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Goal

Understand risk sharing among agents with
ambiguity averse preferences
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Goal

Understand risk sharing among agents with
ambiguity averse preferences



Setup and notation

S — states of the world (finite)

∆(S) — all probabilities on S

two agents exchange economy, one shot ex ante trade

f : S → R+ — allocation of agent 1

g : S → R+ — allocation of agent 2



Question 1: Full Insurance



Full Insurance

Theorem

agents have strictly risk averse EU
the aggregate endowment is risk-free

common beliefs

=⇒ all PO allocations are risk-free
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the aggregate endowment is G-measurable

G-concordant beliefs
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p(· | G ) = q(· | G ) for all G ∈ G

Ep[f |G] = Eq[f |G] for all f
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Comonotonicity

Theorem

agents have strictly risk averse EU
common probability beliefs

=⇒ all PO allocations are comonotone
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states, so boils down to p = q
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v ′(g(s1))
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If f (s1) > f (s2) then g(s1) > g(s2)



Question:

What is the analogue of these results for ambiguity averse %?



Main Characters

1. Expected utility (EU) : U(f ) = Epu(f )

2. Maxmin expected utility (MEU): U(f ) = minp∈C Epu(f )

 Constraint preferences: C q,ε = {p ∈ ∆(S) | R(p ‖ q) ≤ ε}

 Rank dependent EU: C q,γ = {p ∈ ∆(S) | p(A) ≥ γ(q(A))}

3. General % : strictly convex, monotone, continuous
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This gives us freedom to play with the risk-neutral probabilities
without bending the utility too much



EU



MEU



MEU dual space



Variational



Full Insurance for Ambiguity averse %

What is the analogue of the common beliefs condition?



Full Insurance for Ambiguity averse %

Billot, Chateauneuf, Gilboa, and Tallon (2000)
Rigotti, Shannon, and Strzalecki (2008)



Beliefs

p ∈ ∆(S) is a subjective belief at f if Ep(h) ≥ Ep(f ) for all h % f
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Full Insurance

agents have strictly convex preferences
the aggregate endowment is risk-free

shared beliefs

=⇒ all PO allocations are risk-free





C



Conditions on Beliefs

EU %

Full Insurance same beliefs shared beliefs

Conditional Full Insurance concordant beliefs ?
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Conditional Full Insurance

The problem is that MRS12 depends on what is going on in state 3

(Sure thing principle violated)



Conditional Full Insurance

p is a subjective belief at f if Ep(h) ≥ Ep(f ) for all h % f

p is a G-conditional belief at f if p is concordant with some
subjective belief at f

p is a consistent G-conditional belief if p is a G-conditional
belief at any G-measurable f

Can show: p is a consistent G-conditional belief iff Ep[h|G] % h
for all h

Or: p is a consistent G-conditional belief iff f % f + ε for every ε
with Ep[ε|G] = 0
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When does this happen?

MEU with concave utility and set of priors C

q is a consistent G-conditional belief iff pq
G ∈ C for every p ∈ C

pq
G = conditionals from q, marginals from p
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Examples

Constraint preferences: Cq,ε = {p ∈ ∆(S) | R(p ‖ q) ≤ ε}

Divergence preferences: Cq,ε = {p ∈ ∆(S) | D(p ‖ q) ≤ ε}

Rank dependent EU: Cq,γ = {p ∈ ∆(S) | p(A) ≥ γ(q(A))}
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Conditional Full Insurance

Theorem

agents have strictly convex preferences
the aggregate endowment is G-measurable

shared consistent G-conditional beliefs

=⇒ all PO allocations are G-measurable



Conditional Full Insurance



Comonotonicity

Theorem

agents have strictly convex preferences
the aggregate endowment is G-measurable

shared consistent H-conditional beliefs for any H coarser than G

=⇒ all PO allocations are comonotone



Other papers

Chateauneuf, Dana, and Tallon (2000)

de Castro and Chateauneuf (2009)

Kajii and Ui (2009); Martins da Rocha (forthcoming)



Other papers

Chateauneuf, Dana, and Tallon (2000)

de Castro and Chateauneuf (2009)

Kajii and Ui (2009); Martins da Rocha (forthcoming)



Other papers

Chateauneuf, Dana, and Tallon (2000)

de Castro and Chateauneuf (2009)

Kajii and Ui (2009); Martins da Rocha (forthcoming)



Billot, A., A. Chateauneuf, I. Gilboa, and J.-M.
Tallon (2000): “Sharing Beliefs: Between Agreeing and
Disagreeing,” Econometrica, 68, 685–694.

Chateauneuf, A., R. Dana, and J. Tallon (2000): “Risk
sharing rules and Equilibria with non-additive expected utilities,”
Journal of Mathematical Economics, 34, 191–215.

de Castro, L. and A. Chateauneuf (2009): “Ambiguity
Aversion and Trade,” mimeo.

Kajii, A. and T. Ui (2009): “Interim efficient allocations under
uncertainty,” Journal of Economic Theory, 144, 337–353.

Martins da Rocha, V. F. (forthcoming): “Interim efficiency
with MEU-preferences,” JET.

Rigotti, L., C. Shannon, and T. Strzalecki (2008):
“Subjective Beliefs and Ex Ante Trade,” Econometrica, 76,
1167–1190.


	References

