
JOURNAL OF COMPAkATIVB ECONOMICS 2, l-1 1 (19%) 

Aggregation for Material Balances 

MICHAEL MANOVE AND MARTIN L. WEITZMAN’ 

Department of Economics, Boston University, Boston, Massachusetts 02215 and Department of 
Economics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

Received July 1, 1977; revised August 1977 

Manove, M., and Weibman, M. L-Aggregation for Material Balances 
In an input-output system, let final demands and gross outputs be iteratively 

balanced by successive approximations. The speed of convergence will depend, 
among other things, on the initial choice of gross outputs. Suppose that, using some 
aggregation weights, aggregate supply is made equal to aggregate demand in the 
initial plan. The current paper finds the set of aggregation weights that yields speediest 
convergence. An economic interpretation of the “optimal” aggregation weights is 
given, and some examples are calculated. J. Comp. &on., March 1978, 2(l), pp. 
l-l 1. Boston University, Boston, Mass., and Massachusetts Institute of Tech- 
nology, Cambridge, Mass. 
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Balancing sectoral production flows is perhaps the most critical short run 
task facing the managers of a centrally planned economy. In that context, 
supply and demand are equilibrated by the well-known method of “material 
balances.” On a superficial level, this method consists of drawing up a balance 
sheet for each important commodity. The balance sheet lists all the planned 
sources for the commodity with the amounts going to each user. The idea is to 
adjust the supplies and uses of various commodities so as to get the balance 
sheets for all commodities into balance simultaneously. A good mathematical 
rendition of the balancing process is difficult to construct, but several writers 
have endeavored to represent various aspects of it.’ 

We want to examine a fundamental problem of central planning, in general, 
and of material balances, in particular. Central planners in large economic 
organizations are usually operating under severe time and cost constraints with 
respect to the planning process itself. As a result, it is simply impossible for 
them to know of and work with specific economic items at the most detailed 
classification level. If that were done, at least hundreds of thousands of items 
would have to be planned at the center. To avoid this staggering task, central 

’ Our thanks to Oldrich Kyn and to an anonymous referee who provided unusually detailed 
and useful comments. Errors and omissions are our own fault. This work was supported by a 
grant from the National Science Foundation. 

* See, for example, Levine (1959), Montias (1959), and Manove (1971). 
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planners typically deal only with highly aggregated figures. They plan in terms 
of tons of steel, instead of getting lost in the thousands of possible types and 
grades. Aggregation is universally accepted as a natural part of real-life 
planning and administration. 

Any kind of aggregation rule requires two types of specifications. First, the 
rule must specify a partition of the detailed nomenclature into groups of 
commodities, each group to be aggregated into a single sector. Second, an 
aggregation weight must be assigned to each commodity within a group, so 
that quantities can be made commensurable and can be summed. 

Suppose, for example, that it has been decided to aggregate oil and coal into 
a single sector called fuel. Aggregation weights based on one of a number of 
characteristics could be used: volume, weight, caloric content, value in terms of 
production cost, market values, etc. 

How good a particular aggregation rule is depends on the purpose of the 
aggregation. We are interested in aggregation rules which speed up the process 
of material balances. Unfortunately, finding good rules of aggregation seems to 
be a highly intractable problem, and we have succeeded only with respect to 
the simplest case, aggregation to a single sector. Here, the question of parti- 
tioning the nomenclature disappears, and the analysis reduces to the problem 
of choosing good aggregation weights. 

A REPRESENTATION OF MATERIAL BALANCES 
As a framework for selecting a good aggregation mechanism, we must 

choose a mathematical representation of the material-balances process. The 
following model is frequently taken as a paradigm that captures, at a high level 
of abstraction, many essential features of the process. 

Let A be a fully disaggregated input-output matrix appropriate to the given 
economy. The coefficients of A may or may not be known to the planners. It is 
desired to produce a final demand vector D. The planners want to know the 
level of gross outputs x* that is needed to produce D without waste. In other 
words, they are seeking a solution x* to the equation 

X*=AX*+D. (1) 

The solution to (1) is given by 

X* = (I - A)-‘D. (2) 

Suppose that the planners either cannot or do not wish to solve for X 
centrally by calculating it from (2). This might occur for a variety of reasons, 
including ignorance of the A matrix at a level of product nomenclature suffi- 
ciently detailed to be useful. 

A commonly accepted mathematical rendition of material balances is an 
iterative method for finding X* that does not rely on the center knowing 
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(I - A)-* or even A itself. It is important to stress that this is only a model, not 
a complete and accurate description of material balances as employed in 
practice. 

