Dynamic Random Utility

Mira Frick (Yale) Ryota Iijima (Yale) Tomasz Strzalecki (Harvard)

Static Random Utility

- Agent is maximizing utility subject to private information
 - randomness ("utility shocks") at individual level
 - population heterogeneity
- Analyst observes agent: choices appear stochastic because analyst does not have access to this private information
 - for each menu of options, the analyst observes a probability distribution of choices (a stochastic choice rule ρ)

Choice probability:

$$\rho(x,A) = \mathbb{P}\Big(U(x) = \max_{y \in A} U(y)\Big)$$

Dynamic Random Utility (DRU)

Conditional choice probability:

$$\rho_t(x_t, A_t | h^t) = \mathbb{P}\Big[U_t(x) = \max_{y_t \in A_t} U_t(y_t) \Big| h^t\Big]$$

Two main dynamic effects that connect ρ_t and ρ_{t+1}

- Backward Looking: (if U_t and U_{t+1} are correlated)
 - History-Dependence, Choice-Persistence
- Forward Looking: (if U_t satisfies the Bellman Equation)
 - Agent is forward-looking and Bayesian-rational

History Dependence and Selection on Unobservables

If political preferences persistent over time, expect history dependence:

$$\rho(R_{2020}|R_{2016}) > \rho(R_{2020}|D_{2016})$$

History independence only if preferences completely independent over time.

History Dependence is a result of informational asymmetry

Types of History Dependence (Heckman, 1981)

- 1. **Choice-Dependence**: A consequence of the informational asymmetry between the analyst and the agent
 - Dynamic selection on unobservables
 - Utility is serially correlated (past choices partially reveal it)
- Consumption-Dependence: Past consumption changes the state of the agent
 - Habit formation or preference for variety (preferences change)
 - Experimentation (beliefs change)

For today, assume 2 away, focus on 1:

- Frick, lijima, and Strzalecki (2017) has an extension to 2
- Main question here: how much history-dependence can there be?
- What are the axioms that link ρ_t and ρ_{t+1} ?

Dynamic Decisions

Decision Trees: $x_t = (z_t, A_{t+1})$

- Choice today leads to an immediate payoff and a menu for tomorrow
- Stopping problems, e.g., patent renewal, Pakes (1986)

Example: Stopping problem

You can either:

- buy the legacy iPhone a in t = 0 (and nothing in period 1)
- ullet defer purchase till t=1 and choose between a or new iPhone b

- Formally, $A_0 := \{a, A_1\}$ and $A_1 := \{a, b\}$
- Buying now is a, waiting is A_1

Bellman Equation

$$U_t(z_t, A_{t+1}) = u_t(z_t) + \mathbb{E}\left[\max_{y_{t+1} \in A_{t+1}} U_{t+1}(y_{t+1}) \middle| \mathcal{F}_t\right]$$

Bayesian Rationality:

- Preference for Flexibility (like bigger menus)
- Rational Expectations (dynamic consistency)
- Preference for late decisions (value of information)

Dynamic Discrete Choice (DDC) models in Econometrics often assume

$$U_t(z_t, A_{t+1}) = v_t(z_t) + \mathbb{E}\left[\max_{y_{t+1} \in A_{t+1}} U_{t+1}(y_{t+1}) \middle| \mathcal{F}_t\right] + \epsilon_t^{(z_t, A_{t+1})}$$

If ϵ is i.i.d., this can lead to

- violations of Bayesian Rationality
- biased estimates in optimal stopping problems
- this generalizes beyond i.i.d. ϵ

This paper

Analyzes fully general/nonparametric model of dynamic random utility:

- 1. Axiomatically characterize implied dynamic stochastic choice behavior
 - Backward-looking axioms
 - Forward-looking axioms
- 2. Axiomatic analysis and comparative statics of persistence
- 3. Relationship with the DDC—modeling tradeoffs

Dynamic Random Utility

Decision Trees

Time: t = 0, 1

Per-period outcomes: Z

Decision Nodes: A_t defined recursively:

- period 1: menu A_1 is a subset of $X_1 := Z$
- ullet period 0: menu A_0 is a subset of $X_0:=Z imes \mathcal{A}_1$

pairs $x_0 = (z_0, A_1)$ of current outcome and continuation menu

Comment: Everything extends to finite horizon by backward induction

Conditional Choice Probabilities

 ρ is a sequence of **history-dependent** choice distributions:

period 0: for each menu A_0 , observe choice distribution

$$\rho_0(\cdot,A_0)\in\Delta(A_0)$$

period 1: for each menu A_1 and history h^0 that leads to menu A_1 , observe choice distribution conditional on h^0

$$\rho_1(\cdot,A_1|h^0)\in\Delta(A_1)$$

Conditional Choice Probabilities

 ρ is a sequence of **history-dependent** choice distributions:

period 0: for each menu A_0 , observe choice distribution

$$\rho_0(\cdot,A_0)\in\Delta(A_0)$$

period 1: for each menu A_1 and history h^0 that leads to menu A_1 , observe choice distribution conditional on h^0

$$\rho_1(\cdot, A_1|h^0) \in \Delta(A_1)$$

 $\mathcal{H}_0 \cdot \dots \cdot \dots \cdot$ period-0 histories

$$\mathcal{H}_0 := \{ h^0 = (A_0, x_0) : \rho_0(x_0, A_0) > 0 \}$$

 $\mathcal{H}_0(A_1) \cdot \cdot \cdot \cdot$ is set of histories that lead to menu A_1

$$\mathcal{H}_0(A_1) := \{ h^0 = (A_0, x_0) \in \mathcal{H}_0 : x_0 = (z_0, A_1) \text{ for some } z_0 \in Z \}$$

Dynamic Random Utility

Definition: A DRU representation of ρ consists of

- a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- a stochastic process of utilities $U_t: \Omega \to \mathbb{R}^{X_t}$

such that for all $x_0 \in A_0$

$$\rho_0(x_0, A_0) = \mathbb{P}\left[U_0(x_0) = \max_{y_0 \in A_0} U_0(y_0)\right]$$

and for all $x_1 \in A_1$ and histories $(A_0, x_0) \in \mathcal{H}_0(A_1)$,

$$\rho_1(x_1, A_1|A_0, x_0) = \mathbb{P}\left[U_1(x_1) = \max_{y_1 \in A_1} U_1(y_1) \middle| U_0(x_0) = \max_{y_0 \in A_0} U_0(y_0)\right]$$

Ties

- For technical reasons allow for ties and use tie-breaking
- I will say that $\rho(x,A) > 0$ modulo ties if $\rho(x^n,A^n) > 0$ for $x^n \to x$ and $A^n \to A$ or something roughly like that
- Formalized by Ahn and Sarver (2013), we use similar notions
- I will gloss over this here and focus on conceptual points

History Independence

General idea:

- Agent's choice history $h^0 = (A_0, x_0)$ reveals something about his period-0 private information, so expect $\rho_1(\cdot|h^0)$ to depend on h^0
- But dependence cannot be arbitrary: some histories are *equivalent* as far as the private information they reveal
- Our axioms:
 - Identify two types of equivalence classes of histories
 - Impose history independence of ρ_1 within these classes

Contraction History Independence

Axiom (Contraction History Independence): If

(i)
$$A_0 \subseteq B_0$$

(ii)
$$\rho_0(x_0, A_0) = \rho_0(x_0, B_0)$$
,

then

$$\rho_1(\cdot,\cdot|A_0,x_0)=\rho_1(\cdot,\cdot|B_0,x_0)$$

Example

- z does not steal any customers from x in period t = 0
- so what people do in t = 1 after choosing x should be the same
- (note that z steals from y, so we have a mixture)

Necessity of CHI

Define the event $C(x_t, A_t)$ iff $U_t(x_t) = \max_{y_t \in A_t} U_t(y_t)$

Then

$$\rho_0(x_0,A_0)=\mathbb{P}\left[C(x_0,A_0)\right]$$

and for all $x_1 \in A_1$ and histories $(A_0, x_0) \in \mathcal{H}_0(A_1)$,

$$\rho_1(x_1, A_1|A_0, x_0) = \mathbb{P}\left[C(x_1, A_1)|C(x_0, A_0)\right]$$

Part (i) of CHI says $A_0 \subseteq B_0$ so $C(x_0, B_0) \subseteq C(x_0, A_0)$

Part (ii) of CHI says $\rho_0(x_0, A_0) = \rho_0(x_0, B_0)$, so the two events are identical almost surely

