
Dynamic Random Utility

Mira Frick (Yale)
Ryota Iijima (Yale)

Tomasz Strzalecki (Harvard)



Static Random Utility

• Agent is maximizing utility subject to private information

– randomness (“utility shocks”) at individual level

– population heterogeneity

• Analyst observes agent: choices appear stochastic because analyst
does not have access to this private information

– for each menu of options, the analyst observes a probability distribution
of choices (a stochastic choice rule ρ)

Choice probability:

ρ(x ,A) = P
(
U(x) = max

y∈A
U(y)

)



Dynamic Random Utility (DRU)

Conditional choice probability:

ρt(xt ,At |ht) = P
[
Ut(x) = max

yt∈At

Ut(yt)
∣∣∣ht]

Two main dynamic effects that connect ρt and ρt+1

• Backward Looking: (if Ut and Ut+1 are correlated)

– History-Dependence, Choice-Persistence

• Forward Looking: (if Ut satisfies the Bellman Equation)

– Agent is forward-looking and Bayesian-rational



History Dependence and Selection on Unobservables

2016

2020
Democrat

Republican
Democrat

2020
Democrat

Republican

Republican

If political preferences persistent over time, expect history dependence:

ρ(R2020|R2016) > ρ(R2020|D2016)

History independence only if preferences completely independent over time.

History Dependence is a result of informational asymmetry



Types of History Dependence (Heckman, 1981)

1. Choice-Dependence: A consequence of the informational asymmetry
between the analyst and the agent

– Dynamic selection on unobservables
– Utility is serially correlated (past choices partially reveal it)

2. Consumption-Dependence: Past consumption changes the state of
the agent

– Habit formation or preference for variety (preferences change)
– Experimentation (beliefs change)

For today, assume 2 away, focus on 1:

• Frick, Iijima, and Strzalecki (2017) has an extension to 2

• Main question here: how much history-dependence can there be?

• What are the axioms that link ρt and ρt+1?



Dynamic Decisions

Decision Trees: xt = (zt ,At+1)

– Choice today leads to an immediate payoff and a menu for tomorrow

– Stopping problems, e.g., patent renewal, Pakes (1986)



Example: Stopping problem

You can either:

• buy the legacy iPhone a in t = 0 (and nothing in period 1)

• defer purchase till t = 1 and choose between a or new iPhone b

a

a

b

A0

A1

• Formally, A0 := {a,A1} and A1 := {a, b}
• Buying now is a, waiting is A1



Bellman Equation

Ut(zt ,At+1) = ut(zt) + E
[

max
yt+1∈At+1

Ut+1(yt+1)

∣∣∣∣Ft

]

Bayesian Rationality:

– Preference for Flexibility (like bigger menus)

– Rational Expectations (dynamic consistency)

– Preference for late decisions (value of information)

Dynamic Discrete Choice (DDC) models in Econometrics often assume

Ut(zt ,At+1) = vt(zt) + E
[

max
yt+1∈At+1

Ut+1(yt+1)

∣∣∣∣Ft

]
+ ε

(zt ,At+1)
t

If ε is i.i.d., this can lead to

– violations of Bayesian Rationality

– biased estimates in optimal stopping problems

– this generalizes beyond i.i.d. ε



This paper

Analyzes fully general/nonparametric model of dynamic random utility:

1. Axiomatically characterize implied dynamic stochastic choice behavior

• Backward-looking axioms

• Forward-looking axioms

2. Axiomatic analysis and comparative statics of persistence

3. Relationship with the DDC—modeling tradeoffs



Dynamic Random Utility



Decision Trees

Time: t = 0, 1

Per-period outcomes: Z

Decision Nodes: At defined recursively:

• period 1: menu A1 is a subset of X1 := Z

• period 0: menu A0 is a subset of X0 := Z ×A1

pairs x0 = (z0,A1) of current outcome and continuation menu

Comment: Everything extends to finite horizon by backward induction



Conditional Choice Probabilities

ρ is a sequence of history-dependent choice distributions:

period 0: for each menu A0, observe choice distribution

ρ0(·,A0) ∈ ∆(A0)

period 1: for each menu A1 and history h0 that leads to menu A1, observe
choice distribution conditional on h0

ρ1(·,A1|h0) ∈ ∆(A1)

H0 · · · · · · · · · · · · period-0 histories

H0 := {h0 = (A0, x0) : ρ0(x0,A0) > 0}

H0(A1) · · · · · · · · · is set of histories that lead to menu A1

H0(A1) := {h0 = (A0, x0) ∈ H0 : x0 = (z0,A1) for some z0 ∈ Z}



Conditional Choice Probabilities

ρ is a sequence of history-dependent choice distributions:

period 0: for each menu A0, observe choice distribution

ρ0(·,A0) ∈ ∆(A0)

period 1: for each menu A1 and history h0 that leads to menu A1, observe
choice distribution conditional on h0

ρ1(·,A1|h0) ∈ ∆(A1)

H0 · · · · · · · · · · · · period-0 histories

H0 := {h0 = (A0, x0) : ρ0(x0,A0) > 0}

H0(A1) · · · · · · · · · is set of histories that lead to menu A1

H0(A1) := {h0 = (A0, x0) ∈ H0 : x0 = (z0,A1) for some z0 ∈ Z}



Dynamic Random Utility

Definition: A DRU representation of ρ consists of

• a probability space (Ω,F ,P)

• a stochastic process of utilities Ut : Ω→ RXt

such that for all x0 ∈ A0

ρ0(x0,A0) = P
[
U0(x0) = max

y0∈A0

U0(y0)

]
and for all x1 ∈ A1 and histories (A0, x0) ∈ H0(A1),

ρ1(x1,A1|A0, x0) = P
[
U1(x1) = max

y1∈A1

U1(y1)
∣∣∣U0(x0) = max

y0∈A0

U0(y0)

]



Ties

• For technical reasons allow for ties and use tie-breaking

• I will say that ρ(x ,A) > 0 modulo ties if ρ(xn,An) > 0 for xn → x
and An → A or something roughly like that

• Formalized by Ahn and Sarver (2013), we use similar notions

• I will gloss over this here and focus on conceptual points



History Independence

General idea:

• Agent’s choice history h0 = (A0, x0) reveals something about his
period-0 private information, so expect ρ1(·|h0) to depend on h0

• But dependence cannot be arbitrary: some histories are equivalent as
far as the private information they reveal

• Our axioms:

– Identify two types of equivalence classes of histories

– Impose history independence of ρ1 within these classes



Contraction History Independence

Axiom (Contraction History Independence): If

(i) A0 ⊆ B0

(ii) ρ0(x0,A0) = ρ0(x0,B0),

then
ρ1(·, ·|A0, x0) = ρ1(·, ·|B0, x0)



Example

x(80%)

y(20%)

x(90%)

y(10%)

x(60%)

y(40%)

x(
80%

)

y(15%)

z(5%
)

x(90%)

y(10%)

x(65%)

y(35%)

x(45%)

y(55%)

• z does not steal any customers from x in period t = 0

• so what people do in t = 1 after choosing x should be the same

• (note that z steals from y , so we have a mixture)



Necessity of CHI

Define the event C (xt ,At) iff Ut(xt) = maxyt∈At Ut(yt)

Then
ρ0(x0,A0) = P [C (x0,A0)]

and for all x1 ∈ A1 and histories (A0, x0) ∈ H0(A1),

ρ1(x1,A1|A0, x0) = P
[
C (x1,A1)

∣∣C (x0,A0)
]

Part (i) of CHI says A0 ⊆ B0 so C (x0,B0) ⊆ C (x0,A0)

Part (ii) of CHI says ρ0(x0,A0) = ρ0(x0,B0), so the two events are
identical almost surely

So conditioning on them should lead to the same prediction going forward



Adding Lotteries
Add lotteries: Xt = ∆(Z ×At+1), assume each utility function is vNM

• Denote lotteries by pt ∈ Xt

• Helps formulate the second kind of history-independence

• Makes it easy to build on the REU axiomatization

• Helps overcome the limited observability problem

– not all menus observed after a given history; how to impose axioms?

