Stochastic Choice

Tomasz Strzalecki

Summer School in Economic Theory, IIAS Jerusalem, 2023

Notation

> X set of alternatives
$x, y, z \in X \cdots \cdots \cdots \cdots \cdots \cdots$ typical alternatives
$A, B, C \subseteq X \ldots \ldots \ldots \ldots \ldots$ finite choice problems (menus)
$\rho(x, A) \cdots \cdots \cdots \cdots \cdots$ probability of x being chosen from A
$\rho \cdots \ldots \ldots \ldots \ldots \ldots \ldots$ stochastic choice function

Main Model: Bayesian Expected Utility

- A general model that nests as special cases things Mike talked about
- choice between lotteries
- perception of numerosity
- many other applications!
- The model in economics
- Useful benchmark to orient yourself during this summer school

Main Model: Bayesian Expected Utility

- The agent makes choices by maximizing utility
- The utility has a specific form: expected utility
- The expectation is formed using Bayes rule

Main Model: Bayesian Expected Utility

\rightarrow The agent makes choices by maximizing utility

- The utility has a specific form: expected utility
- The expectation is formed using Bayes rule

Utility Maximization

- Utility of item x is $U(x)$
- Utility function is $U: X \rightarrow \mathbb{R}$
- Collection of observed menus \mathcal{M}
- Choice function is $\chi: \mathcal{M} \rightarrow X$ such that $\chi(A) \in A$ for all $A \in \mathcal{M}$
- U represents χ if $\forall_{A \in \mathcal{M}} \chi(A)=x$ iff $U(x)=\max _{y \in A} U(y)$
- Key assumption: U does not depend on A

Revealed Preference Theory: Given a choice function χ, does there $\exists U: X \rightarrow \mathbb{R}$ that represents it?

Utility Maximization

Axiom (Sen's α): If $x \in A \subset B$ and $\chi(B)=x$, then $\chi(A)=x$.

Proposition: Suppose X is finite and that \mathcal{M} contains all pairs and triples. A choice function χ satisfies Sen's α if and only if $\exists U: X \rightarrow \mathbb{R}$ that represents it.

Proof (Necessity): Suppose U represents χ and $x \in A \subseteq B$ such that $\chi(B)=x$. Then $U(x) \geq U(y)$ for all $y \in B$. This implies that $U(x) \geq U(y)$ for all $y \in A$. So $\chi(A)=x$.

Proof (Sufficiency): Also easy but we will skip (even though this is the more interesting part).

Utility Maximization

Comments:

- χ is our primitive (what the analyst observes)
- U is our representation
- Representation is as-if (we don't claim the agent actually maximizes U, just that they behave as-if they do)
- analogy: physical objects fall down to minimize their distance to earth, but they don't know how to solve any minimization problems
- if you don't buy as-if-ness, that's OK. It might be interesting to think which parts of the brain do the maximization. But I won't do it here (maybe others will)

Stochastic Choice

- So far we assumed that observed choices are deterministic: given a menu the agent always chooses the same element
- What if observed choices are stochastic?
- Well-documented for perceptual choices
- given two objects of similar weight, the same agent will sometimes pick x as heavier and sometimes pick y
- Also well-documented for economic choices
- given two lotteries, the same agent will sometimes pick x and sometimes pick y

Stochastic Choice

- We need to change our primitive
- Observed probability of choosing x from menu A is $\rho(x, A)$
- Collection of all probability distributions over X is $\Delta(X)$
- Stochastic choice function is $\rho: \mathcal{M} \rightarrow \Delta(X)$ such that $\sum_{x \in A} \rho(x, A)=1$
- Two interpretations:
- within-subject experiments
- between-subject experiments

Random Utility

- We need to change our representation
- Random utility (RU) function \widetilde{U}
- formally, (Ω, \mathbb{P}) is a probability space and $\widetilde{U}: \Omega \rightarrow \mathbb{R}^{X}$
- \widetilde{U} represents ρ iff

$$
\begin{aligned}
\rho(x, A) & =\mathbb{P}\left(\widetilde{U}(x)=\max _{y \in A} \widetilde{U}(y)\right) \\
& =\mathbb{P}\left(\omega \in \Omega: \widetilde{U}(\omega, x) \geq \max _{y \in A} \widetilde{U}(\omega, y)\right)
\end{aligned}
$$

- Key assumption: \mathbb{P} does not depend on A

Question: What are the axioms on ρ such that a RU representation exists?

