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What is MLPerf ?

4 MLPerf .



A Community-driven

ML Benchmark Suite
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MLPerf

Large public datasets

Training
Benchmarks

Inference
Benchmarks

|dentify a set of ML tasks
and models

|dentify real-world
scenarios to emulate
Outline the rules for
benchmarking

Define a clear set of

evaluation metrics

...Collect results to publish

s: MLPerf



MLPerf Goals

e Enforce replicability to ensure reliable results
e Use representative workloads, reflecting production use-cases

e Encourage innovation to improve the state-of-the-art of ML
e Accelerate progress in ML via fair and useful measurement

e Serve both the commercial and research communities

e Keep benchmarking affordable (so that all can play)

¢: MLPerf



MLPerf Inference Benchmarks 0.5v

“

Imaae Classification MobileNet v1 ImageNet (224x224)
9 ResNet50 ImageNet (224x224)
Vision
Obiect Detection SSD-MobileNet v1 MS-COCO (300x300)
J SSD-ResNet34 MS-COCO (1200x1200)
Language Translation Google NMT WMT Eng-Germ

5 I N I 7+ MLPerf



Inference v0.5 Results

MLFTerf Training ~ Inference ~ Get Involved ~ About - GitHub Forum
MLPerf Inference v0.5 Results
November 6th, 2019
Any use of the MLPerf results and site must comply with the MLPerf Terms of Use.
You may wish to read the Inference Overview to better understand the results.
© Closed Division Performance
Open Division Performance
Closed Division Times
results (Single Stream in milliseconds, MultiStream in no. Server in QPS, Offline in inpu )
Image c Object
ImageNet ImageNet Coco COCO
MobileNet-v1 ResNet-50 v1.5 SSD w/ MobileNet-v1 SSD w/
[[s] System Stream Server Offline Stream Multis Server Offline Stream Multis Server Offline Stream
CATEGORY: A
Inf-0.5-1 | Alibaba Cloud Alibaba Cloud T4 17,473.60 5,540.10 7,431.20
Inf-0.5-2 | Dell EMC Dell EMC R740 67,124.18 71,214.50 20,742.83 22,438.00 28,293.31 30,407.90
Dell EMC R740xd with 2nd generation Intel® Xeon®
Inf-0.5-3 | Dell EMC Scalable Processor 1.54 3,744.24
Dell EMC R740xd with 2nd generation Intel® Xeon®
Inf-0.5-4 | Dell EMC Scalable Processor 1.69 4,266.46
Inf-0.5-5 | dividiti Raspberry Pi 4 (rpi4) 394.34 1,916.65
Inf-0.5-6 Raspberry Pi 4 (rpi4) 103.60 448.31
Inf-0.5-7 Linaro HiKey960 (hikey960) 121.11 518.07
Inf-0.5-8 Linaro HiKey960 (hikey960) 50.77 203.99
Inf-0.5-9 Linaro HiKey960 (hikey960) 143.07 494.90




Inference Results
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600+ inference

results

Over 30 systems

submitted

10,000x
difference in

performance
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What about TinyML systems?
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TinyML Challenges for ML Benchmarking

e Resources are extremely
condensed in the tinyML devices ... 2B

e Need to define a methodology t0 <5504
load the SUT for evaluation

640 KB

NDP100 Sl 128 KB

e How can we come up with a
methodology that works crmaars 16 k8 - TinyML
. MLPerf
across many different
systems?

i 7+ MLPerf



TinyML Challenges for ML Benchmarking

l TinyML

e Power is optional in MLPerf 10w MLPert

o MLPerf power working group is
trying to develop a specification

e But power is a first-order design 1
constraint in TinyML devices

e How to define a power spec?

NDP100 Cortex-M7 RasPi 4 6049GP-TRT



TinyML Challenges for ML Benchmarking

o Plethora of techniques o What are the rules that apply
o for tinyML"?
o Quantization
o Sparsity o Which of the optimizations

should be allowed while still

o Pruning , _ ,
enabling fair comparisons?

o Retraining
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TinyML Tasks for ML Benchmarking

Task Category Use Case Model Type Datasets
Audio Wake Words DNN Speech Commands
" Audioset
Audio Context Recognition CNN ExtraSenso
Control Words RNN Freesoun dry
Keyword Detection LSTM DCASE
. DNN .
Visual Wake Words CNN Visual Wake Words
Object Detection CIFAR10
i SVM
Image Gesture Recognition . MNIST
. ) Decision Tree
Object Counting KNN ImageNet
Text Recognition . DVS128 Gesture
Linear
Segmentation DNN Physionet
Physiological / Anomaly Detection Decision Tree HAR
Behavioral Metrics Forecasting SVM DSA
Activity Detection Linear Opportunity
DNN . .
Sensing Decision Tree UC:JACuIr g::“ty
Industry Telemetry Predictive Maintenance SVM UCI EMG
Motor SERIOK. . liogh NASA's PCoE
A Naive Bayes
o= 7' MLPer
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tinyMLPerf Benchmark Design Choices ’

