Efficient Allocations under Ambiguity

Tomasz Strzalecki (Harvard University) Jan Werner (University of Minnesota)

Goal

Understand risk sharing among agents with ambiguity averse preferences

30 balls Red 60 balls Green or Blue

Goal

Understand risk sharing among agents with ambiguity averse preferences

Setup and notation

S — states of the world (finite) $\Delta(S)$ — all probabilities on Stwo agents exchange economy, one shot ex ante trade $f: S \to \mathbb{R}_+$ — allocation of agent 1 $g: S \to \mathbb{R}_+$ — allocation of agent 2

Question 1: Full Insurance

Full Insurance

Theorem

agents have strictly risk averse EU the aggregate endowment is risk-free common beliefs

 \implies all PO allocations are risk-free

Question 2: Conditional Full Insurance

Conditional Full Insurance

Theorem

agents have strictly risk averse EU the aggregate endowment is $\mathcal{G}\text{-measurable}$

 $\mathcal G\text{-}\mathsf{concordant}$ beliefs

\Longrightarrow all PO allocations are $\mathcal G\text{-measurable}$

Conditional Full Insurance

Theorem

agents have strictly risk averse EU the aggregate endowment is $\mathcal{G}\text{-measurable}$

 $\mathcal{G} ext{-concordant}$ beliefs

 \Longrightarrow all PO allocations are $\mathcal G\text{-measurable}$

 $p(\cdot \mid G) = q(\cdot \mid G)$ for all $G \in \mathcal{G}$

Conditional Full Insurance

Theorem

$\frac{u'(f(s_1))}{u'(f(s_2))}\frac{p(s_1)}{p(s_2)} = \frac{v'(g(s_1))}{v'(g(s_2))}\frac{q(s_1)}{q(s_2)}$

$$\frac{u'(f(s_1))}{u'(f(s_2))} = \frac{v'(g(s_1))}{v'(g(s_2))}$$

$$\frac{u'(f(s_1))}{u'(f(s_2))} = \frac{v'(g(s_1))}{v'(g(s_2))}$$

If
$$f(s_1) > f(s_2)$$
 then $g(s_1) > g(s_2)$, but that can't be since
 $f(s_1) + g(s_1) = f(s_2) + g(s_2)$

Question 3: Comonotonicity

Question 3: Comonotonicity

$$[f(s_1) - f(s_2)][g(s_1) - g(s_2)] \ge 0$$

Comonotonicity

Theorem

agents have strictly risk averse EU common probability beliefs

 \Longrightarrow all PO allocations are comonotone

$\frac{u'(f(s_1))}{u'(f(s_2))}\frac{p(s_1)}{p(s_2)} = \frac{v'(g(s_1))}{v'(g(s_2))}\frac{p(s_1)}{p(s_2)}$

$$\frac{u'(f(s_1))}{u'(f(s_2))}\frac{p(s_1)}{p(s_2)} = \frac{v'(g(s_1))}{v'(g(s_2))}\frac{p(s_1)}{p(s_2)}$$

Concordant not enough, because I need this to hold for any two states, so boils down to p = q

$$\frac{u'(f(s_1))}{u'(f(s_2))} = \frac{v'(g(s_1))}{v'(g(s_2))}$$

$$\frac{u'(f(s_1))}{u'(f(s_2))} = \frac{v'(g(s_1))}{v'(g(s_2))}$$

If $f(s_1) > f(s_2)$ then $g(s_1) > g(s_2)$

Question:

What is the analogue of these results for ambiguity averse \gtrsim ?

1. Expected utility (EU) : $U(f) = \mathbb{E}_{\rho}u(f)$

- 1. Expected utility (EU): $U(f) = \mathbb{E}_{p}u(f)$
- 2. Maxmin expected utility (MEU): $U(f) = \min_{p \in C} \mathbb{E}_p u(f)$

- 1. Expected utility (EU) : $U(f) = \mathbb{E}_{p}u(f)$
- 2. Maxmin expected utility (MEU): $U(f) = \min_{p \in C} \mathbb{E}_p u(f)$
 - \rightsquigarrow Constraint preferences: $C^{q,\epsilon} = \{p \in \Delta(S) \mid R(p \parallel q) \leq \epsilon\}$

- 1. Expected utility (EU) : $U(f) = \mathbb{E}_{p}u(f)$
- 2. Maxmin expected utility (MEU): $U(f) = \min_{p \in C} \mathbb{E}_p u(f)$
 - \rightsquigarrow Constraint preferences: $C^{q,\epsilon} = \{p \in \Delta(S) \mid R(p \parallel q) \leq \epsilon\}$

 \rightsquigarrow Rank dependent EU: $C^{q,\gamma} = \{p \in \Delta(S) \mid p(A) \ge \gamma(q(A))\}$