Although the center does not know P, using past experience, simple 
projections, and some analytic techniques, it can name a set of initial “control 
figures,” X,. Hopefully X,, is fairly close to X, although an exact coincidence 
would be too much to ask for. 

The idealized iterative procedure is described as follows: given that at 
iteration t - 1 the gross-output target is X,-r, at iteration t it is specitled to be 

X, = AX,-, + D. 

This has a natural interpretation. The right-hand side is the vector of gross 
inputs that would be used up in producing a gross output of X, along with a net 
final demand of D. Rule (3) sets next round’s gross-output target equal to the 
implicit total demand determined in the previous round. 

Conceptually, one could think of iterative balancing taking place in 
tatonnement fashion or occurring over real time. Either way, an important 
feature of (3) is that it allows for a decentralized interpretation. On any round, 
each sector j is presented with a target output level +. Sector j determines its 
corresponding input needs for commodity i, au+ This is presented to the 
appropriate supplier, sector i. Sector i in its turn adds up the total “orders” 
placed with it, 1 auxj + d,. This becomes its gross-output target on the next 
round. Thus “supply” is made equal to lagged “demand.” Note that the center 
plays no role in the above procedure, which does not require explicit knowledge 
of the A matrix by any agent. 

Rule (3) implicitly contains the extremely important assumption that there is 
a lag of exactly one period from the time any sector receives changes in its 
supply targets to the time it communicates to other sectors changes in its 
demand for inputs. This lag in communication is constant over all pairs of 
sectors. In reality, of course, some sectors may communicate to some of their 
suppliers faster or more often than in other cases. In the remainder of this 
paper, we will assume that revisions in demand for inputs are communicated 
between two different sectors exactly once each period, while revisions in 
demand are communicated within a single sector a large number of times each 
period. To represent this assumption, the above notation need not be changed, 
but the A matrix must be understood to be derived from a table of input-output 
flows in which the diagonal entries have been zeroed out. In other words, the 
antecedent flow table must represent only net intersectoral flows and omit all 
intrasectoral flows. 

It is easy to show that the successive approximations algorithm (3) must 
converge. Substituting from (3) and (l), we have 

X,-X* = AX,-, + D - (/AX* + D). 
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Cancelling terms yields 

x, - x* = A(X,-, - x*). 

The above equation has the solution 

xf-x=A’(xo-P). 
Since 

lim A’=0 
t-r00 

for all productive input-output systems, we have that 

lim X, = X*. 
f-00 

(4) 

CENTRAL PLANNING AND MACROBALANCING 

In this simple model, the only role of the central planners is to specify the 
control figures, X,. From (4), the convergence speed of X, to X will turn on 
how quickly the sequence of matrices of the form AL damps out the vector (X0 - 
x*). Since the coefficients in A are more or less fixed in the short run, speedy 
covergence must be sought in a good specification of X0; that is, X0 should be 
close to X, the solution of (1). One way that the center can calculate good 
values of X0 is to explicitly solve Eq. (l), not as it stands (ruled out by 
constraints on the planning process) but on an aggregate level. In this section, 
we shall investigate an extreme case of this general method: aggregation to one 
sector. 

We will say that control figures and final demands are in macrobalance when 
the aggregate value of the control figures is consistent with the aggregate value 
of final demand.3 This balancing involves the reduction of each vector of goods 
to a scalar “macro” value. An aggregation weight is specified for each 
commodity. The “value” of the final demand vector D is calculated using these 
weights, and the weights are used to compute a scalar input-output coefficient 
that is an aggregate version of the input-output technology matrix A. These 
two numbers are used in Eq. (2) to calculate a financial value of the 
corresponding gross-output target. In order to find the best aggregation weights 
for use in the macrobalancing process, we proceed to construct a mathematical 
model. 

Let v be a vector of aggregation weights to be used in planning material 
balances, and a the aggregate economy-wide input-output coefficient. Suppose 
that we choose control figures, X,,, which are macrobalanced, i.e., figures which 
in the aggregate satisfy (1). This one-dimensional version of Eq. (1) is given by 

~8, = av&, + vD. (5) 
3 It should be noted that we are using the terms “aggregation” and “macrobalance” in a 

somewhat specialized sense which may deviate from standard usage in other contexts. 
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Thus 

v2 = vD/( 1 - a). (6) 

We are not really concerned with the origin of the macrobalanced control 
figures Xe. As a practical matter, there are a variety of ways to transform any 
set of unbalanced control figures into macrobalance. For example, when any 
set of unbalanced control figures X0 is multiplied by the scalar m, defined by 

m = vDl( 1 - a)vXO, (7) 

those control figures become macrobalanced. Of course, there are many other 
ways a set of control figures can be brought into macrobalance. 