1. Benchmark definition What is the definition of a benchmark task?
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tinyMLPerf Benchmark Design Choices

>

1. Benchmark definition What is the definition of a benchmark task?

Big Questions

2. Benchmark selection Which benchmark task to select?

R s IR
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tinyMLPerf Benchmark Design Choices

>

1. Benchmark definition What is the definition of a benchmark task?
2. Benchmark selection Which benchmark task to select?

3. Metric definition What is the measure of “performance” in ML systems?
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tinyMLPerf Benchmark Design Choices

>

1. Benchmark definition What is the definition of a benchmark task?
2. Benchmark selection Which benchmark task to select?
3. Metric definition What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?
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tinyMLPerf Benchmark Design Choices ’

 oawom [ e
What is the definition of a benchmark task?

Which benchmark task to select?

What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?

5. Issues specific to training or Quantization, calibration, and/or retraining?
inference

Reduce result variance?
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tinyMLPerf Benchmark Design Choices

>

1. Benchmark definition What is the definition of a benchmark task?
2. Benchmark selection Which benchmark task to select?
3. Metric definition What is the measure of “performance” in ML systems?

4. Implementation equivalence How do submitters run on different hardware/software systems?

5. Issues specific to training or Quantization, calibration, and/or retraining?
inference

Reduce result variance?

Do we normalize and/or summarize results?



ML Benchmark Design Choices: Examples f
T S TN

Image recognition: AlexNet, Cutting edge,
Maturity: ResNet, or EfficientNet? not bleeding edge

Lowest common denominator, most widely
used, or most advanced?
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ML Benchmark Design Choices: Examples f
T S TN

Image recognition: AlexNet, Cutting edge,
Maturity: ResNet, or EfficientNet? not bleeding edge
Lowest common denominator, most widely
used, or most advanced?
Variety: Translation: GNMT with RNN vs. Try and ensure coverage at
ke e e e | Transformer with Attention a whole suite level
choose?



-

ML Benchmark Design Choices: Examples v

Image recognition: AlexNet, Cutting edge,

Maturity: ResNet, or EfficientNet? not bleeding edge

Lowest common denominator, most widely
used, or most advanced?
e Translation: GNMT with RNN vs. Try and ensure coverage at

Variety: : : .

ke e e e | Transformer with Attention a whole suite level
choose?
Complexity: Object detection: SSD vs. Mask R-  Survey and anticipate
Less or more weights? CNN? Resolution? market demand
R e v, el ¢t MLPerf

TR R



ML Benchmark Design Choices: Examples Y

.

Image recognition: AlexNet,
Maturity: ResNet, or EfficientNet?

Lowest common denominator, most widely
used, or most advanced?

sty Translation: GNMT with RNN vs.
Variety: . .
What broad kind of deep neural network to Transformer with Attention

choose?
Object detection: SSD vs. Mask R-

Complexity:
Less or more weights? CNN? Resolution?
Practicality: Feasibility: Is there a public
Availability of datasets?

dataset?

Cutting edge,
not bleeding edge

Try and ensure coverage at
a whole suite level

Survey and anticipate
market demand

Good now > perfect.



tinyMLPerf Benchmark Strawperson

26

Task Category Use Case Dataset
Audio Audio Wake Words Speech Commands
Visual Visual Wake Words Google’s VWW dataset
Behavioral Anomaly Detection Physionet, HAR,

DSA, Opportunity

st MLPerf
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Benchmarking Resource-constrained Machine Learning Systems
Colby Banbury, Max Lam, Vijay Janapa Reddi, David Kanter, Amin Fazel, Xinyuan Huang, Danilo Pietro Pau

Abstract

Advancements in ultra-low-power machine learning
(tinyML) hardware promises to unlock an entirely new
class of intelligent applications. However, the
complexity and dynamicity of the field obscure the
measurement of progress and make application
design decisions intractable. In order to enable the
continued innovation, a fair, replicable and robust
method of comparison is needed. Since progress is
often the result of increased hardware capability, a
reliable tinyML hardware benchmark is required.

To fulfill the need, we have created a community
effort to extend the scope of the existing MLPerf
benchmarking suite to include tinyML devices. With
the help of over 76 member organizations, this group,
dubbed tinyMLPerf, has begun the process of
developing a benchmarking suite.

