Tiny Machine Learning
tinyML) for Robotics

Vijay Janapa Reddi, Ph. D. | Associate Professor |

John A. Paulson School of Engineering and Applied Sciences | Harvard University |
Web: http://scholar.harvard.edu/vijay-janapa-reddi

@ Conference on Robot Learning, 2021

http://scholar.harvard.edu/vijay-janapa-reddi

What is Tiny Machine Learning (TinyML)?

What is Tiny Machine Learning (TinyML)?

TinyML
y Fast-growing field of ML iitl

What is Tiny Machine Learning (TinyML)?

TinyML
y Fast-growing field of ML iitl

Algorithms, hardware, software

What is Tiny Machine Learning (TinyML)?

TinyML
y Fast-growing field of ML ail

Algorithms, hardware, software

. . I
On-device sensor analytics .=

What is Tiny Machine Learning (TinyML)?

TinyML
y Fast-growing field of ML ail

Algorithms, hardware, software

. . I
On-device sensor analytics .=

What is Tiny Machine Learning (TinyML)?

TinyML
y Fast-growing field of ML ail

Algorithms, hardware, software

. . I
On-device sensor analytics .=

Always-on ML

What is Tiny Machine Learning (TinyML)?

TinyML
y Fast-growing field of ML iitl

Algorithms, hardware, software

. . I
On-device sensor analytics .=

Always-on ML
Battery-operated €3]

Endpoint Devices

Google Assistant

<« T,

10

HHWI

L \lkllll
HIIHI

Robots Have Sensors, Tons of Sensors

Motion Sensors Acoustic Sensors Environmental Sensors
Gyroscope, radar, Ultrasonic, Microphones, Temperature, Humidity,
magnetometer, accelerator Geophones, Vibrometers Pressure, IR, etc.
Touchscreen Sensors Image Sensors Biometric Sensors
Capacitive, IR Thermal, Image Fingerprint, Heart rate, etc.
Force Sensors Rotation Sensors

Pressure, Strain Encoders

14

http://www.youtube.com/watch?v=l8zKZLqkfII

15

http://www.youtube.com/watch?v=hj_SBSpK5qg

HARVARD

JOHN A. PAULSON

SCHOOL OF ENGINEERING
AND APPLIED SCIENCES

AR IIAR

16

http://www.youtube.com/watch?v=382iBb5nwy8

No Good Data Left Behind

5 Quintillion <1%

bytes of data produced of unstructured data is
every day by loT analyzed or used at all

Source: Harvard Business Review, What's Your Data Strategy?, April 18, 2017
Cisco, Internet of Things (loT) Data Continues to Explode Exponentially. Who Is
Using That Data and How?, Feb 5, 2018 17

https://hbr.org/webinar/2017/04/whats-your-data-strategy
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how

., The Future of
‘Q‘ Machine Learning
= isTiny...and Bright

bitcraze

BitCraze CrazyFlie 2.1

® ARM Cortex-M4 2 e "['rf,;m ufm; - 208
® CPU: 1-core & 168 MHz i ;”‘ o3
® RAM: 196 kB =
O = 5
. s - sesecasansetesiss = PCc120
. Storage. 1MB "_i] (Oqgt.mmmm qo[]OGND

® Available RAM: 33 kB
® Weight: 33 grams

21

250 Billion
MCUs today

22

MCU Pricing Forecast

Average Selling Price

$0.75

$0.70

$0.65

$0.60 -

$0.55

$0.50

2016 2017 2018 2019 2020 2021 2022 2023

23

Tiny machine learning (tinyML): ML applications
on low-power, cheap, commodity hardware.

Focus on always-on machine learning use
cases for robotics with rich sensory input.

24

QOO0
SOO00
Q0000
00000

Machine
Learning
Robotic
Applications

Embedded
Systems

25

QQOOO
SOO00
00000
Q0000

GEO

Machine
Learning
Robotic
Applications

Embedded
Systems

26

QOO0
Q0000
Q0000

Machine
Learning

TinyML for
Robotics

Embedded
Systems

&

Robotic
Applications

27

ML Training & Evaluation

Collect Preprocess Design a Train a
Data Data Model Model

29

ML Deployment

Evaluate

Optimize

Convert
Y [eYe [=]]

Y ELG
Inferences

30

ML Deployment

Evaluate Convert Deploy Make
Optimize Model Model Inferences

31

ML Deployment

OO0

Evaluate
Optimize

Convert
Y [eYe [=]]