Regularity

Axiom (Regularity): If $x \in A \subseteq B$, then $\rho(x, A) \geq \rho(x, B)$
This is an extension of Sen's α.

Proposition: If ρ has a RU representation, then it satisfies Regularity.
Notation: $N(x, A):=\left\{\widetilde{U}(x)=\max _{y \in A} \widetilde{U}(y)\right\}$.
Proof: As we already established, if x maximizes U on B then x maximizes U on A. So the event $N(x, A)$ is a superset of the event $N(x, B)$, so it must have a larger probability.

Violations of Regularity

1. Choice Overload: tasting booth in a supermarket

- 6 varieties of jam - 70% people purchased no jam
- 24 varieties of jam - 97% people purchased no jam

2. Asymmetric dominance effect: adding a "decoy" option raises demand for the targeted option

Regularity

Proposition: If X has 3 elements, then Regularity is equivalent to RU representation.

Proof Idea:

- For each A, the sets $N(x, A)$ form a partition of Ω as x ranges over A
- ρ defines a probability distribution over the cells of each partition
- We have as many partitions as there are menus
- Regularity ensures that they are consistent with a single \mathbb{P}

Beyond $|X|=3$

Comments:

- Unfortunately, when $|X|>3$, Regularity alone is not enough
- More axioms are needed, but hard to find economic interpretation
- More elegant axioms if X consists of lotteries \rightsquigarrow later in this lecture

Beyond $|X|=3$

Axiom (Block and Marschak, 1960): For all $x \in A$

$$
\sum_{B \supseteq A}(-1)^{|B \backslash A|} \rho(x, B) \geq 0 .
$$

Theorem (Falmagne, 1978): If X is finite and $\mathcal{M}=2^{X} \backslash\{\emptyset\}$, TFAE:
(i) ρ has a random utility representation
(ii) ρ satisfies the Block-Marschak axiom

Comments:

- Necessity of this axiom follows from the inclusion-exclusion formula (Möbus transform)
- There are other axioms in the literature (due to McFadden and Richter) but they are even worse

Additive Random Utility (ARU)

- Let $v \in \mathbb{R}^{X}$ be a deterministic utility function
- Let $\tilde{\epsilon}: \Omega \rightarrow \mathbb{R}^{X}$ be a random unobserved utility shock or error
- the distribution of $\tilde{\epsilon}$ has a density and full support

Definition: ρ has an $A R U$ representation if it has a RU representation with

$$
\tilde{U}(x)=v(x)+\tilde{\epsilon}(x)
$$

Special Cases: it is often assumed that $\tilde{\epsilon}(x)$ are i.i.d. across $x \in X$

- Logit, where $\tilde{\epsilon}(x)$ has an "Type I Extreme Value" (TIEV) distribution
- Probit, where $\tilde{\epsilon}(x)$ has a Normal distribution

Positivity

Full support of $\tilde{\epsilon}$ ensures that all items are chosen with positive probability

Axiom (Positivity): $\rho(x, A)>0$ for all $x \in A$

Comments:

- This leads to a non-degenerate likelihood function-good for estimation
- Positivity cannot be rejected by any finite data set

Proposition: If X is finite and ρ satisfies Positivity, TFAE:
(i) ρ has a RU representation
(ii) ρ has a ARU representation

The Luce Model

Definition: ρ has a Luce representation iff there exists $w: X \rightarrow \mathbb{R}_{++}$s.t.

$$
\rho(x, A)=\frac{w(x)}{\sum_{y \in A} w(y)}
$$

Intuition 1: $w(x)$ is the "response strength" associated with x. Choice probability is proportional to the response strength.

Intuition 2: The Luce representation is like a conditional probability: the probability distribution on A, is the conditional of the probability distribution on the grand set X.

Equivalent Model: You can also rewrite this as "softmax"

$$
\rho(x, A)=\frac{e^{v(x)}}{\sum_{y \in A} e^{v(y)}}
$$

for some deterministic utility function $v: X \rightarrow \mathbb{R}$

Axioms for Luce/Logit

Axiom (Luce's IIA). For all $x, y \in A \cap B$

$$
\frac{\rho(x, A)}{\rho(y, A)}=\frac{\rho(x, B)}{\rho(y, B)}
$$

whenever the probabilities are positive.

