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What is              ?
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A Community-driven 
ML Benchmark Suite

1,000+ members, 50+ organizations, 8+ universities 
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Training
Benchmarks 

Inference
Benchmarks

1. Identify a set of ML tasks 

and models

2. Identify real-world 

scenarios to emulate

3. Outline the rules for 

benchmarking

4. Define a clear set of 

evaluation metrics

5. Collect results to publish
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MLPerf Goals

● Enforce replicability to ensure reliable results

● Use representative workloads, reflecting production use-cases

● Encourage innovation to improve the state-of-the-art of ML

● Accelerate progress in ML via fair and useful measurement

● Serve both the commercial and research communities

● Keep benchmarking affordable (so that all can play)
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MLPerf Inference Benchmarks 0.5v
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Area Benchmark Model Dataset

Vision

Image Classification MobileNet v1
ResNet50

ImageNet (224x224)
ImageNet (224x224)

Object Detection SSD-MobileNet v1
SSD-ResNet34

MS-COCO (300x300)
MS-COCO (1200x1200)

Language Translation Google NMT WMT Eng-Germ



Inference v0.5 Results
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Inference Results
● 600+ inference 

results

● Over 30 systems
submitted

● 10,000x
difference in 
performance
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What about TinyML systems?



TinyML Challenges for ML Benchmarking
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● Resources are extremely 
condensed in the tinyML devices

● Need to define a methodology to 
load the SUT for evaluation

● How can we come up with a 
methodology that works 
across many different 
systems?



TinyML Challenges for ML Benchmarking
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● Power is optional in MLPerf 

● MLPerf power working group is 
trying to develop a specification

● But power is a first-order design 
constraint in TinyML devices

● How to define a power spec?



TinyML Challenges for ML Benchmarking 

● Plethora of techniques

○ Quantization

○ Sparsity 

○ Pruning

○ Retraining

○ …

● What are the rules that apply 
for tinyML?

● Which of the optimizations 
should be allowed while still 
enabling fair comparisons? 
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tinyMLPerf
Working Group Members

14



TinyML Tasks for ML Benchmarking
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Task Category Use Case Model Type Datasets

Audio

Audio Wake Words
Context Recognition

Control Words
Keyword Detection

DNN
CNN
RNN
LSTM

Speech Commands
Audioset

ExtraSensory
Freesound

DCASE

Image

Visual Wake Words
Object Detection

Gesture Recognition
Object Counting
Text Recognition

DNN
CNN
SVM

Decision Tree
KNN

Linear

Visual Wake Words
CIFAR10
MNIST

ImageNet
DVS128 Gesture

Physiological / 
Behavioral Metrics

Segmentation
Anomaly Detection

Forecasting
Activity Detection

DNN
Decision Tree

SVM
Linear

Physionet
HAR
DSA

Opportunity

Industry Telemetry
Sensing

Predictive Maintenance
Motor Control

DNN
Decision Tree

SVM
Linear

Naive Bayes

UCI Air Quality
UCI Gas
UCI EMG

NASA's PCoE



tinyMLPerf Benchmark Design Choices
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Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?
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Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?
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Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?
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Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?
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Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?

5. Issues specific to training or 
inference

Quantization, calibration, and/or retraining?

Reduce result variance?
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Big Questions Inference

1. Benchmark definition What is the definition of a benchmark task?

2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?

5. Issues specific to training or 
inference

Quantization, calibration, and/or retraining?

Reduce result variance?

6. Results Do we normalize and/or summarize results?



ML Benchmark Design Choices: Examples
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Model Range Example Principle

Maturity: 
Lowest common denominator, most widely 

used, or most advanced?

Image recognition: AlexNet, 
ResNet, or EfficientNet?

Cutting edge,
not bleeding edge
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Model Range Example Principle

Maturity: 
Lowest common denominator, most widely 

used, or most advanced?

Image recognition: AlexNet, 
ResNet, or EfficientNet?

Cutting edge,
not bleeding edge

Variety: 
What broad kind of deep neural network to 

choose? 

Translation: GNMT with RNN vs. 
Transformer with Attention

Try and ensure coverage at 
a whole suite level
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Model Range Example Principle

Maturity: 
Lowest common denominator, most widely 

used, or most advanced?

Image recognition: AlexNet, 
ResNet, or EfficientNet?

Cutting edge,
not bleeding edge

Variety: 
What broad kind of deep neural network to 

choose? 

Translation: GNMT with RNN vs. 
Transformer with Attention

Try and ensure coverage at 
a whole suite level

Complexity: 
Less or more weights?

Object detection: SSD vs. Mask R-
CNN? Resolution?

Survey and anticipate 
market demand
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Model Range Example Principle

Maturity: 
Lowest common denominator, most widely 

used, or most advanced?

Image recognition: AlexNet, 
ResNet, or EfficientNet?

Cutting edge,
not bleeding edge

Variety: 
What broad kind of deep neural network to 

choose? 

Translation: GNMT with RNN vs. 
Transformer with Attention

Try and ensure coverage at 
a whole suite level

Complexity: 
Less or more weights?

Object detection: SSD vs. Mask R-
CNN? Resolution?

Survey and anticipate 
market demand

Practicality:
Availability of datasets?

Feasibility: Is there a public 
dataset?

Good now > perfect.



tinyMLPerf Benchmark Strawperson
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Task Category Use Case Dataset

Audio Audio Wake Words Speech Commands

Visual Visual Wake Words Google’s VWW dataset

Behavioral Anomaly Detection Physionet, HAR, 
DSA, Opportunity
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Summary

● Benchmarking ML Systems is hard
due to the fragmented ecosystem

● MLPerf is a community-driven ML
benchmark for the HW/SW industry

● Lets build a tinyML benchmark suite to
enable tinyML system comparison

○ Defines Tasks, Scenarios, Datasets, Methods
○ Establish clear set of metrics and divisions
○ Allows for hardware/software flexibility
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Join us! 
Google group: https://groups.google.com/forum/#!members/mlperf-tiny

vj@eecs.harvard.edu
cbanbury@g.harvard.edu
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