Y ELG
Inferences

Name Parameters fp32 fp32 int8 int8 Delta
(ms) (success) (ms) (success)
Policy I 3L, MLP 208 ms 86% 11 ms 75% 19x
(4096, 512,
1024)

32

ML Deployment

Evaluate
Optimize

Name Parameters fp32 fp32 int8 int8 Delta
(ms) (success) (ms) (success)
Policy I 3L, MLP 208 ms 86% 11 ms 75% 19x
(4096, 512,
1024)

Total Memory

(MB)

Y ELG
Inferences

1
i .
800 ! i
' Int8 JW |
600 Policy-ll | Policy-Ill .
i]
o P4 >
P :
L !
200 | i
o 5000 10000

Time Step

33

TinyML for Robotics = End-to-end ML Workflow

34

&

Embedded
Systems

Machine
Learning

Robotic
Applications

35

£ 'xgxaxgxgé’.
g

Himax HX6537-A 2MB flash Accelerometer, Mic,
WE-I Plus EVB 32-bit EM9D DSP 400 MFiz 2MB RAM Camera None
Mic, IMU, Temp,
Arduino 32-bit 1MB flash Humidity, Gesture,
Nano 33 BLE Sense nRF52840 il 256kB RAM Pressure, Proximity, BLE
Brightness, Color
n SparkFun 32-bit 1MB flash Accelerometer, Mic,
i Edge 2 ArtemisV1 Aol 384kB RAM Camera ELE
S Espressif 32-bit 4MB flash : -
% EYE ESP32-DOWD 240 MHz 520kB RAM Mic, Camera WiFi, BLE

37

Challenges

|

Hardware

Heterogeneity

2

£

Resource Constraints

Missing Library
Features

Limited Operating
System Support

38

Challenges

|

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

Limited Operating
System Support

39

Challenges

|

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

Limited Operating
System Support

40

Challenges

|

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

Limited Operating
System Support

41

Challenges

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

Limited Operating
System Support

42

Challenges

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

43

Challenges

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

Limited Operating
System Support

44

1/0 (UsB)

TensorFlow Lite Micro

Hardware

Heterogeneity

Resource Constraints

CPU

on J o

Missing Library
Features

__ Processor
+ Bluetooth

Microphone

oo o

Limited Operating
System Support

45

&

TensorFlow Lite Micro

Arduino

BLE Sense 33

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

46

47

[a3] @z1S WvY
SLT 0ST Gzt 00T SL 0S ¥4 0

>2e3S 3ybild [eUlWON 2oeds 2314
3oeis bui@as 934nog s9|qeleA JIWeuAq e

0JOIA| 917 Moj440sual

3

TensorFlow Lite Micro
In a Nutshell

Built to fit on embedded systems:
- Very small binary footprint
- No dynamic memory allocation
- No dependencies on complex parts of the standard C/C++ libraries
- No operating system dependencies, can run on bare metal
- Designed to be portable across a wide variety of systems

arXiv:2010.08678v3 [cs.LG] 13 Mar 2021

TENSORFLOW LITE MICRO:
EMBEDDED MACHINE LEARNING ON TINYML SYSTEMS

Robert David! Jared Duke' Advait Jain' Vijay Janapa Reddi

Nat Jeffries' Jian Li' Nick Kreeger' Ian Nappier! Meghna Natraj'

Shlomi Regev' Rocky Rhode

les' Tiezhen Wang' Pete Warden '

ABSTRACT
TensorFlow Lite Micro (TFLM) is an open-source ML inference framework for running deep-learning models on
embedded systems. TFLM tackles the efficincy requirements imposed by cmbedded-system resource constraints

and the ion challenges that mak

nearly impossible. The framework

adopt ique nerpetr-basd approach that provides fleibilty wile overcoming these nique chalenges.

In this paper, we explain the design decisions behin

d describe its implementation. We present an

evaluation of TFLM to demonstrate its low resource leq\nm'nents and minimal run-time performance overheads.

-

INTRODUCTION

‘Tiny machine learning (TinyML) is a burgeoning field at
the intersection of embedded systems and machine learning.
‘The world has over 250 billion microcontrollers (IC Insights,
2020), with strong growth projected over coming years. As
such, a new range of embedded applications are emerging
for neural networks. Because these models are extremely
small (few hundred KBs), running on microcontrollers or
DSP-based embedded subsystems, they can operate contin-
uously with minimal impact on device battery life.