Proposition: TFAE:

(i) ρ satisfies Positivity and Luce's IIA
(ii) ρ has a Luce representation
(iii) ρ has a logit representation (i.e., ARU with i.i.d. TIEV shocks)

Summary so Far

$R U=$ Regularity plus other Axioms

$$
\begin{aligned}
R U+\text { Positivity } & =A R U \\
A R U+\text { i.i.d. }+ \text { TIEV } & =\text { logit } \\
& =\text { Luce } \\
& =\text { Positivity }+ \text { Luce's IIA Axiom }
\end{aligned}
$$

Main Model: Bayesian Expected Utility

- The agent makes choices by maximizing utility
\rightarrow The utility has a specific form: expected utility
- The expectation is formed using Bayes rule

Expected Utility

- Now $X=\Delta(Z)$, where Z is the set of prizes
- Typical items are now $p, q, r \in X$, called lotteries

Definition: U has an $E U$ form if for some function $u \in \mathbb{R}^{Z}$

$$
U(p):=\mathbb{E}_{p} u:=\sum_{z \in Z} u(z) p(z)
$$

- The function u is called the Bernoulli utility function.
- When Z is money, then concavity of u corresponds to risk aversion

Expected Utility

- Key property of EU is linearity in probabilities
- For any $p, q \in \Delta(Z)$ and $\alpha \in(0,1)$ define a new lottery $\alpha p+(1-\alpha) q$ that attaches probability $\alpha p(z)+(1-\alpha) q(z)$ to each prize $z \in Z$

Proposition: For finite Z, U has an EU form iff

$$
U(\alpha p+(1-\alpha) q)=\alpha U(p)+(1-\alpha) U(q)
$$

Random Expected Utility (REU)

Definition: ρ has a REU representation if has a RU representation where with probability one \tilde{U} has an EU form:

$$
\tilde{U}(p):=\mathbb{E}_{p} \tilde{u}
$$

for some random Bernoulli utility function $\tilde{u} \in \mathbb{R}^{Z}$

REU-Linearity

Definition: $\alpha A+(1-\alpha) q:=\left\{\alpha p^{\prime}+(1-\alpha) q: p^{\prime} \in A\right\}$

Axiom (Linearity). For any $\alpha \in(0,1)$ and $p \in A$ and $q \in X$

$$
\rho(p, A)=\rho(\alpha p+(1-\alpha) q, \alpha A+(1-\alpha) q)
$$

Idea: Linearity of U applied utility by utility

$$
\tilde{u}_{\omega} \in N(p, A) \Longleftrightarrow \tilde{u}_{\omega} \in N(\alpha p+(1-\alpha) q, \alpha A+(1-\alpha) q)
$$

Violation of Linearity: Allais Paradox

- Note that $p^{\prime}=.25 p+.75 \delta_{0}$ and $r^{\prime}=.25 r+.75 \delta_{0}$
- Kahneman and Tversky (1979) show that $\rho(r,\{p, r\})=0.84$ but $\rho\left(r^{\prime},\left\{p^{\prime}, r^{\prime}\right\}\right)=0.37$

REU-Axioms

Notation: $\operatorname{Ext}(A)$ is the set of extreme points of A

Axiom (Extremeness). $\rho(\operatorname{Ext}(A), A)=1$

Idea: The indifference curves are linear, so maximized at an extreme point of the choice set (modulo ties)

REU-Axiomatization

Theorem ${ }^{\dagger}$ (Gul and Pesendorfer, 2001). ρ has a REU representation iff it satisfies

- Regularity
- Extremeness
- Linearity
- Continuity ${ }^{\dagger}$

A different model

- Let U_{θ} be a family of vNM forms with CARA or CRRA indexes (allow for risk-aversion and risk-loving)
- Higher θ is more risk-aversion

Model 1 (à la REU): There is a probability distribution \mathbb{P} over error shocks $\tilde{\epsilon}$ to the preference parameter θ

$$
\rho_{\theta}^{R E U}(p, A)=\mathbb{P}\left\{U_{\theta+\tilde{\epsilon}}(p) \geq U_{\theta+\tilde{\epsilon}}(q) \text { for all } q \in A\right\}
$$

Model 2 (à la ARU): There is a probability distribution \mathbb{P} over error shocks $\tilde{\epsilon}$ to the expected value, $\tilde{\epsilon}$ i.i.d. over lotteries

$$
\rho_{\theta}^{A R U}(p, A)=\mathbb{P}\left\{U_{\theta}(p)+\tilde{\epsilon}(p) \geq U_{\theta}(q)+\tilde{\epsilon}(q) \text { for all } q \in A\right\}
$$

Comment: In Model 2, preferences over lotteries are not vNM!

