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Notation

X · · · · · · · · · · · · · · · · · · · · · · · · · · · · set of alternatives

x , y , z ∈ X · · · · · · · · · · · · · · · · · · · typical alternatives

A,B,C ⊆ X · · · · · · · · · · · · · · · · · · finite choice problems (menus)

ρ(x ,A) · · · · · · · · · · · · · · · · · · probability of x being chosen from A

ρ · · · · · · · · · · · · · · · · · · · · · · · · stochastic choice function



Main Model: Bayesian Expected Utility

• A general model that nests as special cases things Mike talked about

– choice between lotteries

– perception of numerosity

– many other applications!

• The model in economics

• Useful benchmark to orient yourself during this summer school



Main Model: Bayesian Expected Utility

• The agent makes choices by maximizing utility

• The utility has a specific form: expected utility

• The expectation is formed using Bayes rule
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Utility Maximization

• Utility of item x is U(x)

• Utility function is U : X → R

• Collection of observed menus M

• Choice function is χ :M→ X such that χ(A) ∈ A for all A ∈M

• U represents χ if ∀A∈M χ(A) = x iff U(x) = maxy∈A U(y)

• Key assumption: U does not depend on A

Revealed Preference Theory: Given a choice function χ, does there
∃ U : X → R that represents it?



Utility Maximization

Axiom (Sen’s α): If x ∈ A ⊂ B and χ(B) = x , then χ(A) = x .

Proposition: Suppose X is finite and that M contains all pairs and
triples. A choice function χ satisfies Sen’s α if and only if ∃ U : X → R
that represents it.

Proof (Necessity): Suppose U represents χ and x ∈ A ⊆ B such that
χ(B) = x . Then U(x) ≥ U(y) for all y ∈ B. This implies that
U(x) ≥ U(y) for all y ∈ A. So χ(A) = x .

Proof (Sufficiency): Also easy but we will skip (even though this is the
more interesting part).



Utility Maximization

Comments:

• χ is our primitive (what the analyst observes)

• U is our representation

• Representation is as-if (we don’t claim the agent actually maximizes
U, just that they behave as-if they do)

– analogy: physical objects fall down to minimize their distance to earth,
but they don’t know how to solve any minimization problems

– if you don’t buy as-if-ness, that’s OK. It might be interesting to think
which parts of the brain do the maximization. But I won’t do it here
(maybe others will)



Stochastic Choice

• So far we assumed that observed choices are deterministic: given a
menu the agent always chooses the same element

• What if observed choices are stochastic?

• Well-documented for perceptual choices

– given two objects of similar weight, the same agent will sometimes pick
x as heavier and sometimes pick y

• Also well-documented for economic choices

– given two lotteries, the same agent will sometimes pick x and
sometimes pick y



Stochastic Choice

• We need to change our primitive

• Observed probability of choosing x from menu A is ρ(x ,A)

• Collection of all probability distributions over X is ∆(X )

• Stochastic choice function is ρ :M→ ∆(X ) such that∑
x∈A ρ(x ,A) = 1

• Two interpretations:

– within-subject experiments

– between-subject experiments



Random Utility

• We need to change our representation

• Random utility (RU) function Ũ

– formally, (Ω,P) is a probability space and Ũ : Ω→ RX

• Ũ represents ρ iff

ρ(x ,A) = P(Ũ(x) = max
y∈A

Ũ(y))

= P(ω ∈ Ω : Ũ(ω, x) ≥ max
y∈A

Ũ(ω, y))

• Key assumption: P does not depend on A

Question: What are the axioms on ρ such that a RU representation exists?



Regularity

Axiom (Regularity): If x ∈ A ⊆ B, then ρ(x ,A) ≥ ρ(x ,B)

This is an extension of Sen’s α.

Proposition: If ρ has a RU representation, then it satisfies Regularity.

Notation: N(x ,A) := {Ũ(x) = maxy∈A Ũ(y)}.

