Stochastic Choice

Tomasz Strzalecki

Summer School in Economic Theory, IIAS Jerusalem, 2023

Notation

X set of alternatives
$x, y, z \in X$ typical alternatives
$A, B, C \subseteq X$ finite choice problems (menus)
$\rho(x,A)$ probability of x being chosen from A
$ ho \cdots \cdots \cdots \cdots \cdots \cdots$ stochastic choice function

- A general model that nests as special cases things Mike talked about
 - choice between lotteries
 - perception of numerosity
 - many other applications!
- The model in economics
- Useful benchmark to orient yourself during this summer school

- The agent makes choices by maximizing utility
- The utility has a specific form: **expected** utility
- The expectation is formed using **Bayes** rule

- ightarrow The agent makes choices by maximizing **utility**
 - The utility has a specific form: **expected** utility
 - The expectation is formed using **Bayes** rule

Utility Maximization

- *Utility* of item x is U(x)
- Utility function is $U: X \to \mathbb{R}$
- ullet Collection of observed menus ${\mathcal M}$
- Choice function is $\chi: \mathcal{M} \to X$ such that $\chi(A) \in A$ for all $A \in \mathcal{M}$
- *U* represents χ if $\forall_{A \in \mathcal{M}} \chi(A) = x$ iff $U(x) = \max_{y \in A} U(y)$
- Key assumption: U does not depend on A

Revealed Preference Theory: Given a choice function χ , does there $\exists \ U: X \to \mathbb{R}$ that represents it?

Utility Maximization

Axiom (Sen's α): If $x \in A \subset B$ and $\chi(B) = x$, then $\chi(A) = x$.

Proposition: Suppose X is finite and that $\mathcal M$ contains all pairs and triples. A choice function χ satisfies Sen's α if and only if $\exists \ U: X \to \mathbb R$ that represents it.

Proof (Necessity): Suppose U represents χ and $x \in A \subseteq B$ such that $\chi(B) = x$. Then $U(x) \geq U(y)$ for all $y \in B$. This implies that $U(x) \geq U(y)$ for all $y \in A$. So $\chi(A) = x$.

Proof (Sufficiency): Also easy but we will skip (even though this is the more interesting part).

Utility Maximization

Comments:

- χ is our *primitive* (what the analyst observes)
- *U* is our representation
- Representation is as-if (we don't claim the agent actually maximizes
 U, just that they behave as-if they do)
 - analogy: physical objects fall down to minimize their distance to earth, but they don't know how to solve any minimization problems
 - if you don't buy as-if-ness, that's OK. It might be interesting to think which parts of the brain do the maximization. But I won't do it here (maybe others will)

Stochastic Choice

- So far we assumed that observed choices are *deterministic*: given a menu the agent always chooses the same element
- What if observed choices are stochastic?
- Well-documented for perceptual choices
 - given two objects of similar weight, the same agent will sometimes pick
 x as heavier and sometimes pick y
- Also well-documented for economic choices
 - given two lotteries, the same agent will sometimes pick x and sometimes pick y

Stochastic Choice

- We need to change our *primitive*
- Observed probability of choosing x from menu A is $\rho(x, A)$
- Collection of all probability distributions over X is $\Delta(X)$
- Stochastic choice function is $\rho: \mathcal{M} \to \Delta(X)$ such that $\sum_{x \in A} \rho(x,A) = 1$
- Two interpretations:
 - within-subject experiments
 - between-subject experiments

Random Utility

- We need to change our representation
- ullet Random utility (RU) function \widetilde{U}
 - formally, (Ω,\mathbb{P}) is a probability space and $\widetilde{U}:\Omega o\mathbb{R}^X$
- $\bullet \ \ \widetilde{\textit{U}} \ \textit{represents} \ \rho \ \textit{iff}$

$$\rho(x,A) = \mathbb{P}(\widetilde{U}(x) = \max_{y \in A} \widetilde{U}(y))$$
$$= \mathbb{P}(\omega \in \Omega : \widetilde{U}(\omega, x) \ge \max_{y \in A} \widetilde{U}(\omega, y))$$

• Key assumption: $\mathbb P$ does not depend on A

Question: What are the axioms on ρ such that a RU representation exists?