‘The most well-known and widely deployed example of this
new TinyML technology is keyword spotting, also called
hotword or wakeword detection (Chen et al., 2014; Gru-
enstein et al., 2017; Zhang et al., 2017). Amazon, Apple,
Google, and others use tiny neural networks on billions of
devices to run always-on inferences for keyword detection—
and this is far from the only TinyML application. Low-
latency analysis and modeling of sensor signals from micro-
phones, low-power image sensors, accelerometers, gyros,
PPG optical sensors, and other devices enable consumer and
industrial applications, including predictive maintenance
(Goebel et al., 2020; Susto et al., 2014), acoustic-anomaly
detection (Koizumi et al., 2019), visual object detection
(Chowdhery et al., 2019), and human-activity recognition
(Chavarriaga et al, 2013; Zhang & Sawchuk, 2012).
Unlocking machine learning’s potential in embedded de-
'Google “Harvard University. orrespondence to:

Pete Warden <pmwdan@gongk com>, Vjay Janapa Reddi
<vj@cecs harvard.cdu>.

Proceedings of the 4" MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

vices requires overcoming two crucial challenges. First
and foremost, embedded systems have no unified TinyML
framework. When engineers have deployed neural networks
to such systems, they have built one-off frameworks that
require manual optimization for each hardware platform.
Such custom frameworks have tended to be narrowly fo-
cused, lacking features to support multiple applications and
Incking portabilty acros wide range of hardware, The
developer experience has therefore been ing
hand optimization of models to run on a specific Gevice
And altering these models to run on another device necessi-
tated manual porting and repeated optimization effort, An
important second-order effect of this situation is that the
slow pace and high cost of training and deploying mod-
els to embedded hardware prevents developers from easily
justifying the investment required to build new features.

Another limiting TinyML

have related but scparate needs. Without a generic TinyML

framework, evaluating hardware performance in a neutral,

vendor-agnostic manner has been difficult. Frameworks are
anditis hard

of improvements because they can come from hardware,

software, or the complete vertically integrated solution.

‘The lack of a proper framework has been a barrier to acceler-
ating TinyML adoption and application in products. Beyond
deploying a model to an embedded target, the framework
must also have a means of training a model on a higher-
compute platform. TinyML must exploit a broad ecosystem
of tools for ML, as well for orchestrating and debugging
‘models, which are beneficial for production devices.

Prior efforts have attempted to bridge this gap. We can distill
the major issues facing the frameworks into the following:

48

&

Machine Embedded
Learning Systems
Robotic
Applications

49

Understanding the Role of Computing

Domains

Challenges

Environment
+
Physics Engine

Learning
Algorithms

Policies for
Robot Control

Onboard
Compute

Policy Design
Exploration

System Exploration

Domain Randomization,
Simulator Fidelity,
Photorealism
Generalization,
Exploration vs Exploitation,
Reward shaping

Policy architecture,

Multi-Modal Policy,
Hyperparameter tuning

Policy deployment,
Reliability,
Real time performance,

50

Understanding the Role of Computing

Domains

Environment
+
Physics Engine

Learning
Algorithms

Policies for
Robot Control

Challenges

l——>|

Policy Design
Exploration

Onboard
Compute

System Exploration

Domain Randomization,
Simulator Fidelity,
Photorealism

Generalization,
Exploration vs Exploitation,
Reward shaping

Policy architecture,
Multi-Modal Policy,
Hyperparameter tuning

Policy deployment,
Reliability,
Real time performance,

o1

Understanding the Role of Computing

Domains

Environment
+
Physics Engine

Learning
Algorithms

Policies for
Robot Control

Onboard
Compute

Challenges

Algorithms Exploration

Policy Design
Exploration

System Exploration

Domain Randomization,
Simulator Fidelity,
Photorealism

Generalization,
Exploration vs Exploitation,
Reward shaping

Policy architecture,
Multi-Modal Policy,
Hyperparameter tuning

Policy deployment,
Reliability,
Real time performance,

52

Understanding the Role of Computing

Domains

Environment
+
Physics Engine

Learning
Algorithms

Policies for
Robot Control

Onboard
Compute

Algorithms

Exploration

Policy
Explo

Design
ration

System Exploration

Challenges

Domain Randomization,
Simulator Fidelity,
Photorealism

Generalization,
Exploration vs Exploitation,
Reward shaping

Policy architecture,
Multi-Modal Policy,
Hyperparameter tuning

Policy deployment,
Reliability,
Real time performance,

53

Understanding the Role of Computing

Domains

Environment
+
Physics Engine

Learning
Algorithms

Challenges

Policies for
Robot Control

Onboard
Compute

Policy Design
Exploration

System Exploration

Domain Randomization,
Simulator Fidelity,
Photorealism
Generalization,
Exploration vs Exploitation,
Reward shaping