The idea of balancing an initial plan on a macroeconomic level seems 
intuitively plausible and economically appealing. Obviously, the effectiveness 
of the procedure in inducing fast convergence of (3) will generally depend on 
the choice of the aggregate input-output coefficient a and the aggregation 
weights v. The main statement of the present paper is that in a well-defined 
sense there exists a “best” a and v. These are none other than the dominant 
characteristic root, a, of the A matrix and its associated characteristic row 
vector w, respectively. In other words, the optimal values of (l/a) - 1 and v are 
the expansion rate and the von Neumann prices for an expanding economy 
with the given A matrix. 

THEOREM. Let a be the dominant positive characteristic root of a 
diagonalizable4, indecomposable productive technology matrix A, and let w be 
the associated characteristic row vector, so that 

ON= WA. (8) 

Let 8, be any vector of ControlJigures satisfying (5) with v = w, a = a, and 
3, any other vector of control figures that does not satisfy (5). Then there 
exists an integer T such that, element by element, 

L&-x*I < IXt-x*I 

for all t > T, where 8, and Xt are the gross-output targets obtained by applying 
(3) to X,, and &, respectively, t times. 

Proof. Define E, = X, - X*, 6, = Xi - X*, and l?t = Xt -X*. We have 

WE, = w8, - wx* 
= (a-w& + wD) - (WAX* + wD) 
= aw& - awX* 
= aw(;lo -x*) = mvx??o 

4 Assuming that A is diagonalizable makes the mathematics tractable without really restricting 
the scope of the theorem. This is because any nondiagonalizable matrix can be made 
diagonalizable by making arbitrarily small variations in its coefficients. 
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and it follows that 

(1 -a)w&=O. 

Because a is the dominant characteristic root of a productive technology 
matrix, a < 1, so 1 - a # 0. Thus WE,, = 0. 

On the other hand suppose, tentatively, that WE, = 0, where x0 
corresponding to g,, does not satisfy (5) with v = w, a = a. Then M#~ = wX*. 
By (1) and (8) we have 

wX* = WAX* + WD = awX* + wD. 

Substituting wTO for wX* shows that x0 satisfies (5), a contradiction. Thus 
wJ!$ # 0. 

From (4) we have 

E, = A’E,. (9) 

Let W be the matrix of row-characteristic vectors of A (see footnote 4) and let 
/1 be the diagonal matrix of corresponding characteristic roots. We then have 
WA = A W, so that A = W-l AW. By (9), Et = W-’ At WE,. Letting Wi denote 
the ith row of W (with w = W,); W,, the jth column of W-l; and Jr, the ith 
diagonal element of A (with a = A,), we can write 

Et = a’(wE,)#‘, + L,l(W,E,)ff’, + * -. + &,t(,WnE,)l$‘,,. (10) 

By making the appropriate substitutions, and factoring out $, (10) yields 

E,=d R 1 ; t (w,qJw* + . . . +(y(w&Jiv. 1 * (11) 
The first term of (10) is not reflected in (11) because w& = 0. 

Also from (lo), 

Note that I?, is the column-characteristic vector of A corresponding to the 
dominant characteristic root. Because A is nonnegative and indecomposable, 
the generalized Frobenius theorem guarantees that q, is strictly positive. As 
w&, # 0, the absolute value of the first term in brackets in (12) must be strictly 
positive as well. From the fact that a has a magnitude greater than any of the 
;1)s, we may now conclude that the absolute value of the bracketed terms in 
(12) will be strictly larger than the absolute value of the bracketed terms in (11) 
for sufficiently large t. The theorem follows. 

It is evident from Eq. (11) that the characteristic-vector weights cause the 
term with the slowest damping factor to vanish completely. Therefore, in the 
limit, the difference in the rate of convergence of the iterative balancing 
procedure when the optimal aggregation weights are used and the rate with 
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nonoptimal weights will be the difference in the magnitude of the dominant 
characteristic root and that of the characteristic root (possibly complex) with 
the second largest magnitude. In some technology matrices, this difference may 
be larger than in others; unfortunately, it is difficult to relate the difference to 
any meaningful or obvious property of the matrix. 

