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Response Times
• So far, given a menu we recorded what the agent chose

• Now: we also record how long the agent spends choosing

• In each instant the agent decides whether to stop and make a choice
or delay the decision. For menu A = {`, r} the decision problem is:

delay

choose r

choose
`delay

choose r

choose
`



Benefits and Costs of Delaying Decisions

• Benefits: get more information

– from outside: informative signals

– from within: introspection/memory

• Costs:

– opportunity cost of time

– delaying consumption



Two Effects

Informational Effect (a.k.a. Speed-Accuracy Tradeoff):

• More time ⇒ more information ⇒ better decisions

– seeing more signals leads to more informed choices
– if we forced agent to stop at time t, make better choices for higher t

 increasing accuracy

Selection Effect:

• Time is costly, so your decision to delay depends on how much you
expect to learn (option value of waiting)

– want to stop early if get an informative signal  good decisions
– want to delay if get a noisy signal  presumably worse decisions

• Creates dynamic selection and can reverse the informational effect
– if allowed agent choose t, make worse choices for higher t

 decreasing accuracy
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Decreasing accuracy

The two effects push in opposite directions. Which one wins?

Stylized fact: Decreasing accuracy: if we group the universe of all
decisions by the (endogenous) response time, then fast decisions are
“better” and slow decisions are “worse”

• Well established in perceptual tasks, where “better” is objective

• Also in experiments where subjects choose between consumption items

Comment: The opposite is true in choice problems especially engineered
by psychologists to contain trick questions where your first instinct is
wrong (e.g. cognitive reflection test)



Observables

• S is the state space

• Time is discrete T = {0, 1, 2, . . .} or continuous T = [0,∞)

– I will try to set as much as possible in discrete time because it’s easier

• A is the menu; typically binary A = {`, r}

• For each s the analyst observes ρs ∈ ∆(A× T )



Example: character recognition

• A = {c, e} is the menu

• S = {sc , se} is the true character

• Analyst knows the true s and runs the experiment many times for
each s to collect empirical frequencies

• ρs(c, t) probability that subject decides for exactly t seconds and
chooses c if the true character is s



Example: weight discrimination

• A = {`, r} is the menu

• s = (s`, sr ) is the true weight of each item, so S = R2
+

• Analyst knows the true s and runs the experiment many times for
each s to collect empirical frequencies

• ρs(`, t) probability that subject decides for exactly t seconds and
chooses ` if the true weights are s



General Model

• At each time t the agent receives a message mt ∈ Mt

• mt := (m1, . . . ,mt) denotes the history of messages up to time t

• The agent has a prior p ∈ ∆(S) and a utility v : S → RX

• If forced at t, choice is χt = x iff E[v(x)|mt ] = maxy∈A E[v(y)|mt ]

– this is exactly our static BEU model from last lecture

• But the agent can always delay and get more signals (at a cost)



Stopping Time

Key idea: stopping at time t depends only on messages up to time t

Formally:

• Useful to think of the big probability space Ω = S ×
(×t∈T Mt

)
• P ∈ ∆(Ω) formed using the prior on S and the conditionals over Mt

• For any ω = (s,m1,m2, . . .) we will denote mt(ω) := (m1, . . . ,mt)

• For each t there is a stopping region Σt ⊆ Mt

Definition A stopping time τ is a mapping τ : Ω→ T such that for each t
we have τ(ω) = t iff mt(ω) ∈ Σt .



Optimal Stopping

• Cost of waiting, a deterministic non-decreasing function C : T → R+

• The optimal stopping time τ∗ solves:

max
τ

E[v(χτ )− C (τ)]

• In statistics, this is known as sequential sampling: the analyst can buy
additional data (experiments) at a cost.

• The special case of linear time cost is often used where C (t) = ct for
some c > 0.