Policy architecture,
Multi-Modal Policy,
Hyperparameter tuning

Policy deployment,
Reliability,
Real time performance,

54

Understanding the Role of Computing

Domains Challenges
Environment &f& Domain Randomization,
. Hi e Simulator Fidelity,
Physics Engine o Photorealism
i
v
; Generalization,
AL,ea".’lfgg Algorithms Exploration| | Exploration vs Exploitation,
gorthms Reward shaping
. . . Policy architecture,
Policies for Rl creli Multi-Modal Policy,
Robot Control 2ol il Hyperparameter tuning

f

55

Understanding the Role of Computing

Domains Challenges
Environment Domain Randomization,
+ - Simulator Fidelity,
Physics Engine Photorealism
i
v
] Generalization,
ALIearr_;lIr;g Algorithms Exploration Exploration vs Exploitation,
gorthms Reward shaping
. Policy Desian Policy architecture,
Policies for Ex' }’orat.c;g Multi-Modal Policy,
Robot Control protef Hyperparameter tuning

f

56

End-to-End Learning
" Simulation Engines

~ - Environments s,
N
.

e Hardware-in-the-loop

J 7 Arsim v
s / Unreal ’ I
> . o Flight controller
(@]
— b — - —— e ———— -— -_— .
Sensor Data Flight Sensory Data o OnbOa I’d Compute (t|nyM L)
(RGB/Depth/GPS) Control (IMU)
r—-——=—~>""~>""~>""~"fr&"~"~"~—~°7° - - T TS T |
| Left ! : Right |
1 1 / |
: /" OpenAl Gym 1 : Flight Stack :
|) i | Flight 1 " Autopilot !
: /" Agorithm 1 Commands : / Hardware :
| /" Companion i | r S |
1 / Computer : | 3 :
| P &
s : : % !
—— |
| : : Flight Controller |
| | |
|

57

End-to-End Learning
. Simulation Engines

N Environments\\
N
.

e Hardware-in-the-loop

7 Arsim v
% S Ul o Flight controller
o) Engine
o L
= R -
Sensor Data Flight Sensory Data o OnbOa I’d Compute (t|nyM L)
(RGB/Depth/GPS) Cartisl (IMU)
________________ — i i
| Left ! : Right |
| | |
1 /" OpenAl Gym ; : : / Fllght Stack :
\ = { Flight 1 /" Autopilot [
} @gm/ | Commands ! Hardware :
[Companion ! T < S5 1
I Computer : | |
‘ i |
S : |) |
[I | Flight Controller |
L F Ras-Pi3_ _ _ _ _ _ l e~ ;

58

Understanding the “Blind Spots”

0-
J ——— Intel Core-i7
_55 Start Ras-Pi 3
E 10+
>.
-154
Goal Radius
=20+ P L I
0 5 10 15 20
X (m)
200
» 150
o
]
n
2 100
o
g
< 50
0- : .
Corei7 Ras-Pi 3

59

Average Steps

Understanding the “Blind Spots”

0- 0-
= Intel Core-i7 - |ntel Core-i7
_5 | Start ik _5| Start —— Ras-Pi3
£ 10
>
_15- 15 End -
1 Goal Radius N L
20 — Goal Radius
K L I FRRR T 20+—T1—— UG
0 5 10 15 20 0 5 10 15 20 25
X (m) X (m)
200 200
150+ « 150
o
3]
1 [77]
100 2 100
o
2
50 < 50
0 |
Ras-Pi 3

]
Core i7 Ras-Pi 3 Core i7

Understanding the “Blind Spots”

——— Ras-Pi3

Intel Core-i7

20

200

—_

(62}

o
1

Average Steps
=y
2

[$)]
o
Ll

o
[I——

Core i7

Ras-Pi 3

0_.
- Intel Core-i7
51 —— Ras-Pi3
E_ 10
>
-15 \
] N /’\
=i Goal Radius
-20 L R T L [) S e S
5 10 15 20 25
X (m)
200
» 150
Q
2
(2]]
&,100-
@]
) |
> 1
< 50-
0__
Core i7 Ras-Pi 3

- =
Lo :’__
0- = Intel Core-i7
1 | ——— Ras-Pi3
-5
Start
E
> -10 7 “\
] / \
] \ x,iEnd
154 S
1 = Goal Radius
-20 T = R . T
0 5 10 15 20 25
X (m)
200
» 150
Q
2
n
&,100+
© i
g]
< 50
0__

