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Notation

X o set of alternatives
Xy Y, ZEX v typical alternatives
AB,CCTX coreeiieiiinn finite choice problems (menus)
PXGA) o probability of x being chosen from A

p ........................ stochastic Choice function



Main Model: Bayesian FExpected Utility

o A general model that nests as special cases things Mike talked about

— choice between lotteries
— perception of numerosity

— many other applications!
e The model in economics

o Useful benchmark to orient yourself during this summer school



Main Model: Bayesian FExpected Utility

e The agent makes choices by maximizing utility
e The utility has a specific form: expected utility

e The expectation is formed using Bayes rule
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Utility Mazximization

Utility of item x is U(x)

Utility functionis U : X — R

Collection of observed menus M

Choice function is x : M — X such that x(A) € A for all A€ M

e U represents x if Vacam x(A) = x iff U(x) = maxy,ea U(y)

Key assumption: U does not depend on A

Revealed Preference Theory: Given a choice function x, does there
3 U : X — R that represents it?



Utility Mazximization

Axiom (Sen’s a): If x € AC B and x(B) = x, then x(A) = x.

Proposition: Suppose X is finite and that M contains all pairs and
triples. A choice function x satisfies Sen’'s aif and only if 3 U : X —» R
that represents it.

Proof (Necessity): Suppose U represents x and x € A C B such that
X(B) = x. Then U(x) > U(y) for all y € B. This implies that
U(x) > U(y) for all y € A. So x(A) = x. O

Proof (Sufficiency): Also easy but we will skip (even though this is the
more interesting part).



Utility Mazximization

Comments:

e x is our primitive (what the analyst observes)
e U is our representation

e Representation is as-if (we don't claim the agent actually maximizes
U, just that they behave as-if they do)

— analogy: physical objects fall down to minimize their distance to earth,
but they don’t know how to solve any minimization problems

— if you don’t buy as-if-ness, that’s OK. It might be interesting to think
which parts of the brain do the maximization. But | won't do it here
(maybe others will)



Stochastic Choice

So far we assumed that observed choices are deterministic: given a
menu the agent always chooses the same element

What if observed choices are stochastic?

Well-documented for perceptual choices
— given two objects of similar weight, the same agent will sometimes pick
x as heavier and sometimes pick y
Also well-documented for economic choices

— given two lotteries, the same agent will sometimes pick x and
sometimes pick y



Stochastic Choice

We need to change our primitive
Observed probability of choosing x from menu A is p(x, A)
Collection of all probability distributions over X is A(X)

Stochastic choice function is p : M — A(X) such that
erA p(X,A) = 1

Two interpretations:

— within-subject experiments

— between-subject experiments



Random Utility

We need to change our representation

Random utility (RU) function U

— formally, (Q,P) is a probability space and U:Q— RX

o U represents p iff
px. A) = P(U(x) = max U(y))
yeEA

=P(w e Q: U(w,x) > max U(w, y))
Y€EA

Key assumption: P does not depend on A

Question: What are the axioms on p such that a RU representation exists?



Regularity

Axiom (Regularity): If x € A C B, then p(x,A) > p(x, B)

This is an extension of Sen’s a.

Proposition: If p has a RU representation, then it satisfies Regularity.
Notation: N(x, A) := {U(x) = maxyea U(y)}.

Proof: As we already established, if x maximizes U on B then x
maximizes U on A. So the event N(x, A) is a superset of the event
N(x, B), so it must have a larger probability.



Violations of Regularity

1. Choice Overload: tasting booth in a supermarket

— 6 varieties of jam — 70% people purchased no jam
— 24 varieties of jam — 97% people purchased no jam

2. Asymmetric dominance effect: adding a “decoy” option raises
demand for the targeted option

preference

dimension 2

preference

dimension 1



Regularity

Proposition: If X has 3 elements, then Regularity is equivalent to RU
representation.