So conditioning on them should lead to the same prediction going forward

Adding Lotteries

Add lotteries: $X_t = \Delta(Z \times A_{t+1})$, assume each utility function is vNM

- Denote lotteries by $p_t \in X_t$
- Helps formulate the second kind of history-independence
- Makes it easy to build on the REU axiomatization
- Helps overcome the limited observability problem
 - not all menus observed after a given history; how to impose axioms?
- Helps distinguish choice-dependence from consumption-dependence

$$h^0 = (A_0, x_0)$$
 vs $h^0 = (A_0, p_0, z_0)$

Consumption History Independence

Assume away consumption dependence and allow only for choice dependence

Axiom (Consumption Independence): For any $p_0 \in A_0$ with $p_0(z_0), p_0(z_0') > 0$

$$\rho_1(\cdot|A_0,p_0,z_0) = \rho_1(\cdot|A_0,p_0,z_0')$$

Weak Linear History Independence

Idea: Under EU-maximization, choosing p_0 from A_0 reveals the same information as choosing option $\lambda p_0 + (1 - \lambda)q_0$ from menu $\lambda A_0 + (1 - \lambda)\{q_0\}$.

Axiom (Weak Linear History Independence)

$$\rho_1(\cdot,\cdot|A_0,p_0)=\rho_1(\cdot,\cdot|\lambda A_0+(1-\lambda)q_0,\lambda p_0+(1-\lambda)q_0).$$

Necessity of WLHI

Note we have

$$C\left(\frac{1}{2}p_0+\frac{1}{2}q_0,\frac{1}{2}A_0+\frac{1}{2}\{q_0\}\right)=C(p_0,A_0)$$

This is true because of Expected Utility:

$$U_0\left(rac{1}{2}p_0+rac{1}{2}q_0
ight)\geq U_0\left(rac{1}{2}r_0+rac{1}{2}q_0
ight) ext{ for all } r_0\in A_0$$

$$\downarrow \downarrow U_0(p_0)\geq U_0(r_0) ext{ for all } r_0\in A_0$$

So conditioning on either of these events leads to the same prediction

Example

- school 2 offers two after-school programs, school 1 offers three
- different partents self-select to different schools
- how would school-1 parents choose between {H, P}?
- lottery to get in to the school
- Axiom says choice between $\{H,P\}$ independent of λ

Linear History Independence

Axiom (Weak Linear History Independence)

$$\rho_1(\cdot,\cdot|A_0,p_0) = \rho_1(\cdot,\cdot|\lambda A_0 + (1-\lambda)q_0,\lambda p_0 + (1-\lambda)q_0).$$

Idea was to mix-in a lottery q_0 . Next we mix-in a set of lotteries B_0

Axiom (Linear History Independence)

$$\rho_{1}(\cdot,\cdot|A_{0},p_{0})\rho_{0}(p_{0},A_{0})$$

$$=\sum_{q_{0}\in B_{0}}\rho_{1}(\cdot,\cdot|\lambda A_{0}+(1-\lambda)B_{0},\lambda p_{0}+(1-\lambda)q_{0})\cdot\rho_{0}(\lambda p_{0}+(1-\lambda)q_{0},\lambda A_{0}+(1-\lambda)B_{0})$$

Necessity of LHI

Note that by Expected Utility we have

$$C\left(\frac{1}{2}p_{0} + \frac{1}{2}q_{0}, \frac{1}{2}A_{0} + \frac{1}{2}B_{0}\right)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Necessity of LHI

Axiom (Linear History Independence)

$$\rho_{1}(\cdot,\cdot|A_{0},p_{0})\rho_{0}(p_{0},A_{0})$$

$$=\sum_{q_{0}\in B_{0}}\rho_{1}(\cdot,\cdot|\lambda A_{0}+(1-\lambda)B_{0},\lambda p_{0}+(1-\lambda)q_{0})\cdot\rho_{0}(\lambda p_{0}+(1-\lambda)q_{0},\lambda A_{0}+(1-\lambda)B_{0})$$

Under the representation, this is equivalent to:

 $\mathbb{P}(E|C(p_0,A_0))\mathbb{P}(C(p_0,A_0))$

$$= \sum_{q_0 \in B_0} \mathbb{P}\Big(E|C(p_0, A_0) \cap C(q_0, B_0)\Big) \cdot \mathbb{P}\Big(C(p_0, A_0) \cap C(q_0, B_0)\Big)$$