Corei7

Ras-Pi 3

61

Understanding the “Blind Spots”

0
y 0 ——— Intel Core-i7
- Intel Core-i7 —— Ras-Pi 3

——— Intel Core-i7

_5 | Start . s 5 Start —— Ras-Pi3
Qtart

End

g 150 o 150 g 150
[9) [0) [0}
7]] [77] 7]
2 100 2 100 © 100
g | g s
g] g] g]
< 50 < 50 < 50-
0- 0- 0-
Core i7 Ras-Pi 3 Core i7 Ras-Pi 3 Corei7 Ras-Pi 3
62

Air Learning: Deep RL Gym
For Autonomous Navigation

Built to consider the entire vertical co-design stack:

- Random environment generator for domain randomization to
enable RL generalization

- Open source benchmark to train RL algorithms, policies, and
reward optimizations using regular and curriculum learning

- Demonstrate the “hardware induced gap”

- Describe the significance of energy consumption and the
platform’s abilities when evaluating policy success rates

Machine Learning (2021) 110:2501-2540
https://doi.org/10.1007/510994-021-06006-6

Ghek for

Air Learning: a deep reinforcement learning gym
for autonomous aerial robot visual navigation

Srivatsan Krishnan'® - Behzad jerdian? - William Fu' - Aleksandra Faust® -
Vijay Janapa Reddi'?

Received: 16 March 2020/ Revised: 2 January 2021/ Accepted: 21 May 2021/
Published online: 7 July 2021
©The Author(s) 2021

Abstract

‘We introduce Air Learning, an open-source simulator, and a gym environment for deep
reinforcement learning research on resource-constrained aerial robots. Equipped with
domain randomization, Air Learning exposes a UAV agent to a diverse set of challeng-
ing scenarios. We seed the toolset with point-to-point obstacle avoidance tasks in three
different environments and Deep Q Networks (DQN) and Proximal Policy Optimization
(PPO) trainers. Air Learning assesses the policies’ performance under various quality-of-
flight (QoF) metrics, such as the energy consumed, endurance, and the average trajectory
length, on resource-constrained embedded platforms like a Raspberry Pi. We find that the
trajectories on an embedded Ras-Pi are vastly different from those predicted on a high-end
desktop system, resulting in up to 40% longer trajectories in one of the environments. To
understand the source of such discrepancies, we use Air Learning to artificially degrade
high-end desktop performance to mimic what happens on a low-end embedded system.
‘We then propose a mitigation technique that uses the hardware-in-the-loop to determine
the latency distribution of running the policy on the target platform (onboard compute on
aerial robot). A randomly sampled latency from the latency distribution is then added as an
artificial delay within the training loop. Training the policy with artificial delays allows us
to minimize the hardware gap (discrepancy in the flight time metric reduced from 37.73%
t0 0.5%). Thus, Air Learning with hardware-in-the-loop characterizes those differences and
exposes how the onboard compute’s choice affects the aerial robot’s performance. We also
conduct reliability studies to assess the effect of sensor failures on the learned policies. All
put together, Air Learning enables a broad class of deep RL research on UAVs. The source
code is available at: https:/github.com/harvard-edge/AirLearning.

Keywords Deep rei learning - aerial robots - R
deep RL - Robotics - Deep RL challenges - Sim2Real - Real life RL

Editors: Yuxi Li, Alborz Geramifard, Lihong Li, Csaba Szepesvari, Tao Wang.

54 Srivatsan Krishnan
srivatsan@seas.harvard edu

Extended author information available on the last page of the article

€\ Springer

63

Components

Sensors

Autonomy
Algorithms

Onboard
Compute

UAV
Platform

Design Space

os) Q

RGB RGB-D Lidar
~onw

= H & B

DroNet TrailNet CAD2RL Custom
~QO (100 Billions)

n @ Cﬁom

HER T™X2 Ras-Pi accelerator
~0O (100 Millions)
= e
M|n| UAy Micro-UAV Nano-UAV
~O (10-100)

Off-the-shelf
components

64

Components

Sensors

Autonomy
Algorithms

Onboard
Compute

UAV
Platform

Design Space

-

RGB RGB-D Lidar
~O (10)

: e $ i?;:
DroNet TrailNet CAD2RL
~QO (100 Billions)

ustom

2
r‘ 3y

() N
v

n @ Cﬁom

HER T™X2 Ras-Pi accelerator
~0O (100 Millions)
= s
M|n| UAy Micro-UAV Nano-UAV
~O (10-100)