Regularity

Axiom (Regularity): If $x \in A \subseteq B$, then $\rho(x, A) \ge \rho(x, B)$

This is an extension of Sen's α .

Proposition: If ρ has a RU representation, then it satisfies Regularity.

Notation: $N(x, A) := \{\widetilde{U}(x) = \max_{y \in A} \widetilde{U}(y)\}.$

Proof: As we already established, if x maximizes U on B then x maximizes U on A. So the event N(x,A) is a superset of the event N(x,B), so it must have a larger probability.

Violations of Regularity

- 1. Choice Overload: tasting booth in a supermarket
 - 6 varieties of jam 70% people purchased no jam
 - 24 varieties of jam 97% people purchased no jam
- 2. **Asymmetric dominance effect**: adding a "decoy" option raises demand for the targeted option

Regularity

Proposition: If X has 3 elements, then Regularity is equivalent to RU representation.

Proof Idea:

- For each A, the sets N(x,A) form a partition of Ω as x ranges over A
- ullet ho defines a probability distribution over the cells of each partition
- We have as many partitions as there are menus
- \bullet Regularity ensures that they are consistent with a single $\mathbb P$

Beyond |X| = 3

Comments:

- Unfortunately, when |X| > 3, Regularity alone is not enough
- More axioms are needed, but hard to find economic interpretation
- More elegant axioms if X consists of lotteries \rightsquigarrow later in this lecture

Beyond |X| = 3

Axiom (Block and Marschak, 1960): For all $x \in A$

$$\sum_{B\supseteq A} (-1)^{|B\setminus A|} \rho(x,B) \ge 0.$$

Theorem (Falmagne, 1978): If X is finite and $\mathcal{M} = 2^X \setminus \{\emptyset\}$, TFAE:

- $\left(i\right)~\rho$ has a random utility representation
- (ii) ρ satisfies the Block–Marschak axiom

Comments:

- Necessity of this axiom follows from the inclusion-exclusion formula (Möbus transform)
- There are other axioms in the literature (due to McFadden and Richter) but they are even worse

Additive Random Utility (ARU)

- ullet Let $v \in \mathbb{R}^X$ be a deterministic utility function
- Let $\tilde{\epsilon}: \Omega \to \mathbb{R}^X$ be a random unobserved utility shock or error
 - the distribution of $\tilde{\epsilon}$ has a density and full support

Definition: ρ has an ARU representation if it has a RU representation with

$$\tilde{U}(x) = v(x) + \tilde{\epsilon}(x)$$

Special Cases: it is often assumed that $\tilde{\epsilon}(x)$ are i.i.d. across $x \in X$

- Logit, where $\tilde{\epsilon}(x)$ has an "Type I Extreme Value" (TIEV) distribution
- *Probit*, where $\tilde{\epsilon}(x)$ has a Normal distribution

Positivity

Full support of $\tilde{\epsilon}$ ensures that all items are chosen with positive probability

Axiom (Positivity): $\rho(x, A) > 0$ for all $x \in A$

Comments:

- This leads to a non-degenerate likelihood function—good for estimation
- Positivity cannot be rejected by any finite data set

Proposition: If X is finite and ρ satisfies Positivity, TFAE:

- (i) ρ has a RU representation
- (ii) ρ has a ARU representation

The Luce Model

Definition: ρ has a *Luce representation* iff there exists $w: X \to \mathbb{R}_{++}$ s.t.

$$\rho(x,A) = \frac{w(x)}{\sum_{y \in A} w(y)}$$

Intuition 1: w(x) is the "response strength" associated with x. Choice probability is proportional to the response strength.

Intuition 2: The Luce representation is like a conditional probability: the probability distribution on A, is the conditional of the probability distribution on the grand set X.

Equivalent Model: You can also rewrite this as "softmax"

$$\rho(x,A) = \frac{e^{\nu(x)}}{\sum_{y \in A} e^{\nu(y)}}$$

for some deterministic utility function $v: X \to \mathbb{R}$

Axioms for Luce/Logit

Axiom (Luce's IIA). For all $x, y \in A \cap B$

$$\frac{\rho(x,A)}{\rho(y,A)} = \frac{\rho(x,B)}{\rho(y,B)},$$

whenever the probabilities are positive.