This is equivalent to

$$\mathbb{P}(E \cap C(p_0, A_0)) = \sum_{q_0 \in B_0} \mathbb{P}\Big(E \cap C(p_0, A_0) \cap C(q_0, B_0)\Big)$$

This is the Law of Total Probability

Dynamic Random Expected Utility

Theorem 1: ρ has a DREU representation if and only it satisfies

- Contraction History Independence
- Consumption History Independence
- Linear History Independence
- REU axioms in each period[†]
- History-Continuity[†]

Remark: For REU axioms we use the approach of Gul and Pesendorfer (2006); Ahn and Sarver (2013). We need to extend their result to infinite spaces because X_1 is infinite (our Theorem 0).

Consumption Persistence

- $\rho_1(x|x) > \rho_1(x|y)$
- again, there is no habit here
- but serially correlated utility
- widely studied in marketing literature
- comparative statics?

Consumption Persistence

Decision trees in which t = 0 choice does not influence t = 1 menus.

Let $C \subseteq \Delta(Z)$ denote a typical **consumption menu**

Primitive consists of:

- period 0 consumption choice: $\rho_0(c_0, C_0)$
- period 1 consumption choice: $\rho_1(c_1, C_1|C_0, c_0)$

Axiom: ρ features **consumption persistence** if for all consumption menus $C_1 \subseteq C_0$ without ties, and $c, c' \in C_0$,

$$\rho_1(c, C_1|C_0, c) \ge \rho_1(c, C_1|C_0, c')$$

Example

Suppose that U_t follows an irreducible Markov chain

- $\mathcal{U} := \{u^1, ..., u^m\}$, transition matrix M
- assumptions:
 - no collinearity: $u^i \not\in [\operatorname{co}\{u^j,u^k,u^\ell\}]$ for all i,j,k,ℓ
 - uniformly-ranked pair: $\exists \ \overline{c}, \underline{c} \in \Delta(Z)$ s.t. $u^i(\overline{c}) > u^i(\underline{c})$ for all i
 - initial distribution has full support (but need not be the stationary distribution)

Example

Corollary: In the Markov chain example, TFAE:

- 1. ρ features consumption persistence
- 2. (\mathcal{U}, M) is a **renewal process**, i.e., $\exists \alpha \in [0, 1)$ and $\nu \in \Delta(\mathcal{U})$ such that $M_{ii} = \alpha + (1 \alpha)\nu(u^i)$ and $M_{ij} = (1 \alpha)\nu(u^j)$

So either you stay put, or switch randomly according to the stationary distribution.

In the paper:

- Comparative statics: definition in terms of ρ' and $\rho \Longleftrightarrow \alpha' > \alpha$
- General characterization (outside of Markov)
- Axioms for Markov (trivial for two periods, but not in general)

$Dynamic\ Optimality$

How to incorporate Dynamic Optimality?

- In the definition above, no structure on the family (U_t)
- ullet But typically U_t satisfies the Bellman equation

Definition: ρ has an *Bayesian Evolving Utility* (BEU) representation if it has a DREU representation where the process (U_t) satisfies

$$U_t(z_t, A_{t+1}) = u_t(z_t) + \delta \mathbb{E}\left[\max_{p_{t+1} \in A_{t+1}} U_{t+1}(p_{t+1}) | \mathcal{F}_t\right]$$

for $\delta > 0$ and a \mathcal{F}_t -adapted process of vNM utilities $u_t : \Omega \to \mathbb{R}^Z$

Question: What are the additional assumptions?

Answer:

- Option value calculation (Preference for Flexibility)
- Rational Expectations (Sophistication)

Preference for Flexibility

We develop the stochastic version of axioms of Kreps (1979); Dekel, Lipman, and Rustichini (2001)

Axiom (Preference for Flexibility): For any A_1, B_1 such that $A_1 \subseteq B_1$

$$\rho_0((z_0, B_1), \{(z_0, A_1), (z_0, B_1)\}) = 1$$

modulo ties.†

Axiom (Stochastic DLR) Preference for Flexibility + Technical conditions[†]