Proof: As we already established, if x maximizes U on B then x
maximizes U on A. So the event N(x ,A) is a superset of the event
N(x ,B), so it must have a larger probability.



Violations of Regularity

1. Choice Overload: tasting booth in a supermarket

– 6 varieties of jam — 70% people purchased no jam
– 24 varieties of jam — 97% people purchased no jam

2. Asymmetric dominance effect: adding a “decoy” option raises
demand for the targeted option

preference

preference

dimension 1

dimension 2

x

y

decoy
 for y



Regularity

Proposition: If X has 3 elements, then Regularity is equivalent to RU
representation.

Proof Idea:

• For each A, the sets N(x ,A) form a partition of Ω as x ranges over A

• ρ defines a probability distribution over the cells of each partition

• We have as many partitions as there are menus

• Regularity ensures that they are consistent with a single P



Beyond |X | = 3

Comments:

• Unfortunately, when |X | > 3, Regularity alone is not enough

• More axioms are needed, but hard to find economic interpretation

• More elegant axioms if X consists of lotteries  later in this lecture



Beyond |X | = 3

Axiom (Block and Marschak, 1960): For all x ∈ A

∑

B⊇A
(−1)|B\A|ρ(x ,B) ≥ 0.

Theorem (Falmagne, 1978): If X is finite and M = 2X \ {∅}, TFAE:

(i) ρ has a random utility representation

(ii) ρ satisfies the Block–Marschak axiom

Comments:

• Necessity of this axiom follows from the inclusion-exclusion formula
(Möbus transform)

• There are other axioms in the literature (due to McFadden and
Richter) but they are even worse



Additive Random Utility (ARU)

• Let v ∈ RX be a deterministic utility function

• Let ε̃ : Ω→ RX be a random unobserved utility shock or error

– the distribution of ε̃ has a density and full support

Definition: ρ has an ARU representation if it has a RU representation with

Ũ(x) = v(x) + ε̃(x)

Special Cases: it is often assumed that ε̃(x) are i.i.d. across x ∈ X

• Logit, where ε̃(x) has an “Type I Extreme Value” (TIEV) distribution

• Probit, where ε̃(x) has a Normal distribution



Positivity

Full support of ε̃ ensures that all items are chosen with positive probability

Axiom (Positivity): ρ(x ,A) > 0 for all x ∈ A

Comments:

• This leads to a non-degenerate likelihood function—good for
estimation

• Positivity cannot be rejected by any finite data set

Proposition: If X is finite and ρ satisfies Positivity, TFAE:

(i) ρ has a RU representation

(ii) ρ has a ARU representation



The Luce Model
Definition: ρ has a Luce representation iff there exists w : X → R++ s.t.

ρ(x ,A) =
w(x)∑
y∈A w(y)

Intuition 1: w(x) is the “response strength” associated with x . Choice
probability is proportional to the response strength.

Intuition 2: The Luce representation is like a conditional probability: the
probability distribution on A, is the conditional of the probability
distribution on the grand set X .

Equivalent Model: You can also rewrite this as “softmax”

ρ(x ,A) =
ev(x)∑
y∈A ev(y)

for some deterministic utility function v : X → R



Axioms for Luce/Logit

Axiom (Luce’s IIA). For all x , y ∈ A ∩ B

ρ(x ,A)

ρ(y ,A)
=
ρ(x ,B)

ρ(y ,B)
,

whenever the probabilities are positive.

Proposition: TFAE:

(i) ρ satisfies Positivity and Luce’s IIA

(ii) ρ has a Luce representation

(iii) ρ has a logit representation (i.e., ARU with i.i.d. TIEV shocks)



Summary so Far

RU = Regularity plus other Axioms

RU + Positivity = ARU

ARU + i .i .d .+ TIEV = logit

= Luce

= Positivity + Luce’s IIA Axiom



Main Model: Bayesian Expected Utility

• The agent makes choices by maximizing utility

→ The utility has a specific form: expected utility

• The expectation is formed using Bayes rule



Expected Utility

• Now X = ∆(Z ), where Z is the set of prizes

• Typical items are now p, q, r ∈ X , called lotteries

Definition: U has an EU form if for some function u ∈ RZ

U(p) := Epu :=
∑

z∈Z
u(z)p(z)

• The function u is called the Bernoulli utility function.