• Helps distinguish choice-dependence from consumption-dependence

h0 = (A0, x0) vs h0 = (A0, p0, z0)



Consumption History Independence

Assume away consumption dependence and allow only for choice
dependence

Axiom (Consumption Independence): For any p0 ∈ A0 with
p0(z0), p0(z ′0) > 0

ρ1(·|A0, p0, z0) = ρ1(·|A0, p0, z
′
0)



Weak Linear History Independence

Idea: Under EU-maximization, choosing p0 from A0 reveals the same
information as choosing option λp0 + (1− λ)q0 from menu
λA0 + (1− λ){q0}.

Axiom (Weak Linear History Independence)

ρ1(·, ·|A0, p0) = ρ1
(
·, ·|λA0 + (1− λ)q0, λp0 + (1− λ)q0

)
.



Necessity of WLHI

Note we have

C

(
1

2
p0 +

1

2
q0,

1

2
A0 +

1

2
{q0}

)
= C (p0,A0)

This is true because of Expected Utility:

U0

(
1

2
p0 +

1

2
q0

)
≥ U0

(
1

2
r0 +

1

2
q0

)
for all r0 ∈ A0~ww�

U0(p0) ≥ U0(r0) for all r0 ∈ A0

So conditioning on either of these events leads to the same prediction



Example

school 2

school 1

H (80% )

P (20%)

H
(10%)

P (30%)

S (60%)

school 2

lottery school 2 (1− λ)

school 1 (λ)

H

P

H

P

H

P

S

• school 2 offers two after-school programs, school 1 offers three

• different partents self-select to different schools

• how would school-1 parents choose between {H,P}?
• lottery to get in to the school

• Axiom says choice between {H,P} independent of λ



Linear History Independence

Axiom (Weak Linear History Independence)

ρ1(·, ·|A0, p0) = ρ1
(
·, ·|λA0 + (1− λ)q0, λp0 + (1− λ)q0

)
.

Idea was to mix-in a lottery q0. Next we mix-in a set of lotteries B0

Axiom (Linear History Independence)

ρ1(·,·|A0, p0)ρ0(p0,A0)

=
∑
q0∈B0

ρ1

(
·,·|λA0+(1−λ)B0,λp0+(1−λ)q0

)
·ρ0
(
λp0+(1−λ)q0,λA0+(1−λ)B0

)



Necessity of LHI

Note that by Expected Utility we have

C

(
1

2
p0 +

1

2
q0,

1

2
A0 +

1

2
B0

)
~ww�

C (p0,A0) and C (q0,B0)



Necessity of LHI
Axiom (Linear History Independence)

ρ1(·,·|A0, p0)ρ0(p0,A0)

=
∑
q0∈B0

ρ1

(
·,·|λA0+(1−λ)B0,λp0+(1−λ)q0

)
·ρ0
(
λp0+(1−λ)q0,λA0+(1−λ)B0

)
Under the representation, this is equivalent to:

P(E |C (p0,A0))P(C (p0,A0))

=
∑
q0∈B0

P
(
E |C (p0,A0) ∩ C (q0,B0)

)
·P
(
C (p0,A0) ∩ C (q0,B0)

)
This is equivalent to

P(E ∩ C (p0,A0)) =
∑
q0∈B0

P
(
E ∩ C (p0,A0) ∩ C (q0,B0)

)
This is the Law of Total Probability



Dynamic Random Expected Utility

Theorem 1: ρ has a DREU representation if and only it satisfies

– Contraction History Independence

– Consumption History Independence

– Linear History Independence

– REU axioms in each period†

– History-Continuity†

Remark: For REU axioms we use the approach of Gul and Pesendorfer
(2006); Ahn and Sarver (2013). We need to extend their result to infinite
spaces because X1 is infinite (our Theorem 0).