Wald’s Model

• Linear time cost; binary menu A = {`, r}

• Two states S = {s`, sr}

• Payoffs v(x , s) = 1{s=sx}

• Conditional on s, messages are i.i.d. mt ∼ N (δ(s), σ2), where
δ(s`) = d and δ(sr ) = −d

• It is sufficient for the agent to keep track of the running sum
m̄t := m1 + · · ·+ mt , instead of the whole vector mt

• m̄t is a random walk with unknown drift (d or −d) that the agent is
learning about. By Bayes rule, the posterior log-likelihood ratio is

log
P(s`|m̄t)

P(sr |m̄t)
= log

P(s`)

P(sr )
+ m̄t 2d

σ2



Wald’s Model—forced stopping

• The posterior log-likelihood ratio is

Lt := log
P(s`|m̄t)

P(sr |m̄t)
= log

P(s`)

P(sr )
+ m̄t 2d

σ2

• If forced at time t the agent picks ` whenever Lt > 0

• For symmetric prior Lt > 0 iff m̄t > 0

• In state s`, at time t the agent chooses ` with probability

Ps`(m̄t > 0) = 1− Φ
(
−td
σ
√
t

)
, where Φ is the cdf of N(0, 1)

• This function is increasing in t, which formalizes the intuitive
reasoning behind the speed-accuracy tradeoff



Wald’s Model—optimal stopping

• In the Wald model this speed-accuracy tradeoff is exactly offset by
optimal stopping

• On balance, accuracy is a constant function of time!

 the reason for this will become clear in a couple of slides



Wald’s Model—optimal stopping

Theorem: In the Wald model there exists k > 0 such that

τ∗ = min{t ≥ 0 : |Lt | ≥ k},

Moreover, if the prior is symmetric, τ∗ can also be written as

τ∗ = min{t ≥ 0 : |m̄t | ≥ b}

for some b > 0.



The Wald model

Theorem: With symmetric prior the optimal strategy in the Wald model is

τ∗ := min{t ≥ 0 : |m̄t | ≥ b} χτ :=

{
` if m̄τ = b

r if m̄τ = −b
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Comments

• Brought to the psychology literature in the 1960s and 1970s to study
perception and memory retrieval

• Used extensively; well established in psych and neuroscience

• Ofen people abstract from the optimization problem and use this
solution as a reduced-form model to generate ρ ∈ ∆(A× T )

• A continuous-time version of this reduced-form model is called the
Drift-Diffusion Model (DDM)



DDM

Definition: Fix A = {`, r}. ρ ∈ ∆(A× T ) has a DDM representation if
there exists δ ∈ R and σ, b > 0 such that the cumulative signal is a
diffusion

m̄t = tδ + σBt ,

where δ ∈ R is the drift and Bt is a standard Brownian motion and ρ is the
joint distribution induced by τ and χ, where

τ = inf {t ≥ 0 : |m̄t | ≥ b},
χt = ` iff m̄t ≥ b.

Notation: In this case we write ρ ∼ DDM(δ, σ, b)

Connection to Wald: ρs
` ∼ DDM(d , σ, b) and ρs

r ∼ DDM(−d , σ, b)



Gambler’s ruin problem

Theorem: If ρ ∼ DDM(δ, σ, b), then

• the parameters are unique up to a common positive scalar multiple

• ρ is a product measure over A×T , i.e., accuracy is constant over time

• for any t ∈ T the conditional choice probability equals

ρ(`) =
eδb/σ

2

eδb/σ2 + e−δb/σ2

and

E [τ ] =
b

δ
tanh

(
bδ

σ2

)
,

where tanh is the hyperbolic tangent function; tanh(x) = ex−e−x

ex+e−x .



Psychometric Function and Chronometric Function

• If we look at ρ(`) as a function of δ  psychometric function

• If we look at E[τ ] as a function of δ  chronometric function
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Figure: The psychometric (left) and chronometric functions (right). Here δ varies
over the interval [−2, 2] and b = σ = 1.



Basic Problem #1 with DDM

• In the Wald model there were two states δ = +d or δ = −d for some
fixed d

– well suited to tasks like character recognition (two characters)

– Wald’s theorem said DDM was the optimal thing to do there

• But now we seem to have a continuum of states δ ∈ [−2, 2]

– corresponds to an experiment where there many possible weights

– indeed, DDM often applied to weight discrimination tasks and the like

– no theorem says DDM is the optimal thing to do here!

– this is a different learning problem: agent is learning about the intensity
of the stimulus as well as the sign



Basic Problem #2 with DDM

• DDM predicts constant accuracy, while the stylized fact is that
accuracy is decreasing

• Tweaks of DDM have been proposed to address that:

– “full DDM”/“extended DDM”: randomize over: 1) the drift, 2) the
starting point of m̄t , and 3) the initial latency (non-response period)

– this seems really ad-hoc!