Comparing the two models

Observation 1: Model 1 has intuitive properties:

- If p FOSD q, then $\rho_{\theta}^{R E U}(p,\{p, q\})=1$
- If p SOSD q, then $\rho_{\theta}^{R E U}(p,\{p, q\})$ is increasing in θ

Observation 2: Model 2 not so much:

- If p FOSD q, then $\rho_{\theta}^{A R U}(p,\{p, q\})<1$
- If $p \operatorname{SOSD} q$, then $\rho_{\theta}^{A R U}(p,\{p, q\})$ is not monotone in θ

Theorem If p SOSD q, then $\rho_{\theta}^{A R U}(p,\{p, q\})$ is strictly decreasing for large enough θ.

Main Model: Bayesian Expected Utility

- The agent makes choices by maximizing utility
- The utility has a specific form: expected utility
\rightarrow The expectation is formed using Bayes rule

Timing of Beliefs

Ex Ante Stage

- S is set of states of the world
- $p \in \Delta(S)$ is prior of the agent (initial belief)
- $v: X \times S \rightarrow \mathbb{R}$ (deterministic) utility function of the agent
- For any belief $q \in \Delta(S)$ the expected utility of x is denoted by

$$
\mathbb{E}_{q} v(x):=\sum_{s \in S} q(s) v(x, s)
$$

- Agent faced ex ante with menu $A \subseteq X$ solves $\max _{x \in A} \mathbb{E}_{p} v(x)$
- Observed choices of agent are deterministic

Interim Stage

- Agent receives a message $m \in M$ (a "noisy mental representation" or a privately observed signal)
- $\beta: S \rightarrow \Delta(M)$ is the signal structure (a.k.a. Blackwell experiment)
- For each message m there is a posterior belief $q(\cdot \mid m) \in \Delta(S)$
- Posterior is given by the Bayes rule

$$
q_{m}(s)=q(s \mid m)=\frac{\beta(m \mid s) p(s)}{\sum_{s^{\prime}} \beta\left(m \mid s^{\prime}\right) p\left(s^{\prime}\right)}
$$

- Given message m agent solves $\max _{x \in A} \mathbb{E}_{q_{m}} v(x)$

Interim Choice Probabilities

- Agent: does not know s learns m
- Analyst: knows s, does not learn m
- Observed choices are stochastic. Choice probability in state s is

$$
\rho^{s}(x, A)=\beta\left(\left\{m \in M: \mathbb{E}_{q_{m}} v(x)=\max _{y \in A} \mathbb{E}_{q_{m}} v(y)\right\} \mid s\right)
$$

- So now instead of ρ we have a collection $\left(\rho^{s}\right)_{s \in S}$

Observation: If β does not depend on the menu, then each ρ^{s} has a RU representation

Example 1: character recognition

- In each trial the subject is briefly shown a character, say c or e
- $X=\{c, e\}, S=\left\{s^{c}, s^{e}\right\}$
- $v\left(c, s^{c}\right)=v\left(e, s^{e}\right)=1, v\left(c, s^{e}\right)=v\left(e, s^{c}\right)=0$
- $M=\mathbb{R}$ random perception
- $\beta: S \rightarrow \Delta(M)$ is the signal with density $b(m \mid s)$
- Bayes rule says:

$$
\frac{q\left(s^{c} \mid m\right)}{q\left(s^{e} \mid m\right)}=\frac{b\left(m \mid s^{c}\right)}{b\left(m \mid s^{e}\right)} \frac{p\left(s^{c}\right)}{p\left(s^{e}\right)}
$$

- Optimal to choose c if $\frac{q\left(s^{c} \mid m\right)}{q\left(s^{e} \mid m\right)}>1$

Example 1: character recognition

- Bayes rule says:

$$
\frac{q\left(s^{c} \mid m\right)}{q\left(s^{e} \mid m\right)}=\frac{b\left(m \mid s^{c}\right)}{b\left(m \mid s^{e}\right)} \frac{p\left(s^{c}\right)}{p\left(s^{e}\right)}
$$

- Optimal to choose c if $\frac{q\left(s^{c} \mid m\right)}{q\left(s^{e} \mid m\right)}>1$
- Let $p:=p\left(s^{c}\right)$ and $\ell(m):=\frac{b\left(m \mid s^{c}\right)}{b\left(m \mid s^{e}\right)}$
- Optimal to choose c if $\ell(m)>\frac{p}{1-p}$
- Let $L(k):=\{m \in M: \ell(m)>k\}$. Notice $k>k^{\prime}$ implies $L(k) \subseteq L\left(k^{\prime}\right)$
- So we have $\rho^{s, p}(c)=\beta\left(\left.L\left(\frac{1-p}{p}\right) \right\rvert\, s\right) \rightsquigarrow$ increasing function of p