Proposition: TFAE:

- (i) ρ satisfies Positivity and Luce's IIA
- (ii) ρ has a Luce representation
- (iii) ρ has a logit representation (i.e., ARU with i.i.d. TIEV shocks)

Summary so Far

$$RU =$$
Regularity plus other Axioms

$$RU + Positivity = ARU$$

$$ARU + i.i.d. + TIEV = logit$$

= Positivity + Luce's IIA Axiom

• The agent makes choices by maximizing utility

ightarrow The utility has a specific form: **expected** utility

• The expectation is formed using **Bayes** rule

Expected Utility

- Now $X = \Delta(Z)$, where Z is the set of prizes
- Typical items are now $p, q, r \in X$, called *lotteries*

Definition: *U* has an *EU form* if for some function $u \in \mathbb{R}^Z$

$$U(p) := \mathbb{E}_p u := \sum_{z \in Z} u(z) p(z)$$

- The function u is called the Bernoulli utility function.
- When Z is money, then concavity of u corresponds to risk aversion

Expected Utility

- Key property of EU is *linearity in probabilities*
- For any $p,q\in\Delta(Z)$ and $\alpha\in(0,1)$ define a new lottery $\alpha p+(1-\alpha)q$ that attaches probability $\alpha p(z)+(1-\alpha)q(z)$ to each prize $z\in Z$

Proposition: For finite Z, U has an EU form iff

$$U(\alpha p + (1 - \alpha)q) = \alpha U(p) + (1 - \alpha)U(q)$$

Random Expected Utility (REU)

Definition: ρ has a *REU representation* if has a RU representation where with probability one \tilde{U} has an EU form:

$$\tilde{U}(p) := \mathbb{E}_p \tilde{u}$$

for some random Bernoulli utility function $\tilde{u} \in \mathbb{R}^{Z}$

REU—Linearity

Definition: $\alpha A + (1 - \alpha)q := \{\alpha p' + (1 - \alpha)q : p' \in A\}$

Axiom (Linearity). For any $\alpha \in (0,1)$ and $p \in A$ and $q \in X$

$$\rho(p, A) = \rho(\alpha p + (1 - \alpha)q, \alpha A + (1 - \alpha)q)$$

Idea: Linearity of U applied utility by utility

$$\tilde{u}_{\omega} \in N(p, A) \iff \tilde{u}_{\omega} \in N(\alpha p + (1 - \alpha)q, \alpha A + (1 - \alpha)q)$$

Violation of Linearity: Allais Paradox

- Note that $p' = .25p + .75\delta_0$ and $r' = .25r + .75\delta_0$
- Kahneman and Tversky (1979) show that $\rho(r, \{p, r\}) = 0.84$ but $\rho(r', \{p', r'\}) = 0.37$

REU—Axioms

Notation: Ext(A) is the set of extreme points of A

Axiom (Extremeness). $\rho(Ext(A), A) = 1$

Idea: The indifference curves are linear, so maximized at an extreme point of the choice set (modulo ties)

REU—Axiomatization

Theorem[†] (Gul and Pesendorfer, 2001). ρ has a REU representation iff it satisfies

- Regularity
- Extremeness
- Linearity
- Continuity[†]

A different model

- Let U_{θ} be a family of vNM forms with CARA or CRRA indexes (allow for risk-aversion and risk-loving)
- ullet Higher heta is more risk-aversion

Model 1 (à la REU): There is a probability distribution $\mathbb P$ over error shocks $\tilde \epsilon$ to the preference parameter θ

$$\rho^{\textit{REU}}_{\theta}(\textit{p},\textit{A}) = \mathbb{P}\{\textit{U}_{\theta+\tilde{\epsilon}}(\textit{p}) \geq \textit{U}_{\theta+\tilde{\epsilon}}(\textit{q}) \text{ for all } \textit{q} \in \textit{A}\}$$

Model 2 (à la ARU): There is a probability distribution $\mathbb P$ over error shocks $\tilde\epsilon$ to the expected value, $\tilde\epsilon$ i.i.d. over lotteries

$$\rho_{\theta}^{ARU}(p,A) = \mathbb{P}\{U_{\theta}(p) + \tilde{\epsilon}(p) \geq U_{\theta}(q) + \tilde{\epsilon}(q) \text{ for all } q \in A\}$$

Comment: In Model 2, preferences over lotteries are not vNM!

