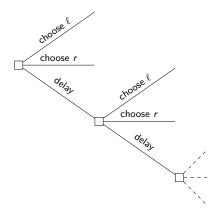
Sequential Evidence Accumulation

Tomasz Strzalecki

Summer School in Economic Theory, IIAS Jerusalem, 2023

Response Times

- So far, given a menu we recorded what the agent chose
- Now: we also record how long the agent spends choosing
- In each instant the agent decides whether to stop and make a choice or delay the decision. For menu $A = \{\ell, r\}$ the decision problem is:



Benefits and Costs of Delaying Decisions

- Benefits: get more information
 - from outside: informative signals
 - from within: introspection/memory
- Costs:
 - opportunity cost of time
 - delaying consumption

Two Effects

Informational Effect (a.k.a. Speed-Accuracy Tradeoff):

- More time ⇒ more information ⇒ better decisions
 - seeing more signals leads to more informed choices
 - if we forced agent to stop at time t, make better choices for higher t

→ increasing accuracy

Two Effects

Informational Effect (a.k.a. Speed-Accuracy Tradeoff):

- More time ⇒ more information ⇒ better decisions
 - seeing more signals leads to more informed choices
 - if we forced agent to stop at time t, make better choices for higher t
 - → increasing accuracy

Selection Effect:

- Time is costly, so your decision to delay depends on how much you expect to learn (option value of waiting)
 - want to stop early if get an informative signal → good decisions
 - want to delay if get a noisy signal \leadsto presumably worse decisions
- Creates dynamic selection and can reverse the informational effect
 - if allowed agent choose t, make worse choices for higher t
 - → decreasing accuracy

Decreasing accuracy

The two effects push in opposite directions. Which one wins?

Stylized fact: Decreasing accuracy: if we group the universe of all decisions by the (endogenous) response time, then fast decisions are "better" and slow decisions are "worse"

- Well established in perceptual tasks, where "better" is objective
- Also in experiments where subjects choose between consumption items

Comment: The opposite is true in choice problems especially engineered by psychologists to contain trick questions where your first instinct is wrong (e.g. cognitive reflection test)

Observables

- *S* is the state space
- Time is discrete $\mathcal{T} = \{0,1,2,\ldots\}$ or continuous $\mathcal{T} = [0,\infty)$
 - I will try to set as much as possible in discrete time because it's easier
- A is the menu; typically binary $A = \{\ell, r\}$
- ullet For each s the analyst observes $ho^s \in \Delta(A imes \mathcal{T})$

Example: character recognition

- $A = \{c, e\}$ is the menu
- $S = \{s^c, s^e\}$ is the true character
- Analyst knows the true s and runs the experiment many times for each s to collect empirical frequencies
- $\rho^s(c,t)$ probability that subject decides for exactly t seconds and chooses c if the true character is s

Example: weight discrimination

- $A = \{\ell, r\}$ is the menu
- ullet $s=(s_\ell,s_r)$ is the true weight of each item, so $S=\mathbb{R}^2_+$
- Analyst knows the true s and runs the experiment many times for each s to collect empirical frequencies
- $\rho^s(\ell, t)$ probability that subject decides for exactly t seconds and chooses ℓ if the true weights are s

General Model

- ullet At each time t the agent receives a message $m_t \in M_t$
- $m^t := (m_1, \ldots, m_t)$ denotes the history of messages up to time t
- ullet The agent has a prior $p\in\Delta(S)$ and a utility $v:S o\mathbb{R}^X$
- If forced at t, choice is $\chi_t = x$ iff $\mathbb{E}[v(x)|m^t] = \max_{y \in \mathcal{A}} \mathbb{E}[v(y)|m^t]$
 - this is exactly our static BEU model from last lecture
- But the agent can always delay and get more signals (at a cost)

Stopping Time

Key idea: stopping at time *t* depends only on messages up to time *t* **Formally**:

- ullet Useful to think of the big probability space $\Omega = S imes ig(imes_{t \in \mathcal{T}} M_t ig)$
- ullet $\mathbb{P}\in\Delta(\Omega)$ formed using the prior on S and the conditionals over M_t
- ullet For any $\omega=(s,m_1,m_2,\ldots)$ we will denote $m^t(\omega):=(m_1,\ldots,m_t)$
- ullet For each t there is a stopping region $\Sigma^t \subseteq M^t$

Definition A stopping time τ is a mapping $\tau:\Omega\to\mathcal{T}$ such that for each t we have $\tau(\omega)=t$ iff $m^t(\omega)\in\Sigma^t$.

Optimal Stopping

- \bullet Cost of waiting, a deterministic non-decreasing function $\mathit{C}:\mathcal{T}\to\mathbb{R}_+$
- The optimal stopping time τ^* solves:

$$\max_{\tau} \mathbb{E}[v(\chi_{\tau}) - C(\tau)]$$

- In statistics, this is known as *sequential sampling*: the analyst can buy additional data (experiments) at a cost.
- The special case of *linear* time cost is often used where C(t) = ct for some c > 0.

Wald's Model

- Linear time cost; binary menu $A = \{\ell, r\}$
- Two states $S = \{s^{\ell}, s^r\}$
- Payoffs $v(x,s) = \mathbb{1}_{\{s=s^{\times}\}}$
- Conditional on s, messages are i.i.d. $m_t \sim \mathcal{N}(\delta(s), \sigma^2)$, where $\delta(s^{\ell}) = d$ and $\delta(s^r) = -d$
- It is sufficient for the agent to keep track of the running sum $\bar{m}^t := m_1 + \cdots + m_t$, instead of the whole vector m^t
- \bar{m}^t is a random walk with unknown drift (d or -d) that the agent is learning about. By Bayes rule, the posterior log-likelihood ratio is

$$\log \frac{\mathbb{P}(s^{\ell}|\bar{m}^t)}{\mathbb{P}(s^r|\bar{m}^t)} = \log \frac{\mathbb{P}(s^{\ell})}{\mathbb{P}(s^r)} + \bar{m}^t \frac{2d}{\sigma^2}$$

Wald's Model—forced stopping

• The posterior log-likelihood ratio is

$$L_t := \log \frac{\mathbb{P}(s^{\ell}|\bar{m}^t)}{\mathbb{P}(s^r|\bar{m}^t)} = \log \frac{\mathbb{P}(s^{\ell})}{\mathbb{P}(s^r)} + \bar{m}^t \frac{2d}{\sigma^2}$$

- If forced at time t the agent picks ℓ whenever $L_t > 0$
- For symmetric prior $L_t > 0$ iff $\bar{m}^t > 0$
- In state s_ℓ , at time t the agent chooses ℓ with probability $\mathbb{P}^{s^\ell}(\bar{m}^t>0)=1-\Phi\left(\frac{-td}{\sigma\sqrt{t}}\right)$, where Φ is the cdf of N(0,1)
- This function is increasing in t, which formalizes the intuitive reasoning behind the speed-accuracy tradeoff

Wald's Model—optimal stopping

- In the Wald model this speed-accuracy tradeoff is *exactly* offset by optimal stopping
- On balance, accuracy is a constant function of time!

→ the reason for this will become clear in a couple of slides

Wald's Model-optimal stopping

Theorem: In the Wald model there exists k > 0 such that

$$\tau^* = \min\{t \geq 0 : |L_t| \geq k\},\,$$

Moreover, if the prior is symmetric, au^* can also be written as

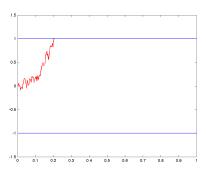
$$\tau^* = \min\{t \ge 0 : |\bar{m}^t| \ge b\}$$

for some b > 0.