Proof ldea:

e For each A, the sets N(x, A) form a partition of Q as x ranges over A
e p defines a probability distribution over the cells of each partition
e We have as many partitions as there are menus

e Regularity ensures that they are consistent with a single P



Beyond | X| =3

Comments:

e Unfortunately, when | X| > 3, Regularity alone is not enough
e More axioms are needed, but hard to find economic interpretation

o More elegant axioms if X consists of lotteries ~» later in this lecture



Beyond | X| =3
Axiom (Block and Marschak, 1960): For all x € A

S (-1)EVp(x, B) > 0.
BDA
Theorem (Falmagne, 1978): If X is finite and M = 2X\ {0}, TFAE:
(i) p has a random utility representation

(ii) p satisfies the Block—Marschak axiom

Comments:

o Necessity of this axiom follows from the inclusion-exclusion formula
(M&bus transform)

e There are other axioms in the literature (due to McFadden and
Richter) but they are even worse



Additive Random Utility (ARU)

e Let v € RX be a deterministic utility function
e Let €: Q — RX be a random unobserved utility shock or error

— the distribution of € has a density and full support

Definition: p has an ARU representation if it has a RU representation with

U(x) = v(x) + &(x)

Special Cases: it is often assumed that €(x) are i.i.d. across x € X

o Logit, where €(x) has an “Type | Extreme Value” (TIEV) distribution

o Probit, where €(x) has a Normal distribution



Positivity
Full support of € ensures that all items are chosen with positive probability
Axiom (Positivity): p(x,A) >0 for all x € A

Comments:

e This leads to a non-degenerate likelihood function—good for
estimation

o Positivity cannot be rejected by any finite data set

Proposition: If X is finite and p satisfies Positivity, TFAE:
(i) p has a RU representation

(ii) p has a ARU representation



The Luce Model

Definition: p has a Luce representation iff there exists w : X — R s.t.
w(x)
ZyeA W(y)

Intuition 1: w(x) is the “response strength” associated with x. Choice
probability is proportional to the response strength.

p(x,A) =

Intuition 2: The Luce representation is like a conditional probability: the
probability distribution on A, is the conditional of the probability
distribution on the grand set X.

Equivalent Model: You can also rewrite this as “softmax”
ev(x)
ZyeA ev(y)

for some deterministic utility function v : X — R

p(x, A) =



Azioms for Luce/Logit

Axiom (Luce's lIA). For all x,y € AN B

p(x,A) _ p(x,B)

p(y,A)  ply,B)’

whenever the probabilities are positive.

Proposition: TFAE:
(i) p satisfies Positivity and Luce's l1A
(ii) p has a Luce representation
(ii) p has a logit representation (i.e., ARU with i.i.d. TIEV shocks)



Summary so Far

RU = Regularity plus other Axioms
RU + Positivity = ARU
ARU +i.i.d. 4+ TIEV = logit
= Luce

= Positivity + Luce's IIA Axiom



Main Model: Bayesian FExpected Utility

e The agent makes choices by maximizing utility
— The utility has a specific form: expected utility

e The expectation is formed using Bayes rule



Expected Utility

e Now X = A(Z), where Z is the set of prizes

e Typical items are now p, q,r € X, called lotteries

Definition: U has an EU form if for some function v € R?

U(p) :=Epu:= Z u(z)p(2)

zeZ

e The function u is called the Bernoulli utility function.

e When Z is money, then concavity of u corresponds to risk aversion



Expected Utility

o Key property of EU is linearity in probabilities

e Forany p,q € A(Z) and « € (0, 1) define a new lottery ap+ (1 —a)q
that attaches probability ap(z) + (1 — @)q(z) to each prize z € Z

Proposition: For finite Z, U has an EU form iff

U(ap + (1 — a)q) = alU(p) + (1 — a)U(q)



Random Ezxpected Utility (REU)

Definition: p has a REU representation if has a RU representation where
with probability one U has an EU form:

for some random Bernoulli utility function i € R



REU— Linearity

Definition: aA+ (1 —a)qg:={ap'+ (1 —a)q: p' € A}

Axiom (Linearity). For any a € (0,1) and p€ Aand g € X

p(p,A) = plap + (1 — a)g,aA+ (1 —«a)q)