Consumption Persistence

x(80%)

y(20%)

x(90%)

y(10%)

x(60%)

y(40%)

• ρ1(x |x) > ρ1(x |y)

• again, there is no habit here

• but serially correlated utility

• widely studied in marketing
literature

• comparative statics?



Consumption Persistence

Decision trees in which t = 0 choice does not influence t = 1 menus.

Let C ⊆ ∆(Z ) denote a typical consumption menu

Primitive consists of:

• period 0 consumption choice: ρ0(c0,C0)

• period 1 consumption choice: ρ1(c1,C1|C0, c0)

Axiom: ρ features consumption persistence if for all consumption menus
C1 ⊆ C0 without ties, and c, c ′ ∈ C0,

ρ1(c ,C1|C0, c) ≥ ρ1(c,C1|C0, c
′)



Example

Suppose that Ut follows an irreducible Markov chain

• U := {u1, ..., um}, transition matrix M

• assumptions:

– no collinearity: ui 6∈ [co{uj , uk , u`}] for all i , j , k, `

– uniformly-ranked pair: ∃ c , c ∈ ∆(Z ) s.t. ui (c) > ui (c) for all i

– initial distribution has full support (but need not be the stationary
distribution)



Example

Corollary: In the Markov chain example, TFAE:

1. ρ features consumption persistence

2. (U ,M) is a renewal process, i.e., ∃α ∈ [0, 1) and ν ∈ ∆(U) such
that Mii = α + (1− α)ν(ui ) and Mij = (1− α)ν(uj)

So either you stay put, or switch randomly according to the stationary
distribution.

In the paper:

• Comparative statics: definition in terms of ρ′ and ρ ⇐⇒ α′ > α

• General characterization (outside of Markov)

• Axioms for Markov (trivial for two periods, but not in general)



Dynamic Optimality



How to incorporate Dynamic Optimality?

• In the definition above, no structure on the family (Ut)

• But typically Ut satisfies the Bellman equation

Definition: ρ has an Bayesian Evolving Utility (BEU) representation if it
has a DREU representation where the process (Ut) satisfies

Ut(zt ,At+1) = ut(zt) + δE
[

max
pt+1∈At+1

Ut+1(pt+1)|Ft

]

for δ > 0 and a Ft-adapted process of vNM utilities ut : Ω→ RZ

Question: What are the additional assumptions?

Answer:

• Option value calculation (Preference for Flexibility)

• Rational Expectations (Sophistication)



Preference for Flexibility

We develop the stochastic version of axioms of Kreps (1979); Dekel,
Lipman, and Rustichini (2001)

Axiom (Preference for Flexibility): For any A1,B1 such that A1 ⊆ B1

ρ0
(
(z0,B1), {(z0,A1), (z0,B1)}

)
= 1

modulo ties.†

Axiom (Stochastic DLR) Preference for Flexibility + Technical conditions†

Result Stochastic DLR + Separability† implies

Ut(zt ,At+1) = ut(zt) + δÊ
[

max
pt+1∈At+1

Ut+1(pt+1)|Ft

]

for some expectation operator Ê, possibly different than the true DGP



Rational Expectations (following trivial history)

• Need an axiom that ensures that Ê = E i.e., beliefs=DGP

• Fix a trivial history h0 = ({p0}, p0) and menus B1 ⊃ A1

Agent sometimes chooses an option in B1 \ A1 following h0~w�
In some states of the world she must value B1 strictly more than A1

• Like Ahn and Sarver (2013) but they have deterministic t = 0 choice

Axiom (Sophistication): For any h0 = ({p0}, p0) and B1 ⊃ A1 the
following are equivalent modulo ties†