The Wald model

Theorem: With symmetric prior the optimal strategy in the Wald model is

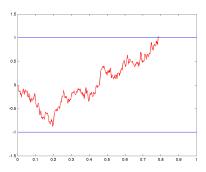
$$au^* := \min\{t \geq 0 : |ar{m}^t| \geq b\}$$
 $\chi_{ au} := egin{cases} \ell & ext{if} & ar{m}^ au = b \\ r & ext{if} & ar{m}^ au = -b \end{cases}$



The Wald model

Theorem: With symmetric prior the optimal strategy in the Wald model is

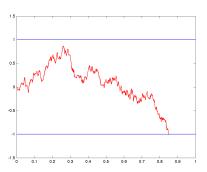
$$au^* := \min\{t \geq 0 : |ar{m}^t| \geq b\}$$
 $\chi_{ au} := egin{cases} \ell & ext{if} & ar{m}^ au = b \\ r & ext{if} & ar{m}^ au = -b \end{cases}$



The Wald model

Theorem: With symmetric prior the optimal strategy in the Wald model is

$$au^* := \min\{t \geq 0 : |ar{m}^t| \geq b\}$$
 $\chi_{ au} := egin{cases} \ell & ext{if} & ar{m}^{ au} = b \\ r & ext{if} & ar{m}^{ au} = -b \end{cases}$



Comments

- Brought to the psychology literature in the 1960s and 1970s to study perception and memory retrieval
- · Used extensively; well established in psych and neuroscience
- Ofen people abstract from the optimization problem and use this solution as a reduced-form model to generate $\rho \in \Delta(A \times T)$
- A continuous-time version of this reduced-form model is called the Drift-Diffusion Model (DDM)

DDM

Definition: Fix $A = \{\ell, r\}$. $\rho \in \Delta(A \times T)$ has a *DDM representation* if there exists $\delta \in \mathbb{R}$ and $\sigma, b > 0$ such that the cumulative signal is a *diffusion*

$$\bar{m}^t = t\delta + \sigma B_t,$$

where $\delta \in \mathbb{R}$ is the *drift* and B_t is a standard Brownian motion and ρ is the joint distribution induced by τ and χ , where

$$\tau = \inf \{ t \ge 0 : |\bar{m}^t| \ge b \},$$

$$\chi_t = \ell \text{ iff } \bar{m}^t \ge b.$$

Notation: In this case we write $\rho \sim DDM(\delta, \sigma, b)$

Connection to Wald: $\rho^{s^{\ell}} \sim DDM(d, \sigma, b)$ and $\rho^{s^{r}} \sim DDM(-d, \sigma, b)$

Gambler's ruin problem

Theorem: If $\rho \sim DDM(\delta, \sigma, b)$, then

- the parameters are unique up to a common positive scalar multiple
- ρ is a product measure over $A \times \mathcal{T}$, i.e., accuracy is constant over time
- ullet for any $t \in \mathcal{T}$ the conditional choice probability equals

$$ho(\ell) = rac{\mathrm{e}^{\delta b/\sigma^2}}{\mathrm{e}^{\delta b/\sigma^2} + \mathrm{e}^{-\delta b/\sigma^2}}$$

and

$$\mathbb{E}\left[au
ight] = rac{b}{\delta} anh\left(rac{b\delta}{\sigma^2}
ight),$$

where tanh is the hyperbolic tangent function; $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

Psychometric Function and Chronometric Function

- If we look at $\rho(\ell)$ as a function of $\delta \leadsto \textit{psychometric function}$
- If we look at $\mathbb{E}[\tau]$ as a function of $\delta \leadsto chronometric function$

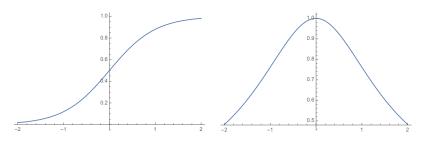


Figure: The psychometric (left) and chronometric functions (right). Here δ varies over the interval [-2,2] and $b=\sigma=1$.