• When Z is money, then concavity of u corresponds to risk aversion



Expected Utility

• Key property of EU is linearity in probabilities

• For any p, q ∈ ∆(Z ) and α ∈ (0, 1) define a new lottery αp + (1−α)q
that attaches probability αp(z) + (1− α)q(z) to each prize z ∈ Z

Proposition: For finite Z , U has an EU form iff

U(αp + (1− α)q) = αU(p) + (1− α)U(q)



Random Expected Utility (REU)

Definition: ρ has a REU representation if has a RU representation where
with probability one Ũ has an EU form:

Ũ(p) := Epũ

for some random Bernoulli utility function ũ ∈ RZ



REU—Linearity

Definition: αA + (1− α)q := {αp′ + (1− α)q : p′ ∈ A}

Axiom (Linearity). For any α ∈ (0, 1) and p ∈ A and q ∈ X

ρ(p,A) = ρ(αp + (1− α)q, αA + (1− α)q)

Idea: Linearity of U applied utility by utility

ũω ∈ N(p,A)⇐⇒ ũω ∈ N (αp + (1− α)q, αA + (1− α)q)



Violation of Linearity: Allais Paradox

4.1. Expected Utility 54

For more on these see, Chapters 1, 3, and 4 of Shaked and Shanthikumar

(2007) and Section 6.D of Mas-Colell, Whinston, Green, et al. (1995).

4.1.5. Popular Parameterizations. The two most used families are Con-

stant Absolute Risk Aversion (CARA) and Constant Relative Risk Aversion

(CRRA). The first one says that risk aversion over incremental wealth stays

constant as we make the agent richer. The second one is a multiplicative ver-

sion. In other words, CARA is shift-invariant while CRAA is scale-invariant.

Both families have single-dimensional parameterizations. We say that u is

in the CARA family if

u(z) =

(
� exp(�✓z)

✓ if ✓ 6= 0

z if ✓ = 0

for some parameter ✓ 2 R. We say that u is in the CRRA family if

u(z) =

(
z1�✓�1

1�✓ if ✓ 6= 1

ln(z) if ✓ = 1.

In both cases, the parameter measures risk aversion: the more we bump it

up, the more risk averse the agent becomes.

4.1.6. Non-expected Utility. There is a large literature on non-EU prefer-

ences, motivated by the Allais (1953) paradox and the related Common Ratio

Paradox.

Example 4.11 (Common Ratio Paradox). Suppose we have the following four

lotteries.

p

$0

20%

$4,000
80%

p0

$0

80%

$4,000
20%

r $3,000
100%

r0

$0

75%

$3,000
25%

The Independence axiom implies that q % p if and only if q0 % p0. This

is because p0 = .25p + .75�0 and q0 = .25q + .75�0. However in their experi-

ment Kahneman and Tversky (1979) find that among 95 subjects 80 have the
• Note that p′ = .25p + .75δ0 and r ′ = .25r + .75δ0

• Kahneman and Tversky (1979) show that ρ(r , {p, r}) = 0.84 but
ρ(r ′, {p′, r ′}) = 0.37



REU—Axioms
Notation: Ext(A) is the set of extreme points of A

Axiom (Extremeness). ρ(Ext(A),A) = 1

Idea: The indifference curves are linear, so maximized at an extreme point
of the choice set (modulo ties)



REU—Axiomatization

Theorem† (Gul and Pesendorfer, 2001). ρ has a REU representation iff it
satisfies