Existing Benchm:

Existing do not ML
or they are too large to fit on tinyML constrained
processors.

BENCHMARK ML? POWER? TINY?
COREMARK x v v
MLMARK v X x

F INFERE V v *

L REQU v Vv v

Survey of tinyML Use Cases, Models, and Datasets

The landscape of tinyML use cases is large and wide.
We surveyed many state of the art use cases to
determine the scope of a representative tinyMLPerf
benchmark.

Input Type Use Case Model Type Dataset
Speech
Audio Wake Words DNN Commands
Audio Corntext Recognition CHN Audioset
Control Words: RNN ExtraSensory
Keyword Detection LST™M Freesound
DCASE
DNN Visual Wake
Visual Wake Words o Words
Object Detection o CIFART0
Image Gestura Recogniton | T MNIST
Object Counting "';‘:’,“ ree ImageNet
Text Recognition Linear DvS128
Gesture.
Segmentation ONN Physionet
Physioiogicall  anomaly Detection | Decision Tree HAR
': nf;c“!"‘ Forecasting SVM DSA
Activity Detection Linear Opportunity
NN .
Sensing UCH Air Quality
Industry Predictive D““zs’;f’" UCI Gas
Telemetry Maintenance frived UCI EMG
Motor Control Naive Bayes | NVASAs PCE

tinyMLPerf

and the tinyMLPerf working group

Harvard University, MLPerf, Samsung Semiconductor, Inc., Cisco Systems, STMicroelectronics

Challenges: Energy

An ideal tinyML benchmark would profile the energy
efficiency of each system. Unfortunately, there are
many challenges in fairly measuring energy usage:

. intaining the of energy
across the diverse range of processors, silicon
hnologies and memory archil

# Determining the scope of the measurement.
= Memories (RAM, FLASH)?
Peripherals? PLL?
m Pre/Post processing? Interfaces 7

* M energy cor ion without
work or alterations to the SUT.
e P ling energy ts from i

the other metrics
Scope of tinyMLPerf vs. MLPerf Inference: Power Envelope

= o P
w et

1w

o
w
o+ | i .

tinyML Systems consume drastically less power than
traditional ML systems, yet still cover a large scope.

Challenges: Model Infancy

Despite the nascency of the field, tinyML systems are
already diverse. This poses a number of challenges:

» Lack of standardization makes collecting metrics
harder to formalize.

Novel architectures have drastically different
constraints and topologies.

System requirements vary significantly across use
cases.

Performances are difficult to normalize.

Different manufacturing technologies jeopardize
comparisons with a fairly f

Scope of tinyMLPerf vs. MLPerf Inference: Memory Envelope

Challenges: Memory

Memory constraints are one of the primary motivating
factors for the creation of a tinyML specific
benchmark. However, memory constraints add

e Traditional benchmarks use NN models that are
far too large in weights and activations.

s The overhead of the benchmark is more significant
factor, pushing the need for non-intrusive
inspection of key metric indicators.

e The System Under Test cannot hold the entire
testing set, w/out involving host corr icati

4

MLPerf

Use Cases Selected for v0.1

The criteria for the preliminary selection was to select

three use cases that represented the scope of tinyML

in terms of input type, size, neural network model
pe. and maturity. Model selection is still in progress. |

Use Case Dataset

Audio Wake Words Speech Commands

Visual Wake Words Google's VWW dataset

Physionet, HAR, DSA,

Anomaly Detection Opportunity

» Software (e.g. RTOS, drivers, built-in libraries) will
require further discrimination.

Raa 4 268
STz 640 k8

norioo J10 8

sz |18 -
pert

Limited memory is a significant constraint for tinyML
systems and the degree of which can vary widely.

Challenges: Processors Heterogeneity

tinyML is still a new field. It creates an opportunity to
foster growth through community efforts (with industry
support) but also poses a number of challenges for
developing a robust benchmark that features industry
acceplance and consensus:

* Widely accepted tinyML neural network models.
« Large open source tinyML datasets.

e Frameworks are siill evolving and few de-facto
industry standards have become popular therefore
model bilitv/ bility is evolving:

o e.g. tensorflow, keras, pytorch, mxnet, caffe etc,
associated interoperable file formats (e.g. tflite,
keras, onnx, nnef).

Working Group Member Organizati

dlili ) octoMLRenesAs B HARVARD
cisco oty

Go gle'@ A&7 "=
armzoox

B Microsoft ) ambia

SAMSUNG () @
% Reality RedHat

LoadGen and System Under Test

System Under Test (SUT)

]

(workflow is subject to change)

w
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tinyMLPerf

Help us create
a tinyML Benchmark!

