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Endpoint Devices

Google Assistant

nest
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Motion Sensors
Gyroscope, radar, 

magnetometer, accelerator 

Environmental Sensors
Temperature, Humidity, 

Pressure, IR, etc.

Touchscreen Sensors
Capacitive, IR

Image Sensors
Thermal, Image

Biometric Sensors
Fingerprint, Heart rate, etc.

Robots Have Sensors, Tons of Sensors

Rotation Sensors
Encoders

Force Sensors
Pressure, Strain

Acoustic Sensors
Ultrasonic, Microphones, 
Geophones, Vibrometers

...
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Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J. and Quillen, D., 2018. Learning 
hand-eye coordination for robotic grasping with deep learning and large-scale 
data collection. The International Journal of Robotics Research, 37(4-5).

http://www.youtube.com/watch?v=l8zKZLqkfII
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Duisterhof, B.P., Li, S., Burgués, J., Reddi, V.J. and de Croon, G.C., 2021. 
Sniffy Bug: A Fully Autonomous Swarm of Gas-Seeking Nano Quadcopters in 
Cluttered Environments. arXiv preprint arXiv:2107.05490.

http://www.youtube.com/watch?v=hj_SBSpK5qg
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Goldberg, B., Zufferey, R., Doshi, N., Helbling, E.F., Whittredge, G., Kovac, M. 
and Wood, R.J., 2018. Power and control autonomy for high-speed 
locomotion with an insect-scale legged robot. IEEE Robotics and Automation 
Letters, 3(2), pp.987-993.

http://www.youtube.com/watch?v=382iBb5nwy8


5 Quintillion
bytes of data produced 

every day by IoT

Source: Harvard Business Review, What’s Your Data Strategy?, April 18, 2017
Cisco, Internet of Things (IoT) Data Continues to Explode Exponentially. Who Is 
Using That Data and How?, Feb 5, 2018

<1%
of unstructured data is 
analyzed or used at all

No Good Data Left Behind
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https://hbr.org/webinar/2017/04/whats-your-data-strategy
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how
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The Future of 
Machine Learning 
is Tiny... and Bright
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Tiny
SoC

BitCraze CrazyFlie 2.1
●  ARM Cortex-M4

●  CPU: 1-core & 168 MHz
●  RAM: 196 kB
●  Storage: 1 MB
●  Available RAM: 33 kB

●  Weight: 33 grams
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Tiny
SoC

250 Billion
MCUs today



MCU Pricing Forecast
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● Tiny machine learning (tinyML): ML applications 
on low-power, cheap, commodity hardware.

● Focus on always-on machine learning use 
cases for robotics with rich sensory input.
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ML Training & Evaluation
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ML Deployment
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TinyML for Robotics ⇒ End-to-end ML Workflow
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Board MCU / ASIC Clock Memory Sensors Radio

Himax
WE-I Plus EVB

HX6537-A
32-bit EM9D DSP

400 MHz 2MB flash
2MB RAM

Accelerometer, Mic, 
Camera None

Arduino
Nano 33 BLE Sense

32-bit
nRF52840 64 MHz 1MB flash

256kB RAM

Mic, IMU, Temp, 
Humidity, Gesture, 
Pressure, Proximity, 

Brightness, Color

BLE

SparkFun
Edge 2

32-bit
ArtemisV1 48 MHz 1MB flash

384kB RAM
Accelerometer, Mic, 

Camera BLE

Espressif
EYE

32-bit
ESP32-D0WD 240 MHz 4MB flash

520kB RAM
Mic, Camera WiFi, BLE
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TF Micro
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Micro

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

Arduino
BLE Sense 33

...

...
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Duisterhof, B.P., Krishnan, S., Cruz, J.J., Banbury, C.R., Fu, W., Faust, A., de 
Croon, G.C. and Reddi, V.J., 2019. Learning to seek: Autonomous source 
seeking with deep reinforcement learning onboard a nano drone 
microcontroller. arXiv preprint arXiv:1909.11236 and ICRA 2021.



Built to fit on embedded systems:
- Very small binary footprint
- No dynamic memory allocation
- No dependencies on complex parts of the standard C/C++ libraries
- No operating system dependencies, can run on bare metal
- Designed to be portable across a wide variety of systems

TensorFlow Lite Micro
 in a Nutshell
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David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., 
Kreeger, N., Nappier, I., Natraj, M., Wang, T. and Warden, P., 2021. 
TensorFlow Lite Micro: Embedded Machine Learning for TinyML 
Systems. Proceedings of Machine Learning and Systems, 3.
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Understanding the “Blind Spots” 

The deployment pla orm has a direct impact on the “pe ormance” 
(success rate, latency, etc.) of the learning algorithm and 

so it must be taken into consistent consideration.



Built to consider the entire vertical co-design stack:
- Random environment generator for domain randomization to 

enable RL generalization
- Open source benchmark to train RL algorithms, policies, and 

reward optimizations using regular and curriculum learning
- Demonstrate the “hardware induced gap”
- Describe the significance of energy consumption and the 

platform’s abilities when evaluating policy success rates

Air Learning: Deep RL Gym
For Autonomous Navigation
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Krishnan, S., Boroujerdian, B., Fu, W. et al. Air Learning: a deep 
reinforcement learning gym for autonomous aerial robot visual 
navigation. Mach Learn 110, 2501–2540 (2021). 
https://doi.org/10.1007/s10994-021-06006-6
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Off-the-shelf
components
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AutoPilot: An End-to-end Design Space Explorer
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AutoPilot

SoC



Automate the search for compute for autonomous robots:
- Explore the cyber-physical design space
- Design custom computing solutions, rather than existing 

off-the-shelf components for maximizing efficiency
- Collectively optimize across a wide range of different 

parameters that would not be possible without “AutoDSE”

AutoPilot: Automating 
Co-Design for Autonomy
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Robomorphic
Computing
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Neuman, S.M., Plancher, B., Bourgeat, T., Tambe, T., Devadas, S. and Reddi, V.J., 2021, 
April. Robomorphic computing: a design methodology for domain-specific accelerators 
parameterized by robot morphology. In Proceedings of the 26th ACM International 
Conference on Architectural Support for Programming Languages and Operating Systems.

Beyond UAVs
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● Tiny machine learning (tinyML): ML applications 
on low-power, cheap, commodity hardware.

● Focus on always-on machine learning use 
cases for robotics with rich sensory input.

● How can tinyML impact robotics?
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The Future of 
Robot Learning is 
Tiny and Bright.