It is interesting and significant that the optimal aggregation weights, W, for 
iterative plan balancing are other than ordinary market prices p, which 
typically approximate embodied factor content. Market prices may be all right 
for determining the general trade-offs available as long run production 
alternatives, but they are not necessarily the appropriate ones for measuring 
the state of overall plan balance for an economy. A dollar’s worth of imbalance 
in machinery may be much more difficult to rectify than a dollar’s worth of 
imbalance in food. ,Loosely speaking the w aggregation weights measure the 
relative costs of commodity imbalance in terms of the number of corrective 
iterations needed to achieve convergence. If wi is significantly higher than wj it 
means that an initial imbalance of a given magnitude in sector i will damp out 
much more slowly then an imbalance of the same magnitude in sector j. 
Compared with i, the imbalance in j has much more of a built-in tendency to 
correct itself. 

The fact that the von Neumann dual prices have a semi-practical role to play 
as optimal aggregation weights is rather surprising. The iterative construction 
of a consistent plan is an area of economic theory that would appear to have 
nothing in common with the problem of balanced economic growth at a 
maximal rate. The reason for this seeming coincidence is brought out in the 
proof of the main result. Each component of X, - X* is a weighted sum of the 
same geometrically declining terms, with only the weights differing by 
component. The coefficient of decline of the slowest damping term is CI (all the 
others have magnitude less than cc). It is this term that predominates in the 
limit. 

On the other hand, the maximal balanced growth rate associated with A is 
g= (l/a)- l.Th e von Neumann prices can be interpreted as (proportional to) 
the incremental effect on the maximal growth rate g of marginally changing the 
supply availability of a commodity. The same interpretation, of course, holds 
with respect to the incremental effect on the dominant damping term a= l/( 1 + 
g). It seems natural that in a context of achieving plan balance, the correct 
aggregation weights are measuring the appropriate trade-offs between specific 
commodity imbalances. 

AN APPLICATION TO SOVIET INPUT-OUTPUT DATA 

The 1966 Soviet value input-output table, as adjusted by Treml(1973), was 
aggregated to 19 productive sectors to conform with the nomenclature of the 
Standardized Input-Output Tables of the ECE Countries published by the 
United Nations Statistical Commission (1972). For the purpose of deriving 
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optimal aggregation weights for iterative plan balancing, the intrasectoral flows 
(i.e., the diagonal elements of the first quadrant of the table) were zeroed out 
(as seen previously). 

Table 1 lists the optimal aggregation weights for iterative plan balancing 
associated with this standardized input-output table; that is, the row-charac- 
teristic vector of the A matrix. Because the matrix is in value terms, the 
aggregation weights are presented per ruble of the respective commodities. In 
other words, the listed weight for commodity i is wi/pi, where wi is the 
aggregation weight calculated for the commodity in physical terms, and pi is 
approximately the market value of the commodity. The commodities with the 
largest weights are relatively more important in the iterative plan-balancing 
process than the embodied factor content would imply, while those with the 
smallest weights are less important. 

In general, one would expect those commodities which are produced in a 
number of stages in different sectors to cause the worst problems in the 
balancing process. This is because adjusting the output levels of such 
commodities causes chains of secondary effects. Naturally, one would expect 
the optimal aggregation weights of these commodities to be relatively high in 
order that the financial procedure bring them as closely into balance as possible 
before the iterative balancing procedure begins. The reader should interpret 
Table 1 with this in mind. 

TABLE 1 

OPTIMAL AGGREGATION WEIGHTS 

Agriculture 0.358 
Fuel 0.935 
Mining 0.039 
Food processing 0.692 
Textiles 0.550 
Clothing 0.940 
Wood products 0.941 
Rubber products 1.278 
Chemicals 1.077 
Petroleum products 1.128 
Mineral products 1.143 
Metals 1.643 
Transportation machinery and equipment 1.620 
Machinery 1.062 
Electricity 0.975 
Construction 1.522 
Commerce 1.370 
Transportation and communication 0.63 1 
Other 1.333 
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Table 2 was calculated from the mean results of 20 Monte Carlo experi- 
ments using the Soviet input-output matrix. Initial gross-output targets X were 
assigned a uniform probability distribution given by: 

with X the actual gross output figures in 1966. Each vector X of initial gross- 
output targets was macrobalanced by scaling as in (7), and then iterated by 
material balances as in (3). The sum of the absolute values of plan imbalances 
for all i, i.e., 1 J (X - AX - @,I, is given in lines 1 and 2 where the total size of 
imbalances in line 1 with no iterations is indexed by 100. As is evident from the 
table, a macrobalance with optimal aggregation weights leads to considerably 
smaller errors than its market-value counterpart after only a few iterations. 

