u; = E[i|G;] for some
time-invariant vNM utility & : Q — R?

e To characterize BEB, need to add a “martingale” axiom (Theorem 3)
or a “consumption-inertia” axiom (Propositon 6)



Identification

e Uniqueness of the utility process, discount factor, and information
(Proposition 1.1)

e There is a vast DDC literature on identification (Manski, 1993; Rust,
1994; Magnac and Thesmar, 2002; Norets and Tang, 2013)

— ¢ not identified unless make assumptions about “observable attributes”

— How does this compare to the “menu variation" approach



Dynamac Discrete Choice



DDC model

Definition: The DDC model is a restriction of DREU to deterministic
decision trees that additionally satisfies the Bellman equation
At
Ut(Zt,At+1) = Vt(Zt) + 5E max Ut+1(yt+1)|f1_- + Egzn +1),
Yt+1€A11
with deterministic utility functions v; : Q — R?; discount factor 6 € (0, 1);
and Fi-adapted zero-mean payoff shocks & : Q — RY.



Special cases of DDC

e BEU is a special case, which can be written by setting

zt,A z+,B
65 t,At41) _ Gg +,Be41)

— shocks to consumption

e i.i.d. DDC where egzt’At“) and e¥*5+) are jid.

— shocks to actions



Other special cases of DDC

¢ permanent unobserved heterogeneity: e(tzt’A‘“) =ni + ngt’A”l),

where

— mft is a “permanent” shock that is measurable with respect to Fy

- 9§Z"A‘“) is a “transitory” shock, i.i.d. conditional on Fy

¢ transitory but correlated shocks to actions: 5§Zt’At+1) and

5(TXT’BT“) are i.i.d. whenever t = 7, but might be correlated within any

fixed period t =7



Dynamic logit
A special case of i.i.d. DDC where ¢; are distributed extreme value

Dynamic logit is a workhorse for estimation

— e.g., Miller (1984), Rust (1989), Hendel and Nevo (2006),
Gowrisankaran and Rysman (2012)

Very tractable due to the “log-sum” expression for “consumer surplus”

Vi(A¢r1) = log Z eviri(xe)

Xt+1€A+1
(This formula is also the reason why nested logit is so tractable)

Axiomatization (Fudenberg and Strzalecki, 2015)



Understanding the role of i.i.d. €

Key Assumption: Shocks to actions, €1 and ¢{#*8=1) are i id.

regardless of the nature of the menus Asy1 and Biy1
Let Ag := {(z0, A™"), (20, AVE)} where A" = {} and AYE = {2, Z}}.
Proposition 1: If p has a i.i.d. DDC representation, then

0<po ((20, Asmalhy, Ao) < 0.5.

Moreover, if the € shocks are scaled by A > 0, then this probability is
strictly increasing in A\ whenever vi(z]) > vi1(z1).



Understanding the role of i.i.d. €

Proposition 2: If p has a i.i.d. DDC representation with § < 1, then
0.5 < po ((X,Aiarly),Ao) < 1.

Moreover, if € is scaled by A > 0, then po((x, AS"Y), Ag) is strictly
increasing in A (modulo ties).

Intuition:
e The agent gets the € not at the time of consumption but at the time
of decision (even if the decision has only delayed consequences)
e So making decisions early allows him to get the max e earlier



Beyond i.1.d. DDC

e This result extends in a straightforward way to DDC with permanent
unobserved heterogeneity

— this is just a mixture of i.i.d DDC models, so inherits this property
o Also to DDC with transitory but correlated shocks to actions

e Final model: mixture of i.i.d. DDC with BEU

— horse race between the two effects



Other Decision Problems

So far, looked at pure manifestations of option value

— direct choice between nested menus

— costless option to defer choice
DDC models typically not applied to those
But these forces exist in “nearby” choice problems

So specification of shocks matters more generally



Biased Parameter Estimates

a

A1
b

Parameters: vp(a) = vi(a) = w and vi(b) = 0, discount factor §

Proposition 3: Suppose that the data generating process p is compatible
with both BEU and i.i.d. DDC. If the distribution of € has a symmetric and
unimodal density, then the MLE estimators almost surely satisfy:

1. lim, wPPC

2a. lim, 6PPC < lim, 6BEY if po(a; Ag) > 0.5
2b. lim, §PPC > lim, 6BEV if po(a; Ag) < 0.5.

— Iim. wBEU
= lim, w,



Modeling Choices

e BEU: so far few convenient parametrization (Pakes, 1986) but

— bigger menus w/prob. 1
— late decisions w/prob. 1

e i.i.d. DDC: widely used because of statistical tractability, but

— smaller menus w/prob. € (0, 3)
- early decisions w/prob. € (3,1)

Comments:

e i.i.d. DDC violates a key feature of Bayesian rationality: positive
option value

e Model Misspecification

— Maybe a fine model of (behavioral) consumers
— But what about profit maximizing firms?



Thank you!
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