– Regularity

– Extremeness

– Linearity

– Continuity†



A different model

• Let Uθ be a family of vNM forms with CARA or CRRA indexes (allow
for risk-aversion and risk-loving)

• Higher θ is more risk-aversion

Model 1 (à la REU): There is a probability distribution P over error shocks
ε̃ to the preference parameter θ

ρREUθ (p,A) = P{Uθ+ε̃(p) ≥ Uθ+ε̃(q) for all q ∈ A}

Model 2 (à la ARU): There is a probability distribution P over error
shocks ε̃ to the expected value, ε̃ i.i.d. over lotteries

ρARUθ (p,A) = P{Uθ(p) + ε̃(p) ≥ Uθ(q) + ε̃(q) for all q ∈ A}

Comment: In Model 2, preferences over lotteries are not vNM!



Comparing the two models

Observation 1: Model 1 has intuitive properties:

• If p FOSD q, then ρREUθ (p, {p, q}) = 1

• If p SOSD q, then ρREUθ (p, {p, q}) is increasing in θ

Observation 2: Model 2 not so much:

• If p FOSD q, then ρARUθ (p, {p, q}) < 1

• If p SOSD q, then ρARUθ (p, {p, q}) is not monotone in θ

Theorem If p SOSD q, then ρARUθ (p, {p, q}) is strictly decreasing for large
enough θ.



Main Model: Bayesian Expected Utility

• The agent makes choices by maximizing utility

• The utility has a specific form: expected utility

→ The expectation is formed using Bayes rule



Timing of Beliefs

interim
stage

posterior
belief

prior
belief

ex ante
stage

ex post
stage

state is
learned

time

information
arrives

initial 
uncertainty

Bayes rule

-



Ex Ante Stage

• S is set of states of the world

• p ∈ ∆(S) is prior of the agent (initial belief)

• v : X × S → R (deterministic) utility function of the agent

• For any belief q ∈ ∆(S) the expected utility of x is denoted by

Eqv(x) :=
∑

s∈S
q(s)v(x , s)

• Agent faced ex ante with menu A ⊆ X solves maxx∈A Epv(x)

• Observed choices of agent are deterministic



Interim Stage

• Agent receives a message m ∈ M (a “noisy mental representation” or
a privately observed signal)

• β : S → ∆(M) is the signal structure (a.k.a. Blackwell experiment)

• For each message m there is a posterior belief q(·|m) ∈ ∆(S)

• Posterior is given by the Bayes rule

qm(s) = q(s|m) =
β(m|s)p(s)∑
s′ β(m|s ′)p(s ′)

• Given message m agent solves maxx∈A Eqmv(x)



Interim Choice Probabilities

• Agent: does not know s learns m

• Analyst: knows s, does not learn m

• Observed choices are stochastic. Choice probability in state s is

ρs(x ,A) = β
({

m ∈ M : Eqmv(x) = max
y∈A

Eqmv(y)
} ∣∣∣ s

)

• So now instead of ρ we have a collection (ρs)s∈S

Observation: If β does not depend on the menu, then each ρs has a RU
representation



Example 1: character recognition

• In each trial the subject is briefly shown a character, say c or e

• X = {c , e}, S = {sc , se}

• v(c , sc) = v(e, se) = 1, v(c , se) = v(e, sc) = 0

• M = R random perception

• β : S → ∆(M) is the signal with density b(m|s)

• Bayes rule says:
q(sc |m)

q(se |m)
=

b(m|sc)

b(m|se)

p(sc)

p(se)

• Optimal to choose c if q(sc |m)
q(se |m) > 1



Example 1: character recognition

• Bayes rule says:
q(sc |m)

q(se |m)
=

b(m|sc)

b(m|se)

p(sc)

p(se)

• Optimal to choose c if q(sc |m)
q(se |m) > 1

• Let p := p(sc) and `(m) := b(m|sc )
b(m|se)

• Optimal to choose c if `(m) > p
1−p

• Let L(k) := {m ∈ M : `(m) > k}. Notice k > k ′ implies L(k) ⊆ L(k ′)