Basic Problem #1 with DDM

- In the Wald model there were two states $\delta = +d$ or $\delta = -d$ for some fixed d
 - well suited to tasks like character recognition (two characters)
 - Wald's theorem said DDM was the optimal thing to do there
- But now we seem to have a continuum of states $\delta \in [-2,2]$
 - corresponds to an experiment where there many possible weights
 - indeed, DDM often applied to weight discrimination tasks and the like
 - no theorem says DDM is the optimal thing to do here!
 - this is a different learning problem: agent is learning about the *intensity* of the stimulus as well as the sign

Basic Problem #2 with DDM

- DDM predicts constant accuracy, while the stylized fact is that accuracy is decreasing
- Tweaks of DDM have been proposed to address that:
 - "full DDM" / "extended DDM": randomize over: 1) the drift, 2) the starting point of \bar{m}^t , and 3) the initial latency (non-response period)
 - this seems really ad-hoc!
 - "accumulator Models" or "race models": each item has its own signal accumulation process and its own boundary
 - contrast with DDM where the boundary is on the difference
 - is this ad hoc or microfounded?
 - time-dependent DDM: make the boundary a function of time
 - we will see this actually has a microfoundation

time-dependent DDM

Definition: Fix $A = \{\ell, r\}$. The s.c.f. $\rho \in \Delta(A \times T)$ has a *time-dependent DDM representation* if there exists $\delta \in \mathbb{R}$ and $\sigma > 0, b : T \to \mathbb{R}_+$ such that the cumulative signal is a *diffusion*

$$\bar{m}^t = t\delta + \sigma B_t,$$

where $\delta \in \mathbb{R}$ is the drift and B_t is a standard Brownian motion and ρ is the joint distribution induced by τ and χ , where

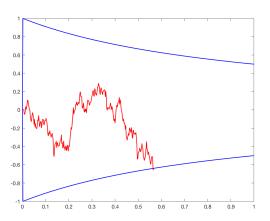
$$\tau = \inf \{ t \ge 0 : |\bar{m}^t| \ge b(t) \},$$

$$\chi_t = \ell \text{ iff } \bar{m}^t \ge b(t).$$

Notation: In this case we write $\rho \sim DDM^+(\delta, \sigma, b)$.

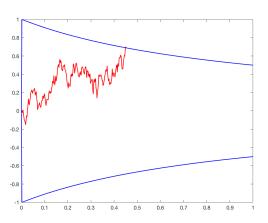
DDM^+

$$\tau = \inf \{ t \ge 0 : |\bar{m}^t| \ge b(t) \}$$
$$\chi_t = \ell \text{ iff } \bar{m}^t \ge b(t)$$



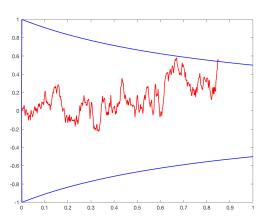
DDM^{+}

$$\tau = \inf \{t \ge 0 : |\bar{m}^t| \ge b(t)\}$$
$$\chi_t = \ell \text{ iff } \bar{m}^t \ge b(t)$$



DDM^{+}

$$\tau = \inf \{t \ge 0 : |\bar{m}^t| \ge b(t)\}$$
$$\chi_t = \ell \text{ iff } \bar{m}^t \ge b(t)$$



DDM^{+}

Theorem Suppose that $\rho \sim DDM^+(\delta, \sigma, b)$.