Result Stochastic DLR + Separability[†] implies

$$U_t(z_t, A_{t+1}) = u_t(z_t) + \delta \hat{\mathbb{E}} \left[\max_{p_{t+1} \in A_{t+1}} U_{t+1}(p_{t+1}) | \mathcal{F}_t \right]$$

for some expectation operator $\hat{\mathbb{E}}_{\text{\tiny{P}}}$ possibly different than the true DGP

Rational Expectations (following trivial history)

- Need an axiom that ensures that $\hat{\mathbb{E}} = \mathbb{E}$ i.e., beliefs=DGP
- Fix a trivial history $h_0 = (\{p_0\}, p_0)$ and menus $B_1 \supset A_1$

Agent sometimes chooses an option in $\ensuremath{\mathcal{B}}_1 \setminus \ensuremath{\mathcal{A}}_1$ following $\ensuremath{\mathit{h}}_0$

In some states of the world she must value B_1 strictly more than A_1

ullet Like Ahn and Sarver (2013) but they have deterministic t=0 choice

Axiom (Sophistication): For any $h_0=(\{p_0\},p_0)$ and $B_1\supset A_1$ the following are equivalent modulo ties[†]

- 1. $\rho_1(p_1, B_1|h^0) > 0$ for some $p_1 \in B_1 \setminus A_1$
- 2. $\rho_0((z, B_1), \{(z, B_1), (z, A_1)\}) = 1$

Rational Expectations (following any history)

- Now fix any history $h_0 = (A_0, p_0)$ and menus $B_1 \supset A_1$
- Agent sometimes chooses an option in $B_1 \setminus A_1$ following h_0

• In some states of the world in which she chooses p_0 from A_0 , she must value B_1 strictly more than A_1

Axiom (Conditional Sophistication): For any $h_0=(A_0,p_0)$ and $B_1\supset A_1$ the following are equivalent modulo ties[†]

1.
$$\rho_1(p_1, B_1|A_0, p_0) > 0$$
 for some $p_1 \in B_1 \setminus A_1$

2.
$$\rho_0\left(\frac{1}{2}p_0+\frac{1}{2}(z,B_1),\frac{1}{2}A_0+\frac{1}{2}\{(z,B_1),(z,A_1)\}\right)>0$$

Analogues in econometrics

- Analogue of Sophistication is the Williams-Daly-Zachary theorem
 - ρ_1 is the gradient of U_0 (in the space of utilities)
 - see, e.g., Chiong, Galichon, and Shum (2016)
 - It is an envelope-theorem result, like the Hotelling lemma
- Hotz and Miller (1993) and the literature that follows exploits this relationship
- Our axiom is in a sense a "test" of this property

Characterization of BEU

Theorem 2: Suppose that ρ admits a DREU representation.

 ρ has a BEU representation iff ρ satisfies Separability, Stochastic DLR, and Conditional Sophistication.

Preference for making choices late

- Suppose you got admitted to PhD programs at Harvard and MIT
- Do you make your decision before the visit days or after?

Preference for making choices late

Proposition 2: If ρ has a BEU representation, then absent ties[†]

$$\rho_0(A_1^{\mathsf{after}}, \{A_1^{\mathsf{before}}, A_1^{\mathsf{after}}\}) = 1$$

Comment:

 BEU has positive value of information: desire to delay the choice as late as possible to capitalize on incoming information (unless there is a cost)

Learning

- Bayesian Evolving Utility: randomness in choice comes from changing tastes
- Bayesian Evolving Beliefs: randomness in choice comes from random signals
 - tastes are time-invariant, but unknown $u_t = \mathbb{E}[\tilde{u}|\mathcal{G}_t]$ for some time-invariant vNM utility $\tilde{u}: \Omega \to \mathbb{R}^Z$
- To characterize BEB, need to add a "martingale" axiom (Theorem 3) or a "consumption-inertia" axiom (Propositon 6)

Identification

- Uniqueness of the utility process, discount factor, and information (Proposition I.1)
- There is a vast DDC literature on identification (Manski, 1993; Rust, 1994; Magnac and Thesmar, 2002; Norets and Tang, 2013)
 - δ not identified unless make assumptions about "observable attributes"
 - How does this compare to the "menu variation" approach

Dynamic Discrete Choice

$DDC \ model$

Definition: The *DDC model* is a restriction of DREU to deterministic decision trees that additionally satisfies the Bellman equation

$$U_t(z_t, A_{t+1}) = v_t(z_t) + \delta \mathbb{E} \left[\max_{v_{t+1} \in A_{t+1}} U_{t+1}(y_{t+1}) | \mathcal{F}_t \right] + \epsilon_t^{(z_t, A_{t+1})},$$

with deterministic utility functions $v_t: \Omega \to \mathbb{R}^Z$; discount factor $\delta \in (0,1)$; and \mathcal{F}_t -adapted zero-mean payoff shocks $\tilde{\epsilon}_t: \Omega \to \mathbb{R}^{Y_t}$.