1. ρ1(p1,B1|h0) > 0 for some p1 ∈ B1 \ A1

2. ρ0

(
(z ,B1),

{
(z ,B1), (z ,A1)

})
= 1



Rational Expectations (following any history)

• Now fix any history h0 = (A0, p0) and menus B1 ⊃ A1

• Agent sometimes chooses an option in B1 \ A1 following h0~ww�
• In some states of the world in which she chooses p0 from A0, she

must value B1 strictly more than A1

Axiom (Conditional Sophistication): For any h0 = (A0, p0) and B1 ⊃ A1

the following are equivalent modulo ties†

1. ρ1(p1,B1|A0, p0) > 0 for some p1 ∈ B1 \ A1

2. ρ0

(
1
2p0 + 1

2(z ,B1), 12A0 + 1
2

{
(z ,B1), (z ,A1)

})
> 0



Analogues in econometrics

• Analogue of Sophistication is the Williams-Daly-Zachary theorem

– ρ1 is the gradient of U0 (in the space of utilities)

– see, e.g., Chiong, Galichon, and Shum (2016)

– It is an envelope-theorem result, like the Hotelling lemma

• Hotz and Miller (1993) and the literature that follows exploits this
relationship

• Our axiom is in a sense a “test” of this property



Characterization of BEU

Theorem 2: Suppose that ρ admits a DREU representation.

ρ has a BEU representation iff ρ satisfies Separability, Stochastic DLR, and
Conditional Sophistication.



Preference for making choices late

• Suppose you got admitted to PhD programs at Harvard and MIT

• Do you make your decision before the visit days or after?

A
be
for
e

1

A after1

{y}

{z}

{y , z}

y

z

y

z



Preference for making choices late

Proposition 2: If ρ has a BEU representation, then absent ties†

ρ0(Aafter
1 , {Abefore

1 ,Aafter
1 }) = 1

Comment:

• BEU has positive value of information: desire to delay the choice as
late as possible to capitalize on incoming information (unless there is
a cost)



Learning

• Bayesian Evolving Utility: randomness in choice comes from changing
tastes

• Bayesian Evolving Beliefs: randomness in choice comes from random
signals

– tastes are time-invariant, but unknown ut = E[ũ|Gt ] for some
time-invariant vNM utility ũ : Ω→ RZ

• To characterize BEB, need to add a “martingale” axiom (Theorem 3)
or a “consumption-inertia” axiom (Propositon 6)



Identification

• Uniqueness of the utility process, discount factor, and information
(Proposition I.1)

• There is a vast DDC literature on identification (Manski, 1993; Rust,
1994; Magnac and Thesmar, 2002; Norets and Tang, 2013)

– δ not identified unless make assumptions about “observable attributes”

– How does this compare to the “menu variation” approach



Dynamic Discrete Choice



DDC model

Definition: The DDC model is a restriction of DREU to deterministic
decision trees that additionally satisfies the Bellman equation

Ut(zt ,At+1) = vt(zt) + δE
[

max
yt+1∈At+1

Ut+1(yt+1)|Ft

]
+ ε

(zt ,At+1)
t ,

with deterministic utility functions vt : Ω→ RZ ; discount factor δ ∈ (0, 1);
and Ft-adapted zero-mean payoff shocks ε̃t : Ω→ RYt .



Special cases of DDC

• BEU is a special case, which can be written by setting

ε
(zt ,At+1)
t = ε

(zt ,Bt+1)
t

– shocks to consumption

• i.i.d. DDC where ε
(zt ,At+1)
t and ε

(yt ,Bt+1)
τ are i.i.d.