65

Components

Sensors

Autonomy
Algorithms

Onboard
Compute

UAV
Platform

Design Space

os) Q

RGB RGB-D Lidar
~onw

= H & B

DroNet TrailNet CAD2RL Custom
~QO (100 Billions)

n @ Cﬁom

HER T™X2 Ras-Pi accelerator
~0O (100 Millions)
= e
M|n| UAy Micro-UAV Nano-UAV
~O (10-100)

66

Components

Sensors

Autonomy
Algorithms

Onboard
Compute

UAV
Platform

Design Space

e)
[TN =

RGB RGB-D Lidar
~O (10)

= 6o
SZ T R
2—';% e $ £s B e
Ne~ : 77

DroNet TrailNet CAD2RL stom

~O (100 Billions)

@j Custom

TX2 Ras-Pi accelerator
~0O (100 Millions)

MincUAy Micro-UAV Nano-UAV
~0 (10-100)

Igo

= Mini-UAV
$ System

—A

» AutoPilot

Micro-UAV
System

Nano-UAV
System

67

AutoPilot: An End-to-end Design Space Explorer

68

AutoPilot: An End-to-end Design Space Explorer

|
! <Update Policies>

Design Space Exploration Engine

NN ="
Parameters Ajr Learnin,
—_—

- _Database_
ooavesian L]
primZaton Parameters| Cycle Accurate
HW Simulator
- Parameters

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T <Performance, Power, Success Rate>

<Filtering By: Success Rate>
<Optimization target: Velocity>

~_ 4 |l

Phase 2

|

|

|

|

|

|

X!
A\l

]

69

AutoPilot: An End-to-end Design Space Explorer

Bag of Arch Optimizations

* Frequency Scaling
® Technology Scaling

S

Task-System Pareto <Select Design points3 Architectural

: Frontiers Fine-Tuning
' 10 No Obstacles 100

1| s® w0

1] B & CPS Co-
I" 54 “% —| design with
R Tronesanel F-1 Model
| % 10 20 30 40 50 60

| Runtime (ms)

1

<SoC Power* <@ax>

|| Compute Weight

| Modelling

1

I

1

J

|

-

Phase 3

AutoPilot: An End-to-end Design Space Explorer

: Optimal Policy :

] +
: Hardware Accelerator :

71

Optimal Policy
+
Hardware Accelerator

|
Deployment '

| ML Framework

FlexACL

O9TARS!

. SOC
AutoPilot — 1~ Architecture —— | %

72

Optimal Policy FlexACL

+
Hardware Accelerator

| ML Framework
Policy O ‘ 1r é

. SOC
AutoPilot — 1~ ‘Architecture — |

|
Deployment '

AutoPilot: Automating
Co-Design for Autonomy

Automate the search for compute for autonomous robots:
- Explore the cyber-physical design space
- Design custom computing solutions, rather than existing
off-the-shelf components for maximizing efficiency
- Collectively optimize across a wide range of different
parameters that would not be possible without “AutoDSE”

2102.02988v3 [cs.RO] 10 Sep 2021

arXiv

AutoPilot: Automating Co-Design Space Exploration for Autonomous
UAVs

Srivatsan Krishnan, Zishen Wan', Kshitij

j*, Paul W , Alek Faust®, Sabrina M.

Neuman', Gu-Yeon Wei', David Brooks, and Vijay Janapa Reddi"

THarvard University
ARM Research
$Google Brain Research

Abstract

Building domain-specifi for un-
manned aerial vehicles (UAVs) is challenging due to a lack
of systematic methodology for designing onboard compute.
Balancing a computing system for a UAV requires consider-
ing both the cyber (e.g., sensor rate, compute performance)
and physical (e.g., payload weight) characteristics that af-
fect overall performance. lterating over the many component
choices results in a combinatorial explosion of the number
of possible combinations: from 10s of thousands to billions,
depending on implementation details. Manually selecting com-
binations of these components is tedious and expensive. To
navigate the cyber-physical design space efficiently, we intro-

Pno-vay

" RS
M e A oY
-onoon /
Figure 1: AutoPilot efficiently automates navigation of the
large UAV component design space to co-design optimal on-
board compute across a range of autonomous UAV systems.