Example 1: character recognition

- Imagine you run this experiment in batches
- In each batch of trials the frequency of c is different
- BEU model predicts that ρ depends on frequency
- assuming that agent somehow adapts to the frequency in each batch
- perhaps you throw out initial trials in each batch (adaptation phase)

Example 1: character recognition

- BEU model predicts that ρ depends on frequency

- Another prediction of BEU: making the task harder shifts the curve toward the diagonal

Example 2: weight discrimination

- $X=\{\ell, r\}$ - physical objects
- $s \in \mathbb{R}_{+}^{2}$ - true weight of each object
- $p \in \Delta(S)$ prior is such that weight is i.i.d. over objects
- $m \in \mathbb{R}_{+}^{2}$ - perception of weight of each object
- $m_{x} \sim N\left(s_{x}, \nu^{2}\right)$ - signal structure
- If menu is $A=\{\ell, r\}$ then observed choice probability is

$$
\rho^{s}(\ell, A)=\Phi\left(\frac{s_{\ell}-s_{r}}{\nu \sqrt{2}}\right) \rightsquigarrow \text { psychometric function }
$$

Example 3: Weber's law

- Instead of $m_{x} \sim N\left(s_{x}, \nu^{2}\right)$
- Define $m_{x} \sim N\left(\log s_{x}, \nu^{2}\right)$
- If menu is $A=\{\ell, r\}$ then observed choice probability is

$$
\rho^{s}(\ell, A)=\Phi\left(\frac{\log \left(s_{\ell} / s_{r}\right)}{\nu \sqrt{2}}\right) \rightsquigarrow \text { Weber's law }
$$

Example 4: choice between lotteries

- This is (a version of) Mike's model
- For each lottery, agent has a noisy perception of payoffs and probabilities
- Maximizes EU given their posterior of what the lottery is
- The simple version where only payoffs are imperfectly perceived is a special case of REU
- can interpret random perception/posterior as random Bernoulli utility

Example 5: economic example

- Agent is a HR recruiter who is hiring an applicant
- $S:=\{0,1\}$ is the qualification of the applicant (low or high)
- Interview can either be a flop or go well: $M=\left\{m_{0}, m_{1}\right\}$
- Signal is symmetric with precision $b:=\beta\left(m_{1} \mid s=1\right)=\beta\left(m_{0} \mid s=0\right)$
- $A:=\{0,1\}$ is menu of choices (either pass or make a hire).
- Utility of hiring a qualified applicant equals 1 and an unqualified applicant, -1 . The utility of not hiring is zero.
- The analyst who observes s but not m sees high-skilled applicants hired b percent of the time and low-skilled applicants being hired $1-b$ percent of the time.

Bayes Rule

- BEU assumes Bayesian updating
- Even though there is massive evidence against it:
- base-rate neglect
- confirmation bias
- gambler's fallacy
- hot-hand fallacy
- So what? BEU also assumes EU even though evidence against
- yet BEU can produce behavior similar to Prospect Theory, etc!
- Difference between assuming these things at the level of representation and at the level of behavior

Summary

- RU (random tastes): Regularity plus other messy axioms
- REU (random risk aversion): Regularity plus Linearity plus Extremeness
- BEU (random perception): Axioms?
- In all of these there was an invariance assumption
- the distribution of utilities independent of menu
- the signal structure independent of menu

Going forward: active learning

- So far, learning was passive (β was fixed)
- In models of active learning the agent can choose β at a cost
\rightsquigarrow pay attention
- What is the appropriate cost function?
- mutual information \rightsquigarrow rational inattention (Sims and his followers)
- tractable but has lots of problems
- for example the psychometric function in the weight discrimination task is a step function, instead of a smooth S-shaped function
- many other costs have been proposed
- Next lecture: dynamic model of active learning

Example of active learning

	s_{1}	s_{2}
x	0	2
y	1	1
z	2	0

- Prior is $\left(\frac{1}{2}, \frac{1}{2}\right)$
- Cost of learning the state perfectly is 0.75
- No other learning possible (cost infinity)
- $\rho(x,\{x, y\})=0, \rho(x,\{x, y, z\})=\frac{1}{2}$
- Violation of Regularity because adding z adds incentive to learn about the state