Accuracy is
$$\begin{cases} \text{increasing} \\ \text{decreasing} \\ \text{constant} \end{cases}$$
 iff boundary b is $\begin{cases} \text{increasing} \\ \text{decreasing} \\ \text{constant} \end{cases}$

Intuition for decreasing accuracy: higher bar to clear for small t, so if the agent stopped early, \bar{m}^t must have been high, so higher likelihood of making the correct choice

Microfounding a time-dependent boundary

- So far, only the constant boundary b was microfounded
- Do any other boundaries come from optimization?
- What is the optimization problem?
- We now derive the optimal boundary

Chernoff's Model

- Linear time cost; binary menu $A = \{\ell, r\}$
- Continuum of states $S = \mathbb{R}^2$; $s = (s_\ell, s_r)$. We have $v(x, s) = s_x$
- Conditional on s, $m_{t,x} \sim^{i.i.d.} \mathcal{N}(s_x, \sigma^2)$ independent over $x \in A$
- The prior is $s_x \sim N(\mu_{0,x}, \sigma_0^2)$ independent over $x \in A$
- ullet Sufficient to keep track of the running sum $ar{m}_{\scriptscriptstyle X}^t := m_{1,\scriptscriptstyle X} + \cdots + m_{t,\scriptscriptstyle X}$
- \bar{m}_{x}^{t} is a random walk with unknown drift. By Bayes rule, the posterior is $s_{x} \sim N(\mu_{t,x}, \sigma_{t}^{2})$, where

$$\mu_{t,x} = \mu_{0,x} \frac{\sigma_t^2}{\sigma_0^2} + \bar{m}_x^t \frac{\sigma_t^2}{\sigma_0^2}$$
 and $\sigma_t^{-2} = \sigma_0^{-2} + t\sigma^{-2}$

Chernoff's Model

Theorem: In the Chernoff model there exists a decreasing function $k:\mathcal{T}\to\mathbb{R}$ such that

$$\tau^* = \inf\{t \ge 0 : |\mu_t| \ge k(t)\},$$

where $\mu_t := \mu_{t,\ell} - \mu_{t,r}$ is the posterior mean difference.

Moreover, if $\mu_0=0$, then there exists $b:\mathcal{T}\to\mathbb{R}$ such that

$$\tau^* = \inf\{t \geq 0 : |\bar{m}^t| \geq b(t)\},\$$

where $ar{m}^t = ar{m}^t_\ell - ar{m}^t_r$.

Corollary: In Chernoff's model $\rho^s \sim DDM^+(s_\ell - s_r, \sigma\sqrt{2}, b)$.

Key difference between Wald and Chernoff

- Intuition for Wald: stationarity
 - suppose that you observe $\bar{m}_{\ell}^t \approx \bar{m}_{r}^t$ after a long t
 - you know drift cannot be zero
 - you think to yourself: "the signal must have been noisy"
 - so you don't learn anything ⇒ you continue
- Intuition for Chernoff: non-stationarity
 - suppose that you observe $\bar{m}_{\ell}^t \approx \bar{m}_{r}^t$ after a long t
 - you think to yourself: "I must be indifferent"
 - so you have learned a lot \Rightarrow you stop
- Intuition for the difference between the two models:
 - interpretation of signal depends on the prior

A different model for perception

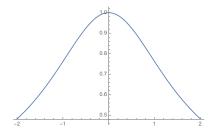
- Chernoff model is good for economic decisions: $v(x, s) = s_x$
 - you get the utility of what you consume
- A model for perception would have $v(x,s) = \mathbb{1}_{s_x > s_y}$
 - reward independent of how hard the choice is
 - this model also leads to DDM⁺ but with a different boundary

Is any boundary optimal?

Theorem: For any b there exists a (nonlinear) cost function C such that b is the optimal solution in the Chernoff model

Do difficult choices take more time?

- Mechanically true in DDM,
 - harder choice = $|\delta|$ smaller
 - chronometric function is hump-shaped around zero



Do difficult choices take more time?

- Actually, this is true in all DDM⁺
 - harder to show
- But what is the intuition? why spend more time if almost indifferent?
 - if knew that indifferent, just toss a coin and spend zero time
 - but you don't know you are almost indifferent—start with your prior!
 - once you learn you are indifferent, then stop