– shocks to actions



Other special cases of DDC

• permanent unobserved heterogeneity: ε
(zt ,At+1)
t = πztt + θ

(zt ,At+1)
t ,

where

– πzt
t is a “permanent” shock that is measurable with respect to F0

– θ
(zt ,At+1)
t is a “transitory” shock, i.i.d. conditional on F0

• transitory but correlated shocks to actions: ε
(zt ,At+1)
t and

ε
(xτ ,Bτ+1)
τ are i.i.d. whenever t 6= τ , but might be correlated within any

fixed period t = τ



Dynamic logit

• A special case of i.i.d. DDC where εt are distributed extreme value

• Dynamic logit is a workhorse for estimation

– e.g., Miller (1984), Rust (1989), Hendel and Nevo (2006),
Gowrisankaran and Rysman (2012)

• Very tractable due to the “log-sum” expression for “consumer surplus”

Vt(At+1) = log

 ∑
xt+1∈At+1

evt+1(xt+1)


(This formula is also the reason why nested logit is so tractable)

• Axiomatization (Fudenberg and Strzalecki, 2015)



Understanding the role of i.i.d. ε

Key Assumption: Shocks to actions, ε
(zt ,At+1)
t and ε

(zt ,Bt+1)
t are i.i.d.

regardless of the nature of the menus At+1 and Bt+1

Let A0 := {(z0,Asmall
1 ), (z0,A

big
1 )} where Asmall

1 = {z1} and Abig
1 = {z1, z ′1}.

Proposition 1: If ρ has a i.i.d. DDC representation, then

0 < ρ0

(
(z0,A

small
1 ),A0

)
< 0.5.

Moreover, if the ε shocks are scaled by λ > 0, then this probability is
strictly increasing in λ whenever v1(z ′1) > v1(z1).



Understanding the role of i.i.d. ε

A
be
for
e

1

A after1

{y}

{z}

{y , z}

y

z

y

z

Proposition 2: If ρ has a i.i.d. DDC representation with δ < 1, then

0.5 < ρ0

(
(x ,Aearly

1 ),A0

)
< 1.

Moreover, if ε is scaled by λ > 0, then ρ0((x ,Aearly
1 ),A0) is strictly

increasing in λ (modulo ties).

Intuition:
• The agent gets the ε not at the time of consumption but at the time

of decision (even if the decision has only delayed consequences)
• So making decisions early allows him to get the max ε earlier



Beyond i.i.d. DDC

• This result extends in a straightforward way to DDC with permanent
unobserved heterogeneity

– this is just a mixture of i.i.d DDC models, so inherits this property

• Also to DDC with transitory but correlated shocks to actions

• Final model: mixture of i.i.d. DDC with BEU

– horse race between the two effects



Other Decision Problems

• So far, looked at pure manifestations of option value

– direct choice between nested menus

– costless option to defer choice

• DDC models typically not applied to those

• But these forces exist in “nearby” choice problems

• So specification of shocks matters more generally



Biased Parameter Estimates

a

a

b

A0

A1

Parameters: v0(a) = v1(a) = w and v1(b) = 0, discount factor δ

Proposition 3: Suppose that the data generating process ρ is compatible
with both BEU and i.i.d. DDC. If the distribution of ε has a symmetric and
unimodal density, then the MLE estimators almost surely satisfy:

1. limn ŵ
DDC
n = limn ŵ

BEU
n

2a. limn δ̂
DDC
n < limn δ̂

BEU
n if ρ0(a;A0) > 0.5

2b. limn δ̂
DDC
n > limn δ̂

BEU
n if ρ0(a;A0) < 0.5.



Modeling Choices

• BEU: so far few convenient parametrization (Pakes, 1986) but

– bigger menus w/prob. 1
– late decisions w/prob. 1

• i.i.d. DDC: widely used because of statistical tractability, but

– smaller menus w/prob. ∈ (0, 12 )
– early decisions w/prob. ∈ ( 1

2 , 1)

Comments:

• i.i.d. DDC violates a key feature of Bayesian rationality: positive
option value

• Model Misspecification

– Maybe a fine model of (behavioral) consumers
– But what about profit maximizing firms?



Thank you!
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