• So we have ρs,p(c) = β(L(1−pp )|s)  increasing function of p



Example 1: character recognition

• Imagine you run this experiment in batches

• In each batch of trials the frequency of c is different

• BEU model predicts that ρ depends on frequency

– assuming that agent somehow adapts to the frequency in each batch

– perhaps you throw out initial trials in each batch (adaptation phase)



Example 1: character recognition

• BEU model predicts that ρ depends on frequency

ρ(c)

ρ(c)

s

s

p=0.1

p=0.3

p=0.5

p=0.7

p=0.9

c

e

gr(m)1
p=.7

p=.0
S

I
g"(m)

-
• Another prediction of BEU: making the task harder shifts the curve

toward the diagonal



Example 2: weight discrimination

• X = {`, r} - physical objects

• s ∈ R2
+ - true weight of each object

• p ∈ ∆(S) prior is such that weight is i.i.d. over objects

• m ∈ R2
+ - perception of weight of each object

• mx ∼ N(sx , ν
2) - signal structure

• If menu is A = {`, r} then observed choice probability is

ρs(`,A) = Φ
(s` − sr

ν
√

2

)
 psychometric function



Example 3: Weber’s law

• Instead of mx ∼ N(sx , ν
2)

• Define mx ∼ N(log sx , ν
2)

• If menu is A = {`, r} then observed choice probability is

ρs(`,A) = Φ
( log(s`/sr )

ν
√

2

)
 Weber’s law



Example 4: choice between lotteries

• This is (a version of) Mike’s model

• For each lottery, agent has a noisy perception of payoffs and
probabilities

• Maximizes EU given their posterior of what the lottery is

• The simple version where only payoffs are imperfectly perceived is a
special case of REU

– can interpret random perception/posterior as random Bernoulli utility



Example 5: economic example

• Agent is a HR recruiter who is hiring an applicant

• S := {0, 1} is the qualification of the applicant (low or high)

• Interview can either be a flop or go well: M = {m0,m1}

• Signal is symmetric with precision b := β(m1|s = 1) = β(m0|s = 0)

• A := {0, 1} is menu of choices (either pass or make a hire).

• Utility of hiring a qualified applicant equals 1 and an unqualified
applicant, −1. The utility of not hiring is zero.

• The analyst who observes s but not m sees high-skilled applicants
hired b percent of the time and low-skilled applicants being hired
1− b percent of the time.



Bayes Rule

• BEU assumes Bayesian updating

• Even though there is massive evidence against it:

– base-rate neglect

– confirmation bias

– gambler’s fallacy

– hot-hand fallacy

• So what? BEU also assumes EU even though evidence against

– yet BEU can produce behavior similar to Prospect Theory, etc!

• Difference between assuming these things at the level of
representation and at the level of behavior



Summary

• RU (random tastes): Regularity plus other messy axioms

• REU (random risk aversion): Regularity plus Linearity plus
Extremeness

• BEU (random perception): Axioms?

• In all of these there was an invariance assumption

– the distribution of utilities independent of menu

– the signal structure independent of menu



Going forward: active learning

• So far, learning was passive (β was fixed)

• In models of active learning the agent can choose β at a cost

 pay attention

• What is the appropriate cost function?

– mutual information  rational inattention (Sims and his followers)

– tractable but has lots of problems

– for example the psychometric function in the weight discrimination task
is a step function, instead of a smooth S-shaped function

– many other costs have been proposed

• Next lecture: dynamic model of active learning



Example of active learning

s1 s2

x 0 2
y 1 1
z 2 0

• Prior is (12 ,
1
2)

• Cost of learning the state perfectly is 0.75

• No other learning possible (cost infinity)

• ρ(x , {x , y}) = 0, ρ(x , {x , y , z}) = 1
2

• Violation of Regularity because adding z adds incentive to learn about
the state
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