Join L iny

ILPerf



summary

e Benchmarking ML Systems is hard
due to the fragmented ecosystem

e MLPerfis a community-driven ML
benchmark for the HW/SW industry

e Lets build a tinyML benchmark suite to

enable tinyML system comparison
o Defines Tasks, Scenarios, Datasets, Methods
o Establish clear set of metrics and divisions
o Allows for hardware/software flexibility

arXiv:1910.01500v2 [cs.LG] 30 Oct 2019

MLPERF TRAINING BENCHMARK
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Machine leaming
performance benc
presents a number
that improve train
has high variance,
with the same bin|
avercomes these ¢
performance and

-

INTRODUCTI(

Machine leamning (ML}
application domains, ing
<t al., 2012), language
ford t al., 2019), spee}
and game playing (Sil
Chan, 2018). Much of
ing (DL) techniques i}
datasets o perform v
ing

MLPERF INFERENCE BENCHMARK
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significant investment
have been made to accd
As the number of hard
for DL training increas

Chen et al., 2018; Mark]
the need for a comprel
that benchmarks accel
son, 2011). For examf
database system break]
Standard Performance
Unix servers (Dixit, 19)
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arXiv:submit/2913405 [cs.LG] 4 Nov 2019

£ (ML) hardware and software system demand is burgeoning Dnvv.nby ML applications, the number of
different ML inference systems has exploded. Over are building M and the systems that
incorporate existing models span at least three orders of magnitude in p.mmmmpnon and four orders of magnitude
in performance; they range from embedded devices to data-center solutions. Fucling the hardware are a dozen or more
software rm-w.m ...d libraries. The myriad combiaations of ML hasdare and ML software make sssessing ML
system and manner ing. There is a clear need
for industry-wide i ML benchmarking and cvaluation criteria. MLPerf Inference answers that call. Driven by
more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf implements a set of rules

and practices to ensure comparabili
method and design principles of the ini
fr

14

across systems with wildly differing architectures. In this paper, we present the
MLPerf Inference release. The first all for submissions gamered more than 600

1 INTRODUCTION

Machine leaming (ML) powers a variety of applications
from computer vision (He ¢t al., 2016; Goodfellow ct al.,
2014; Liu et al., 2016; Krizhevsky et al., 2012) and natural-
language processing (Vaswani ct al, z:)n Devin et al.,

2018) to self-drit Xu et al., 201
ﬂxl ml'l):ndllllmmllmimbmls(chluzllT 2013)‘
ployed at larg

substantial investment to optimize inference performance.
Although training of ML models has been a development
bottleneck and a considerable expense (Amodei & Hernan-
dez. 2018), inference has become a critical workload, since:
models can serve as many as 200 trillion queries and per-
form over 6 billion translations a day (Lee et al., 2019b).

'Hanmd I.’nl\m“r “Intel "Real World Im\ghu “‘Google
R G oo Ui

pinccrin
Labs “J\l hh:T ||=-| "rc;h ”Mednm “Symy;
ividiti **Arm *' University of Toronto **Xilinx **Alibaba (w.ls
Facebook) *Centaur Technology ™ Alibaba Cloud ¢
tors. MLPerf Inference is the product of (1) lrd:vldulsllnlkd
the ot ot var d ()
i Tttakes
both groups .nh.w.!.mﬁ.l.mm.,mm...k We crodit the
Send

44 systems that show a wide range of capabilitics.

To address these growing computational demands, hard-
ware, software, and system developers have focused on in-
ference performance for a variety of use cases by designing
optimized ML hardware and software systems. Estimates
indicate that over 100 companies are producing or are on
the verge of producing optimized inference chips. By com-
parison, only about 20 companies target training.

Each system takes a unique approach to inference and
prescats a tradc-off between latency, throughput, power,
and model quality. For example, quantization and reduced
precision are powerful techniques for improving inference
latency, throughput, and power efficiency at the expease
of accuracy (Han et al., 2015; 2016). After wraining with
floating- point numbers, compressing model weights enables
better performance by decreasing memory-bandwidth re-
quirements and increasing computational throughput (...
by using wider vectors). Similarly, many weights can be
removed to boost sparsity, which can reduce the me
footprint and the number of operations (Han et al., 2015;
Molchanov et al., 2016; Li et al., 2016). Suppont for these
techniques varies among systems, however, and these opti-
‘mizations can drastically reduce final model quality. Hence,
the field needs an ML inference benchmark that can quantify

submitters.

b de-offs in an neutral,

s
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Join us!
Google group: https://groups.google.com/forum/#!members/miperf-tiny

vi@eecs.harvard.edu
cbanbury@g.harvard.edu
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