Idea: Linearity of U applied utility by utility

i, € N(p,A) <= i, € N(ap+ (1 —a)q,cA+ (1 — a)q)



Violation of Linearity: Allais Paradox

$4,000
80%
@< O $3,000
$0
$3,000
e $4000 -

e Note that p’ = .25p + .750¢ and r’ = .25r + .754
e Kahneman and Tversky (1979) show that p(r,{p, r}) = 0.84 but
p(r', {p',r'}) =0.37



REU—Azioms

Notation: Ext(A) is the set of extreme points of A
Axiom (Extremeness). p(Ext(A),A) =1

Idea: The indifference curves are linear, so maximized at an extreme point
of the choice set (modulo ties)




REU—Aziomatization

Theorem! (Gul and Pesendorfer, 2001). p has a REU representation iff it
satisfies

— Regularity
— Extremeness

— Linearity

Continuity!



A different model

e Let Uy be a family of vNM forms with CARA or CRRA indexes (allow
for risk-aversion and risk-loving)

e Higher 8 is more risk-aversion

Model 1 (a la REU): There is a probability distribution IP over error shocks
€ to the preference parameter 6

PKEY(p, A) = P{Up12(p) > Upse(q) for all q € A}
Model 2 (a la ARU): There is a probability distribution P over error
shocks € to the expected value, € i.i.d. over lotteries

5"V (p, A) = P{Us(p) + &(p) > Us(q) + &(q) for all g € A}

Comment: In Model 2, preferences over lotteries are not vNM!



Comparing the two models

Observation 1: Model 1 has intuitive properties:

e If p FOSD g, then ngU(p, {p,q}) =1
e If p SOSD g, then pg’EU(p7 {p, q}) is increasing in 0

Observation 2: Model 2 not so much:

o If p FOSD gq, then pg‘RU(p, {p,q}) <1
e If p SOSD gq, then p'RY(p, {p, q}) is not monotone in 6

Theorem If p SOSD g, then péRU(p, {p, q}) is strictly decreasing for large
enough 6.



Main Model: Bayesian FExpected Utility

e The agent makes choices by maximizing utility
e The utility has a specific form: expected utility

— The expectation is formed using Bayes rule



Timing of Beliefs

ex ante interim ex post
stage stage stage
initial information state is
uncertainty arrives learned
[ [ 1 N
1 1 ! /7
time
prior posterior
belief belief
\ A
\ /
N 7
~ Pl

Bayes rule



Ex Ante Stage
S is set of states of the world
p € A(S) is prior of the agent (initial belief)
v: X xS — R (deterministic) utility function of the agent

For any belief g € A(S) the expected utility of x is denoted by

Eqv(x) =Y q(s)v(x,s)

seS

Agent faced ex ante with menu A C X solves max,ca Epv(x)

Observed choices of agent are deterministic



Interim Stage

Agent receives a message m € M (a “noisy mental representation” or
a privately observed signal)

B :S — A(M) is the signal structure (a.k.a. Blackwell experiment)
For each message m there is a posterior belief q(-|m) € A(S)

Posterior is given by the Bayes rule

o Bl
am(s) = q(s|m) S B(m|s")p(s)

Given message m agent solves maxeca Eqg,, v(x)



Interim Choice Probabilities

Agent: does not know s learns m

Analyst: knows s, does not learn m

Observed choices are stochastic. Choice probability in state s is

p°(x,A) = 6<{m eM:Eg,v(x)= TEaz\(Eqmv(y)} ‘ s)

So now instead of p we have a collection (p°)ses

Observation: If 5 does not depend on the menu, then each p°® has a RU
representation



Ezxample 1: character recognition

In each trial the subject is briefly shown a character, say c or e
X =A{c,e}, S ={s,s°}

v(c,s¢) =v(e,s¢) =1, v(c,s¢) =v(e,s¢) =0

M = R random perception

B :S — A(M) is the signal with density b(m|s)

Bayes rule says:
q(s°[m) _ b(m|s€) p(s°)
q(s¢[m)  b(m|s¢) p(s®)