Comparing the two models

Observation 1: Model 1 has intuitive properties:

- If p FOSD q, then $\rho_{\theta}^{REU}(p,\{p,q\})=1$
- If p SOSD q, then $\rho_{\theta}^{REU}(p,\{p,q\})$ is increasing in θ

Observation 2: Model 2 not so much:

- If p FOSD q, then $\rho_{\theta}^{ARU}(p, \{p, q\}) < 1$
- If p SOSD q, then $\rho_{\theta}^{ARU}(p,\{p,q\})$ is not monotone in θ

Theorem If p SOSD q, then $\rho_{\theta}^{ARU}(p, \{p, q\})$ is strictly decreasing for large enough θ .

- The agent makes choices by maximizing utility
- The utility has a specific form: **expected** utility
- ightarrow The expectation is formed using Bayes rule

Timing of Beliefs

Ex Ante Stage

- S is set of states of the world
- $p \in \Delta(S)$ is *prior* of the agent (initial belief)
- $v: X \times S \rightarrow \mathbb{R}$ (deterministic) utility function of the agent
- For any belief $q \in \Delta(S)$ the expected utility of x is denoted by

$$\mathbb{E}_q v(x) := \sum_{s \in S} q(s) v(x, s)$$

- Agent faced ex ante with menu $A \subseteq X$ solves $\max_{x \in A} \mathbb{E}_p v(x)$
- Observed choices of agent are deterministic

Interim Stage

- Agent receives a message $m \in M$ (a "noisy mental representation" or a privately observed signal)
- $\beta: S \to \Delta(M)$ is the signal structure (a.k.a. *Blackwell experiment*)
- ullet For each message m there is a posterior belief $q(\cdot|m) \in \Delta(S)$
- Posterior is given by the Bayes rule

$$q_m(s) = q(s|m) = \frac{\beta(m|s)p(s)}{\sum_{s'}\beta(m|s')p(s')}$$

• Given message m agent solves $\max_{x \in A} \mathbb{E}_{q_m} v(x)$

Interim Choice Probabilities

- Agent: does not know s learns m
- Analyst: knows s, does not learn m
- Observed choices are stochastic. Choice probability in state s is

$$\rho^{s}(x,A) = \beta \left(\left\{ m \in M : \mathbb{E}_{q_{m}} v(x) = \max_{y \in A} \mathbb{E}_{q_{m}} v(y) \right\} \middle| s \right)$$

• So now instead of ρ we have a collection $(\rho^s)_{s \in S}$

Observation: If β does not depend on the menu, then each ρ^s has a RU representation

- In each trial the subject is briefly shown a character, say c or e
- $X = \{c, e\}, S = \{s^c, s^e\}$
- $v(c, s^c) = v(e, s^e) = 1$, $v(c, s^e) = v(e, s^c) = 0$
- $M = \mathbb{R}$ random perception
- $\beta: S \to \Delta(M)$ is the signal with density b(m|s)
- Bayes rule says:

$$\frac{q(s^c|m)}{q(s^e|m)} = \frac{b(m|s^c)}{b(m|s^e)} \frac{p(s^c)}{p(s^e)}$$

• Optimal to choose c if $\frac{q(s^c|m)}{q(s^e|m)} > 1$

• Bayes rule says:

$$\frac{q(s^c|m)}{q(s^e|m)} = \frac{b(m|s^c)}{b(m|s^e)} \frac{p(s^c)}{p(s^e)}$$

- Optimal to choose c if $\frac{q(s^c|m)}{q(s^e|m)} > 1$
- Let $p:=p(s^c)$ and $\ell(m):=rac{b(m|s^c)}{b(m|s^e)}$
- Optimal to choose c if $\ell(m) > \frac{p}{1-p}$
- Let $L(k) := \{m \in M : \ell(m) > k\}$. Notice k > k' implies $L(k) \subseteq L(k')$
- So we have $\rho^{s,p}(c) = \beta(L(\frac{1-p}{p})|s) \rightsquigarrow$ increasing function of p