duce AutoPilot, a that automates full-

co-design. AutoPilot uses Bayesian optimization to navigate
a large design space and automatically select a combination
of autonomy algorithm and hardware accelerator while con-
sidering the cross-product effect of other cyber and physical
UAV components. We show that the AutoPilot methodology
consistently outperforms general-purpose hardware selections
like Xavier NX and Jetson TX2, as well as dedicated hardware
accelerators built for autonomous UAVs, across a range of
representative scenarios (three different UAV types and three
deployment environments). Designs generated by AutoPilot
increase the number of missions on average by up 1o 2.25x,
1.62x, and 1.43x for nano, micro, and mini-UAVs respec-

Co-designing hardware with other UAV com-
ponents requires navigating a large design space (see Fig. 1),
e.g., 100’s of UAVs [44] x millions of HW accelerators [78]
x billions of autonomy algorithm neural network model para-
maters [22] x 100’s of sensors [45] = 105, Worse, this
number is still conservative since each UAV type includes
additional components such as a flight controller and a battery.
Taming this large space can be expensive and tedious. Au-
tomating the co-design of the hardware accelerator and other
UAV system components can optimize mission performance
while keeping design overheads low as UAV systems evolve.

Key challenges in UAV design include the ability to system-
atically navigate the large design space of components, and

ing which combinations of these maxi-

tively over baselines. Our work the need for
holistic full-UAV co-design to achieve maximum overall UAV
performance and the need for automated flows to simplify the
design process for autonomous cyber-physical systems.

1. Introduction

Unmanned acrial vehicles (UAV) arc on the rise in real-world
deployments [75, 52, 15, 62], but building computing systems
for these platforms remains challenging. They are complex
systems in which the traditional computing platform is just
one component among many others. To achieve overall perfor-
mance, it is important to understand what implications other
UAV components have on the design of onboard compute.

mize overall UAV performance. While specialized hardware
is critical for compute efficiency, designing it is an expensive
process. It is essential to establish automated design method-
ologies that remain agile as future autonomous systems evolve.

To address these challenges, we introduce AutoPilot:
a cyber-physical co-design i for au-
tonomous UAVs. Given a high-level specification of autonomy
task, UAV type, and mission goals, AutoPilot automatically
navigates the large design space to perform full-system UAV
co-design to generate a combination of autonomy algorithm
and corresponding hardware accelerator to maximize overall
UAV performance (e.g., number of missions).

The AutoPilot takes a high-level specification for the auton-

74

Beyond

UAVs

Robomorphlc Computing

Parameterized
HW Template
(Once)

Robotics
Algorithm

e.g., inverse
: dynamics

: HW Template
= f(robot)

Accelerator
Hardware

: Robot
: Morphology

Template
Parameters
(Per-Robot)

e.g., limb
topology,

- joint types

e.g.
parallelism,

algebra

Robots

Morphology :

sparse linear:

HH
[E=sasg] EEJE

\
Customized

Accelerators

Robomorphic Computing: A Design Methodology for
Domain-Specific Accelerators Parameterized by

Robot Morphology

Sabrina M. Neuman Brian Plancher Thomas Bourgeat
sneuman@seas.harvard.edu brian_plancher@g.harvard.edu bthom@csail. mit.edu
Harvard University Harvard University MIT
Cambridge, MA, USA Cambridge, MA, USA Cambridge, MA, USA
Thierry Tambe Srinivas Devadas Vijay Janapa Reddi
ttambe@g harvard.edu devadas@mit.edu vj@eecs.harvard.edu
Harvard University MIT Harvard University
Cambridge, MA, USA Cambridge, MA, USA Cambridge, MA, USA
ABSTRACT CCS CONCEPTS
Robotics applications have hard time constraints and heavy com- . d - 1 « Computer systems
putational burdens that can greatly benefit from domain-specific ~ organization — Robotics.
‘hardware accelerators. For the latency-critical problem of robot mo-
tion planning and control, there exists a performance gap of at least KEYWORDS

an order of magnitude between joint actuator response rates and
state-of-the-art software solutions. Hardware acceleration can close
this gap, but it is essential to define automated hardware design
flows to keep the design process agile as applications and robot plat-

robotics, hardware accelerators, dynamics, motion planning
ACM Reference Format:

Sabrina M. Neuman, Brian Plancher, Thomas Bourgeat, Thierry Tambe,
Stinivas Devadas, and Vijay Janspa Reddi. 2021. Robomorphic Compuung

forms evolve. To address this challenge, we introduce p
compnl.\ng a methodology to transform robot morphology into a
hardware We (i) present this
design methodology, using robot topology and structure to exploit
parallelism and marix sparsity patierns in accelerator hardware;
(ii) use the metk 1 to generate a
design for the gradient of rigid body dynamics, a key kernel in
‘motion planning; (iif) evaluate FPGA and synthesized ASIC imple-
ions of this 1 for an industrial i robot;