- 1. Expected utility (EU) : $U(f) = \mathbb{E}_p u(f)$
- 2. Maxmin expected utility (MEU): $U(f) = \min_{p \in C} \mathbb{E}_p u(f)$

 \rightsquigarrow Constraint preferences: $C^{q,\epsilon} = \{p \in \Delta(S) \mid R(p \parallel q) \leq \epsilon\}$

 \rightsquigarrow Rank dependent EU: $C^{q,\gamma} = \{p \in \Delta(S) \mid p(A) \ge \gamma(q(A))\}$

3. General \succeq : strictly convex, monotone, continuous

This gives us freedom to play with the risk-neutral probabilities without bending the utility too much

MEU

MEU dual space

Variational

Full Insurance for Ambiguity averse \succeq

What is the analogue of the common beliefs condition?

Full Insurance for Ambiguity averse \succeq

Billot, Chateauneuf, Gilboa, and Tallon (2000) Rigotti, Shannon, and Strzalecki (2008)

Beliefs

Beliefs

 $p \in \Delta(S)$ is a **subjective belief** at f if $\mathbb{E}_p(h) \ge \mathbb{E}_p(f)$ for all $h \succeq f$

Full Insurance

agents have strictly convex preferences the aggregate endowment is risk-free **shared** beliefs

 \implies all PO allocations are risk-free

Conditions on Beliefs

Conditions on Beliefs

The problem is that MRS_{12} depends on what is going on in state 3

(Sure thing principle violated)

p is a subjective belief at f if $\mathbb{E}_p(h) \ge \mathbb{E}_p(f)$ for all $h \succeq f$

p is a subjective belief at f if $\mathbb{E}_p(h) \ge \mathbb{E}_p(f)$ for all $h \succeq f$

p is a $\mathcal{G}\text{-}\mathbf{conditional \ belief}$ at f if p is concordant with some subjective belief at f

p is a subjective belief at f if $\mathbb{E}_p(h) \ge \mathbb{E}_p(f)$ for all $h \succeq f$

p is a $\mathcal{G}\text{-}\mathbf{conditional \ belief}$ at f if p is concordant with some subjective belief at f

p is a **consistent** G-**conditional belief** if p is a G-conditional belief at any G-measurable f

p is a subjective belief at f if $\mathbb{E}_p(h) \ge \mathbb{E}_p(f)$ for all $h \succeq f$

p is a $\mathcal{G}\text{-}\mathbf{conditional \ belief}$ at f if p is concordant with some subjective belief at f

p is a **consistent** G-**conditional belief** if p is a G-conditional belief at any G-measurable f

Can show: p is a consistent G-conditional belief iff $\mathbb{E}_p[h|\mathcal{G}] \succsim h$ for all h

Or: p is a consistent G-conditional belief iff $f \succeq f + \epsilon$ for every ϵ with $\mathbb{E}_p[\epsilon|\mathcal{G}] = 0$ When does this happen?

MEU with concave utility and set of priors C

q is a consistent \mathcal{G} -conditional belief iff $p_{\mathcal{G}}^{q} \in C$ for every $p \in C$

When does this happen?

MEU with concave utility and set of priors C

When does this happen?

Examples

Constraint preferences: $C^{q,\epsilon} = \{p \in \Delta(S) \mid R(p \parallel q) \le \epsilon\}$

Examples

Constraint preferences: $C^{q,\epsilon} = \{p \in \Delta(S) \mid R(p \parallel q) \le \epsilon\}$

Divergence preferences: $C^{q,\epsilon} = \{p \in \Delta(S) \mid D(p \parallel q) \leq \epsilon\}$

Examples

Constraint preferences: $C^{q,\epsilon} = \{p \in \Delta(S) \mid R(p \parallel q) \le \epsilon\}$

Divergence preferences: $C^{q,\epsilon} = \{p \in \Delta(S) \mid D(p \parallel q) \leq \epsilon\}$

Rank dependent EU: $C^{q,\gamma} = \{ p \in \Delta(S) \mid p(A) \ge \gamma(q(A)) \}$

Theorem

agents have strictly convex preferences the aggregate endowment is *G*-measurable **shared** consistent *G*-conditional beliefs

 \Longrightarrow all PO allocations are $\mathcal G\text{-measurable}$

Comonotonicity

Theorem

agents have strictly convex preferences the aggregate endowment is \mathcal{G} -measurable shared consistent \mathcal{H} -conditional beliefs for any \mathcal{H} coarser than \mathcal{G}

 \implies all PO allocations are comonotone

Other papers

Chateauneuf, Dana, and Tallon (2000)

Other papers

Chateauneuf, Dana, and Tallon (2000)

de Castro and Chateauneuf (2009)

Other papers

Chateauneuf, Dana, and Tallon (2000)

de Castro and Chateauneuf (2009)

Kajii and Ui (2009); Martins da Rocha (forthcoming)