Special cases of DDC

- **BEU** is a special case, which can be written by setting $\epsilon_t^{(z_t,A_{t+1})} = \epsilon_t^{(z_t,B_{t+1})}$
 - shocks to consumption
- i.i.d. DDC where $\epsilon_t^{(z_t,A_{t+1})}$ and $\epsilon_{ au}^{(y_t,B_{t+1})}$ are i.i.d.
 - shocks to actions

Other special cases of DDC

- permanent unobserved heterogeneity: $\varepsilon_t^{(z_t,A_{t+1})} = \pi_t^{z_t} + \theta_t^{(z_t,A_{t+1})}$, where
 - $\pi_t^{z_t}$ is a "permanent" shock that is measurable with respect to \mathcal{F}_0
 - $-\theta_t^{(z_t,A_{t+1})}$ is a "transitory" shock, i.i.d. conditional on \mathcal{F}_0
- transitory but correlated shocks to actions: $\varepsilon_t^{(z_t,A_{t+1})}$ and $\varepsilon_{\tau}^{(x_{\tau},B_{\tau+1})}$ are i.i.d. whenever $t\neq \tau$, but might be correlated within any fixed period $t=\tau$

Dynamic logit

- A special case of i.i.d. DDC where ϵ_t are distributed extreme value
- Dynamic logit is a workhorse for estimation
 - e.g., Miller (1984), Rust (1989), Hendel and Nevo (2006), Gowrisankaran and Rysman (2012)
- Very tractable due to the "log-sum" expression for "consumer surplus"

$$V_t(A_{t+1}) = \log \left(\sum_{x_{t+1} \in A_{t+1}} e^{v_{t+1}(x_{t+1})} \right)$$

(This formula is also the reason why nested logit is so tractable)

• Axiomatization (Fudenberg and Strzalecki, 2015)

Understanding the role of i.i.d. ϵ

Key Assumption: Shocks to actions, $\epsilon_t^{(z_t,A_{t+1})}$ and $\epsilon_t^{(z_t,B_{t+1})}$ are i.i.d. regardless of the nature of the menus A_{t+1} and B_{t+1}

Let
$$A_0 := \{(z_0, A_1^{small}), (z_0, A_1^{big})\}$$
 where $A_1^{small} = \{z_1\}$ and $A_1^{big} = \{z_1, z_1'\}$.

Proposition 1: If ρ has a i.i.d. DDC representation, then

$$0 < \rho_0\left((z_0, A_1^{\text{small}}), A_0\right) < 0.5.$$

Moreover, if the ε shocks are scaled by $\lambda > 0$, then this probability is strictly increasing in λ whenever $v_1(z_1') > v_1(z_1)$.

Understanding the role of i.i.d. ϵ

Proposition 2: If ρ has a i.i.d. DDC representation with $\delta < 1$, then $0.5 < \rho_0\left((x,A_1^{\mathsf{early}}),A_0\right) < 1.$

Moreover, if ε is scaled by $\lambda > 0$, then $\rho_0((x, A_1^{\text{early}}), A_0)$ is strictly increasing in λ (modulo ties).