TABLE 2 

PLANIMBALANCE REMAIN~NGAFTEREACHITERATION,ASSUMINGINITIALMACROBALANCE 

Aggregation weights Iteration number 
for macrobalance 

0 1234567 

1. Producers prices loo 22 3.5 0.88 0.34 0.12 0.05 0.02 
2. Optimal aggregation weights 98 22 2.5 0.35 0.06 0.01 0.00 0.00 
3. Line 2 as percentage of 1 98 91 12 40 17 I 4 2 

At this point, an important question arises. If the center had the information 
and facilities necessary to calculate the optimal aggregation weights, could not 
they also calculate perfectly balanced gross-output targets directly, thus 
obviating the need for iterative plan balancing? The answer, of course, is yes. 
However, the center does not have sufficient information to calculate either the 
vector of balanced gross outputs or the optimal aggregation weights. In Soviet- 
type economies central planners generally do attempt to approximate balanced 
gross output vectors (e.g., control figures), but they do not try to approximate 
optimal aggregation weights. Ultimately the usefulness of approximating the 
optimal aggregation weights will depend both on the difficulty of making such 
an approximation, and on the robustness of the optimal solution. 

With regard to the former, there is a simple and well-known iterative 
algorithm that can be used to approximate the major row-characteristic vector 
of an A matrix. Let t index the iterations. Let n, be a-vector of prices and let s, 
be the vector whose elements are the total cost of intermediate goods per unit 
output of each commodity at prices n,. Let q be a strictly positive vector of 
quantity weights. Then the iterative procedure is defined by 

K w t+ I = - s,. $14 
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TABLE 3 

COMPARISONOF~PTIMALAND APPROXIMATELY OPTIMAL AGGREGATION WEIGHTS 

Ratios of absolute 
sum of imbalance 

(%I 

Iteration number 

0 1 2 3 4 5 6 I 

Optimal weights/producers prices 
Approximate optimal weights/ 

producers prices 

98 91 12 40 11 I 4 2 

98 97 72 41 20 12 11 10 

It is easy to show that 7rt must converge to the row-characteristic vector w. In 
each iteration, new prices are formed by uniformly marking up those portions 
of the current prices contributed by intermediate goods. The markup used is 
simply the average markup in all sectors inherent in the prices of the current 
iteration. Presumably the planners could use one or two iterations of this sort 
in each production period to maintain a reasonable vector of aggregation 
weights. 

To test the robustness of the optimal aggregation weights, computer 
experiments were conducted with aggregation weights deviating from the 
optimal ones. 

These “approximate” optimal weights were generated randomly from a 
uniform distribution over an interval of f 10% around the optimal weights. The 
results of material-balance iterations after a macrobalance performed with 
these approximate weights, as compared with those when optimal weights were 
used, is given in Table 3. The numbers record plan imbalance remaining after 
eachz iteration with both optimal and approximate optimal weights, as a 
percentage of plan imbalance remaining when producers’ prices are used for 
macrobalance. 

These results indicate that the optimal aggregation prices are reasonably 
robust, and that it might be worthwhile to use a good approximation of them 
for planning purposes. 

SUMMARY AND CONCLUSION 
Many centrally planned economies use the method of material balances as a 

way of producing consistent plans. We have modeled this process as follows. 
First, a preliminary list of output targets, the so-called control figures, are 
issued. Then, the method of successive approximations is used to adjust the 
control figures so that supplies of outputs will be brought into balance with 
demands for inputs and final goods. In our model, the material-balances 
process is interpreted as an iterative procedure whereby sequences of 
adjustments are made to the control figures. 
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We have explored the possibility of performing an initial macroeconomic 
balance on the control figures for the purpose of speeding up the ensuing 
material-balance process. Aggregation weights are specified, and the control 
figures are adjusted (if desired, by a scalar multiple) so that the scalar aggre- 
gate value of supply will equal the aggregate value of demand. The aggregation 
weights chosen for this purpose are exceedingly important. We have proved 
that in the context of one common model of material balances, it is optimal in 
the limit to use the row-characteristic vector of the technology matrix as the 
aggregation weights. In simulation experiments with Soviet input-output data, 
plan imbalances were dramatically reduced by an initial macroeconomic 
balance with these aggregation weights. Such initial balancing should not be 
difficult to perform, and we suggest further research into the practicality of 
their use. 
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