- Imagine you run this experiment in batches
- In each batch of trials the frequency of c is different
- BEU model predicts that ρ depends on frequency
 - assuming that agent somehow adapts to the frequency in each batch
 - perhaps you throw out initial trials in each batch (adaptation phase)

ullet BEU model predicts that ho depends on frequency

 Another prediction of BEU: making the task harder shifts the curve toward the diagonal

Example 2: weight discrimination

- $X = \{\ell, r\}$ physical objects
- $s \in \mathbb{R}^2_+$ true weight of each object
- $p \in \Delta(S)$ prior is such that weight is i.i.d. over objects
- $m \in \mathbb{R}^2_+$ perception of weight of each object
- $m_{\scriptscriptstyle X} \sim N(s_{\scriptscriptstyle X}, \nu^2)$ signal structure
- If menu is $A = \{\ell, r\}$ then observed choice probability is

$$\rho^{s}(\ell, A) = \Phi\left(\frac{s_{\ell} - s_{r}}{\nu\sqrt{2}}\right) \rightsquigarrow \text{ psychometric function}$$

Example 3: Weber's law

- Instead of $m_X \sim N(s_X, \nu^2)$
- Define $m_x \sim N(\log s_x, \nu^2)$
- If menu is $A = \{\ell, r\}$ then observed choice probability is

$$ho^{s}(\ell,A) = \Phi\Big(rac{\log(s_{\ell}/s_{r})}{
u\sqrt{2}}\Big) \leadsto ext{ Weber's law}$$

Example 4: choice between lotteries

- This is (a version of) Mike's model
- For each lottery, agent has a noisy perception of payoffs and probabilities
- Maximizes EU given their posterior of what the lottery is
- The simple version where only payoffs are imperfectly perceived is a special case of REU
 - can interpret random perception/posterior as random Bernoulli utility

Example 5: economic example

- Agent is a HR recruiter who is hiring an applicant
- $S := \{0, 1\}$ is the qualification of the applicant (low or high)
- Interview can either be a flop or go well: $M = \{m_0, m_1\}$
- ullet Signal is symmetric with precision $b:=eta(m_1|s=1)=eta(m_0|s=0)$
- $A := \{0, 1\}$ is menu of choices (either pass or make a hire).
- Utility of hiring a qualified applicant equals 1 and an unqualified applicant, -1. The utility of not hiring is zero.
- The analyst who observes s but not m sees high-skilled applicants hired b percent of the time and low-skilled applicants being hired 1-b percent of the time.

Bayes Rule

- BEU assumes Bayesian updating
- Even though there is massive evidence against it:
 - base-rate neglect
 - confirmation bias
 - gambler's fallacy
 - hot-hand fallacy
- So what? BEU also assumes EU even though evidence against
 - yet BEU can produce behavior similar to Prospect Theory, etc!
- Difference between assuming these things at the level of representation and at the level of behavior

Summary

- RU (random tastes): Regularity plus other messy axioms
- REU (random risk aversion): Regularity plus Linearity plus Extremeness
- BEU (random perception): Axioms?
- In all of these there was an invariance assumption
 - the distribution of utilities independent of menu
 - the signal structure independent of menu

Going forward: active learning

- So far, learning was passive (β was fixed)
- In models of active learning the agent can choose β at a cost
 - → pay attention
- What is the appropriate cost function?
 - mutual information → rational inattention (Sims and his followers)
 - tractable but has lots of problems
 - for example the psychometric function in the weight discrimination task is a step function, instead of a smooth S-shaped function
 - many other costs have been proposed
- · Next lecture: dynamic model of active learning

Example of active learning

$$\begin{array}{c|cccc} & s_1 & s_2 \\ \hline x & 0 & 2 \\ y & 1 & 1 \\ z & 2 & 0 \\ \end{array}$$

- Prior is $(\frac{1}{2}, \frac{1}{2})$
- Cost of learning the state perfectly is 0.75
- No other learning possible (cost infinity)
- $\rho(x, \{x, y\}) = 0$, $\rho(x, \{x, y, z\}) = \frac{1}{2}$
- Violation of Regularity because adding z adds incentive to learn about the state