– “accumulator Models” or “race models”: each item has its own signal
accumulation process and its own boundary

– contrast with DDM where the boundary is on the difference
– is this ad hoc or microfounded?

– time-dependent DDM: make the boundary a function of time

– we will see this actually has a microfoundation



time-dependent DDM

Definition: Fix A = {`, r}. The s.c.f. ρ ∈ ∆(A× T ) has a time-dependent
DDM representation if there exists δ ∈ R and σ > 0, b : T → R+ such
that the cumulative signal is a diffusion

m̄t = tδ + σBt ,

where δ ∈ R is the drift and Bt is a standard Brownian motion and ρ is the
joint distribution induced by τ and χ, where

τ = inf {t ≥ 0 : |m̄t | ≥ b(t)},
χt = ` iff m̄t ≥ b(t).

Notation: In this case we write ρ ∼ DDM+(δ, σ, b).



DDM+
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χt = ` iff m̄t ≥ b(t)
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DDM+

Theorem Suppose that ρ ∼ DDM+(δ, σ, b).

Accuracy is


increasing

decreasing

constant

 iff boundary b is


increasing

decreasing

constant


Intuition for decreasing accuracy: higher bar to clear for small t, so if
the agent stopped early, m̄t must have been high, so higher likelihood of
making the correct choice



Microfounding a time-dependent boundary

• So far, only the constant boundary b was microfounded

• Do any other boundaries come from optimization?

• What is the optimization problem?

• We now derive the optimal boundary



Chernoff’s Model

• Linear time cost; binary menu A = {`, r}

• Continuum of states S = R2; s = (s`, sr ). We have v(x , s) = sx

• Conditional on s, mt,x ∼i .i .d . N (sx , σ
2) independent over x ∈ A

• The prior is sx ∼ N(µ0,x , σ
2
0) independent over x ∈ A

• Sufficient to keep track of the running sum m̄t
x := m1,x + · · ·+ mt,x

• m̄t
x is a random walk with unknown drift. By Bayes rule, the posterior

is sx ∼ N(µt,x , σ
2
t ), where

µt,x = µ0,x
σ2t
σ20

+ m̄t
x

σ2t
σ2

and σ−2t = σ−20 + tσ−2



Chernoff’s Model

Theorem: In the Chernoff model there exists a decreasing function
k : T → R such that

τ∗ = inf{t ≥ 0 : |µt | ≥ k(t)},

where µt := µt,` − µt,r is the posterior mean difference.

Moreover, if µ0 = 0, then there exists b : T → R such that

τ∗ = inf{t ≥ 0 : |m̄t | ≥ b(t)},

where m̄t = m̄t
` − m̄t

r .

Corollary: In Chernoff’s model ρs ∼ DDM+(s` − sr , σ
√

2, b).



Key difference between Wald and Chernoff

• Intuition for Wald: stationarity

– suppose that you observe m̄t
` ≈ m̄t

r after a long t
– you know drift cannot be zero
– you think to yourself: “the signal must have been noisy”
– so you don’t learn anything ⇒ you continue

• Intuition for Chernoff: non-stationarity

– suppose that you observe m̄t
` ≈ m̄t

r after a long t
– you think to yourself: “I must be indifferent”
– so you have learned a lot ⇒ you stop

• Intuition for the difference between the two models:

– interpretation of signal depends on the prior



A different model for perception

• Chernoff model is good for economic decisions: v(x , s) = sx

– you get the utility of what you consume

• A model for perception would have v(x , s) = 1sx>sy

– reward independent of how hard the choice is

– this model also leads to DDM+ but with a different boundary



Is any boundary optimal?

Theorem: For any b there exists a (nonlinear) cost function C such that b
is the optimal solution in the Chernoff model



Do difficult choices take more time?

• Mechanically true in DDM,

– harder choice = |δ| smaller

– chronometric function is hump-shaped around zero
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Do difficult choices take more time?

• Actually, this is true in all DDM+ ,

– harder to show

• But what is the intuition? why spend more time if almost indifferent?

– if knew that indifferent, just toss a coin and spend zero time

– but you don’t know you are almost indifferent—start with your prior!

– once you learn you are indifferent, then stop


	Introduction