Intuition:

- ullet The agent gets the ϵ not at the time of consumption but at the time of decision (even if the decision has only delayed consequences)
- ullet So making decisions early allows him to get the max ϵ earlier

Beyond i.i.d. DDC

- This result extends in a straightforward way to DDC with permanent unobserved heterogeneity
 - this is just a mixture of i.i.d DDC models, so inherits this property
- Also to DDC with transitory but correlated shocks to actions
- Final model: mixture of i.i.d. DDC with BEU
 - horse race between the two effects

Other Decision Problems

- So far, looked at pure manifestations of option value
 - direct choice between nested menus
 - costless option to defer choice
- DDC models typically not applied to those
- But these forces exist in "nearby" choice problems
- So specification of shocks matters more generally

Biased Parameter Estimates

Parameters: $v_0(a) = v_1(a) = w$ and $v_1(b) = 0$, discount factor δ

Proposition 3: Suppose that the data generating process ρ is compatible with both BEU and i.i.d. DDC. If the distribution of ϵ has a symmetric and unimodal density, then the MLE estimators almost surely satisfy:

- 1. $\lim_n \hat{w}_n^{\text{DDC}} = \lim_n \hat{w}_n^{\text{BEU}}$
- 2a. $\lim_n \hat{\delta}_n^{\mathrm{DDC}} < \lim_n \hat{\delta}_n^{\mathrm{BEU}}$ if $\rho_0(a; A_0) > 0.5$
- 2b. $\lim_n \hat{\delta}_n^{\text{DDC}} > \lim_n \hat{\delta}_n^{\text{BEU}}$ if $\rho_0(a; A_0) < 0.5$.

Modeling Choices

- BEU: so far few convenient parametrization (Pakes, 1986) but
 - bigger menus w/prob. 1
 - late decisions w/prob. 1
- i.i.d. DDC: widely used because of statistical tractability, but
 - smaller menus w/prob. $\in (0, \frac{1}{2})$
 - early decisions w/prob. $\in (\frac{1}{2}, \overline{1})$

Comments:

- i.i.d. DDC violates a key feature of Bayesian rationality: positive option value
- Model Misspecification
 - Maybe a fine model of (behavioral) consumers
 - But what about profit maximizing firms?

Thank you!

References I

- AHN, D. S., AND T. SARVER (2013): "Preference for flexibility and random choice," *Econometrica*, 81(1), 341–361.
- CHIONG, K. X., A. GALICHON, AND M. SHUM (2016): "Duality in dynamic discrete-choice models," *Quantitative Economics*, 7(1), 83–115.
- DEKEL, E., B. LIPMAN, AND A. RUSTICHINI (2001): "Representing preferences with a unique subjective state space," *Econometrica*, 69(4), 891–934.
- FRICK, M., R. IIJIMA, AND T. STRZALECKI (2017): "Dynamic Random Utility," mimeo
- Fudenberg, D., and T. Strzalecki (2015): "Dynamic logit with choice aversion," *Econometrica*, 83(2), 651–691.
- GOWRISANKARAN, G., AND M. RYSMAN (2012): "Dynamics of Consumer Demand for New Durable Goods," *mimeo*.
- Gull, F., AND W. Pesendorfer (2006): "Random expected utility," *Econometrica*, 74(1), 121–146.
- HECKMAN, J. J. (1981): "Heterogeneity and state dependence," in *Studies in labor markets*, pp. 91–140. University of Chicago Press.
- HENDEL, I., AND A. NEVO (2006): "Measuring the implications of sales and consumer inventory behavior," *Econometrica*, 74(6), 1637–1673.

References II

- HOTZ, V. J., AND R. A. MILLER (1993): "Conditional choice probabilities and the estimation of dynamic models," *The Review of Economic Studies*, 60(3), 497–529.
- KREPS, D. (1979): "A representation theorem for" preference for flexibility"," *Econometrica*, pp. 565–577.
- MAGNAC, T., AND D. THESMAR (2002): "Identifying dynamic discrete decision processes," *Econometrica*, 70(2), 801–816.
- MANSKI, C. F. (1993): "Dynamic choice in social settings: Learning from the experiences of others," *Journal of Econometrics*, 58(1-2), 121–136.
- MILLER, R. (1984): "Job matching and occupational choice," *The Journal of Political Economy*, 92, 1086–1120.
- NORETS, A., AND X. TANG (2013): "Semiparametric Inference in dynamic binary choice models," *The Review of Economic Studies*, p. rdt050.
- Pakes, A. (1986): "Patents as options: Some estimates of the value of holding European patent stocks," *Econometrica*, 54, 755–784.
- Rust, J. (1989): "A Dynamic Programming Model of Retirement Behavior," in *The Economics of Aging*, ed. by D. Wise, pp. 359–398. University of Chicago Press: Chicago.
- ——— (1994): "Structural estimation of Markov decision processes," *Handbook of econometrics*, 4, 3081–3143.