A Design for Domain-

Robot Morphology. In Proceedings of the 26th ACM International Con[mm
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS "21), April 19-23, 2021, Virtual, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3445814.3446746

1 INTRODUCTION

Complex robots such as & and b
that un safcly mlmcl with ptopl: in dynamic, unstructured, and
solution to address

and (iv) deseribe how the design can be
for other robot models. Our FPGA accelerator achieves speedups of
8x and 86x over CPU and GPU when executing a single dynamics
gradient computation. It maintains speedups of 1.9% to 2.9x over

critical societal challenges, rmm eldﬂ care [24, 53] to the health
and safety of humans in hazardous environments [34, 60]. A major
obstacle o the deployment of complex robots is the need for high-

CPU and GPU, including and 1O round-trip latency,
when deployed as a coprocessor to a host CPU for processing mul-
tiple dynamics gradient computations. ASIC synthesis indicates
an additional 7.2 speedup for single computation latency. We de-
scribe how this principled approach generalizes to more complex
robot platforms, such as quadrupeds and humanoids, as well as to
other computational kernels in robotics, outlining a path forward
for future robomorphic computing accelerators.

Pesmision o ke dighal o o opiesofput ol of i work o prsucal o

o the frst page. C dparty of
For all other uses, contact the owner/author(s).

ASPLOS '21, April 19-23, 2025, Virtual, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 975-1-4503-8317-2
https:/doi.org/10.1145/3645814 3446746

ina portable form factor. Robot perception,
localization, and motion planning applications must be run online
at real-time rates and under strict power budgets [12, 26, 47, 55].

Domain-specific hardware acceleration is a emerging solution
to this problem, building on the success of accelerators for other
domains such as neural networks [7, 23, 49]. However, while ac-
celerators have improved the power and performance of robot
perception and localization (7, 56), relatively little work has
been done for motion planning [33, 38].

Motion planning algorithms calculate a valid motion path from
a robot’s initial position to a goal state. Online motion planning
approaches (41, 57] rely heavily on latency-critical calculation of
functions describing the underlying physics of the robot, e g, rigid
bedy dynamies and its gradient [5, 14, 18). There exist several
software implementations that are sufficient for use in traditional
control approaches (6, 16, 22, 27, 36, 39], but emerging techniques
such as whole-body nonlinear model predictive control (MPC) (9,
26] reveal a performance gap of at least an order of magnitude:

75

Domains

Challenges

Environment
+
Physics Engine

Learning
Algorithms

Policies for
Robot Control

Onboard
Compute

Policy Design
Exploration

System Exploration

Domain Randomization,
Simulator Fidelity,
Photorealism

Generalization,
Exploration vs Exploitation,
Reward shaping

Policy architecture,

Multi-Modal Policy,
Hyperparameter tuning

Policy deployment,
Reliability,
Real time performance,

Co-design

76

it

&

Embedded
Systems

Machine
Learning

\ 4

Robotic
Applications

77

Embedded
Systems

Machine
Learning

SsiE)

Robotic
Applications

78

Embedded
Systems

Machine
Learning

Robotic
Applications

79

tinyML
SYSTEMS

tinyML
DATASETS

Virtuous
Cycle

tinyML
MODELS

80

tinyML
SYSTEMS

tinyML
DATASETS

Virtuous
Cycle

tinyML
MODELS

81

tinyML
SYSTEMS

tinyML
DATASETS

Benchmarks

tinyML
MODELS

82

tinyML
SYSTEMS

Embedded
Systems

Machine

Learning ‘

V2

Robotic
Applications

tinyML
MODELS

tinyML
DATASETS

83

ML
e Commons

tinyML
SYSTEMS

Embedded
Systems

Machine

Learning .
Robotic
Applications

tinyML
MODELS

tinyML
DATASETS

84

Tiny machine learning (tinyML): ML applications
on low-power, cheap, commodity hardware.

Focus on always-on machine learning use
cases for robotics with rich sensory input.

How can tinyML impact robotics?

85

Colby
Banbury

Mark
Mazumder

Brian
Plancher

Behzad
Boroujerdian

Bardienus
Duisterhof

Srivatsan
Krishnan

Laurence
Moreney

Aleksandra
Faust

Pete
Warden

e

86

., The Future of
',O‘ Robot Learning is
= Tiny and Bright.