: e q(s¢|m)
Optimal to choose c if a(sem) > 1




Ezxample 1: character recognition

Bayes rule says:
q(s°[m) _ b(m|s€) p(s°)
q(s¢[m)  b(m|s¢) p(s®)

a(s°|m)
a(seim) = 1

Optimal to choose ¢ if

Let p := p(s€) and ¢(m) := %

Optimal to choose c if {(m) > £,
Let L(k) := {m € M : é(m) > k}. Notice k > k' implies L(k) C L(K')

So we have p*P(c) = 6(L(1_Tp)|s) ~> increasing function of p



Ezxample 1: character recognition

e Imagine you run this experiment in batches
o In each batch of trials the frequency of c is different

e BEU model predicts that p depends on frequency

— assuming that agent somehow adapts to the frequency in each batch

— perhaps you throw out initial trials in each batch (adaptation phase)



Ezxample 1: character recognition

e BEU model predicts that p depends on frequency

$

p(c

)

p=0.9
/ (] /
® =0.7 4
p=0. y

/
7

o p=05

/s

® p=03

° p/:0.1

e Another prediction of BEU: making the task harder shifts the curve
toward the diagonal



Example 2: weight discrimination

X = {¥, r} - physical objects

s€E Ri - true weight of each object

p € A(S) prior is such that weight is i.i.d. over objects
m € Ri - perception of weight of each object

my ~ N(sy, v?) - signal structure

If menu is A = {/, r} then observed choice probability is

Sy — S¢

V2

P (¢, A) = CD( > ~~ psychometric function



Ezxample 3: Weber’s law

e Instead of m, ~ N(sy,?)
e Define my ~ N(log sx, %)
e If menuis A= {/, r} then observed choice probability is

P50, A) = q>('°gy(5\%s’)) ~ Weber’s law



Example 4: choice between lotteries

This is (a version of) Mike's model

For each lottery, agent has a noisy perception of payoffs and
probabilities

Maximizes EU given their posterior of what the lottery is

The simple version where only payoffs are imperfectly perceived is a
special case of REU

— can interpret random perception/posterior as random Bernoulli utility



Ezxample 5: economic example

Agent is a HR recruiter who is hiring an applicant

S :=1{0,1} is the qualification of the applicant (low or high)
Interview can either be a flop or go well: M = {mg, m;}

Signal is symmetric with precision b := 3(my|s = 1) = 5(mg|s = 0)
A :={0,1} is menu of choices (either pass or make a hire).

Utility of hiring a qualified applicant equals 1 and an unqualified
applicant, —1. The utility of not hiring is zero.

The analyst who observes s but not m sees high-skilled applicants
hired b percent of the time and low-skilled applicants being hired
1 — b percent of the time.



Bayes Rule

e BEU assumes Bayesian updating

e Even though there is massive evidence against it:

— base-rate neglect
— confirmation bias
— gambler's fallacy

— hot-hand fallacy

e So what? BEU also assumes EU even though evidence against

— yet BEU can produce behavior similar to Prospect Theory, etc!

o Difference between assuming these things at the level of
representation and at the level of behavior



Summary

RU (random tastes): Regularity plus other messy axioms

REU (random risk aversion): Regularity plus Linearity plus
Extremeness

BEU (random perception): Axioms?

In all of these there was an invariance assumption

— the distribution of utilities independent of menu

— the signal structure independent of menu



Going forward: active learning
e So far, learning was passive (3 was fixed)

¢ In models of active learning the agent can choose  at a cost

~~ pay attention

e What is the appropriate cost function?

— mutual information ~~ rational inattention (Sims and his followers)

— tractable but has lots of problems

— for example the psychometric function in the weight discrimination task
is a step function, instead of a smooth S-shaped function

— many other costs have been proposed

o Next lecture: dynamic model of active learning



FExample of active learning

51 S
x| 0 2
y|l1l 1
z|2 0

Prior is (,1)
Cost of learning the state perfectly is 0.75
No other learning possible (cost infinity)

plx {x,v}) = 0, plx. {x,y,2}) = 3

Violation of Regularity because adding z adds incentive to learn about
the state
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